
Peter Prinz & Tony Crawford

C
in a Nutshell

THE DEFINITIVE REFERENCE

2nd Edition

Covers C11 standard

C
IN A NUTSHELL

Second Edition

Peter Prinz and Tony Crawford

978-1-491-90475-6

[M]

C in a Nutshell, Second Edition
by Peter Prinz and Tony Crawford

Copyright © 2016 Peter Prinz and Tony Crawford. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safaribooksonline.com). For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Rachel Roumeliotis and
Katie Schooling
Production Editor: Kristen Brown
Copyeditor: Gillian McGarvey
Proofreader: Jasmine Kwityn

Indexer: Angela Howard
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2005: First Edition
December 2015: Second Edition

Revision History for the Second Edition
2015-12-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491904756 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C in a Nutshell, Second
Edition, the cover image of a cow, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the authors have used good faith efforts to ensure that the informa‐
tion and instructions contained in this work are accurate, the publisher and the authors dis‐
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technol‐
ogy this work contains or describes is subject to open source licenses or the intellectual prop‐
erty rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491904756

Table of Contents

Preface. ix

Part I. Language

1. Language Basics. 3
Characteristics of C 3
The Structure of C Programs 4
Source Files 6
Comments 7
Character Sets 8
Identifiers 14
How the C Compiler Works 19

2. Types. 23
Typology 23
Integer Types 24
Floating-Point Types 30
Complex Floating-Point Types 32
Enumerated Types 33
The Type void 34
The Alignment of Objects in Memory 36

3. Literals. 39
Integer Constants 39
Floating-Point Constants 40
Character Constants 42
String Literals 45

4. Type Conversions. 49
Conversion of Arithmetic Types 50
Conversion of Nonarithmetic Types 58

iii

5. Expressions and Operators. 67
How Expressions Are Evaluated 68
Operators in Detail 73
Constant Expressions 97

6. Statements. 99
Expression Statements 99
Block Statements 100
Loops 101
Selection Statements 105
Unconditional Jumps 108

7. Functions. 113
Function Definitions 113
Function Declarations 120
How Functions Are Executed 122
Pointers as Arguments and Return Values 122
Inline Functions 123
Non-Returning Functions 125
Recursive Functions 126
Variable Numbers of Arguments 127

8. Arrays. 129
Defining Arrays 129
Accessing Array Elements 131
Initializing Arrays 132
Strings 134
Multidimensional Arrays 136
Arrays as Arguments of Functions 138

9. Pointers. 141
Declaring Pointers 141
Operations with Pointers 144
Pointers and Type Qualifiers 148
Pointers to Arrays and Arrays of Pointers 152
Pointers to Functions 156

10. Structures, Unions, and Bit-Fields. 159
Structures 159
Unions 169
Anonymous Structures and Unions 171
Bit-Fields 172

iv | Table of Contents

11. Declarations. 175
Object and Function Declarations 176
Type Names 184
typedef Declarations 185
_Static_assert Declarations 186
Linkage of Identifiers 187
Storage Duration of Objects 189
Initialization 190

12. Dynamic Memory Management. 193
Allocating Memory Dynamically 194
Characteristics of Allocated Memory 195
Resizing and Releasing Memory 196
An All-Purpose Binary Tree 198
Characteristics 198
Implementation 199

13. Input and Output. 209
Streams 209
Files 211
Opening and Closing Files 213
Reading and Writing 216
Random File Access 235

14. Multithreading. 239
Threads 240
Accessing Shared Data 244
Communication Between Threads: Condition Variables 251
Thread-Local Objects and Thread-Specific Storage 256

15. Preprocessing Directives. 261
Inserting the Contents of Header Files 262
Defining and Using Macros 264
Type-generic Macros 272
Conditional Compiling 272
Defining Line Numbers 274
Generating Error Messages 275
The #pragma Directive 275
The _Pragma Operator 276
Predefined Macros 277

Table of Contents | v

Part II. Standard Library

16. The Standard Headers. 283
Using the Standard Headers 284
Functions with Bounds-Checking 287
Contents of the Standard Headers 289

17. Functions at a Glance. 321
Input and Output 321
Mathematical Functions 323
Character Classification and Conversion 330
String Processing 332
Multibyte Characters 333
Converting Between Numbers and Strings 335
Searching and Sorting 336
Memory Block Handling 336
Dynamic Memory Management 337
Date and Time 337
Process Control 339
Internationalization 340
Nonlocal Jumps 341
Multithreading (C11) 341
Debugging 345
Error Messages 346

18. Standard Library Functions. 349

Part III. Basic Tools

19. Compiling with GCC. 669
The GNU Compiler Collection 669
Obtaining and Installing GCC 670
Compiling C Programs with GCC 671
C Dialects 681
Compiler Warnings 683
Optimization 684
Debugging 688
Profiling 688
Option and Environment Variable Summary 689

vi | Table of Contents

20. Using make to Build C Programs. 695
Targets, Prerequisites, and Commands 695
The Makefile 696
Rules 696
Comments 703
Variables 704
Phony Targets 711
Other Target Attributes 712
Macros 714
Functions 715
Directives 719
Running make 722

21. Debugging C Programs with GDB. 731
Installing GDB 732
A Sample Debugging Session 732
Starting GDB 736
Using GDB Commands 741
Analyzing Core Files in GDB 763

22. Using an IDE with C. 767
IDEs for C 767
The Eclipse IDE for C/C++ 768
Developing a C Program with Eclipse 770
Debugging a C Program in Eclipse 773
Further Information on Eclipse 776

Index. 777

Table of Contents | vii

Preface

This book is a complete reference to the C programming language and the C run‐
time library. As an “In a Nutshell” book, its purpose is to serve as a convenient, reli‐
able companion for C programmers in their day-to-day work. It describes all the
elements of the language and illustrates their use with numerous examples.

The present description of the C language is based on the 2011 international C stan‐
dard, ISO/IEC 9899:2011, widely known as C11. This standard supersedes the C99
standard, ISO/IEC 9899:1999, and its Technical Corrigenda, TC1 of 2001, TC2 of
2004, and TC3 of 2007. The first international C standard, ISO/IEC 9899:1990, was
published in 1990 and supplemented in 1995 by Normative Addendum 1 (ISO/IEC
9899/AMD1:1995). The 1990 ISO/IEC standard corresponds to the ANSI standard
X3.159, which was ratified in late 1989 and is commonly called ANSI C or C89.

The new features of the 2011 C standard are not yet fully supported by all compilers
and standard library implementations. In this book, we have therefore labeled 2011
features—such as multithreading, type-generic macros, and new standard library
functions—with the abbreviation C11. Extensions that were introduced by the C99
standard are labeled with the abbreviation C99.

This book is not an introduction to programming in C. Although it covers the fun‐
damentals of the language, it is not organized or written as a tutorial. If you are new
to C, we assume that you have read at least one of the many introductory books, or
that you are familiar with a related language, such as Java or C++.

How This Book Is Organized
This book is divided into three parts. The first part describes the C language in the
strict sense of the term; the second part describes the standard library; and the third
part describes the process of compiling and testing programs with the popular tools
in the GNU software collection.

ix

Part I
Part I, which deals with the C language, includes Chapters 1 through 15. After
Chapter 1, which describes the general concepts and elements of the language, each
chapter is devoted to a specific topic, such as types, statements, or pointers.
Although the topics are ordered so that the fundamental concepts for each new
topic have been presented in an earlier chapter—types, for example, are described
before expressions and operators, which come before statements, and so on—you
may sometimes need to follow references to later chapters to fill in related details.
For example, some discussion of pointers and arrays is necessary in Chapter 5
(which covers expressions and operators), even though pointers and arrays are not
described in full detail until Chapters 8 and 9.

Chapter 1, “Language Basics”
Describes the characteristics of the language and how C programs are struc‐
tured and compiled. This chapter introduces basic concepts such as the transla‐
tion unit, character sets, and identifiers.

Chapter 2, “Types”
Provides an overview of types in C and describes the basic types, the type void,
and enumerated types.

Chapter 3, “Literals”
Describes numeric constants, character constants, and string literals, including
escape sequences.

Chapter 4, “Type Conversions”
Describes implicit and explicit type conversions, including integer promotion
and the usual arithmetic conversions.

Chapter 5, “Expressions and Operators”
Describes the evaluation of expressions, all the operators, and their compatible
operands.

Chapter 6, “Statements”
Describes C statements such as blocks, loops, and jumps.

Chapter 7, “Functions”
Describes function definitions and function calls, including recursive and
inline functions.

Chapter 8, “Arrays”
Describes fixed-length and variable-length arrays, including strings, array initi‐
alization, and multidimensional arrays.

Chapter 9, “Pointers”
Describes the definition and use of pointers to objects and functions.

Chapter 10, “Structures, Unions, and Bit-Fields”
Describes the organization of data in these user-defined derived types.

x | Preface

Chapter 11, “Declarations”
Describes the general syntax of a declaration, identifier linkage, and the storage
duration of objects.

Chapter 12, “Dynamic Memory Management”
Describes the standard library’s dynamic memory management functions,
illustrating their use in a sample implementation of a generalized binary tree.

Chapter 13, “Input and Output”
Describes the C concept of input and output, with an overview of the use of the
standard I/O library.

Chapter 14, “Multithreading”
Describes the use of the C11 multithreading features, including atomic opera‐
tions, communication between threads, and thread-specific storage.

Chapter 15, “Preprocessing Directives”
Describes the definition and use of macros, conditional compiling, and all the
other preprocessor directives and operators.

Part II
Part II, consisting of Chapters 16, 17, and 18, is devoted to the C standard library. It
provides an overview of standard headers and also contains a detailed function ref‐
erence.

Chapter 16, “The Standard Headers”
Describes contents of the headers and their use. The headers contain all of the
standard library’s macros and type definitions.

Chapter 17, “Functions at a Glance”
Provides an overview of the standard library functions, organized by areas of
application (e.g., mathematical functions, date and time functions, etc.).

Chapter 18, “Standard Library Functions”
Describes each standard library function in detail, in alphabetical order, and
contains examples to illustrate the use of each function.

Part III
The third part of this book, which includes Chapters 19 through 20, provides the
necessary knowledge of the C programmer’s basic tools: the compiler, the make util‐
ity, and the debugger. The tools described here are those in the GNU software col‐
lection. Finally, the use of these tools in an integrated development environment
(IDE) for C is described using the Eclipse IDE as an example.

Chapter 19, “Compiling with GCC”
Describes the principal capabilities that the widely used compiler offers for C
programmers.

Preface | xi

Chapter 20, “Using make to Build C Programs”
Describes how to use the make program to automate the compiling process for
large programs.

Chapter 21, “Debugging C Programs with GDB”
Describes how to run a program under the control of the GNU debugger and
how to analyze programs’ runtime behavior to find logical errors.

Chapter 22, “Using an IDE with C”
Describes the use of an integrated development environment (IDE) for unified,
convienient access to all the tools for developing C programs.

Further Reading
In addition to works mentioned at appropriate points in the text, there are a num‐
ber of resources for readers who want more technical detail than even this book can
provide. The international working group on C standardization has an official home
page at http://www.open-std.org/jtc1/sc22/wg14, with links to the latest version of the
C standard and current projects of the working group.

For readers who are interested in not only the what and how of C, but also the why,
the WG14 site also offers links to some of its drafts and rationales. These documents
describe some of the motivations and constraints involved in the standardization
process. Furthermore, for those who may wonder how C “got to be that way” in the
first place, the originator of C, the late Dennis Ritchie, wrote an article titled “The
Development of the C Language”. This and other historical documents are still
available on his Bell Labs website, https://www.bell-labs.com/usr/dmr/www/
index.html.

Readers who want details on floating-point math beyond the scope of C may wish to
start with David Goldberg’s thorough introduction, “What Every Computer Scien‐
tist Should Know About Floating-Point Arithmetic,” currently available online at
http://docs.sun.com/source/806-3568/ncg_goldberg.html.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Highlights new terms; indicates filenames, file extensions, URLs, directories,
and Unix utilities.

Constant width
Indicates all elements of C source code: keywords, operators, variables, func‐
tions, macros, types, parameters, and literals. Also used for console commands
and options, and the output from such commands.

xii | Preface

http://www.open-std.org/jtc1/sc22/wg14
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/index.html
https://www.bell-labs.com/usr/dmr/www/index.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html

Constant width bold
Highlights the function or statement under discussion in code examples. In
compiler, make, and debugger sessions, this font indicates command input to
be typed literally by the user.

Constant width italic
Indicates parameters in function prototypes, or placeholders to be replaced
with your own values.

Plain text
Indicates keys such as Return, Tab, and Ctrl.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/c-in-a-nutshell-2E.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You do
not need to contact us for permission unless you’re reproducing a significant por‐
tion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporat‐
ing a significant amount of example code from this book into your product’s docu‐
mentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “C in a Nutshell, 2nd Edition by

Preface | xiii

https://github.com/oreillymedia/c-in-a-nutshell-2E

Peter Prinz and Tony Crawford (O’Reilly). Copyright 2016 Peter Prinz, Tony Craw‐
ford, 978-1-491-90475-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital
library that delivers expert content in both book
and video form from the world’s leading authors
in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/C_Nutshell_2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

xiv | Preface

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/C_Nutshell_2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Both of us want to thank everyone at O’Reilly for their fantastic work on our book,
and especially our editors, Rachel Roumeliotis and Katie Schooling, for all their
guidance along the way. We also thank our technical reviewers, Matt Crawford,
David Kitabjian, Chris LaPre, John C. Craig, and Loïc Pefferkorn, for their valuable
criticism of our manuscript, and we’re grateful to our production editor, Kristen
Brown, and our copyeditor, Gillian McGarvey, for all their attention to making our
book look good and bringing our style up to date. Finally, thanks to Jonathan Gen‐
nick for setting the whole project in motion all those years ago.

Peter
I would like to thank Tony, first of all, for the excellent collaboration. My heartfelt
thanks also go to all my friends for the understanding they showed again and again
when I had so little time for them. Last but not least, I dedicate this book to my
daughters, Vivian and Jeanette—both of them now PhDs in computer science—who
strengthened my ambition to carry out this book project.

Tony
I thank Peter for letting me take all the space I could fill in this project.

Preface | xv

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I
Language

1
Language Basics

This chapter describes the basic characteristics and elements of the C programming
language.

Characteristics of C
C is a general-purpose, procedural programming language. Dennis Ritchie first
devised C in the 1970s at AT&T Bell Laboratories in Murray Hill, New Jersey, for
the purpose of implementing the Unix operating system and utilities with the great‐
est possible degree of independence from specific hardware platforms. The key
characteristics of the C language are the qualities that made it suitable for that
purpose:

• Source code portability
• The ability to operate “close to the machine”
• Efficiency

As a result, the developers of Unix were able to write most of the operating system
in C, leaving only a minimum of system-specific hardware manipulation to be
coded in assembler.

C’s ancestors are the typeless programming languages BCPL (the Basic Combined
Programming Language), developed by Martin Richards; and B, a descendant of
BCPL, developed by Ken Thompson. A new feature of C was its variety of data
types: characters, numeric types, arrays, structures, and so on. Brian Kernighan and
Dennis Ritchie published an official description of the C programming language in
1978. As the first de facto standard, their description is commonly referred to sim‐

3

1 The second edition, revised to reflect the first ANSI C standard, is available as The C Program‐
ming Language, 2nd ed., by Brian W. Kernighan and Dennis M. Ritchie (Englewood Cliffs, NJ:
Prentice Hall, 1988).

ply as K&R.1 C owes its high degree of portability to a compact core language that
contains few hardware-dependent elements. For example, the C language proper
has no file access or dynamic memory management statements. In fact, there aren’t
even any statements for console input and output. Instead, the extensive C standard
library provides the functions for all of these purposes.

This language design makes the C compiler relatively compact and easy to port to
new systems. Furthermore, once the compiler is running on a new system, you can
compile most of the functions in the standard library with no further modification,
because they are in turn written in portable C. As a result, C compilers are available
for practically every computer system.

Because C was expressly designed for system programming, it is hardly surprising
that one of its major uses today is in programming embedded systems. At the same
time, however, many developers use C as a portable, structured high-level language
to write programs such as powerful word processor, database, and graphics
applications.

The Structure of C Programs
The procedural building blocks of a C program are functions, which can invoke one
another. Every function in a well-designed program serves a specific purpose. The
functions contain statements for the program to execute sequentially, and statements
can also be grouped to form block statements, or blocks. As the programmer, you can
use the ready-made functions in the standard library, or write your own when no
standard function fulfills your intended purpose. In addition to the C standard
library, there are many specialized libraries available, such as libraries of graphics
functions. However, by using such nonstandard libraries, you limit the portability of
your program to those systems to which the libraries themselves have been ported.

Every C program must define at least one function of its own, with the special name
main(), which is the first function invoked when the program starts. The main()
function is the program’s top level of control, and can call other functions as sub‐
routines.

Example 1-1 shows the structure of a simple, complete C program. We will discuss
the details of declarations, function calls, output streams, and more elsewhere in
this book. For now, we are simply concerned with the general structure of the C
source code. The program in Example 1-1 defines two functions, main() and
circularArea(). The main() function calls circularArea() to obtain the area of a
circle with a given radius, and then calls the standard library function printf() to
output the results in formatted strings on the console.

4 | Chapter 1: Language Basics

Example 1-1. A simple C program

// circle.c: Calculate and print the areas of circles

#include <stdio.h> // Preprocessor directive

double circularArea(double r); // Function declaration (prototype form)

int main() // Definition of main() begins
{
 double radius = 1.0, area = 0.0;

 printf(" Areas of Circles\n\n");
 printf(" Radius Area\n"
 "-------------------------\n");

 area = circularArea(radius);
 printf("%10.1f %10.2f\n", radius, area);

 radius = 5.0;
 area = circularArea(radius);
 printf("%10.1f %10.2f\n", radius, area);

 return 0;
}

// The function circularArea() calculates the area of a circle
// Parameter: The radius of the circle
// Return value: The area of the circle

double circularArea(double r) // Definition of circularArea() begins
{
 const double pi = 3.1415926536; // Pi is a constant
 return pi * r * r;
}

Output:

 Areas of Circles

 Radius Area

 1.0 3.14
 5.0 78.54

Note that the compiler requires a prior declaration of each function called. The
prototype of circularArea() in the third line of Example 1-1 provides the informa‐
tion needed to compile a statement that calls this function. The prototypes of stan‐
dard library functions are found in standard header files. Because the header file
stdio.h contains the prototype of the printf() function, the preprocessor directive
#include <stdio.h> declares the function indirectly by directing the compiler’s

Lang
uag

e
B

asics

The Structure of C Programs | 5

preprocessor to insert the contents of that file. (See also “How the C Compiler
Works” on page 19.)

You may arrange the functions defined in a program in any order. In Example 1-1,
we could just as well have placed the function circularArea() before the function
main(). If we had, then the prototype declaration of circularArea() would be
superfluous, because the definition of the function is also a declaration.

Function definitions cannot be nested inside one another: you can define a local
variable within a function block, but not a local function.

Source Files
The function definitions, global declarations, and preprocessing directives make up
the source code of a C program. For small programs, the source code is written in a
single source file. Larger C programs consist of several source files. Because the
function definitions generally depend on preprocessor directives and global decla‐
rations, source files usually have the following internal structure:

1. Preprocessor directives
2. Global declarations
3. Function definitions

C supports modular programming by allowing you to organize a program in as
many source and header files as desired, and to edit and compile them separately.
Each source file generally contains functions that are logically related, such as the
program’s user interface functions. It is customary to label C source files with the
filename suffix .c.

Examples 1-2 and 1-3 show the same program as Example 1-1, but divided into two
source files.

Example 1-2. The first source file, containing the main() function

// circle.c: Prints the areas of circles.
// Uses circulararea.c for the math

#include <stdio.h>
double circularArea(double r);

int main()
{
 /* ... As in Example 1-1... */
}

6 | Chapter 1: Language Basics

Example 1-3. The second source file, containing the circularArea() function

// circulararea.c: Calculates the areas of circles.
// Called by main() in circle.c

double circularArea(double r)
{
 /* ... As in Example 1-1... */
}

When a program consists of several source files, you need to declare the same func‐
tions and global variables, and define the same macros and constants, in many of
the files. These declarations and definitions thus form a sort of file header that is
more or less constant throughout a program. For the sake of simplicity and consis‐
tency, you can write this information just once in a separate header file, and then
reference the header file using an #include directive in each source code file.
Header files are customarily identified by the filename suffix .h. A header file explic‐
itly included in a C source file may in turn include other files.

Each C source file, together with all the header files included in it, makes up a trans‐
lation unit. The compiler processes the contents of the translation unit sequentially,
parsing the source code into tokens, its smallest semantic units, such as variable
names and operators. See “Tokens” on page 21 for more detail.

Any number of whitespace characters can occur between two successive tokens,
allowing you a great deal of freedom in formatting the source code. There are no
rules for line breaks or indenting, and you may use spaces, tabs, and blank lines lib‐
erally to create “human-readable” source code. The preprocessor directives are
slightly less flexible: a preprocessor directive must always appear on a line by itself,
and no characters except spaces or tabs may precede the hash mark (#) that begins
the line.

There are many different conventions and “house styles” for source code format‐
ting. Most of them include the following common rules:

• Start a new line for each new declaration and statement.
• Use indentation to reflect the nested structure of block statements.

Comments
You should use comments generously in the source code to document your C pro‐
grams. There are two ways to insert a comment in C: block comments begin with /*
and end with */, and line comments begin with // and end with the next newline
character.

You can use the /* and */ delimiters to begin and end comments within a line, and
to enclose comments of several lines. For example, in the following function proto‐

Lang
uag

e
B

asics

Comments | 7

type, the ellipsis (…) signifies that the open() function has a third, optional parame‐
ter. The comment explains the usage of the optional parameter:

int open(const char *name, int mode, ... /* int permissions */);

You can use // to insert comments that fill an entire line, or to write source code in
a two-column format, with program code on the left and comments on the right:

const double pi = 3.1415926536; // pi is constant

These line comments were officially added to the C language by the C99 standard,
but most compilers already supported them even before C99. They are sometimes
called “C++-style” comments, although they originated in C’s forerunner, BCPL.

Inside the quotation marks that delimit a character constant or a string literal, the
characters /* and // do not start a comment. For example, the following statement
contains no comments:

printf("Comments in C begin with /* or //.\n");

The only thing that the preprocessor looks for in examining the characters in a
comment is the end of the comment; thus it is not possible to nest block comments.
However, you can insert /* and */ to comment out part of a program that contains
line comments:

/* Temporarily removing two lines:
 const double pi = 3.1415926536; // pi is constant
 area = pi * r * r // Calculate the area
 Temporarily removed up to here */

If you want to comment out part of a program that contains block comments, you
can use a conditional preprocessor directive (described in Chapter 15):

#if 0
 const double pi = 3.1415926536; /* pi is constant */
 area = pi * r * r /* Calculate the area */
#endif

The preprocessor replaces each comment with a space. The character sequence
min/*max*/Value thus becomes the two tokens min Value.

Character Sets
C makes a distinction between the environment in which the compiler translates the
source files of a program (the translation environment) and the environment in
which the compiled program is executed (the execution environment). Accordingly,
C defines two character sets: the source character set is the set of characters that may
be used in C source code, and the execution character set is the set of characters that
can be interpreted by the running program. In many C implementations, the two
character sets are identical. If they are not, then the compiler converts the characters
in character constants and string literals in the source code into the corresponding
elements of the execution character set.

8 | Chapter 1: Language Basics

Each of the two character sets includes both a basic character set and extended char‐
acters. The C language does not specify the extended characters, which are usually
dependent on the local language. The extended characters together with the basic
character set make up the extended character set.

The basic source and execution character sets both contain the following types of
characters:

The letters of the Latin alphabet
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

The decimal digits
0 1 2 3 4 5 6 7 8 9

The following 29 graphic characters
! " # % & ' () * + , − . / : ; < = > ? [\] ^ _ { | } ~

The five whitespace characters
Space, horizontal tab, vertical tab, newline, and form feed

The basic execution character set also includes four nonprintable characters: the
null character (which acts as the termination mark in a character string), alert, back‐
space, and carriage return. To represent these characters in character and string lit‐
erals, type the corresponding escape sequences beginning with a backslash: \0 for the
null character, \a for alert, \b for backspace, and \r for carriage return. See Chap‐
ter 3 for more details.

The actual numeric values of characters—the character codes—may vary from one
C implementation to another. The language itself imposes only these conditions:

• Each character in the basic character set must be representable in one byte.
• The null character is a byte in which all bits are 0.
• The value of each decimal digit after 0 is greater by one than that of the preced‐

ing digit.

Wide Characters and Multibyte Characters
C was originally developed in an English-speaking environment where the domi‐
nant character set was the 7-bit ASCII code. Since then, the 8-bit byte has become
the most common unit of character encoding, but software for international use
generally has to be able to represent more different characters than can be coded in
one byte. Furthermore, a variety of multibyte character encoding schemes have long
been in use internationally to represent non-Latin alphabets and the nonalphabetic
Chinese, Japanese, and Korean writing systems. In 1994, with the adoption of “Nor‐
mative Addendum 1,” ISO C standardized two ways of representing larger character
sets:

Lang
uag

e
B

asics

Character Sets | 9

• Wide characters, in which the same bit width is used for every character in a
character set

• Multibyte characters, in which a given character can be represented by one or
several bytes, and the character value of a given byte sequence can depend on
its context in a string or stream

Although C now provides abstract mechanisms to manipulate
and convert the different kinds of encoding schemes, the lan‐
guage itself doesn’t define or specify any encoding scheme, or
any character set except the basic source and execution char‐
acter sets described in the previous section. In other words, it
is left up to individual implementations to specify how to
encode wide characters, and what multibyte encoding
schemes to support.

Wide characters
Since the 1994 addendum, C has provided not only the type char but also wchar_t,
the wide character type. This type, defined in the header file stddef.h, is large enough
to represent any element of the given implementation’s extended character sets.

Although the C standard does not require support for Unicode character sets, many
implementations use the Unicode transformation formats UTF-16 and UTF-32 (see
http://www.unicode.org/) for wide characters. The Unicode standard is largely iden‐
tical with the ISO/IEC 10646 standard, and is a superset of many previously existing
character sets, including the 7-bit ASCII code. When the Unicode standard is
implemented, the type wchar_t is at least 16 or 32 bits wide, and a value of type
wchar_t represents one Unicode character. For example, the following definition
initializes the variable wc with the Greek letter α:

wchar_t wc = '\x3b1';

The escape sequence beginning with \x indicates a character code in hexadecimal
notation to be stored in the variable—in this case, the code for a lowercase alpha.

For better Unicode support, C11 introduced the additional wide-character types
char16_t and char32_t, which are defined as unsigned integer types in the header
file uchar.h. Characters of the type char16_t are encoded in UTF-16 in C imple‐
mentations that define the macro __STDC_UTF_16__. Similarly, in implementations
that define the macro __STDC_UTF_32__, characters of the type char32_t are enco‐
ded in UTF-32.

Multibyte characters
In multibyte character sets, each character is coded as a sequence of one or more
bytes. Both the source and execution character sets may contain multibyte charac‐
ters. If they do, then each character in the basic character set occupies only one byte,

10 | Chapter 1: Language Basics

http://www.unicode.org/

and no multibyte character except the null character may contain any byte in which
all bits are 0. Multibyte characters can be used in character constants, string literals,
identifiers, comments, and header filenames. Many multibyte character sets are
designed to support a certain language, such as the Japanese Industrial Standard
character set (JIS). The multibyte UTF-8 character set, defined by the Unicode Con‐
sortium, is capable of representing all Unicode characters. UTF-8 uses from one to
four bytes to represent a character.

The key difference between multibyte characters and wide characters (that is, char‐
acters of the type wchar_t, char16_t, or char32_t) is that wide characters are all the
same size, and multibyte characters are represented by varying numbers of bytes.
This representation makes multibyte strings more complicated to process than
strings of wide characters. For example, even though the character A can be repre‐
sented in a single byte, finding it in a multibyte string requires more than a simple
byte-by-byte comparison, because the same byte value in certain locations could be
part of a different character. Multibyte characters are well suited for saving text in
files, however (see Chapter 13). Furthermore, the encoding of multibyte characters
is independent of the system architecture, while encoding of wide characters is
dependent on the given system’s byte order: that is, the bytes of a wide character
may be in big-endian or little-endian order, depending on the system.

Conversion
C provides standard functions to obtain the wchar_t value of any multibyte charac‐
ter, and to convert any wide character to its multibyte representation. For example,
if the C compiler uses the Unicode standards UTF-16 and UTF-8, then the follow‐
ing call to the function wctomb() (read: “wide character to multibyte”) obtains the
multibyte representation of the character α:

wchar_t wc = L'\x3B1'; // Greek lowercase alpha, α
char mbStr[10] = "";
int nBytes = 0;
nBytes = wctomb(mbStr, wc);
if(nBytes < 0)
 puts("Not a valid multibyte character in your locale.");

After a successful function call, the array mbStr contains the multibyte character,
which in this example is the sequence "\xCE\xB1". The wctomb() function’s return
value, assigned here to the variable nBytes, is the number of bytes required to repre‐
sent the multibyte character—namely, 2.

The standard library also provides conversion functions for char16_t and
char32_t, the new wide-character types introduced in C11, such as the function
c16rtomb(), which returns the multibyte character that corresponds to a given wide
character of the type char16_t (see “Multibyte Characters” on page 333).

Lang
uag

e
B

asics

Character Sets | 11

Universal Character Names
C also supports universal character names as a way to use the extended character set
regardless of the implementation’s encoding. You can specify any extended character
by its universal character name, which is its Unicode value in the form:

\uXXXX

or:

\UXXXXXXXX

where XXXX or XXXXXXXX is a Unicode code point in hexadecimal notation. Use the
lowercase u prefix followed by four hexadecimal digits, or the uppercase U followed
by exactly eight hex digits. If the first four hexadecimal digits are zero, then the
same universal character name can be written either as \uXXXX or as\U0000XXXX.

Universal character names are permissible in identifiers, character constants, and
string literals. However, they must not be used to represent characters in the basic
character set.

When you specify a character by its universal character name, the compiler stores it
in the character set used by the implementation. For example, if the execution char‐
acter set in a localized program is ISO 8859-7 (8-bit Greek), then the following defi‐
nition initializes the variable alpha with the code\xE1:

char alpha = '\u03B1';

However, if the execution character set is UTF-16, then you need to define the vari‐
able as a wide character:

wchar_t alpha = '\u03B1'; // or char16_t alpha = u'\u03B1';

In this case, the character code value assigned to alpha is hexadecimal 3B1, the
same as the universal character name.

Not all compilers support universal character names.

Digraphs and Trigraphs
C provides alternative representations for a number of punctuation marks that are
not available on all keyboards. Six of these are the digraphs, or two-character tokens,
which represent the characters shown in Table 1-1.

12 | Chapter 1: Language Basics

Table 1-1. Digraphs

Digraph Equivalent

<: [

:>]

<% {

%> }

%: #

%:%: ##

These sequences are not interpreted as digraphs if they occur within character con‐
stants or string literals. In all other positions, they behave exactly like the single-
character tokens they represent. For example, the following code fragments are per‐
fectly equivalent, and produce the same output. With digraphs:

int arr<::> = <% 10, 20, 30 %>;
printf("The second array element is <%d>.\n", arr<:1:>);

Without digraphs:

int arr[] = { 10, 20, 30 };
printf("The second array element is <%d>.\n", arr[1]);

Output:

The second array element is <20>.

C also provides trigraphs, three-character representations, all of them beginning
with two question marks. The third character determines which punctuation mark
a trigraph represents, as shown in Table 1-2.

Table 1-2. Trigraphs

Trigraph Equivalent

??([

??)]

??< {

??> }

??= #

??∕ \

??! |

??' ^

??- ~

Lang
uag

e
B

asics

Character Sets | 13

Trigraphs allow you to write any C program using only the characters defined in
ISO/IEC 646, the 1991 standard corresponding to 7-bit ASCII. The compiler’s pre‐
processor replaces the trigraphs with their single-character equivalents in the first
phase of compilation. This means that the trigraphs, unlike digraphs, are translated
into their single-character equivalents no matter where they occur, even in character
constants, string literals, comments, and preprocessing directives. For example, the
preprocessor interprets the following statement’s second and third question marks
as the beginning of a trigraph:

printf("Cancel???(y/n) ");

Thus, the line produces the following unintended preprocessor output:

printf("Cancel?[y/n) ");

If you need to use one of these three-character sequences and do not want it to be
interpreted as a trigraph, you can write the question marks as escape sequences:

printf("Cancel\?\?\?(y/n) ");

If the character following any two question marks is not one of those shown in
Table 1-2, then the sequence is not a trigraph, and remains unchanged.

As another substitute for punctuation characters in addition
to the digraphs and trigraphs, the header file iso646.h contains
macros that define alternative representations of C’s logical
operators and bitwise operators, such as and for && and xor
for ^. For details, see Chapter 16.

Identifiers
The term identifier refers to the names of variables, functions, macros, structures,
and other objects defined in a C program. Identifiers can contain the following
characters:

• The letters in the basic character set, a–z and A–Z (identifiers are case-sensitive)

• The underscore character, _

• The decimal digits 0–9, although the first character of an identifier must not be
a digit

• Universal character names that represent the letters and digits of other lan‐
guages

The permissible universal characters are defined in Annex D of the C standard, and
correspond to the characters defined in the ISO/IEC TR 10176 standard, minus the
basic character set.

Multibyte characters may also be permissible in identifiers. However, it is up to the
given C implementation to determine exactly which multibyte characters are per‐
mitted and what universal character names they correspond to.

14 | Chapter 1: Language Basics

The following 44 keywords are reserved in C, each having a specific meaning to the
compiler, and must not be used as identifiers:

auto extern short while

break float signed _Alignas

case for sizeof _Alignof

char goto static _Atomic

const if struct _Bool

continue inline switch _Complex

default int typedef _Generic

do long union _Imaginary

double register unsigned _Noreturn

else restrict void _Static_assert

enum return volatile _Thread_local

The following examples are valid identifiers:

x dollar Break error_handler scale64

The following are not valid identifiers:

1st_rank switch y/n x-ray

If the compiler supports universal character names, then α is also an example of a
valid identifier, and you can define a variable by that name:

double α = 0.5;

Your source code editor might save the character α in the source file as the universal
character \u03B1.

When choosing identifiers in your programs, remember that many identifiers are
already used by the C standard library. These include the names of standard library
functions, which you cannot use for functions you define or for global variables. See
Chapter 16 for details.

The C compiler provides the predefined identifier __func__ (note that there are
four underscore characters), which you can use in any function to access a string
constant containing the name of the function. This is useful for logging or for
debugging output; for example:

#include <stdio.h>
int test_func(char *s)
{
 if(s == NULL) {
 fprintf(stderr,
 "%s: received null pointer argument\n", __func__);
 return -1;

Lang
uag

e
B

asics

Identifiers | 15

 }
 /* ... */
}

In this example, passing a null pointer to the function test_func() generates the
following error message:

test_func: received null pointer argument

There is no limit on the length of identifiers. However, most compilers consider
only a limited number of characters in identifiers to be significant. In other words, a
compiler might fail to distinguish between two identifiers that start with a long
identical sequence of characters. To conform to the C standard, a compiler must
treat at least the first 31 characters as significant in the names of functions and
global variables (that is, identifiers with external linkage), and at least the first 63
characters in all other identifiers.

Identifier Name Spaces
All identifiers fall into exactly one of the following four categories, which constitute
separate name spaces:

• Label names
• Tags, which identify structure, union, and enumeration types
• Names of structure or union members (each structure or union constitutes a

separate name space for its members)
• All other identifiers, which are called ordinary identifiers

Identifiers that belong to different name spaces may be the same without causing
conflicts. In other words, you can use the same name to refer to different objects, if
they are of different kinds. For example, the compiler is capable of distinguishing
between a variable and a label with the same name. Similarly, you can give the same
name to a structure type, an element in the structure, and a variable, as the follow‐
ing example shows:

struct pin { char pin[16]; /* ... */ };
_Bool check_pin(struct pin *pin)
{
 int len = strlen(pin->pin);
 /* ... */
}

The first line of the example defines a structure type identified by the tag pin, con‐
taining a character array named pin as one of its members. In the second line, the
function parameter pin is a pointer to a structure of the type just defined. The
expression pin->pin in the fourth line designates the member of the structure that
the function’s parameter points to. The context in which an identifier appears always
determines its name space with no ambiguity. Nonetheless, it is generally a good

16 | Chapter 1: Language Basics

idea to make all identifiers in a program distinct, in order to spare human readers
unnecessary confusion.

Identifier Scope
The scope of an identifier refers to that part of the translation unit in which the
identifier is meaningful. Or to put it another way, the identifier’s scope is that part of
the program that can “see” that identifier. The type of scope is always determined by
the location at which you declare the identifier (except for labels, which always have
function scope). Four kinds of scope are possible:

File scope
If you declare an identifier outside all blocks and parameter lists, then it has file
scope. You can then use the identifier anywhere after the declaration and up to
the end of the translation unit.

Block scope
Except for labels, identifiers declared within a block have block scope. You can
use such an identifier only from its declaration to the end of the smallest block
containing that declaration. The smallest containing block is often, but not nec‐
essarily, the body of a function definition. Starting with C99, declarations do
not have to be placed before all statements in a function block. The parameter
names in the head of a function definition also have block scope, and are valid
within the corresponding function block.

Function prototype scope
The parameter names in a function prototype have function prototype scope.
Because these parameter names are not significant outside the prototype itself,
they are meaningful only as comments, and can also be omitted. See Chapter 7
for further information.

Function scope
The scope of a label is always the function block in which the label occurs, even
if it is placed within nested blocks. In other words, you can use a goto state‐
ment to jump to a label from any point within the same function that contains
the label. (Jumping into nested blocks is not a good idea, though; see Chapter 6
for details.)

The scope of an identifier generally begins after its declaration. However, the type
names—or tags—of structure, union, and enumeration types and the names of enu‐
meration constants are an exception to this rule: their scope begins immediately
after their appearance in the declaration so that they can be referenced again in the
declaration itself. (Structures and unions are discussed in detail in Chapter 10; enu‐
meration types are described in Chapter 2.) For example, in the following declara‐
tion of a structure type, the last member of the structure, next, is a pointer to the
very structure type that is being declared:

Lang
uag

e
B

asics

Identifiers | 17

struct Node { /* ... */
 struct Node *next; }; // Define a structure type
void printNode(const struct Node *ptrNode); // Declare a function

int printList(const struct Node *first) // Begin a function
{ // definition
 struct Node *ptr = first;

 while(ptr != NULL) {
 printNode(ptr);
 ptr = ptr->next;
 }
}

In this code snippet, the identifiers Node, next, printNode, and printList all have
file scope. The parameter ptrNode has function prototype scope, and the variables
first and ptr have block scope.

It is possible to use an identifier again in a new declaration nested within its existing
scope, even if the new identifier does not have a different name space. If you do so,
then the new declaration must have block or function prototype scope, and the
block or function prototype must be a true subset of the outer scope. In such cases,
the new declaration of the same identifier hides the outer declaration so that the
variable or function declared in the outer block is not visible in the inner scope. For
example, the following declarations are permissible:

double x; // Declare a variable x with file scope
long calc(double x); // Declare a new x with function prototype
 // scope

int main()
{
 long x = calc(2.5); // Declare a long variable x with block scope

 if(x < 0) // Here, x refers to the long variable
 { float x = 0.0F; // Declare a new variable x with block scope
 /*...*/
 }
 x *= 2; // Here, x refers to the long variable again
 /*...*/
}

In this example, the long variable x delcared in the main() function hides the global
variable x with type double. Thus, there is no direct way to access the double vari‐
able x from within main(). Furthermore, in the conditional block that depends on
the if statement, x refers to the newly declared float variable, which in turn hides
the long variable x.

18 | Chapter 1: Language Basics

How the C Compiler Works
Once you have written a source file using a text editor, you can invoke a C compiler
to translate it into machine code. The compiler operates on a translation unit con‐
sisting of a source file and all the header files referenced by #include directives. If
the compiler finds no errors in the translation unit, it generates an object file con‐
taining the corresponding machine code. Object files are usually identified by the
filename suffix .o or .obj. In addition, the compiler may also generate an assembler
listing (see Chapter 19).

Object files are also called modules. A library, such as the C standard library, con‐
tains compiled, rapidly accessible modules of the standard functions.

The compiler translates each translation unit of a C program—that is, each source
file with any header files it includes—into a separate object file. The compiler then
invokes the linker, which combines the object files and any library functions used in
an executable file. Figure 1-1 illustrates the process of compiling and linking a pro‐
gram from several source files and libraries. The executable file also contains any
information that the target operating system needs in order to load and start it.

Figure 1-1. From source code to executable file

The C Compiler’s Translation Phases
The compiling process takes place in eight logical steps. A given compiler may com‐
bine several of these steps as long as the results are not affected. The steps are:

Lang
uag

e
B

asics

How the C Compiler Works | 19

1. Characters are read from the source file and converted, if necessary, into the
characters of the source character set. The end-of-line indicators in the source
file, if different from the newline character, are replaced. Likewise, any trigraph
sequences are replaced with the single characters they represent. (Digraphs,
however, are left alone; they are not converted into their single-character equiv‐
alents.)

2. Wherever a backslash is followed immediately by a newline character, the pre‐
processor deletes both. Because a line-end character ends a preprocessor direc‐
tive, this processing step lets you place a backslash at the end of a line in order
to continue a directive, such as a macro definition, on the next line.

Every source file, if not completely empty, must end with
a newline character.

3. The source file is broken down into preprocessor tokens (see “Tokens” on page
21) and sequences of whitespace characters. Each comment is treated as one
space.

4. The preprocessor directives are carried out and macro calls are expanded.

Steps 1 through 4 are also applied to any files inserted by
#include directives. Once the compiler has carried out
the preprocessor directives, it removes them from its
working copy of the source code.

5. The characters and escape sequences in character constants and string literals
are converted into the corresponding characters in the execution character set.

6. Adjacent string literals are concatenated into a single string.
7. The actual compiling takes place: the compiler analyzes the sequence of tokens

and generates the corresponding machine code.
8. The linker resolves references to external objects and functions, and generates

the executable file. If a module refers to external objects or functions that are
not defined in any of the translation units, the linker takes them from the stan‐
dard library or another specified library. External objects and functions must
not be defined more than once in a program.

For most compilers, either the preprocessor is a separate program, or the compiler
provides options to perform only the preprocessing (steps 1 through 4 in the pre‐
ceding list). This setup allows you to verify that your preprocessor directives have
the intended effects. For a more practically oriented look at the compiling process,
see Chapter 19.

20 | Chapter 1: Language Basics

Tokens
A token is either a keyword, an identifier, a constant, a string literal, or a symbol.
Symbols in C consist of one or more punctuation characters, and function as opera‐
tors or digraphs, or have syntactic importance, like the semicolon that terminates a
simple statement or the braces { } that enclose a block statement. For example, the
following C statement consists of five tokens:

printf("Hello, world.\n");

The individual tokens are:

printf
(
"Hello, world.\n"
)
;

The tokens interpreted by the preprocessor are parsed in the third translation phase.
These are only slightly different from the tokens that the compiler interprets in the
seventh phase of translation:

• Within an #include directive, the preprocessor recognizes the additional
tokens <filename> and "filename".

• During the preprocessing phase, character constants and string literals have
not yet been converted from the source character set to the execution character
set.

• Unlike the compiler proper, the preprocessor makes no distinction between
integer constants and floating-point constants.

In parsing the source file into tokens, the compiler (or preprocessor) always applies
the following principle: each successive non-whitespace character must be
appended to the token being read, unless appending it would make a valid token
invalid. This rule resolves any ambiguity in the following expression, for example:

a+++b

Because the first + cannot be part of an identifier or keyword starting with a, it
begins a new token. The second + appended to the first forms a valid token—the
increment operator—but a third + does not. Hence the expression must be parsed
as:

a ++ + b

See Chapter 19 for more information on compiling C programs.

Lang
uag

e
B

asics

How the C Compiler Works | 21

2
Types

Programs have to store and process different kinds of data, such as integers and
floating-point numbers, in different ways. To this end, the compiler needs to know
what kind of data a given value represents.

In C, the term object refers to a location in memory whose contents can represent
values. Objects that have names are also called variables. An object’s type determines
how much space the object occupies in memory, and how its possible values are
encoded. For example, the same pattern of bits can represent completely different
integers depending on whether the data object is interpreted as signed (that is, either
positive or negative) or unsigned (and hence unable to represent negative values).

Typology
The types in C can be classified as follows:

• Basic types
— Standard and extended integer types
— Real and complex floating-point types

• Enumerated types

• The type void
• Derived types

— Pointer types
— Array types
— Structure types

23

• Union types
• Function types

The basic types and the enumerated types together make up the arithmetic types.
The arithmetic types and the pointer types together are called the scalar types.
Finally, array types and structure types are referred to collectively as the aggregate
types. (Union types are not considered aggregate because only one of their members
can store a value at any given time.)

A function type describes the interface to a function; that is, it specifies the type of
the function’s return value, and may also specify the types of all the parameters that
are passed to the function when it is called.

All other types describe objects. This description may or may not include the
object’s storage size. If it does, the type is properly called an object type; if not, it is
an incomplete type. An example of an incomplete type might be an externally
defined array variable:

extern float fArr[]; // External declaration

This line declares fArr as an array whose elements have type float. However,
because the array’s size is not specified here, fArr’s type is incomplete. As long as the
global array fArr is defined with a specified size at another location in the program
—in another source file, for example—this declaration is sufficient to let you use the
array in its present scope. (For more details on external declarations, see Chap‐
ter 11.)

This chapter describes the basic types, enumerations, and the
type void. The derived types are described in Chapters 7
through 10.

Some types are designated by a sequence of more than one keyword, such as
unsigned short. In such cases, the keywords can be written in any order. However,
there is a conventional keyword order, which we use in this book.

Integer Types
There are five signed integer types. Most of these types can be designated by several
synonyms, which are listed in Table 2-1.

24 | Chapter 2: Types

Table 2-1. Standard signed integer types

Type Synonyms

signed char

int signed, signed int

short short int, signed short, signed short int

long long int, signed long, signed long int

long long (C99) long long int, signed long long, signed long long int

For each of the five signed integer types in Table 2-1, there is also a corresponding
unsigned type that occupies the same amount of memory, with the same alignment.
In other words, if the compiler aligns signed int objects on even-numbered byte
addresses, then unsigned int objects are also aligned on even addresses. These
unsigned types are listed in Table 2-2.

Table 2-2. Unsigned standard integer types

Type Synonyms

_Bool bool (defined in stdbool.h)

unsigned char

unsigned int unsigned

unsigned short unsigned short int

unsigned long unsigned long int

unsigned long long unsigned long long int

C99 introduced the unsigned integer type _Bool to represent Boolean truth values.
The Boolean value true is coded as 1, and false is coded as 0. If you include the
header file stdbool.h in a program, you can also use the identifiers bool, true, and
false, which are familiar to C++ programmers. The macro bool is a synonym for
the type _Bool, and true and false are symbolic constants equal to 1 and 0.

The type char is also one of the standard integer types. However, the one-word type
name char is synonymous either with signed char or with unsigned char,
depending on the compiler. Because this choice is left up to the implementation,
char, signed char, and unsigned char are formally three different types.

If your program relies on char being able to hold values less
than zero or greater than 127, you should be using either
signed char or unsigned char instead.

Typ
es

Integer Types | 25

You can do arithmetic with character variables. It’s up to you to decide whether your
program interprets the number in a char variable as a character code or as some‐
thing else. For example, the following short program treats the char value in ch as
both an integer and a character, but at different times:

char ch = 'A'; // A variable with type char
printf("The character %c has the character code %d.\n", ch, ch);
for (; ch <= 'Z'; ++ch)
 printf("%2c", ch);

In the printf() statement, ch is first treated as a character that gets displayed, and
then as numeric code value of the character. Likewise, the for loop treats ch as an
integer in the instruction ++ch, and as a character in the printf() function call. On
systems that use the 7-bit ASCII code or an extension of it, the code produces the
following output:

The character A has the character code 65.
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A value of type char always occupies one byte—in other words, sizeof(char)
always yields 1—and a byte is at least eight bits wide. Every character in the basic
character set can be represented in a char object as a positive value.

C defines only the minimum storage sizes of the other standard types: the size of
type short is at least two bytes, long is at least four bytes, and long long is at least
eight bytes. Furthermore, although the integer types may be larger than their mini‐
mum sizes, the sizes implemented must be in the order:

sizeof(short) ≤ sizeof(int) ≤ sizeof(long) ≤ sizeof(long long)

The type int is the integer type best adapted to the target system’s architecture, with
the size and bit format of a CPU register.

The internal representation of integer types is binary. Signed types may be repre‐
sented in binary as sign and magnitude, as a one’s complement, or as a two’s comple‐
ment. The most common representation is the two’s complement. The non-negative
values of a signed type are within the value range of the corresponding unsigned
type, and the binary representation of a non-negative value is the same in both the
signed and unsigned types. Table 2-3 shows the different interpretations of bit pat‐
terns as signed and unsigned integer types.

Table 2-3. Binary representations of signed and unsigned 16-bit integers

Binary Decimal value as
unsigned int

Decimal value as signed int,
one’s complement

Decimal value as signed int,
two’s complement

00000000 00000000 0 0 0

00000000 00000001 1 1 1

00000000 00000010 2 2 2

…

26 | Chapter 2: Types

Binary Decimal value as
unsigned int

Decimal value as signed int,
one’s complement

Decimal value as signed int,
two’s complement

01111111 11111111 32,767 32,767 32,767

10000000 00000000 32,768 -32,767 -32,768

10000000 00000001 32,769 -32,766 -32,767

…

11111111 11111110 65,534 -1 -2

11111111 11111111 65,535 -0 -1

Table 2-4 lists the sizes and value ranges of the standard integer types.

Table 2-4. Common storage sizes and value ranges of standard integer types

Type Storage size Minimum value Maximum value

char (Same as either signed char or unsigned char)

unsigned char One byte 0 255

signed char One byte -128 127

int Two bytes or four bytes -32,768 or
-2,147,483,648

32,767 or 2,147,483,647

unsigned int Two bytes or four bytes 0 65,535 or 4,294,967,295

short Two bytes -32,768 32,767

unsigned short Two bytes 0 65,535

long Four bytes -2,147,483,648 2,147,483,647

unsigned long Four bytes 0 4,294,967,295

long long (C99) Eight bytes -9,223,372,036,
854,775,808

9,223,372,036, 854,775,807

unsigned long

long (C99)
Eight bytes 0 18,446,744,073,

709,551,615

In the following example, each of the int variables iIndex and iLimit occupies
four bytes on a 32-bit computer:

int iIndex, // Define two int variables and
 iLimit = 1000; // initialize the second one.

To obtain the exact size of a type or variable, use the sizeof operator. The expres‐
sion

sizeof(type)

yields the size of the type named, and

sizeof expression

Typ
es

Integer Types | 27

yields the size of the given expression’s type, as a number of bytes with the type
size_t. The type size_t is defined in stddef.h, stdio.h, and other header files as an
unsigned integer type (such as unsigned long, for example). If the operand is an
expression, the size is that of the expression’s type. In the previous example, the
value of sizeof(int) would be the same as sizeof(iIndex)—namely, 4. The
parentheses around the expression iIndex can be omitted because iIndex is an
expression, not a type.

You can find the value ranges of the integer types for your C compiler in the header
file limits.h, which defines macros such as INT_MIN, INT_MAX, UINT_MAX, and so on
(see Chapter 16). The program in Example 2-1 uses these macros to display the
minimum and maximum values for the types char and int.

Example 2-1. Value ranges of the types char and int

// limits.c: Display the value ranges of char and int.
// ---
#include <stdio.h>
#include <limits.h> // Contains the macros CHAR_MIN, INT_MIN, etc.

int main()
{
 printf("Storage sizes and value ranges of the types char and int\n\n");
 printf("The type char is %s.\n\n", CHAR_MIN < 0 ? "signed" :"unsigned");

 printf(" Type Size (in bytes) Minimum Maximum\n"
 "---\n");
 printf(" char %8zu %20d %15d\n", sizeof(char), CHAR_MIN, CHAR_MAX);
 printf(" int %8zu %20d %15d\n", sizeof(int), INT_MIN, INT_MAX);
 return 0;
}

In arithmetic operations with integers, overflows can occur. An overflow happens
when the result of an operation is no longer within the range of values that the type
being used can represent. In arithmetic with unsigned integer types, overflows are
ignored. In mathematical terms, that means that the effective result of an unsigned
integer operation is equal to the remainder of a division by UTYPE_MAX + 1, where
UTYPE_MAX is the unsigned type’s maximum representable value. For example, the
following addition causes the variable to overflow:

unsigned int ui = UINT_MAX;
ui += 2; // Result: 1

C specifies this behavior only for the unsigned integer types. For all other types, the
result of an overflow is undefined. For example, the overflow may be ignored, or it
may raise a signal that aborts the program if it is not caught.

28 | Chapter 2: Types

Integer Types Defined in Standard Headers
The headers of the standard library define numerous integer types for specific uses,
such as the type wchar_t to represent wide characters. These types are typedef
names—that is, synonyms for standard integer types (see “typedef Declarations” on
page 185).

The types ptrdiff_t, size_t, and wchar_t are defined in the header stddef.h (and
in other headers); the types char16_t and char32_t are defined in the header
uchar.h. For special requirements, integer types with specifed bit widths, in signed
and unsigned variants, are defined in the header stdint.h. These are described in the
following subsection.

Furthermore, the header stdint.h also defines macros that supply the maximum and
minimum representable values of all the integer types defined in the standard
library. For example, SIZE_MAX equals the largest value you can store in a variable of
the type size_t. For all details on the types listed here, and the corresponding mac‐
ros, see Chapter 16.

Integer types with exact width (C99)
The width of an integer type is defined as the number of bits used to represent a
value, including the sign bit. Typical widths are 8, 16, 32, and 64 bits. For example,
the type int is at least 16 bits wide.

In C99, the header file stdint.h defines integer types to fulfill the need for known
widths. These types are listed in Table 2-5. Those types whose names begin with u
are unsigned. C99 implementations are not required to provide the types marked as
“optional” in the table.

Table 2-5. Integer types with defined width

Type Meaning Implementation

intN_t

uintN_t

An integer type whose width is exactly N bits Optional

int_leastN_t
uint_leastN_t

An integer type whose width is at least N bits Required for N = 8, 16, 32, 64

int_fastN_t
uint_fastN_t

The fastest type to process whose width is at least N bits Required for N = 8, 16, 32, 64

intmax_t

uintmax_t

The widest integer type implemented Required

intptr_t

uintptr_t

An integer type wide enough to store the value of a
pointer

Optional

For example, int_least64_t and uint_least64_t are integer types with a width of
at least 64 bits. If an optional signed type (without the prefix u) is defined, then the

Typ
es

Integer Types | 29

corresponding unsigned type (with the initial u) is required, and vice versa. The fol‐
lowing example defines and initializes an array whose elements have the type
int_fast32_t:

#define ARR_SIZE 100
int_fast32_t arr[ARR_SIZE]; // Define an array arr
 // with elements of type int_fast32_t
for (int i = 0; i < ARR_SIZE; ++i)
 arr[i] = (int_fast32_t)i; // Initialize each element

The types listed in Table 2-5 are usually defined as synonyms for existing standard
types. For example, the stdint.h file supplied with one C compiler contains the line:

typedef signed char int_fast8_t;

This declaration simply defines the new type int_fast8_t (the fastest 8-bit signed
integer type) as being equivalent with signed char.

Furthermore, an implementation may also define extended integer types such as
int24_t or uint_least128_t.

The signed intN_t types have a special feature: they must use the two’s complement
binary representation. As a result, their minimum value is −2N−1, and their maxi‐
mum value is 2N−1 − 1.

The value ranges of the types defined in stdint.h are also easy to obtain: macros for
the greatest and least representable values are defined in the same header file. The
names of the macros are the uppercased type names, with the suffix _t (for type)
replaced by _MAX or _MIN (see Chapter 16). For example, the following definition
initializes the variable i64 with its smallest possible value:

int_least64_t i64 = INT_LEAST64_MIN;

The header file inttypes.h includes the header file stdint.h, and provides other fea‐
tures such as extended integer type specifiers for use in printf() and scanf() func‐
tion calls (see Chapter 16).

Floating-Point Types
C also includes special numeric types that can represent nonintegers with a decimal
point in any position. The standard floating-point types for calculations with real
numbers are as follows:

float
For variables with single precision

double
For variables with double precision

long double
For variables with extended precision

30 | Chapter 2: Types

A floating-point value can be stored only with a limited precision, which is deter‐
mined by the binary format used to represent it and the amount of memory used to
store it. The precision is expressed as a number of significant digits. For example, a
“precision of six decimal digits” or “six-digit precision” means that the type’s binary
representation is precise enough to store a real number of six decimal digits, so that
its conversion back into a six-digit decimal number yields the original six digits. The
position of the decimal point does not matter, and leading and trailing zeros are not
counted in the six digits. The numbers 123,456,000 and 0.00123456 can both be
stored in a type with six-digit precision.

In C, arithmetic operations with floating-point numbers are usually performed with
double or greater precision. The floating-point precision used internally by the
given implementation is indicated by the value of the macro FLT_EVAL_METHOD,
defined in the header float.h. For example, if the macro FLT_EVAL_METHOD has the
value 1, the following product is calculated using the double type:

float height = 1.2345, width = 2.3456; // Float variables have
 // single precision.
double area = height * width; // The actual calculation
 // is performed with
 // double precision.

If you assign the result to a float variable, the value is rounded as necessary. For
more details on floating-point math, see “math.h” on page 300.

C defines only minimal requirements for the storage size and binary format of the
floating-point types. However, the format commonly used is the one defined by the
International Electrotechnical Commission (IEC) in the 1989 standard for binary
floating-point arithmetic, IEC 60559. This standard is based in turn on the Institute
of Electrical and Electronics Engineers’ 1985 standard, IEEE 754. Compilers can
indicate that they support the IEC floating-point standard by defining the macro
__STDC_IEC_559__. Table 2-6 shows the value ranges and the precision of the real
floating-point types in accordance with IEC 60559, using decimal notation.

Table 2-6. Real floating-point types

Type Storage size Value range Smallest positive value Precision

float 4 bytes ±3.4E+38 1.2E-38 6 digits

double 8 bytes ±1.7E+308 2.3E-308 15 digits

long double 10 bytes ±1.1E+4932 3.4E-4932 19 digits

The header file float.h defines macros that allow you to use these values and other
details about the binary representation of real numbers in your programs. The mac‐
ros FLT_MIN, FLT_MAX, and FLT_DIG indicate the value range and the precision of the
float type. The corresponding macros for double and long double begin with the
prefixes DBL_ and LDBL_. These macros, and the binary representation of floating-
point numbers, are described in “float.h” on page 293.

Typ
es

Floating-Point Types | 31

The program in Example 2-2 starts by printing the typical values for the type float,
and then illustrates the rounding error that results from storing a floating-point
number in a float variable.

Example 2-2. Illustrating the precision of type float

#include <stdio.h>
#include <float.h>

int main()
{
 puts("\nCharacteristics of the type float\n");

 printf("Storage size: %d bytes\n"
 "Smallest positive value: %E\n"
 "Greatest positive value: %E\n"
 "Precision: %d decimal digits\n",
 sizeof(float), FLT_MIN, FLT_MAX, FLT_DIG);

 puts("\nAn example of float precision:\n");
 double d_var = 12345.6; // A variable of type double.
 float f_var = (float)d_var; // Initializes the float
 // variable with the value of d_var.
 printf("The floating-point number "
 "%18.10f\n", d_var);
 printf("has been stored in a variable\n"
 "of type float as the value "
 "%18.10f\n", f_var);
 printf("The rounding error is "
 "%18.10f\n", d_var - f_var);

 return 0;
}

The last part of this program typically generates the following output:

The floating-point number 12345.6000000000
has been stored in a variable
of type float as the value 12345.5996093750
The rounding error is 0.0003906250

In this example, the nearest representable value to the decimal 12,345.6 is
12,345.5996093750. This may not look like a round number in decimal notation,
but in the internal binary representation of the floating-point type, it is exactly rep‐
resentable, while 12,345.60 is not.

Complex Floating-Point Types
C99 supports mathematical calculations with complex numbers. The 1999 standard
introduced complex floating-point types and extended the mathematical library to

32 | Chapter 2: Types

include complex arithmetic functions. These functions are declared in the header
file complex.h, and include the trigonometric functions csin(), ctan(), and so on
(see Chapter 16).

In the C11 standard, support for complex numbers is optional. The
macro__STDC_NO_COMPLEX__ can be defined to indicate that the implementation
does not include the header file complex.h.

A complex number z can be represented in Cartesian coordinates as z = x + y × i,
where x and y are real numbers, and i is the imaginary unit, defined by the equation
i2 = -1. The number x is called the real part, and y the imaginary part, of z.

In C, a complex number is represented by a pair of floating-point values for the real
and imaginary parts. Both parts have the same type, whether float, double, or long
double. Accordingly, these are the three complex floating-point types:

• float _Complex

• double _Complex

• long double _Complex

Each of these types has the same size and alignment as an array of two float,
double, or long double elements.

The header file complex.h defines the macros complex and I. The macro complex is
a synonym for the keyword _Complex. The macro I represents the imaginary unit i,
and has the type const float _Complex:

#include <complex.h>
// ...
double complex z = 1.0 + 2.0 * I;
z *= I; // Rotate z through 90° counterclockwise around the origin

To compose a complex number from its real and imaginary parts, C11 also provides
the macros CMPLX, CMPLXF, and CMPLXL. For example, the complex number
CMPLX(1.0, 2.0) is equal to the number z defined in the preceding example, and
has the type double complex. Similarly, the macros CMPLXF and CMPLXL yield a com‐
plex number of the type float complex and long double complex. An implemen‐
tation may also include the following types to represent pure imaginary numbers:
float imaginary, double imaginary, and long double imaginary.

Enumerated Types
Enumerations are integer types that you define in a program. The definition of an
enumeration begins with the keyword enum, possibly followed by an identifier for
the enumeration, and contains a list of the type’s possible values, with a name for
each value:

enum [identifier] { enumerator-list };

Typ
es

Enumerated Types | 33

The following example defines the enumerated type enum color:

enum color { black, red, green, yellow, blue, white=7, gray };

The identifier color is the tag of this enumeration. The identifiers in the list—
black, red, and so on—are the enumeration constants, and have the type int. You
can use these constants anywhere within their scope—as case constants in a switch
statement, for example.

Each enumeration constant of a given enumerated type represents a certain value,
which is determined either implicitly by its position in the list, or explicitly by initi‐
alization with a constant expression. A constant without an initialization has the
value 0 if it is the first constant in the list, or the value of the preceding constant plus
one. Thus, in the previous example, the constants listed have the values 0, 1, 2, 3, 4,
7, 8.

Within an enumerated type’s scope, you can use the type in declarations:

enum color bgColor = blue, // Define two variables
 fgColor = yellow; // of type enum color.
void setFgColor(enum color fgc); // Declare a function with a
 // parameter of type enum color.

An enumerated type always corresponds to one of the standard integer types. Thus,
your C programs may perform ordinary arithmetic operations with variables of
enumerated types. The compiler may select the appropriate integer type depending
on the defined values of the enumeration constants. In the previous example, the
type char would be sufficient to represent all the values of the enumerated type enum
color.

Different constants in an enumeration may have the same value:

enum { OFF, ON, STOP = 0, GO = 1, CLOSED = 0, OPEN = 1 };

As the preceding example also illustrates, the definition of an enumerated type does
not necessarily have to include a tag. Omitting the tag makes sense if you only want
to define constants and not declare any variables of the given type. Defining integer
constants in this way is generally preferable to using a long list of #define direc‐
tives, as the enumeration provides the compiler with the names of the constants as
well as their numeric values. These names are a great advantage in a debugger’s dis‐
play, for example.

The Type void
The type specifier void indicates that no value is available. Consequently, you can‐
not declare variables or constants with this type. You can use the type void for the
purposes described in the following sections.

34 | Chapter 2: Types

void in Function Declarations
A function with no return value has the type void. For example, the standard func‐
tion perror() is declared by the prototype:

void perror(const char *);

The keyword void in the parameter list of a function prototype indicates that the
function has no parameters:

FILE *tmpfile(void);

As a result, the compiler issues an error message if you try to use a function call
such as tmpfile("name.tmp"). If the function were declared without void in the
parameter list, the C compiler would have no information about the function’s
parameters, and hence would be unable to determine whether the function call is
correct.

Expressions of Type void
A void expression is one that has no value. For example, a call to a function with no
return value is an expression of type void:

char filename[] = "memo.txt";
if (fopen(filename, "r") == NULL)
 perror(filename); // A void expression

The cast operation (void)expression explicitly discards the value of an expression,
such as the return value of a function:

(void)printf("I don't need this function's return value!\n");

Pointers to void
A pointer of type void * represents the address of an object, but not its type. You
can use such quasi-typeless pointers mainly to declare functions that can operate on
various types of pointer arguments, or that return a “multipurpose” pointer. The
standard memory management functions are a simple example:

void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
void free(void *ptr);

As Example 2-3 illustrates, you can assign a void pointer value to another object
pointer type, or vice versa, without explicit type conversion.

Example 2-3. Using the type void

// usingvoid.c: Demonstrates uses of the type void
// ---
#include <stdio.h>
#include <time.h>
#include <stdlib.h> // Provides the following function prototypes:

Typ
es

The Type void | 35

 // void srand(unsigned int seed);
 // int rand(void);
 // void *malloc(size_t size);
 // void free(void *ptr);
 // void exit(int status);

enum { ARR_LEN = 100 };

int main()
{
 int i, // Obtain some storage space.
 *pNumbers = malloc(ARR_LEN * sizeof(int));

 if (pNumbers == NULL)
 {
 fprintf(stderr, "Insufficient memory.\n");
 exit(1);
 }

 srand((unsigned)time(NULL)); // Initialize the
 // random number generator.

 for (i=0; i < ARR_LEN; ++i)
 pNumbers[i] = rand() % 10000; // Store some random numbers.

 printf("\n%d random numbers between 0 and 9999:\n", ARR_LEN);
 for (i=0; i < ARR_LEN; ++i) // Output loop:
 {
 printf("%6d", pNumbers[i]); // Print one number per loop
 if (i % 10 == 9) putchar('\n'); // iteration and a newline
 } // after every 10 numbers.
 free(pNumbers); // Release the storage space.
 return 0;
}

The Alignment of Objects in Memory
Every complete object type imposes a certain alignment on objects of that type. In
other words, the type specifies the kind of memory addresses at which objects of
that type can be stored: all addresses, only even addresses, only addresses divisible
by four, and so on. The alignment of a type is expressed as a number of bytes equal
to the minimum distance between two objects of that type in storage. The specific
values of the types’ alignments can vary from one implementation to another, but
they are always positive integer powers of 2: that is, 1, 2, 4, 8, and so on. An align‐
ment with a greater value than another type’s alignment is said to be stricter than the
other.

C11 provides the operator _Alignof to determine a type’s alignment, and the speci‐
fier _Alignas to specify the alignment in an object definition.

36 | Chapter 2: Types

The _Alignof operator, like the sizeof operator, yields a constant value with the
type size_t, an unsigned integer type defined in stddef.h and other header files. For
example, the following expression yields the alignment of the type int, which is typ‐
ically 4:

_Alignof(int)

An alignment value less than or equal to _Alignof(max_align_t) is called a funda‐
mental alignment. All the fundamental types—that is, the basic types and pointer
types—have a fundamental alignment. The type max_align_t is defined in the
header stddef.h, and its alignment is supported in every context, including dynamic
memory allocation, for example. In addition, the implementation may also support
alignments greater than _Alignof(max_align_t), which are known as extended
alignments.

When an object is defined with the specifier _Alignas, it can have a stricter align‐
ment than its type requires. The argument of _Alignas can be a constant integer
expression whose value is a valid alignment, or a type, as in the following examples:

_Alignas(4) short var; // Defines var with the type short
 // and four-byte alignment.
_Alignas(double) float x; // Defines x with the type float
 // and the alignment of double.

The form _Alignas(type) is synonymous with _Alignas (_Alignof(type)). The
header file stdalign.h defines alignof and alignas as synonyms for _Alignof and
_Alignas. Thus, if your program includes stdalign.h, you can write alignas(int)
instead of _Alignas(int).

Typ
es

The Alignment of Objects in Memory | 37

3
Literals

In C source code, a literal is a token that denotes a fixed value, which may be an
integer, a floating-point number, a character, or a string. A literal’s type is deter‐
mined by its value and its notation.

The literals discussed here are different from compound literals, which were intro‐
duced in the C99 standard. Compound literals are ordinary modifiable objects, sim‐
ilar to variables. For a full description of compound literals and the special operator
used to create them, see Chapter 5.

Integer Constants
An integer constant can be expressed as an ordinary decimal numeral, or as a
numeral in octal or hexadecimal notation. You must specify the intended notation
by a prefix.

A decimal constant begins with a nonzero digit. For example, 255 is the decimal
constant for the base-10 value 255.

A number that begins with a leading zero is interpreted as an octal constant. Octal
(or base eight) notation uses only the digits from 0 to 7. For example, 047 is a valid
octal constant representing 4 × 8 + 7, and is equivalent with the decimal constant
39. The decimal constant 255 is equal to the octal constant 0377.

A hexadecimal constant begins with the prefix 0x or 0X. The hexadecimal digits A to
F can be upper- or lowercase. For example, 0xff, 0Xff, 0xFF, and 0XFF represent the
same hexadecimal constant, which is equivalent to the decimal constant 255.

Because the integer constants you define will eventually be used in expressions and
declarations, their type is important. The type of a constant is determined at the
same time as its value is defined. Integer constants such as the examples just men‐

39

tioned usually have the type int. However, if the value of an integer constant is out‐
side the range of the type int, then it must have a bigger type. In this case, the com‐
piler assigns it the first type in a hierarchy that is large enough to represent the
value. For decimal constants, the type hierarchy is:

int, long, long long

For octal and hexadecimal constants, the type hierarchy is:

int, unsigned int, long, unsigned long, long long, unsigned long long

For example, on a 16-bit system, the decimal constant 50000 has the type long, as
the greatest possible int value is 32,767, or 215 − 1.

You can also influence the types of constants in your programs explicitly by using
suffixes. A constant with the suffix l or L has the type long (or a larger type if neces‐
sary, in accordance with the hierarchies just mentioned). Similarly, a constant with
the suffix ll or LL has at least the type long long. The suffix u or U can be used to
ensure that the constant has an unsigned type. The long and unsigned suffixes can
be combined. Table 3-1 gives a few examples.

Table 3-1. Examples of constants with suffixes

Integer constant Type

0x200 int

512U unsigned int

0L long

0Xf0fUL unsigned long

0777LL long long

0xAAAllu unsigned long long

Floating-Point Constants
Floating-point constants can be written either in decimal or in hexadecimal nota‐
tion. These notations are described in the next two sections.

Decimal Floating-Point Constants
An ordinary floating-point constant consists of a sequence of decimal digits con‐
taining a decimal point. You may also multiply the value by a power of 10, as in sci‐
entific notation: the power of 10 is represented simply by an exponent, introduced
by the letter e or E. A floating-point constant that contains an exponent does not
need to have a decimal point. Table 3-2 gives a few examples of decimal floating-
point constants.

40 | Chapter 3: Literals

Table 3-2. Examples of decimal floating-point constants

Floating-point constant Value

10.0 10

2.34E5 2.34 × 105

67e-12 67.0 × 10−12

The decimal point can also be the first or last character. Thus, 10. and .234E6 are
permissible numerals. However, the numeral 10 with no decimal point would be an
integer constant, not a floating-point constant.

The default type of a floating-point constant is double. You can also append the suf‐
fix F or f to assign a constant the type float, or the suffix L or l to give a constant
the type long double, as this example shows:

float f_var = 123.456F; // Initialize a float variable.

long double ld_var = f_var * 987E7L; // Initialize a long double
 // variable with the product of
 // a multiplication performed
 // with long double precision.

Hexadecimal Floating-Point Constants
The C99 standard introduced hexadecimal floating-point constants, which have a
key advantage over decimal floating-point numerals: if you specify a constant value
in hexadecimal notation, it can be stored in the computer’s binary floating-point
format exactly, with no rounding error, whereas values that are “round numbers” in
decimal notation—like 0.1—may be repeating fractions in binary, and have to be
rounded for representation in the internal format. (For an example of rounding
with floating-point numbers, see Example 2-2.)

A hexadecimal floating-point constant consists of the prefix 0x or 0X, a sequence of
hexadecimal digits with an optional decimal point (which perhaps we ought to call a
“hexadecimal point” in this case), and an exponent to base two. The exponent is a
decimal numeral introduced by the letter p or P. For example, the constant
0xa.fP-10 is equal to the number (10 + 15/16) × 2−10 (not 2−16) in decimal notation.
Equivalent ways of writing the same constant value are 0xA.Fp-10, 0x5.78p-9,
0xAFp-14, and 0x.02BCp0. Each difference of 1 in the exponent multiplies or divides
the hexadecimal fraction by a factor of 2, and each shift of the hexadecimal point by
one place corresponds to a factor (or divisor) of 16, or 24.

In hexadecimal floating-point constants, you must include the exponent, even if its
value is zero. This step is necessary in order to distinguish the type suffix F (after the
exponent) from the hexadecimal digit F (to the left of the exponent). For example, if
the exponent were not required, the constant 0x1.0F could represent either the
number 1.0 with type float, or the number 1 + 15/256 with the default type double.

Literals

Floating-Point Constants | 41

Like decimal floating-point constants, hexadecimal floating-point constants also
have the default type double. Append the suffix F or f to assign a constant the type
float, or the suffix L or l to give it the type long double.

Character Constants
A character constant consists of one or more characters enclosed in single quotation
marks. Here are some examples:

'a' 'XY' '0' '*'

All the characters of the source character set are permissible in character constants,
except the single quotation mark ', the backslash \, and the newline character. To
represent these characters, you must use escape sequences:

'\'' '\\' '\n'

In the fifth translation phase (see “How the C Compiler Works” on page 19), char‐
acters and escape sequences in character constants are converted into the corre‐
sponding characters of the execution character set. All the escape sequences that are
permitted in character constants are described in “Escape Sequences” on page 44.

Wide-character constants are character constants defined with one of the prefixes L,
u, or U. They have a different type and value range from character constants defined
without a prefix.

Types and Values of Character Constants
Character constants that are not wide characters have the type int. If a character
constant contains one character which can be represented in a single byte in the exe‐
cution character set, then its value is the character code of that character. For exam‐
ple, the constant 'a' in ASCII or ISO 8859-1 encoding has the decimal value 97. In
all other cases, and in particular if a character constant contains more than one
character, the value of a character constant can vary from one compiler to another.

The following code fragment tests whether the character read is a digit between 1
and 5, inclusive:

#include <stdio.h>
int c = 0;

/* ... */

c = getchar(); // Read a character.
if (c != EOF && c > '0' && c < '6') // Compare input to character
 // constants.
{
 /* This block is executed if the user entered a digit from 1 to 5. */
}

42 | Chapter 3: Literals

If the type char is signed, then the value of a character constant can also be negative,
because the constant’s value is the result of a type conversion of the character code
from char to int. For example, ISO 8859-1 is a commonly used 8-bit character set,
also known as the ISO Latin 1 or ANSI character set. In this character set, the cur‐
rency symbol for pounds sterling, £, is coded as hexadecimal A3:

int c = '\xA3'; // Symbol for pounds sterling
printf("Character: %c Code: %d\n", c, c);

If the execution character set is ISO 8859-1, and the type char is signed, then the
printf statement in the preceding example generates the following output:

Character: £ Code: -93

In a program that uses characters that are not representable in a single byte, you can
use wide-character constants. A wide-character constant is written with one of the
prefixes L, u, or U. The prefix determines the type of the character constant, as
shown in Table 3-3.

Table 3-3. The types of character constants

Prefix Examples Type

none 'a'

'\t'

int

L L'a'
L'\u0100'

wchar_t (defined in stddef.h)

u u'a'

u'\x3b3'

char16_t (defined in uchar.h)

U U'a'
U'\u27FA'

char32_t (defined in uchar.h)

The value of a wide-character constant that contains a single multibyte character
which is representable in the execution character set is the code of the correspond‐
ing wide character. That is the value that would be returned for that multibyte char‐
acter by the standard function mbtowc() (“multibyte to wide character”), or by
mbrtoc16() or mbrtoc32(), depending on the type of the wide-character constant.

The Unicode types char16_t and char32_t, and the corresponding conversion
functions, were introduced in the C11 standard. Characters of the type char16_t
are encoded in UTF-16 if the macro __STDC_UTF_16__ is defined in the given imple‐
mentation. Similarly, characters of the type char32_t are encoded in UTF-32 if the
implementation defines the macro __STDC_UTF_32__.

Literals

Character Constants | 43

The value of a character constant containing several charac‐
ters, such as L'xy', is not specified. To ensure portability,
make sure your programs do not depend on such a character
constant having a specific value.

Escape Sequences
An escape sequence begins with a backslash \, and represents a single character.
Escape sequences allow you to represent any character in character constants and
string literals, including nonprintable characters and characters that otherwise have
a special meaning, such as ' and ". Table 3-4 lists the escape sequences recognized
in C.

Table 3-4. Escape sequences

Escape sequence Character value Action on output device

\' A single quotation mark (') Prints the character

\" A double quotation mark (")

\? A question mark (?)

\\ A backslash character (\)

\a Alert Generates an audible or visible signal

\b Backspace Moves the active position back one
character

\f Form feed Moves the active position to the beginning
of the next page

\n Newline Moves the active position to the beginning
of the next line

\r Carriage return Moves the active position to the beginning
of the current line

\t Horizontal tab Moves the active position to the next
horizontal tab stop

\v Vertical tab Moves the active position to the next
vertical tab stop

\o, \oo, or \ooo
(where o is an octal digit)

The character with the given octal
code

Prints the character

\xh[h…]
(where h is a hexadecimal
digit)

The character with the given
hexadecimal code

\uhhhh

\Uhhhhhhhh

The character with the given
universal character name

44 | Chapter 3: Literals

In the table, the active position refers to the position at which the output device
prints the next output character, such as the position of the cursor on a console dis‐
play. The behavior of the output device is not defined in the following cases: if the
escape sequence \b (backspace) occurs at the beginning of a line; if \t (tab) occurs
at the end of a line; or if \v (vertical tab) occurs at the end of a page.

As Table 3-4 shows, universal character names are also considered escape sequen‐
ces. Universal character names allow you to specify any character in the extended
character set, regardless of the encoding used. See “Universal Character Names” on
page 12 for more information.

You can also specify any character code in the value range of the type unsigned
char—or any wide-character code in the value range of wchar_t—using the octal
and hexadecimal escape sequences, as shown in Table 3-5.

Table 3-5. Examples of octal and hexadecimal escape sequences

Octal Hexadecimal Description

'\0' '\x0' The null character

'\033'

'\33'

'\x1B' The control character ESC (“escape”)

'\376' '\xfe' The character with the decimal code 254

'\417' '\x10f' Illegal, as the numeric value is beyond the range of the type unsigned char

L'\417' L'\x10f' That’s better! It’s now a wide-character constant; the type is wchar_t

- L'\xF82' Another wide-character constant

- U'\x222B' A wide-character constant with the type char32_t

There is no equivalent octal notation for the last two constants in the table because
octal escape sequences cannot have more than three octal digits. For the same rea‐
son, the wide-character constant L'\3702' consists of two characters: L'\370' and
L'2'.

String Literals
A string literal consists of a sequence of characters (and/or escape sequences)
enclosed in double quotation marks. For example:

"Hello world!\n"

The individual characters of a string literal are governed by the same rules described
for the values of characters in character constants. String literals may contain all the
multibyte characters of the source character set. The only exceptions are the double
quotation mark ", the backslash \, and the newline character, which must be repre‐
sented by escape sequences. For example, each backslash character in Windows
directory paths must be written as \\. The following printf statement first pro‐
duces an alert tone, and then indicates a documentation directory in quotation

Literals

String Literals | 45

marks, substituting the string literal addressed by the pointer argument doc_path
for the conversion specification %s:

char doc_path[128] = ".\\share\\doc"; // That is, ".\share\doc"
printf("\aSee the documentation in the directory \"%s\"\n", doc_path);

A string literal is a static array of char that contains character codes followed by a
string terminator, the null character \0 (see also Chapter 8). The empty string ""
occupies exactly one byte in memory, which holds the terminating null character.
Characters that cannot be represented in one byte are stored as multibyte charac‐
ters.

As illustrated in the previous example, you can use a string literal to initialize a char
array. A string literal can also be used to initialize a pointer to char:

char *pStr = "Hello, world!"; // pStr points to the first
 // character, 'H'

In such an initializer, the string literal represents the address of its first element, just
as an array name would.

In Example 3-1, the array error_msg contains three pointers to char, each of which
is assigned the address of the first character of a string literal.

Example 3-1. Sample function error_exit()

#include <stdlib.h>
#include <stdio.h>
void error_exit(unsigned int error_n) // Print a last error message
{ // and exit the program.
 char * error_msg[] = { "Unknown error code.\n",
 "Insufficient memory.\n",
 "Illegal memory access.\n" };
 unsigned int arr_len = sizeof(error_msg)/sizeof(char *);

 if (error_n >= arr_len)
 error_n = 0;
 fputs(error_msg[error_n], stderr);
 exit(1);
}

The C11 standard provides a new prefix, u8, which allows you to define a UTF-8
string literal. The multibyte characters in the char array defined by a UTF-8 string
literal are encoded in UTF-8. A string literal of the form u8"…" is thus no different
from a string literal without a prefix if the implementation’s default encoding for
multibyte characters is UTF-8.

Like wide-character constants, you can also specify string literals as strings of wide
characters by using one of the prefixes L, u, or U. In this way, you define what is
called a wide-string literal, which yields an array of wide characters ending with a
character with the value 0. The prefix determines the array elements’ type.

46 | Chapter 3: Literals

A wide-string literal is defined using the prefix L:

L"Here's a wide-string literal."

This expression defines a static null-terminated array of elements of the type
wchar_t. The array is initialized by converting the multibyte characters in the string
literal to wide characters in the same way as the standard function mbstowcs()
(“multibyte string to wide-character string”) would do.

The prefixes u and U, introduced in C11, yield a static array of wide characters of the
type char16_t or char32_t. The multibyte characters in these wide-string literals
are implicitly converted to wide characters by successive calls to the function
mbrtoc16() or mbrtoc32().

If a multibyte character or an escape sequence in a string literal is not representable
in the execution character set, the value of the string literal is not specified—that is,
it depends on the compiler.

In the following example, \u03b1 is the universal name for the character α, and
wprintf() is the wide-character version of the printf function, which formats and
prints a string of wide characters:

double angle_alpha = 90.0/3;
wprintf(L"Angle \u03b1 measures %lf degrees.\n", angle_alpha);

The compiler’s preprocessor concatenates any adjacent string literals—that is, those
that are separated only by whitespace—into a single string. As the following exam‐
ple illustrates, this concatenation also makes it simple to break up a string into sev‐
eral lines for readability:

#define PRG_NAME "EasyLine"
char msg[] = "The installation of " PRG_NAME
 " is now complete.";

If any of the string literals involved has a prefix, then the resulting string is treated
as a string literal with that prefix. Whether string literals with different prefixes can
be concatenated depends on the compiler.

Another way to break a string literal into several lines is to end a line with a back‐
slash, as in this example:

char info[] =
"This is a string literal broken up into\
 several source code lines.\nNow one more line:\n\
 that's enough, the string ends here.";

The string continues at the beginning of the next line: any spaces at the left margin,
such as the space before several in the preceding example, are part of the string
literal. Furthermore, the string literal defined here contains exactly two newline
characters: one immediately before Now, and one immediately before that's; in
other words, only the two that are explicitly written as \n.

Literals

String Literals | 47

The compiler interprets escape sequences before concatenating adjacent strings (see
“The C Compiler’s Translation Phases” on page 19). As a result, the following two
string literals form one wide-character string that begins with the two characters
'\xA7' and '2':

L"\xA7" L"2 et cetera"

However, if the string is written in one piece as L"\xA72 et cetera", then the first
character in the string is the wide character '\xA72'.

Although C does not strictly prohibit modifying string literals, you should not
attempt to do so. In the following example, the second statement is an attempt to
replace the first character of a string:

char *p = "house"; // Initialize a pointer to char.
*p = 'm'; // This is *not* a good idea!

This statement is not portable, and causes a runtime error on some systems. For one
thing, the compiler, treating the string literal as a constant, may place it in read-only
memory, in which case the attempted write operation causes a fault. For another, if
two or more identical string literals are used in the program, the compiler may store
them at the same location, so that modifying one causes unexpected results when
you access another.

However, if you use a string literal to initialize an array variable, you can then mod‐
ify the contents of the array:

char s[] = "house"; // Initialize an array of char.
s[0] = 'm'; // Now the array contains the string "mouse".

In the same way, arrays whose elements have the type wchar_t, char16_t, or
char32_t can be initialized using an appropriate wide-string literal.

48 | Chapter 3: Literals

4
Type Conversions

In C, operands of different types can be combined in one operation. For example,
the following expressions are permissible:

double dVar = 2.5; // Define dVar as a variable of type double.
dVar *= 3; // Multiply dVar by an integer constant.
if (dVar < 10L) // Compare dVar with a long-integer constant.
 { /* ... */ }

When the operands have different types, the compiler tries to convert them to a uni‐
form type before performing the operation. In certain cases, furthermore, you must
insert type conversion instructions in your program. A type conversion yields the
value of an expression in a new type, which can be either the type void (meaning
that the value of the expression is discarded; see “Expressions of Type void” on page
35), or a scalar type—that is, an arithmetic type or a pointer. For example, a pointer
to a structure can be converted into a different pointer type. However, an actual
structure value cannot be converted into a different structure type.

The compiler provides implicit type conversions when operands have mismatched
types, or when you call a function using an argument whose type does not match
the function’s corresponding parameter. Programs also perform implicit type con‐
version as necessary when initializing variables or otherwise assigning values to
them. If the necessary conversion is not possible, the compiler issues an error
message.

You can also convert values from one type to another explicitly using the cast opera‐
tor (see Chapter 5):

(type_name) expression

49

In the following example, the cast operator causes the division of one integer vari‐
able by another to be performed as a floating-point operation:

int sum = 22, count = 5;
double mean = (double)sum / count;

Because the cast operator has precedence over division, the value of sum in this
example is first converted to type double. The compiler must then implicitly con‐
vert the divisor, the value of count, to the same type before performing the division.

You should always use the cast operator whenever there is a possibility of losing
information, as in a conversion from int to unsigned int, for example. Explicit
casts avoid compiler warnings, and also signpost your program’s type conversions
for other programmers. For example, using an explicit cast to void when you dis‐
card the return value of a function serves as a reminder that you may be disregard‐
ing the function’s error indications.

To illustrate the implicit type conversions that the compiler provides, however, the
examples in this chapter use the cast operator only when strictly necessary.

Conversion of Arithmetic Types
Type conversions are always possible between any two arithmetic types, and the
compiler performs them implicitly wherever necessary. The conversion preserves
the value of an expression if the new type is capable of representing it. This is not
always the case. For example, when you convert a negative value to an unsigned
type, or convert a floating-point fraction from type double to the type int, the new
type simply cannot represent the original value. In such cases, the compiler gener‐
ally issues a warning.

Hierarchy of Types
When arithmetic operands have different types, the implicit type conversion is gov‐
erned by the types’ conversion rank. The types are ranked according to the following
rules:

• Any two unsigned integer types have different conversion ranks. If one is wider
than the other, then it has a higher rank.

• Each signed integer type has the same rank as the corresponding unsigned
type. The type char has the same rank as signed char and unsigned char.

• The standard integer types are ranked in the order:
_Bool < char < short < int < long < long long

• Any standard integer type has a higher rank than an extended integer type of
the same width (extended integer types are described in “Integer types with
exact width (C99)” on page 29).

• Every enumerated type has the same rank as its corresponding integer type (see
“Enumerated Types” on page 33).

50 | Chapter 4: Type Conversions

• The floating-point types are ranked in the following order:
float < double < long double

• The lowest-ranked floating-point type, float, has a higher rank than any inte‐
ger type.

• Every complex floating-point type has the same rank as the type of its real and
imaginary parts.

Integer Promotion
In any expression, you can always use a value whose type ranks lower than int in
place of an operand of type int or unsigned int. You can also use a bit-field as an
integer operand (bit-fields are discussed in Chapter 10). In these cases, the compiler
applies integer promotion: any operand whose type ranks lower than int is automat‐
ically converted to the type int, provided int is capable of representing all values of
the operand’s original type. If int is not sufficient, the operand is converted to
unsigned int.

Integer promotion always preserves the value of the operand. Here are some
examples:

char c = '?';
unsigned short var = 100;

if (c < 'A') // The character constant 'A' has type int:
 // the value of c is implicitly promoted
 // to int for the comparison.

 var = var + 1; // Before the addition, the value of var
 // is promoted to int or unsigned int.

In the last of these statements, the compiler promotes the first addend, the value of
var, to the type int or unsigned int before performing the addition. If int and
short have the same width, which is likely on a 16-bit computer, then the signed
type int is not wide enough to represent all possible values of the unsigned short
variable var. In this case, the value of var is promoted to unsigned int. After the
addition, the result is converted to unsigned short for assignment to var.

Usual Arithmetic Conversions
The usual arithmetic conversions are the implicit conversions that are automatically
applied to operands of different arithmetic types for most operators. The purpose of
the usual arithmetic conversions is to find a common real type for all of the operands
and the result of the operation.

The usual arithmetic conversions are performed implicitly for the following opera‐
tors:

Typ
e

C
o

nversio
ns

Conversion of Arithmetic Types | 51

Arithmetic operators with two operands
*, /, %, +, and -

Relational and equality operators
<, <=, >, >=, ==, and !=

The bitwise operators
&, |, and ^

The ternary operator
?: (for the second and third operands)

With the exception of the relational and equality operators, the common real type
obtained by the usual arithmetic conversions is generally the type of the result.
However, if one or more of the operands has a complex floating-point type, then the
result also has a complex floating-point type.

The usual arithmetic conversions are applied as follows:

1. If either operand has a floating-point type, then the operand with the lower
conversion rank is converted to a type with the same rank as the other operand.
Real types are converted only to real types, however, and complex types only to
complex.
In other words, if either operand has a complex floating-point type, the usual
arithmetic conversion matches only the real type on which the actual type of
the operand is based. Here are some examples:

#include <complex.h>
// ...
short n = -10;
double x = 0.5, y = 0.0;
float _Complex f_z = 2.0F + 3.0F * I;
double _Complex d_z = 0.0;

y = n * x; // The value of n is converted to type double.
d_z = f_z + x; // Only the value of f_z is converted to
 // double _Complex.
 // The result of the operation also has
 // type double _Complex.

f_z = f_z / 3; // The constant value 3 is converted to float.
d_z = d_z − f_z; // The value of f_z is converted to
 // the type double _Complex.

2. If both operands are integers, integer promotion is first performed on both
operands. If after integer promotion the operands still have different types,
conversion continues as follows:

• If one operand has an unsigned type T whose conversion rank is at least as
high as that of the other operand’s type, then the other operand is converted
to type T.

52 | Chapter 4: Type Conversions

• Otherwise, one operand has a signed type T whose conversion rank is higher
than that of the other operand’s type. The other operand is converted to type
T only if type T is capable of representing all values of its previous type. If
not, then both operands are converted to the unsigned type that corresponds
to the signed type T.

The following lines of code contain some examples:

 int i = -1;
 unsigned int limit = 200U;
 long n = 30L;

 if (i < limit)
 x = limit * n;

In this example, to evaluate the comparison in the if condition, the value of i, −1,
must first be converted to the type unsigned int. The result is a large positive num‐
ber. On a 32-bit system, that number is 232 − 1, and on any system it is greater than
limit. Hence, the if condition is false.

In the last line of the example, the value of limit is converted to n’s type, long, if the
value range of long contains the whole value range of unsigned int. If not—for
example, if both int and long are 32 bits wide—then both multiplicands are con‐
verted to unsigned long.

The usual arithmetic conversions preserve the operand’s value, except in the follow‐
ing cases:

• When an integer of great magnitude is converted to a floating-point type, the
target type’s precision may not be sufficient to represent the number exactly.

• Negative values are outside the value range of unsigned types.

In these two cases, values that exceed the range or precision of the target type are
converted as described in “The Results of Arithmetic Type Conversions” on page 54.

Other Implicit Type Conversions
The compiler also automatically converts arithmetic values in the following cases:

• In assignments and initializations, the value of the right operand is always con‐
verted to the type of the left operand.

• In function calls, the arguments are converted to the types of the correspond‐
ing parameters. If the parameters have not been declared, then the default argu‐
ment promotions are applied: integer promotion is performed on integer argu‐
ments, and arguments of type float are promoted to double.

Typ
e

C
o

nversio
ns

Conversion of Arithmetic Types | 53

• In return statements, the value of the return expression is converted to the
function’s return type.

In a compound assignment, such as x += 2.5, the values of both operands are first
subject to the usual arithmetic conversions, then the result of the arithmetic opera‐
tion is converted, as for a simple assignment, to the type of the left operand. Most
compilers issue a warning if the left operand’s type may be unable to represent the
right operand’s value. Here are some examples:

#include <math.h> // Declares the function double sqrt(double).

int i = 7;
float x = 0.5; // The constant value is converted from double to float.

i = x; // The value of x is converted from float to int.

x += 2.5; // Before the addition, the value of x is converted to
 // double. Afterward, the sum is converted to float for
 // assignment to x.

x = sqrt(i); // Calculate the square root of i:
 // The argument is converted from int to double;
 // the return value is converted from double to
 // float for assignment to x.

long my_func()
{
 /* ... */
 return 0; // The constant 0 is converted to long, the function's
 // return type.
}

The Results of Arithmetic Type Conversions
Because the different types have different purposes, representational characteristics,
and limitations, converting a value from one type to another often involves the
application of special rules to deal with such peculiarities. In general, the exact
result of a type conversion depends primarily on the characteristics of the target
type.

Conversions to _Bool
Any value of any scalar type can be converted to _Bool. The result is 0—i.e.,
false—if the scalar value is equal to 0; and 1, or true, if it is nonzero. Because a null
pointer compares equal to zero, its value becomes false on conversion to _Bool.

54 | Chapter 4: Type Conversions

Conversions to unsigned integer types other than _Bool
Integer values are always preserved if they are within the range of the new unsigned
type—in other words, if they are between 0 and Utype_MAX, where Utype_MAX is the
greatest value that can be represented by unsigned type.

For values outside the new unsigned type’s range, the value after conversion is the
value obtained by adding or subtracting (Utype_MAX + 1) as many times as necessary
until the result is within the range of the new type. The following example illustrates
the assignment of a negative value to an unsigned integer type:

#include <limits.h> // Defines the macros USHRT_MAX,
 // UINT_MAX, etc.
unsigned short n = 1000; // The value 1000 is within the
 // range of unsigned short;
n = -1; // the value -1 must be converted.

To adjust a signed value of −1 to the variable’s unsigned type, the program implicitly
adds USHRT_MAX + 1 to it until a result within the type’s range is obtained. Because
−1 + (USHRT_MAX + 1) = USHRT_MAX, the final statement in the previous example is
equivalent to n = USHRT_MAX;.

For positive integer values, subtracting (Utype_MAX + 1) as often as necessary to
bring the value into the new type’s range is the same as the remainder of a division
by (Utype_MAX + 1), as the following example illustrates:

#include <limits.h> // Defines the macros USHRT_MAX, UINT_MAX, etc.
unsigned short n = 0;
n = 0xFEDCBA; // The value is beyond the range of
 // unsigned short.

If unsigned short is 16 bits wide, then its maximum value, USHRT_MAX, is hexadeci‐
mal FFFF. When the value FEDCBA is converted to unsigned short, the result is
the same as the remainder of a division by hexadecimal 10000 (that’s USHRT_MAX +
1), which is always FFFF or less. In this case, the value assigned to n is hexadecimal
DCBA.

To convert a real floating-point number to an unsigned or signed integer type, the
compiler discards the fractional part. If the remaining integer portion is outside the
range of the new type, the result of the conversion is undefined. For example:

double x = 2.9;

unsigned long n = x; // The fractional part of x is
 // simply lost.

unsigned long m = round(x); // If x is non-negative, this has the
 // same effect as m = x + 0.5;

In the initialization of n in this example, the value of x is converted from double to
unsigned long by discarding its fractional part, 0.9. The integer part, 2, is the value
assigned to n. In the initialization of m, the C99 function round() rounds the value

Typ
e

C
o

nversio
ns

Conversion of Arithmetic Types | 55

of x to the nearest integer value (whether higher or lower), and returns a value of
type double. The fractional part of the resulting double value—3.0 in this case—is
thus equal to zero before being discarded through type conversion for the assign‐
ment to m.

When a complex number is converted to an unsigned integer type, the imaginary
part is first discarded. Then the resulting floating-point value is converted as
described previously. For example:

#include <limits.h> // Defines macros such as UINT_MAX.
#include <complex.h> // Defines macros such as the imaginary
 // constant I.

unsigned int n = 0;
float _Complex z = -1.7 + 2.0 * I;

n = z; // In this case, the effect is
 // the same as n = -1;
 // The resulting value of n is UINT_MAX.

The imaginary part of z is discarded, leaving the real floating-point value −1.7.
Then the fractional part of the floating-point number is also discarded. The remain‐
ing integer value, −1, is converted to unsigned int by adding UINT_MAX + 1, so that
the value ultimately assigned to n is equal to UINT_MAX.

Conversions to signed integer types
The problem of exceeding the target type’s value range can also occur when a value
is converted from an integer type, whether signed or unsigned, to a different, signed
integer type; for example, when a value is converted from the type long or unsigned
int to the type int. The result of such an overflow on conversion to a signed integer
type, unlike conversions to unsigned integer types, is left up to the implementation.

Most compilers discard the highest bits of the original value’s binary representation
and interpret the lowest bits according to the new type. As the following example
illustrates, under this conversion strategy the existing bit pattern of an unsigned
int is interpreted as a signed int value:

#include <limits.h> // Defines macros such as UINT_MAX
int i = UINT_MAX; // Result: i = -1 (in two's complement
 // representation)

However, depending on the compiler, such a conversion attempt may also result in a
signal being raised to inform the program of the value range overflow.

When a real or complex floating-point number is converted to a signed integer type,
the same rules apply as for conversion to an unsigned integer type, as described in
the previous section.

56 | Chapter 4: Type Conversions

Conversions to real floating-point types
Not all integer values can be exactly represented in floating-point types. For exam‐
ple, although the value range of the type float includes the range of the types long
and long long, float is precise to only six decimal digits. Thus, some long values
cannot be stored exactly in a float object. The result of such a conversion is the
next lower or next higher representable value, as the following example illustrates:

long l_var = 123456789L;
float f_var = l_var; // Implicitly converts long value
 // to float.

printf("The rounding error (f_var - l_var) is %f\n",
 (double)f_var - l_var);

Note that the subtraction in this example is performed with at least double preci‐
sion. Typical output produced by this code is:

 The rounding error (f_var - l_var;) is 3.000000

Any value in a floating-point type can be represented exactly in another floating-
point type of greater precision. Thus, when a double value is converted to
long double, or when a float value is converted to double or long double, the
value is exactly preserved. In conversions from a more precise to a less precise type,
however, the value being converted may be beyond the range of the new type. If the
value exceeds the target type’s range, the result of the conversion is undefined. If the
value is within the target type’s range, but not exactly representable in the target
type’s precision, then the result is the next smaller or next greater representable
value. The program in Example 2-2 illustrates the rounding error produced by such
a conversion to a less-precise floating-point type.

When a complex number is converted to a real floating-point type, the imaginary
part is simply discarded, and the result is the complex number’s real part, which
may have to be further converted to the target type as described in this section.

Conversions to complex floating-point types
When an integer or a real floating-point number is converted to a complex type, the
real part of the result is obtained by converting the value to the corresponding real
floating-point type as described in the previous section. The imaginary part is zero.

When a complex number is converted to a different complex type, the real and
imaginary parts are converted separately according to the rules for real floating-
point types:

#include <complex.h> // Defines macros such as the imaginary
 // constant I
double _Complex dz = 2;
float _Complex fz = dz + I;

Typ
e

C
o

nversio
ns

Conversion of Arithmetic Types | 57

In the first of these two initializations, the integer constant 2 is implicitly converted
to double _Complex for assignment to dz. The resulting value of dz is 2.0 + 0.0 × I.

In the initialization of fz, the two parts of the double _Complex value of dz are con‐
verted (after the addition) to float, so that the real part of fz is equal to 2.0F, and
the imaginary part 1.0F.

Conversion of Nonarithmetic Types
Pointers and the names of arrays and functions are also subject to certain implicit
and explicit type conversions. Structures and unions cannot be converted, although
pointers to them can be converted to and from other pointer types.

Array and Function Designators
An array or function designator is any expression that has an array or function type.
In most cases, the compiler implicitly converts an expression with an array type,
such as the name of an array, into a pointer to the array’s first element. The array
expression is not converted into a pointer only in the following cases:

• When the array is the operand of the sizeof operator

• When the array is the operand of the address operator &

• When a string literal is used to initialize an array of char, wchar_t, char16_t,
or char32_t

The following examples demonstrate the implicit conversion of array designators
into pointers, using the conversion specification %p to print pointer values:

#include <stdio.h>

int *iPtr = 0; // A pointer to int, initialized with 0.
int iArray[] = { 0, 10, 20 }; // An array of int, initialized.

int array_length = sizeof(iArray) / sizeof(int); // The number of
 // elements:
 // in this case, 3.

printf("The array starts at the address %p.\n", iArray);

*iArray = 5; // Equivalent to iArray[0] = 5;

iPtr = iArray + array_length - 1; // Point to the last element of
 // iArray: equivalent to
 // iPtr = &iArray[array_length-1];

printf("The last element of the array is %d.\n", *iPtr);

58 | Chapter 4: Type Conversions

In the initialization of array_length in this example, the expression
sizeof(iArray) yields the size of the whole array, not the size of a pointer. How‐
ever, the same identifier iArray is implicitly converted to a pointer in the other
three statements in which it appears:

• As an argument in the first printf() call

• As the operand of the dereferencing operator *

• In the pointer arithmetic operations and assignment to iPtr (see also “Modify‐
ing and Comparing Pointers” on page 147)

The names of character arrays are used as pointers in string operations, as in this
example:

#include <stdio.h>
#include <string.h> // Declares size_t strlen(const char *s)

char msg[80] = "I'm a string literal."; // Initialize an array of char.
printf("The string is %d characters long.\n", strlen(msg));
 // Answer: 21.
printf("The array named msg is %d bytes long.\n", sizeof(msg));
 // Answer: 80.

In the function call strlen(msg) in this example, the array identifier msg is implic‐
itly converted to a pointer to the array’s first element with the function parameter’s
type, const char *. Internally, strlen() merely counts the characters beginning at
that address until the first null character, the string terminator.

Similarly, any expression that designates a function, such as a function name, can
also be implicitly converted into a pointer to the function. Again, this conversion
does not apply when the expression is the operand of the address operator &. The
sizeof operator cannot be used with an operand of function type. The following
example illustrates the implicit conversion of function names to pointers (the pro‐
gram initializes an array of pointers to functions, then calls the functions in a loop):

#include <stdio.h>
void func0() { puts("This is the function func0(). "); }
void func1() { puts("This is the function func1(). "); }
/* ... */
void (*funcTable[2])(void) = { func0, func1 }; // Array of two pointers
 // to functions
 // returning void.
for (int i = 0; i < 2; ++i) // Use the loop counter as the array
 funcTable[i](); // index.

Explicit Pointer Conversions
To convert a pointer from one pointer type to another, you must usually use an
explicit cast. In some cases, the compiler provides an implicit conversion, as

Typ
e

C
o

nversio
ns

Conversion of Nonarithmetic Types | 59

described in “Implicit Pointer Conversions” on page 61. Pointers can also be explic‐
itly converted into integers, and vice versa.

Object pointers
You can explicitly convert an object pointer—that is, a pointer to a complete or
incomplete object type—to any other object pointer type. In your program, you
must ensure that your use of the converted pointer makes sense. Here is an example:

float f_var = 1.5F;
long *l_ptr = (long *)&f_var; // Initialize a pointer to long with
 // the address of f_var.
double *d_ptr = (double *)l_ptr; // Initialize a pointer to double
 // with the same address.

// On a system where sizeof(float) equals sizeof(long):

printf("The %zu bytes that represent %f, in hexadecimal: 0x%lX\n",
 sizeof(f_var), f_var, *l_ptr);

// Using a converted pointer in an assignment can cause trouble:

/* *d_ptr = 2.5; */ // Don't try this! f_var's location doesn't
 // have space for a double value!
*(float *)d_ptr = 2.5; // OK: stores a float value in that location.

If the object pointer after conversion does not have the alignment required by the
new type, the results of using the pointer are undefined. In all other cases, convert‐
ing the pointer value back into the original pointer type is guaranteed to yield an
equivalent to the original pointer.

If you convert any type of object pointer into a pointer to any char type (char,
signed char, or unsigned char), the result is a pointer to the first byte of the
object. The first byte is considered here to be the byte with the lowest address,
regardless of the system’s byte order structure. The following example uses this fea‐
ture to print a hexadecimal dump of a structure variable:

#include <stdio.h>
struct Data {
 short id;
 double val;
 };

struct Data myData = { 0x123, 77.7 }; // Initialize a
 // structure.

unsigned char *cp = (unsigned char *)&myData; // Pointer to the
 // first byte of
 // the structure.

printf("%p: ", cp); // Print the starting
 // address.

60 | Chapter 4: Type Conversions

for (int i = 0; i < sizeof(myData); ++i) // Print each byte
 printf("%02X ", *(cp + i)); // of the structure,
putchar('\n'); // in hexadecimal.

This example produces output like the following:

0xbffffd70: 23 01 00 00 00 00 00 00 CD CC CC CC CC 6C 53 40

The output of the first two bytes, 23 01, shows that the code was executed on a
little-endian system: the byte with the lowest address in the structure myData was
the least significant byte of the short member id.

Function pointers
The type of a function always includes its return type, and may also include its
parameter types. You can explicitly convert a pointer to a given function into a
pointer to a function of a different type. In the following example, the typedef
statement defines a name for the type “function that has one double parameter and
returns a double value”:

#include <math.h> // Declares sqrt() and pow().
typedef double (func_t)(double); // Define a type named func_t.

func_t *pFunc = sqrt; // A pointer to func_t, initialized
 // with the address of sqrt().

double y = pFunc(2.0); // A correct function call by pointer.
printf("The square root of 2 is %f.\n", y);

pFunc = (func_t *)pow; // Change the pointer's value to
 // the address of pow().
/* y = pFunc(2.0); */ // Don't try this: pow() takes two
 // arguments.

In this example, the function pointer pFunc is assigned the addresses of functions
that have different types. However, if the program uses the pointer to call a function
with a definition that does not match the exact function pointer type, the program’s
behavior is undefined.

Implicit Pointer Conversions
The compiler converts certain types of pointers implicitly. Assignments, conditional
expressions using the equality operators == and !=, and function calls involve
implicit pointer conversion in three kinds of cases, which are described individually
in the sections that follow. The three kinds of implicit pointer conversion are:

• Any object pointer type can be implicitly converted to a pointer to void, and
vice versa.

Typ
e

C
o

nversio
ns

Conversion of Nonarithmetic Types | 61

• Any pointer to a given type can be implicitly converted into a pointer to a more
qualified version of that type—that is, a type with one or more additional type
qualifiers.

• A null pointer constant can be implicitly converted into any pointer type.

Pointers to void
Pointers to void—that is, pointers of the type void *—are used as “multipurpose”
pointers to represent the address of any object, without regard for its type. For
example, the malloc() function returns a pointer to void (see Example 2-3). Before
you can access the memory block, the void pointer must always be converted into a
pointer to an object.

Example 4-1 demonstrates more uses of pointers to void. The program sorts an
array using the standard function qsort(), which is declared in the header file
stdlib.h with the following prototype:

void qsort(void *array, size_t n, size_t element_size,
 int (*compare)(const void *, const void *));

The qsort() function sorts the array in ascending order, beginning at the address
array, using the quick-sort algorithm. The array is assumed to have n elements
whose size is element_size.

The fourth parameter, compare, is a pointer to a function that qsort() calls to com‐
pare any two array elements. The addresses of the two elements to be compared are
passed to this function in its pointer parameters. Usually this comparison function
must be defined by the programmer. It must return a value that is less than, equal to,
or greater than 0 to indicate whether the first element is less than, equal to, or
greater than the second.

Example 4-1. A comparison function for qsort()

#include <stdlib.h>
#define ARR_LEN 20

/*
 * A function to compare any two float elements,
 * for use as a call-back function by qsort().
 * Arguments are passed by pointer.
 *
 * Returns: -1 if the first is less than the second;
 * 0 if the elements are equal;
 * 1 if the first is greater than the second.
 */
int floatcmp(const void* p1, const void* p2)
{
 float x = *(float *)p1,
 y = *(float *)p2;

62 | Chapter 4: Type Conversions

 return (x < y) ? -1 : ((x == y) ? 0 : 1);
}

/*
 * The main() function sorts an array of float.
 */
int main()
{
 /* Allocate space for the array dynamically: */
 float *pNumbers = malloc(ARR_LEN * sizeof(float));

 /* ... Handle errors, initialize array elements ... */

 /* Sort the array: */
 qsort(pNumbers, ARR_LEN, sizeof(float), floatcmp);

 /* ... Work with the sorted array ... */

 return 0;
}

In Example 4-1, the malloc() function returns a void *, which is implicitly con‐
verted to float * in the assignment to pNumbers. In the call to qsort(), the first
argument pNumbers is implicitly converted from float * to void *, and the func‐
tion name floatcmp is implicitly interpreted as a function pointer. Finally, when the
floatcmp() function is called by qsort(), it receives arguments of the type void *,
the “universal” pointer type, and must convert them explicitly to float * before
dereferencing them to initialize its float variables.

Pointers to qualified object types
The type qualifiers in C are const, volatile, and restrict (see Chapter 11 for
details on these qualifiers). For example, the compiler implicitly converts any
pointer to int into a pointer to const int where necessary. If you want to remove a
qualification rather than adding one, however, you must use an explicit type conver‐
sion, as the following example illustrates:

int n = 77;
const int *ciPtr = 0; // A pointer to const int.
 // The pointer itself is not constant!

ciPtr = &n; // Implicitly converts the address to the type
 // const int *.

n = *ciPtr + 3; // OK: this has the same effect as n = n + 3;

*ciPtr *= 2; // Error: you can't change an object referenced by
 // a pointer to const int.

Typ
e

C
o

nversio
ns

Conversion of Nonarithmetic Types | 63

*(int *)ciPtr *= 2; // OK: Explicitly converts the pointer into a
 // pointer to a nonconstant int.

The second to last statement in this example illustrates why pointers to const-
qualified types are sometimes called read-only pointers: although you can modify the
pointers’ values, you can’t use them to modify objects they point to.

Null pointer constants
A null pointer constant is an integer constant with the value 0, or a constant integer
value of 0 cast as a pointer to void. The macro NULL is defined in the header files
stdlib.h, stdio.h, and others as a null pointer constant. The following example illus‐
trates the use of the macro NULL as a pointer constant to initialize pointers rather
than an integer zero or a null character:

#include <stdlib.h>
long *lPtr = NULL; // Initialize to NULL: pointer is not ready
 // for use.

/* ... operations here may assign lPtr an object address ... */

if (lPtr != NULL)
{
 /* ... use lPtr only if it has been changed from NULL ... */
}

When you convert a null pointer constant to another pointer type, the result is
called a null pointer. The bit pattern of a null pointer is not necessarily zero. How‐
ever, when you compare a null pointer to zero, to NULL, or to another null pointer,
the result is always true. Conversely, comparing a null pointer to any valid pointer
to an object or function always yields false.

Conversions Between Pointer and Integer Types
You can explicitly convert a pointer to an integer type, and vice versa. The result of
such conversions depends on the compiler, and should be consistent with the
addressing structure of the system on which the compiled executable runs. Conver‐
sions between pointer and integer types can be useful in system programming, and
necessary when programs need to access specific physical addresses, such as ROM
or memory-mapped I/O registers.

When you convert a pointer to an integer type whose range is not large enough to
represent the pointer’s value, the result is undefined. Conversely, converting an inte‐
ger into a pointer type does not necessarily yield a valid pointer. The header file
stdint.h may optionally define the integer types intptr_t (signed) and uintptr_t
(unsigned). Any valid pointer can be converted to either of these types, and a subse‐
quent conversion back into a pointer is guaranteed to yield the original pointer. You
should therefore use one of these types, if stdint.h defines them, any time you need
to perform conversions between pointers and integers.

64 | Chapter 4: Type Conversions

Here are a few examples:

float x = 1.5F, *fPtr = &x; // A float, and a pointer to it.

// Save the pointer's value as an integer:
unsigned long long adr_val = (unsigned long long)fPtr;

// Or, if stdint.h has been included and uintptr_t is defined:
uintptr_t adr_val = (uintptr_t)fPtr;

/*
 * On an Intel x86 PC in DOS, the BIOS data block begins at the
 * address 0x0040:0000. The first two-byte word at that address
 * contains the I/O address of the serial port COM1.
 * (Compile using DOS's "large" memory model.)
 */
unsigned short *biosPtr = (unsigned short *)0x400000L;
unsigned short com1_io = *biosPtr; // The first word contains the
 // I/O address of COM1.
printf("COM1 has the I/O base address %Xh.\n", com1_io);

The last three statements obtain information about the hardware configuration
from the system data table, assuming the operating environment allows the pro‐
gram to access that memory area. In a DOS program compiled with the large mem‐
ory model, pointers are 32 bits wide and consist of a segment address in the higher
16 bits and an offset in the lower 16 bits (often written in the form segment:offset).
Thus, the pointer biosPtr in the prior example can be initialized with a long integer
constant.

Typ
e

C
o

nversio
ns

Conversion of Nonarithmetic Types | 65

5
Expressions and Operators

An expression consists of a sequence of constants, identifiers, and operators that the
program evaluates by performing the operations indicated. The expression’s pur‐
pose in the program may be to obtain the resulting value, or to produce side effects
of the evaluation, or both (see “Side Effects and Sequence Points” on page 70).

A single constant, string literal, or the identifier of an object or function is in itself
an expression. Such a simple expression, or a more complex expression enclosed in
parentheses, is called a primary expression. The C11 standard adds another kind of
primary expression, the generic selection, which is described in the next section.

Every expression has a type. An expression’s type is the type of the value that results
when the expression is evaluated. If the expression yields no value, it has the type
void. Some simple examples of expressions are listed in Table 5-1 (assume that a has
been declared as a variable of type int, and z as a variable of type float _Complex).

Table 5-1. Example expressions

Expression Type

'\n' int

a + 1 int

a + 1.0 double

a < 77.7 int

"A string literal." char *

abort() void

sqrt(2.0) double

z / sqrt(2.0) double _Complex

67

As you can see from the last example in Table 5-1, compound expressions are
formed by using an operator with expressions as its operands. The operands can
themselves be primary or compound expressions. For example, you can use a func‐
tion call as a factor in a multiplication. Likewise, the arguments in a function call
can be expressions involving several operators, as in this example:

2.0 * sin(3.14159 * fAngleDegrees/180.0)

How Expressions Are Evaluated
Before we consider specific operators in detail, this section explains a few funda‐
mental principles that will help you understand how C expressions are evaluated.
The precedence and associativity of operators are obviously important in parsing
compound expressions, but generic selections, lvalues, and sequence points are no less
essential to understanding how a C program works.

Generic Selections (C11)
A generic selection is a primary expression that selects an expression from a list
depending on the type of another expression. The selection takes place during
compiling. This mechanism allows C developers to write type-generic macros like
those provided for mathematical functions by the header tgmath.h, introduced in
the C99 version of the standard. For example, tgmath.h provides six different square
root functions, three for the real types float, double, and long double and three
for the corresponding complex types. In a program that includes the header
tgmath.h, the type-generic macro sqrt(x) can be used to automatically call
whichever function fits the type of x.

A generic selection begins with the new keyword _Generic, followed by parentheses
that enclose the controlling expression and a list of generic associations:

_Generic(expression, generic association 1
 [, generic association 2, ...])

A generic association has the form

type name : expression

or

default : expression

The default association is optional and must not occur more than once in the list.
The type names must designate distinct, mutually incompatible types. Incomplete
types and types for variable-length arrays are not permitted.

The controlling expression expression is not evaluated, but its type is compared
with the type names in the list of associations. If the controlling expression’s type is
compatible with one of the type names, then the compiler selects the expression
associated with it in the list. If there is no compatible type name in the list, the

68 | Chapter 5: Expressions and Operators

1 The C standard acknowledges this etymology, but proposes that the L in lvalue be thought of as
meaning “locator,” because an lvalue always designates a location in memory. The standard steers
clear of the term rvalue, preferring the phrase “not an lvalue.”

expression from the default association is selected. If the list contains neither a
compatible type nor a default association, the compiler issues an error message.

The type and value of a generic selection are those of the resulting expression, and
only the resulting expression is evaluated at runtime. Here is a simple example:

 _Generic(1.0, int: "int", double: "double",
 default: "neither int nor double")

The result of this selection is the string literal "double", because 1.0 has the type
double. Generic selections are used primarily to define type-generic macros, as in
the following example:

#define typeOf(x) _Generic((x), int: "int", double: "double", \
 default: "neither int nor double")

After this definition, the macro call typeOf('A') yields "int", because a character
constant in C has the type int. However, the value of typeOf(var) is the string
"neither int nor double" if var has the type unsigned int or const double, as
these types are not compatible with either of the two listed in the generic selection,
int and double.

Another, more useful example of a type-generic macro written with a generic selec‐
tion is shown in Chapter 15.

Lvalues
An lvalue is an expression that designates an object. The simplest example is the
name of a variable. The initial “L” in the term originally meant “left”: because an
lvalue designates an object, it can appear on the left side of an assignment operator,
as in leftexpression = rightexpression.1 Other expressions—those that represent
a value without designating an object—are called, by analogy, rvalues. An rvalue is
an expression that can appear on the right side of an assignment operator, but not
the left. Examples include constants and arithmetic expressions.

An lvalue can always be resolved to the corresponding object’s address, unless the
object is a bit-field or a variable declared with the register storage class (see “Storage
Class Specifiers” on page 178). The operators that yield an lvalue include the sub‐
script operator [] and the indirection operator *, as the examples in Table 5-2 illus‐
trate (assume that array has been declared as an array and ptr as a pointer vari‐
able).

E
xp

ressio
ns

and
O

p
erato

rs

How Expressions Are Evaluated | 69

Table 5-2. Pointer and array expressions may be lvalues

Expression Lvalue?

array[1] Yes; an array element is an object with a location

&array[1] No; the location of the object is not an object with a location

ptr Yes; the pointer variable is an object with a location

*ptr Yes; what the pointer points to is also an object with a location

ptr+1 No; the addition yields a new address value, but not an object

*ptr+1 No; the addition yields a new arithmetic value, but not an object

An object may be declared as constant. If this is the case, you can’t use it on the left
side of an assignment, even though it is an lvalue, as the following example illus‐
trates:

int a = 1;
const int b = 2, *ptr = &a;
b = 20; // Error: b is declared as const int.
*ptr = 10; // Error: ptr is declared as a pointer to const int.

In this example, the expressions a, b, ptr, and *ptr are all lvalues. However, b and
*ptr are constant lvalues. Because ptr is declared as a pointer to const int, you
cannot use it to modify the object it points to. For a full discussion of declarations,
see Chapter 11.

The left operand of an assignment, as well as any operand of the increment and dec‐
rement operators, ++ and --, must be not only an lvalue but also a modifiable lvalue.
A modifiable lvalue is an lvalue that is not declared as a const-qualified type (see
“Type Qualifiers” on page 180), and that does not have an array type. If a modifiable
lvalue designates an object with a structure or union type, none of its elements must
be declared, directly or indirectly, as having a const-qualified type.

Side Effects and Sequence Points
In addition to yielding a value, the evaluation of an expression can result in other
changes in the execution environment, called side effects. Examples of such changes
include modifications of a variable’s value, or of input or output streams.

During the execution of a program, there are determinate points at which all the
side effects of a given expression have been completed, and no effects of the next
expression have yet occurred. Such points in the program are called sequence points.
Between two consecutive sequence points, partial expressions may be evaluated in
any order. As a programmer, you must therefore remember not to modify any
object more than once between two consecutive sequence points. Here is an
example:

int i = 1; // OK.
i = i++; // Wrong: two modifications of i; behavior is undefined.

70 | Chapter 5: Expressions and Operators

Because the assignment and increment operations in the last statement may take
place in either order, the resulting value of i is undefined. Similarly, in the expres‐
sion f()+g(), where f() and g() are two functions, C does not specify which
function call is performed first. It is up to you, the programmer, to make sure that
the results of such an expression are not dependent on the order of evaluation.
Here’s another example:

int i = 0, array[] = { 0, 10, 20 };
// ...
array[i] = array[++i]; // Wrong: behavior undefined.
array[i] = array[i + 1]; ++i; // OK: modifications separated by a
 // sequence point.

The most important sequence points occur at the following positions:

• After all the arguments in a function call have been evaluated, and before con‐
trol passes to the statements in the function.

• At the end of an expression which is not part of a larger expression. Such full
expressions include the expression in an expression statement (see “Expression
Statements” on page 99), each of the three controlling expressions in a for
statement, the condition of an if or while statement, the expression in a
return statement, and initializers.

• After the evaluation of the first operand of each of the following operators:

&&
Logical AND

||
Logical OR

?:
The conditional operator

,
The comma operator

Thus, the expression ++i < 100 ? f(i++) : (i = 0) is permissible, as there is a
sequence point between the first modification of i and whichever of the other two
modifications is performed.

Operator Precedence and Associativity
An expression may contain several operators. In this case, the precedence of the
operators determines which part of the expression is treated as the operand of each
operator. For example, in keeping with the customary rules of arithmetic, the opera‐
tors *, /, and % have higher precedence in an expression than the operators + and -.
For example, the following expression:

a − b * c

E
xp

ressio
ns

and
O

p
erato

rs

How Expressions Are Evaluated | 71

is equivalent to a − (b * c). If you intend the operands to be grouped differently,
you must use parentheses:

(a − b) * c

If two operators in an expression have the same precedence, then their associativity
determines whether they are grouped with operands in order from left to right, or
from right to left. For example, arithmetic operators are associated with operands
from left to right, and assignment operators from right to left, as shown in
Table 5-3. Table 5-4 lists the precedence and associativity of all the C operators, in
order of precedence.

Table 5-3. Operator grouping

Expression Associativity Effective grouping

a / b % c Left to right (a / b) % c

a = b = c Right to left a = (b = c)

Table 5-4. Operator precedence and associativity

Precedence Operators Associativity

1. Postfix operators:
[] () . -> ++ --

(type name){list}

Left to right

2. Unary operators:
++ --

! ~ + − * &

sizeof _Alignof

Right to left

3. The cast operator: (type name) Right to left

4. Multiplicative operators: * / % Left to right

5. Additive operators: + - Left to right

6. Shift operators: << >> Left to right

7. Relational operators: < <= > >= Left to right

8. Equality operators: == != Left to right

9. Bitwise AND: & Left to right

10. Bitwise exclusive OR: ^ Left to right

11. Bitwise OR: | Left to right

12. Logical AND: && Left to right

13. Logical OR: || Left to right

14. The conditional operator: ?: Right to left

72 | Chapter 5: Expressions and Operators

Precedence Operators Associativity

15. Assignment operators:
= += -= *=

/= %= &= ^=

|= <<= >>=

Right to left

16. The comma operator: , Left to right

The last of the highest-precedence operators in Table 5-4, (type name){list}, was
added in C99. It is described in “Compound literals” on page 92.

A few of the operator tokens appear twice in the table. To start with, the increment
and decrement operators, ++ and --, have a higher precedence when used as postfix
operators (as in the expression x++) than the same tokens when used as prefix oper‐
ators (as in ++x).

Furthermore, the tokens +,-, *, and & represent both unary operators —that is, oper‐
ators that work on a single operand—and binary operators, or operators that con‐
nect two operands. For example, * with one operand is the indirection operator, and
with two operands, it is the multiplication sign. In each of these cases, the unary
operator has higher precedence than the binary operator. For example, the expres‐
sion *ptr1 * *ptr2 is equivalent to (*ptr1) * (*ptr2).

Operators in Detail
This section describes in detail the individual operators, and indicates what kinds of
operands are permissible. The descriptions are arranged according to the customary
usage of the operators, beginning with the usual arithmetic and assignment opera‐
tors.

Arithmetic Operators
Table 5-5 lists the arithmetic operators.

Table 5-5. Arithmetic operators

Operator Meaning Example Result

* Multiplication x * y The product of x and y

/ Division x / y The quotient of x by y

% The modulo operation x % y The remainder of x divided by y

+ Addition x + y The sum of x and y

- Subtraction x − y The difference of x and y

+ (unary) Positive sign +x The value of x

- (unary) Negative sign -x The arithmetic negation of x

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 73

The operands of the arithmetic operators are subject to the following rules:

• Only the % operator requires integer operands.
• The operands of all other operators may have any arithmetic type.

Furthermore, addition and subtraction operations may also be performed on point‐
ers in the following cases:

• In an addition, one addend can be an object pointer while the other has an inte‐
ger type.

• In a subtraction, either both operands can be pointers to objects of the same
type (without regard to type qualifiers), or the minuend (the left operand) can
be an object pointer, while the subtrahend (the right operand) has an integer
type.

Standard arithmetic
The operands are subject to the usual arithmetic conversions (see “Conversion of
Arithmetic Types” on page 50). The result of division with two integer operands is
also an integer! To obtain the remainder of an integer division, use the modulo
operation (the % operator). Implicit type conversion takes place in the evaluation of
the following expressions, as shown in Table 5-6 (assume n is declared by short n =
-5;).

Table 5-6. Implicit type conversions in arithmetic expressions

Expression Implicit type conversion The expression’s
type

The expression’s
value

-n Integer promotion int 5

n * -2L Integer promotion: the value of n is promoted to long,
because the constant -2L has the type long

long 10

8/n Integer promotion int -1

8%n Integer promotion int 3

8.0/n The value of n is converted to the type double, because
8.0 has the type double

double -1.6

8.0%n Error: the modulo operation (%) requires integer operands

If both operands in a multiplication or a division have the same sign, the result is
positive; otherwise, it is negative. However, the result of a modulo operation always
has the same sign as the left operand. For this reason, the expression 8%n in
Table 5-6 yields the value 3. If a program attempts to divide by zero, its behavior is
undefined.

74 | Chapter 5: Expressions and Operators

Pointer arithmetic
You can use the binary operators + and - to perform arithmetic operations on
pointers. For example, you can modify a pointer to refer to another object a certain
number of object sizes away from the object originally referenced. Such pointer
arithmetic is generally useful only to refer to the elements of an array.

Adding an integer to or subtracting an integer from a pointer yields a pointer value
with the same type as the pointer operand. The compiler automatically multiplies
the integer by the size of the object referred to by the pointer type, as Example 5-1
illustrates.

Example 5-1. Pointer arithmetic

double dArr[5] = { 0.0, 1.1, 2.2, 3.3, 4.4 }, // Initialize an array and
 *dPtr = dArr; // a pointer to its first
 // element.
int i = 0; // An index variable.

dPtr = dPtr + 1; // Advance dPtr to the second element.
dPtr = 2 + dPtr; // Addends can be in either order.
 // dPtr now points to dArr[3].

printf("%.1f\n", *dPtr); // Print the element referenced by dPtr.
printf("%.1f\n", *(dPtr -1)); // Print the element before that, without
 // modifying the pointer dPtr.

i = dPtr − dArr; // Result: the index of the
 // array element that dPtr points to.

Figure 5-1 illustrates the effects of the two assignment expressions using the pointer
dPtr.

Figure 5-1. Using a pointer to move through the elements in an array

The statement dPtr = dPtr + 1; adds the size of one array element to the pointer,
so that dPtr points to the next array element, dArr[1]. Because dPtr is declared as a
pointer to double, its value is increased by sizeof(double).

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 75

The statement dPtr = dPtr + 1; in Example 5-1 has the same effect as any of the
following statements (see “Assignment Operators” on page 76 and “Increment and
Decrement Operators” on page 78):

dPtr += 1;
++dPtr;
dPtr++;

Subtracting one pointer from another yields an integer value with the type
ptrdiff_t. The value is the number of objects that fit between the two pointer val‐
ues. In the last statement in Example 5-1, the expression dPtr − dArr yields the
value 3. This is also the index of the element that dPtr points to, because dArr repre‐
sents the address of the first array element (with the index 0). The type ptrdiff_t is
defined in the header file stddef.h, usually as int.

For more information on pointer arithmetic, see Chapter 9.

Assignment Operators
In an assignment operation, the left operand must be a modifiable lvalue; in other
words, it must be an expression that designates an object whose value can be
changed. In a simple assignment (that is, one performed using the operator =), the
assignment operation stores the value of the right operand in this object.

There are also compound assignments, which combine an arithmetic or a bitwise
operation in the same step with the assignment. Table 5-7 lists all the assignment
operators.

Table 5-7. Assignment operators

Operator Meaning Example Result

= Simple assignment x = y Assign x the value of y

+= -=

*= /= %=

&= ^= |=

<<= >>=

Compound assignment x *= y For each binary arithmetic or binary bitwise operator op,
x op= y is equivalent to x = x op (y)

Simple assignment
The operands of a simple assignment must fulfill one of the following conditions:

• Both operands have arithmetic types.

• The left operand has the type _Bool and the right operand is a pointer.
• Both operands have the same structure or union type.
• Both operands are pointers to the same type, or the left operand is a pointer to

a qualified version of the common type—that is, the type pointed to by the left

76 | Chapter 5: Expressions and Operators

operand is declared with one or more additional type qualifiers (see Chap‐
ter 11).

• One operand is an object pointer and the other is a pointer to void (here again,
the type pointed to by the left operand may have additional type qualifiers).

• The left operand is a pointer and the right is a null pointer constant.

If the two operands have different types, the value of the right operand is converted
to the type of the left operand (see “The Results of Arithmetic Type Conversions”
on page 54 and “Implicit Pointer Conversions” on page 61).

The modification of the left operand is a side effect of an assignment expression. The
value of the entire assignment expression is the same as the value assigned to the left
operand, and the assignment expression has the type of the left operand. However,
unlike its left operand, the assignment expression itself is not an lvalue. If you use
the value of an assignment expression in a larger expression, pay careful attention to
implicit type conversions. Avoid errors such as that illustrated in the following
example. This code is supposed to read characters from the standard input stream
until the end-of-file is reached or an error occurs:

#include <stdio.h>
char c = 0;

/* ... */

while ((c = getchar()) != EOF)
 { /* ... Process the character stored in c ... */ }

In the controlling expression of the while statement in this example, getchar()
returns a value with type int, which is implicitly converted to char for assignment
to c. Then the value of the entire assignment expression c = getchar(), which is
the same char value, is promoted to int for comparison with the constant EOF,
which is usually defined as -1 in the header file stdio.h. However, if the type char is
equivalent to unsigned char, then the conversion to int always yields a non-
negative value. In this case, the loop condition is always true.

As Table 5-4 shows, assignment operators have a low precedence, and are grouped
with their operators from right to left. As a result, no parentheses are needed
around the expression to the right of the assignment operator, and multiple assign‐
ments can be combined in one expression, as in this example:

double x = 0.5, y1, y2; // Declarations
y1 = y2 = 10.0 * x; // Equivalent to y1 = (y2 = (10.0 * x));

This expression assigns the result of the multiplication to y1 and to y2.

Compound assignments
A compound assignment is performed by any of the following operators:

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 77

 *= /= %= += -= (arithmetic operation and assignment)
<<= >>= &= ^= |= (bitwise operation and assignment)

In evaluating a compound assignment expression, the program combines the two
operands with the specified operation and assigns the result to the left operand.
Here are two examples:

long var = 1234L ;
var *= 3; // Triple the value of var.
var <<= 2; // Shift the bit pattern in var two bit-positions
 // to the left (i.e., multiply the value by four).

The only difference between a compound assignment x op= y and the correspond‐
ing expression x = x op (y) is that in the compound assignment, the left operand x
is evaluated only once. In the following example, the left operand of the compound
assignment operator is an expression with a side effect, so that the two expressions
are not equivalent:

x[++i] *= 2; // Increment i once, then double the indexed
 // array element.
x[++i] = x[++i] * (2); // Oops: you probably didn't want to
 // increment i twice.

In the equivalent form x = x op (y), the parentheses around the right operand y are
significant, as the following example illustrates:

double var1 = 2.5, var2 = 0.5;
var1 /= var2 + 1; // Equivalent to var1 = var1 / (var2 + 1);

Without the parentheses, the expression var1 = var1 / var2 + 1 would yield a
different result, because simple division, unlike the compound assignment, has
higher precedence than addition.

The operands of a compound assignment can have any types that are permissible
for the operands of the corresponding binary operator. The only additional restric‐
tion is that when you add a pointer to an integer, the pointer must be the left
operand, as the result of the addition is a pointer. For example:

short *sPtr;
/* ... */
sPtr += 2; // Equivalent to sPtr = sPtr + 2;
 // or sPtr = 2 + sPtr;

Increment and Decrement Operators
Each of the tokens ++ and -- represents both a postfix and a prefix operator.
Table 5-8 describes both forms of both operators.

78 | Chapter 5: Expressions and Operators

Table 5-8. Increment and decrement operators

Operator Meaning Side effect Value of the expression

Postfix:
x++

Increment Increases the value of x by
one (like x = x + 1)

The value of x++ is the value that x had before it was
incremented

Prefix:
++x

The value of ++x is the value that x has after it has
been incremented

Postfix:
x--

Decrement Decreases the value of x by
one (like x = x − 1)

The value of x-- is the value that x had before it was
decremented

Prefix:
--x

The value of --x is the value that x has after it has
been decremented

These operators require a modifiable lvalue as their operand. More specifically, the
operand must have a real arithmetic type (not a complex type), or an object pointer
type. The expressions ++x and --x are equivalent to (x += 1) and (x -= 1).

The following examples demonstrate the use of the increment operators, along with
the subscript operator [] and the indirection operator *:

char a[10] = "Jim";
int i = 0;
printf("%c\n", a[i++]); // Output: J
printf("%c\n", a[++i]); // Output: m

The character argument in the first printf() call is the character J from the array
element a[0]. After the call, i has the value 1. Thus, in the next statement, the
expression ++i yields the value 2, so that a[++i] is the character m.

The operator ++ can also be applied to the array element itself:

i = 0;
printf("%c\n", a[i]++); // Output: J
printf("%c\n", ++a[i]); // Output: L

According to the operator precedences and associativity in Table 5-4, the expres‐
sions a[i]++ and ++a[i] are equivalent to (a[i])++ and ++(a[i]). Thus, each of
these expressions increases the value of the array element a[0] by one, while leaving
the index variable i unchanged. After the statements in this example, the value of i
is still 0, and the character array contains the string "Lim", as the first element has
been incremented twice.

The operators ++ and-- are often used in expressions with pointers that are derefer‐
enced by the * operator. For example, the following while loop copies a string from
the array a to a second char array, a2:

char a2[10], *p1 = a, *p2 = a2;
// Copy string to a2:
while ((*p2++ = *p1++) != '\0')
 ;

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 79

Because the postfix operator ++ has precedence over the indirection operator * (see
Table 5-4), the expression *p1++ is equivalent to *(p1++). In other words, the value
of the expression *p1++ is the array element referenced by p1, and as a side effect,
the value of p1 is one greater after the expression has been evaluated. When the end
of the string is reached, the assignment *p2++ = *p1++ copies the terminator char‐
acter '\0', and the loop ends, because the assignment expression yields the value
'\0'.

By contrast, the expression (*p1)++ or ++(*p1) would increment the element refer‐
enced by p1, leaving the pointer’s value unchanged. However, the parentheses in the
expression ++(*p1) are unnecessary: this expression is equivalent to ++*p1 because
the unary operators are associated with operands from right to left (see Table 5-4).
For the same reason, the expression *++p1 is equivalent to *(++p1), and its value is
the array element that p1 points to after p1 has been incremented.

Comparative Operators
The comparative operators , also called the relational operators and the equality oper‐
ators, compare two operands and yield a value of type int. The value is 1 if the
specified relation holds, and 0 if it does not. C defines the comparative operators
listed in Table 5-9.

Table 5-9. Comparative operators

Operator Meaning Example Result (1 = true, 0 = false)

< Less than x < y 1 if x is less than y; otherwise, 0

<= Less than or equal to x <= y 1 if x is less than or equal to y; otherwise, 0

> Greater than x > y 1 if x is greater than y; otherwise, 0

>= Greater than or equal to x >= y 1 if x is greater than or equal to y; otherwise, 0

== Equal to x == y 1 if x is equal to y; otherwise, 0

!= Not equal to x != y 1 if x is not equal to y; otherwise, 0

For all comparative operators, the operands must meet one of the following
conditions:

• Both operands have real arithmetic types.
• Both operands are pointers to objects of the same type, which may be declared

with different type qualifiers.

With the equality operators, == and !=, operands that meet any of the following
conditions are also permitted:

• The two operands have any arithmetic types, including complex types.
• Both operands are pointers to functions of the same type.

80 | Chapter 5: Expressions and Operators

• One operand is an object pointer, while the other is a pointer to void. The two
may be declared with different type qualifiers (the operand that is not a pointer
to void is implicitly converted to the type void* for the comparison).

• One operand is a pointer and the other is a null pointer constant. The null
pointer constant is converted to the other operand’s type for the comparison.

The operands of all comparison operators are subject to the usual arithmetic conver‐
sions (see “Conversion of Arithmetic Types” on page 50). Two complex numbers are
considered equal if their real parts are equal and their imaginary parts are equal.

When you compare two object pointers, the result depends on the relative positions
of the objects in memory. Elements of an array are objects with fixed relative posi‐
tions: a pointer that references an element with a greater index is greater than any
pointer that references an element with a lesser index. A pointer can also contain
the address of the first memory location after the last element of an array. In this
case, that pointer’s value is greater than that of any pointer to an element of the
array.

The function in Example 5-2 illustrates some expressions with pointers as operands.

Example 5-2. Operations with pointers

/* The function average() calculates the arithmetic mean of the
 * numbers passed to it in an array.
 * Arguments: An array of float, and its length.
 * Return value: The arithmetic mean of the array elements,
 * with type double.
 */
double average(const float *array, int length)
{
 double sum = 0.0;
 const float *end = array + length; // Points one past the last element.

 if (length <= 0) // The average of no elements is zero.
 return 0.0;
 // Accumulate the sum
 for (const float *p = array; p < end; ++p) // by walking a pointer
 sum += *p; // through the array.

 return sum/length; // The average of the element values.
}

Two pointers are equal if they point to the same location in memory, or if they are
both null pointers. In particular, pointers to members of the same union are always
equal because all members of a union begin at the same address. The rule for mem‐
bers of the same structure, however, is that a pointer to member2 is larger than a
pointer to member1 if and only if member2 is declared after member1 in the structure
type’s definition.

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 81

The comparative operators have lower precedence than the arithmetic operators but
higher precedence than the logical operators. As a result, the following two expres‐
sions are equivalent:

a < b && b < c + 1
(a < b) && (b < (c + 1))

Furthermore, the equality operators, == and !=, have lower precedence than the
other comparative operators. Thus, the following two expressions are also equiva‐
lent:

a < b != b < c
(a < b) != (b < c)

This expression is true (that is, it yields the value 1) if and only if one of the two
operand expressions, (a < b) and (b < c), is true and the other false.

Logical Operators
You can connect expressions using logical operators to form compound conditions,
such as those often used in jump and loop statements to control the program flow.
C uses the symbols described in Table 5-10 for the boolean operations AND, OR,
and NOT.

Table 5-10. Logical operators

Operator Meaning Example Result (1 = true, 0 = false)

&& logical AND x && y 1 if each of the operands x and y is not equal to zero; otherwise, 0

|| logical OR x || y 0 if each of x and y is equal to zero; otherwise, 1

! logical NOT !x 1 if x is equal to zero; otherwise, 0

Like comparative expressions, logical expressions have the type int. The result has
the value 1 if the logical expression is true, and the value 0 if it is false.

The operands may have any scalar type desired—in other words, any arithmetic or
pointer type. Any operand with a value of 0 is interpreted as false; any value other
than 0 is treated as true. Most often, the operands are comparative expressions, as
in the following example. Assuming the variable deviation has the type double, all
three of the expressions that follow are equivalent:

(deviation < -0.2) || (deviation > 0.2)
 deviation < -0.2 || deviation > 0.2
!(deviation >= -0.2 && deviation <= 0.2)

Each of these logical expressions yields the value 1, or true, whenever the value of
the variable deviation is outside the interval [-0.2, 0.2]. The parentheses in the first
expression are unnecessary because comparative operators have a higher prece‐
dence than the logical operators && and ||. However, the unary operator ! has a
higher precedence. Furthermore, as Table 5-4 shows, the operator && has a higher

82 | Chapter 5: Expressions and Operators

precedence than ||. As a result, parentheses are necessary in the following expres‐
sion:

(deviation < -0.2 || deviation > 0.2) && status == 1

Without the parentheses, that expression would be equivalent to this:

deviation < -0.2 || (deviation > 0.2 && status == 1)

These expressions yield different results if, for example, deviation is less than -0.2
and status is not equal to 1.

The operators && and || have an important peculiarity: their operands are evaluated
in order from left to right, and if the value of the left operand is sufficient to deter‐
mine the result of the operation, then the right operand is not evaluated at all. There
is a sequence point after the evaluation of the left operand. The operator && evalu‐
ates the right operand only if the left operand yields a nonzero value; the operator||
evaluates the right operand only if the left operand yields 0. The following example
shows how programs can use these conditional-evaluation characteristics of the &&
and || operators:

double x;
_Bool get_x(double *x), check_x(double); // Function prototype
 // declarations.
/* ... */
while (get_x(&x) && check_x(x)) // Read and test a number.
 { /* ... Process x ... */ }

In the controlling expression of the while loop, the function get_x(&x) is called
first to read a floating-point number into the variable x. Assuming that get_x()
returns a true value on success, the check_x() function is called only if there is a
new value in x to be tested. If check_x() also returns true, then the loop body is
executed to process x.

Bitwise Operators
For more compact data, C programs can store information in individual bits or
groups of bits. File access permissions are a common example. The bitwise opera‐
tors allow you to manipulate individual bits in a byte or in a larger data unit: you
can clear, set, or invert any bit or group of bits. You can also shift the bit pattern of
an integer to the left or right.

The bit pattern of an integer type consists of bit positions numbered from right to
left, beginning with position 0 for the least significant bit. For example, consider the
char value '*', which in ASCII encoding is equal to 42, or binary 101010:

Bit pattern 0 0 1 0 1 0 1 0

Bit positions 7 6 5 4 3 2 1 0

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 83

In this example, the value 101010 is shown in the context of an 8-bit byte; hence the
two leading zeros.

Boolean bitwise operators
The operators listed in Table 5-11 perform Boolean operations on each bit position
of their operands. The binary operators connect the bit in each position in one
operand with the bit in the same position in the other operand. A bit that is set, or 1,
is interpreted as true, and a bit that is cleared, or 0, is considered false.

In addition to the operators for boolean AND, OR, and NOT, there is also a bitwise
exclusive-OR operator. These are all described in Table 5-11.

Table 5-11. Boolean bitwise operators

Operator Meaning Example Result, for each bit position (1 = set, 0 = cleared)

& Bitwise AND x & y 1, if 1 in both x and y

0, if 0 in x or y, or both

| Bitwise OR x | y 1, if 1 in x or y, or both
0, if 0 in both x and y

^ Bitwise exclusive OR x ^ y 1, if 1 either in x or in y, but not in both
0, if either value in both x and y

~ Bitwise NOT (one’s complement) ~x 1, if 0 in x
0, if 1 in x

The operands of the bitwise operators must have integer types, and are subject to
the usual arithmetic conversions. The resulting common type of the operands is the
type of the result. Table 5-12 illustrates the effects of these operators.

Table 5-12. Effects of the bitwise operators

Expression (or declaration) Bit pattern

int a = 6; 0 … 0 0 1 1 0

int b = 11; 0 … 0 1 0 1 1

a & b 0 … 0 0 0 1 0

a | b 0 … 0 1 1 1 1

a ^ b 0 … 0 1 1 0 1

~a 1 … 1 1 0 0 1

You can clear certain bits in an integer variable a by performing a bitwise AND with
an integer in which only the bits to be cleared contain zeros, and assigning the result
to the variable a. The bits that were set in the second operand—called a bit mask—
have the same value in the result as they had in the first operand. For example, an
AND with the bit mask 0xFF clears all bits except the lowest eight:

84 | Chapter 5: Expressions and Operators

a &= 0xFF; // Equivalent notation: a = a & 0xFF;

As this example illustrates, the compound assignment operator &= also performs the
& operation. The compound assignments with the other binary bitwise operators
work similarly.

The bitwise operators are also useful in making bit masks to use in further bit oper‐
ations. For example, in the bit pattern of 0x20, only bit 5 is set. The expression
~0x20 therefore yields a bit mask in which all bits are set except bit 5:

a &= ~0x20; // Clear bit 5 in a.

The bit mask ~0x20 is preferable to 0xFFFFFFDF because it is more portable: it gives
the desired result regardless of the machine’s word size. (It also makes the statement
more readable for humans.)

You can also use the operators | (OR) and ^ (exclusive OR) to set and clear certain
bits. Here is an example of each one:

int mask = 0xC;
a |= mask; // Set bits 2 and 3 in a.
a ^= mask; // Invert bits 2 and 3 in a.

A second inversion using the same bit mask reverses the first inversion. In other
words, b^mask^mask yields the original value of b. This behavior can be used to
swap the values of two integers without using a third, temporary variable:

a ^= b; // Equivalent to a = a ^ b;
b ^= a; // Assign b the original value of a.
a ^= b; // Assign a the original value of b.

The first two expressions in this example are equivalent to b = b^(a^b) or b =
(a^b)^b. The result is like b = a, with the side effect that a is also modified, and
now equals a^b. At this point, the third expression has the effect of (using the origi‐
nal values of a and b) a = (a^b)^a, or a = b.

Shift operators
The shift operators transpose the bit pattern of the left operand by the number of bit
positions indicated by the right operand. They are listed in Table 5-13.

Table 5-13. Shift operators

Operator Meaning Example Result

<< Shift left x << y Each bit value in x is moved y positions to the left

>> Shift right x >> y Each bit value in x is moved y positions to the right

The operands of the shift operators must be integers. Before the actual bit-shift, the
integer promotions are performed on both operands. The value of the right operand
must not be negative, and must be less than the width of the left operand after inte‐

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 85

ger promotion. If it does not meet these conditions, the program’s behavior is unde‐
fined.

The result has the type of the left operand after integer promotion. The shift expres‐
sions in the following example have the type unsigned long.

unsigned long n = 0xB, // Bit pattern: 0 ... 0 0 0 1 0 1 1
 result = 0;
result = n << 2; // 0 ... 0 1 0 1 1 0 0
result = n >> 2; // 0 ... 0 0 0 0 0 1 0

In a left shift, the bit positions that are vacated on the right are always cleared. Bit
values shifted beyond the leftmost bit position are lost. A left shift through y bit
positions is equivalent to multiplying the left operand by 2y: if the left operand x has
an unsigned type, then the expression x << y yields the value of x × 2y. Thus, in the
previous example, the expression n << 2 yields the value of n × 4, or 44.

On a right shift, the vacated bit positions on the left are cleared if the left operand
has an unsigned type, or if it has a signed type and a non-negative value. In this
case, the expression x >> y yields the same value as the integer division x/2y. If the
left operand has a negative value, then the fill value depends on the compiler: it may
be either zero or the value of the sign bit.

The shift operators are useful in generating certain bit masks. For example, the
expression 1 << 8 yields a word with only bit 8 set, and the expression ~(3<<4)
produces a bit pattern in which all bits are set except bits 4 and 5. The function
setBit() in Example 5-3 uses the bit operations to manipulate a bit mask.

Example 5-3. Using a shift operation to manipulate a bit mask

// Function setBit()
// Sets the bit at position p in the mask m.
// Uses CHAR_BIT, defined in limits.h, for the number of bits in a byte.
// Return value: The new mask with the bit set, or the original mask
// if p is not a valid bit position.
unsigned int setBit(unsigned int mask, unsigned int p)
{
 if (p >= CHAR_BIT * sizeof(int))
 return mask;
 else
 return mask | (1 << p);
}

The shift operators have lower precedence than the arithmetic operators but higher
precedence than the comparative operators and the other bitwise operators. The
parentheses in the expression mask | (1 << p) in Example 5-3 are thus actually
unnecessary, but they make the code more readable.

86 | Chapter 5: Expressions and Operators

Memory Addressing Operators
The five operators listed in Table 5-14 are used in addressing array elements and
members of structures, and in using pointers to access objects and functions.

Table 5-14. Memory addressing operators

Operator Meaning Example Result

& Address of &x Pointer to x

* Indirection operator *p The object or function that p points to

[] Subscripting x[y] The element with the index y in the array x (or the element
with the index x in the array y; the [] operator works
either way)

. Structure or union
member designator

x.y The member named y in the structure or union x

-> Structure or union
member designator by
reference

p->y The member named y in the structure or union that p
points to

The & and * operators
The address operator & yields the address of its operand. If the operand x has the
type T, then the expression &x has the type “pointer to T.”

The operand of the address operator must have an addressable location in memory.
In other words, the operand must designate either a function or an object (i.e., an
lvalue) that is not a bit-field, and has not been declared with the storage class
register (see “Storage Class Specifiers” on page 178).

You need to obtain the addresses of objects and functions when you want to initial‐
ize pointers to them:

float x, *ptr;
ptr = &x; // OK: Make ptr point to x.
ptr = &(x+1); // Error: (x+1) is not an lvalue.

Conversely, when you have a pointer and want to access the object it references, use
the indirection operator *, which is sometimes called the dereferencing operator (see
“Using Pointers to Read and Modify Objects” on page 145 for more information).
Its operand must have a pointer type. If ptr is a pointer, then *ptr designates the
object or function that ptr points to. If ptr is an object pointer, then *ptr is an
lvalue, and you can use it as the left operand of an assignment operator:

float x, *ptr = &x;
*ptr = 1.7; // Assign the value 1.7 to the variable x
++(*ptr); // and add 1 to it.

In the final statement of this example, the value of ptr remains unchanged. The
value of x is now 2.7.

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 87

The behavior of the indirection operator * is undefined if the value of the pointer
operand is not the address of an object or a function.

Like the other unary operators, the operators & and * have the second highest prece‐
dence. They are grouped with operands from right to left. The parentheses in the
expression ++(*ptr) are thus superfluous.

The operators & and * are complementary: if x is an expression that designates an
object or a function, then the expression *&x is equivalent to x. Conversely, in an
expression of the form &*ptr, the operators cancel each other out so that the type
and value of the expression are equivalent to ptr. However, &*ptr is never an lvalue,
even if ptr is.

Elements of arrays
The subscript operator [] allows you to access individual elements of an array. It
takes two operands. In the simplest case, one operand is an array name and the
other operand designates an integer. In the following example, assume that myarray
is the name of an array, and i is a variable with an integer type. The expression
myarray[i] then designates element number i in the array, where the first element
is element number zero (see Chapter 8).

The left operand of [] need not be an array name. One operand must be an expres‐
sion whose type is “pointer to an object type”—an array name is a special case of
such an expression—while the other operand must have an integer type. An expres‐
sion of the form x[y] is always equivalent to (*((x)+(y))) (see also “Pointer arith‐
metic” on page 75 earlier in this chapter). Example 5-4 uses the subscript operator
in initializing a dynamically generated array.

Example 5-4. Initializing an array

#include <stdlib.h>
#define ARRAY_SIZE 100
/* ... */
double *pArray = NULL; int i = 0;
pArray = malloc(ARRAY_SIZE * sizeof(double)); // Generate the array
if (pArray != NULL) {
 for (i = 0; i < ARRAY_SIZE; ++i) // and initialize it.
 pArray[i] = (double)rand()/RAND_MAX;
/* ... */
}

In Example 5-4, the expression pArray[i] in the loop body is equivalent to
*(pArray+i). The notation i[pArray] is also correct, and yields the same array
element.

88 | Chapter 5: Expressions and Operators

Members of structures and unions
The binary operators . and ->, most often called the dot operator and the arrow
operator, allow you to select a member of a structure or a union.

As Example 5-5 illustrates, the left operand of the dot operator . must have a struc‐
ture or union type, and the right operand must be the name of a member of that
type.

Example 5-5. The dot operator

struct Article { long number; // The part number of an article
 char name[32]; // The article's name
 long price; // The unit price in cents
 /* ... */
 };
struct Article sw = { 102030L, "Heroes", 5995L };
sw.price = 4995L; // Change the price to 49.95

The result of the dot operator has the value and type of the selected member. If the
left operand is an lvalue, then the operation also yields an lvalue. If the left operand
has a qualified type (such as one declared with const), then the result is likewise
qualified.

The left operand of the dot operator is not always an lvalue, as the following exam‐
ple shows:

struct Article getArticle(); // Function prototype
printf("name: %s\n", getArticle().name);

The function getArticle() returns an object of type struct Article. As a result,
getArticle().name is a valid expression, but not an lvalue, as the return value of a
function is not an lvalue.

The operator -> also selects a member of a structure or union, but its left operand
must be a pointer to a structure or union type. The right operand is the name of a
member of the structure or union. Example 5-6 illustrates the use of the -> operator,
again using the Article structure defined in Example 5-5.

Example 5-6. The arrow operator

struct Article *pArticle = &sw, // A pointer to struct Article.
 const *pcArticle = &sw; // A "read-only pointer" to struct
 // Article.
++(pArticle->number); // Increment the part number.
if (pcArticle->number == 102031L) // Correct usage: read-only access.
 pcArticle->price += 50; // Error: can't use a
 // const-qualified pointer
 // to modify the object.

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 89

The result of the arrow operator is always an lvalue. It has the type of the selected
member, as well as any type qualifications of the pointer operand. In Example 5-6,
pcArticle is a pointer to const struct Article. As a result, the expression
pcArticle->price is constant.

Any expression that contains the arrow operator can be rewritten using the dot
operator by dereferencing the pointer separately: an expression of the form p->m is
equivalent to (*p).m. Conversely, the expression x.m is equivalent to (&x)->m, as
long as x is an lvalue.

The operators . and ->, like [], have the highest precedence, and are grouped from
left to right. Thus, the expression ++p->m, for example, is equivalent to ++(p->m),
and the expression p->m++ is equivalent to (p->m)++. However, the parentheses in
the expression (*p).m are necessary, as the dereferencing operator * has a lower
precedence. The expression *p.m would be equivalent to *(p.m), and thus makes
sense only if the member m is also a pointer.

To conclude this section, we can combine the subscript, dot, and arrow operators to
work with an array whose elements are structures:

struct Article arrArticle[10]; // An array with ten elements
 // of type struct Article.
arrArticle[2].price = 990L; // Set the price of the
 // array element arrArticle[2].
arrArticle->number = 10100L; // Set the part number in the
 // array element arrArticle[0].

An array name, such as arrArticle in the example, is a constant pointer to the first
array element. Hence arrArticle->number designates the member number in the
first array element. To put it in more general terms: for any index i, the following
three expressions are equivalent:

arrArticle[i].number
(arrArticle+i)->number
(*(arrArticle+i)).number

All of them designate the member number in the array element with the index i.

Other Operators
There are seven other operators in C that do not fall into any of the categories
described in this chapter. Table 5-15 lists these operators in order of precedence.

Table 5-15. Other operators

Operator Meaning Example Result

() Function call log(x) Passes control to the
specified function, with the
specified arguments

90 | Chapter 5: Expressions and Operators

Operator Meaning Example Result

(type name) {list} Compound literal (int [5]){ 1, 2 } Defines an unnamed object
that has the specified type
and the values listed

sizeof Storage size of
an object or
type, in bytes

sizeof x The number of bytes
occupied in memory by x

_Alignof Alignment of an
object type, in
bytes

_Alignof(int) The minimum distance
between the locations of two
such objects in memory

(type name) Explicit type
conversion, or
“cast”

(short) x The value of x converted to
the type specified

?: Conditional
evaluation

x ? y : z The value of y, if x is true
(i.e., nonzero); otherwise, the
value of z

, Sequential
evaluation

x,y Evaluates first x, then y; the
result of the expression is the
value of y

Function calls
A function call is an expression of the form fn_ptr(argument_list), where the
operand fn_ptr is an expression with the type “pointer to a function.” If the
operand designates a function (as a function name does, for example), then it is
automatically converted into a pointer to the function. A function call expression
has the value and type of the function’s return value. If the function has no return
value, the function call has the type void.

Before you can call a function, you must make sure that it has been declared in the
same translation unit. Usually a source file includes a header file containing the
function declaration, as in this example:

#include <math.h> // Contains the prototype
 // double pow(double, double);
double x = 0.7, y = 0.0;
/* ... */
y = pow(x+1, 3.0); // Type: double

The parentheses enclose the comma-separated list of arguments passed to the func‐
tion, which can also be an empty list. If the function declaration is in prototype
form (as is usually the case), the compiler ensures that each argument is converted
to the type of the corresponding parameter, as for an assignment. If this conversion
fails, the compiler issues an error message:

pow(x, 3); // The integer constant 3 is converted to type double.
pow(x); // Error: incorrect number of arguments.

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 91

The order in which the program evaluates the individual expressions that designate
the function and its arguments is not defined. As a result, the behavior of a printf
statement such as the following is undefined:

int i = 0;
printf("%d %d\n", i, ++i); // Behavior undefined

However, there is a sequence point after all of these expressions have been evaluated
and before control passes to the function.

Like the other postfix operators, a function call has the highest precedence, and is
grouped with operands from left to right. For example, suppose that fn_table is an
array of pointers to functions that take no arguments and return a structure that
contains a member named price. In this case, the following expression is a valid
function call:

fn_table[i++]().price

The expression calls the function referenced by the pointer stored in fn_table[i].
The return value is a structure, and the dot operator selects the member price in
that structure. The complete expression has the value of the member price in the
return value of the function fn_table[i](), and the side effect that i is incremen‐
ted once.

Chapter 7 describes function calls in more detail, including recursive functions and
functions that take a variable number of arguments.

Compound literals
Compound literals are an extension introduced in the C99 standard. This extension
allows you to define literals with any object type desired. A compound literal consists
of an object type in parentheses, followed by an initialization list in braces:

(type name){ list of initializers }

The value of the expression is an unnamed object that has the specified type and the
values listed. If you place a compound literal outside of all function blocks, then the
initializers must be constant expressions, and the object has static storage duration.
Otherwise, it has automatic storage duration, determined by the containing block.

Typical compound literals generate objects with array or structure types. Here are a
few examples to illustrate their use:

float *fPtr = (float []){ -0.5, 0.0, +0.5 };

This declaration defines a pointer to a nameless array of three float elements:

#include "database.h" // Contains prototypes and type definitions,
 // including the structure Pair:
 // struct Pair { long key; char value[32]; };

insertPair(&db, &(struct Pair){ 1000L, "New York JFK Airport" });

92 | Chapter 5: Expressions and Operators

This statement passes the address of a literal of type struct Pair to the function
insertPair(). You can also store the address in a local variable first:

struct Pair p1 = { 1000L, "New York JFK Airport" };
insertPair(&db, &p1);

To define a constant compound literal, use the type qualifier const:

(const char []){"A constant string."}

If the previous expression appears outside of all functions, it defines a static array of
char, like the following simple string literal:

"A constant string."

In fact, the compiler may store string literals and constant compound literals with
the same type and contents at the same location in memory.

Despite their similar appearance, compound literals are not the same as cast expres‐
sions. The result of a cast expression has a scalar type or the type void, and is not an
lvalue.

The sizeof operator
The sizeof operator yields the size of its operand in bytes. Programs need to know
the size of objects mainly in order to reserve memory for them dynamically, or to
store binary data in files.

The operand of the sizeof operator can be either an object type in parentheses or
an expression that has an object type and is not a bit-field. The result has the type
size_t, which is defined in stddef.h and other standard header files as an unsigned
integer type.

For example, if i is an int variable and iPtr is a pointer to int, then each of the
following expressions yields the size of int—on a 32-bit system, the value would be
4:

sizeof(int) sizeof i sizeof(i) sizeof *iPtr sizeof(*iPtr)

Note the difference to the following expressions, each of which yields the size of a
pointer to int:

sizeof(int*) sizeof &i sizeof(&i) sizeof iPtr sizeof(iPtr)

Like *, &, and the other unary operators, sizeof has the second highest precedence,
and is grouped from right to left. For this reason, no parentheses are necessary in
the expression sizeof *iPtr.

For an operand with the type char, unsigned char, or signed char, the sizeof
operator yields the value 1, because these types have the size of a byte. If the
operand has a structure type, the result is the total size that the object occupies in
memory, including any gaps that may occur due to the alignment of the structure
members. In other words, the size of a structure is sometimes greater than the sum

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 93

of its individual members’ sizes. For example, if variables of the type short are
aligned on even byte addresses, the following structure has the size sizeof(short)
+ 2:

struct gap { char version; short value; };

In the following example, the standard function memset() sets every byte in the
structure to zero, including any gaps between members:

#include <string.h>
/* ... */
struct gap g;
memset(&g, 0, sizeof g);

If the operand of sizeof is an expression, it is not actually evaluated. The compiler
determines the size of the operand by its type, and replaces the sizeof expression
with the resulting constant. Variable-length arrays, introduced in the C99 standard,
are an exception (see Chapter 8). Their size is determined at runtime, as
Example 5-7 illustrates.

Example 5-7. Sizing variable-length arrays

void func(float a[], int n)
{
 float b[2*n]; // A variable-length array of float.
 /* ... the value of n may change now ... */
 int m = sizeof(b) / sizeof(*b); // Yields the number of elements
 /* ... */ // in the array b.
}

Regardless of the current value of the variable n, the expression sizeof(b) yields the
value of 2 × n0 × sizeof(float), where n0 is the value that n had at the beginning of
the function block. The expression sizeof(*b) is equivalent to sizeof(b[0]), and
in this case has the value of sizeof(float).

The parameter a in the function func() in Example 5-7 is a
pointer, not an array. The expression sizeof(a) within the
function would therefore yield the size of a pointer. See “Array
and Function Designators” on page 58.

The _Alignof operator
The alignment of a type describes how objects of that type can be positioned in
memory (see “The Alignment of Objects in Memory” on page 36). Alignment is
expressed as an integer value. The operand of _Alignof is the name of a type in
parentheses, and the resulting expression yields the type’s alignment, as in the fol‐
lowing example:

_Alignof(char*) // The alignment of a char pointer

94 | Chapter 5: Expressions and Operators

Because the alignment of types is determined by the compiler, _Alignof expres‐
sions, like sizeof expressions, are integer constants with the type size_t. If your
program includes the header file stdalign.h, you can also use the synonym alignof
in place of the keyword _Alignof. The _Alignof operator can only be applied to
complete object types, not to function types or incomplete object types. If the
operand is an array type, _Alignof yields the alignment of the array elements’ type.

The conditional operator
The conditional operator is sometimes called the ternary or trinary operator, because
it is the only one that has three operands:

condition ? expression 1 : expression 2

The operation first evaluates the condition. Then, depending on the result, it evalu‐
ates one or the other of the two alternative expressions.

There is a sequence point after the condition has been evaluated. If the result is not
equal to 0 (in other words, if the condition is true), then only the second operand,
expression 1, is evaluated, and the entire operation yields the value of expression
1. On the other hand, if condition does yield 0 (i.e., false), then only the third
operand, expression 2, is evaluated, and the entire operation yields the value of
expression 2. In this way, the conditional operator represents a conditional jump
in the program flow, and is therefore an alternative to some if-else statements.

A common example is the following function, which finds the maximum of two
numbers:

inline int iMax(int a, int b) { return a >= b ? a : b; }

The function iMax() can be rewritten using an if-else statement:

inline int iMax(int a, int b)
{ if (a >= b) return a; else return b; }

The conditional operator has a very low precedence: only the assignment operators
and the comma operator are lower. Thus, the following statement requires no
parentheses:

distance = x < y ? y − x : x − y;

The first operand of the conditional operator, condition, must have a scalar type—
that is, an arithmetic type or a pointer type. The second and third operands,
expression 1 and expression 2, must fulfill one of the following cases:

• Both of the alternative expressions have arithmetic types, in which case the
result of the complete operation has the type that results from performing the
usual arithmetic conversions on these operands.

• Both of the alternative operands have the same structure or union type, or the
type void. The result of the operation also has this type.

E
xp

ressio
ns

and
O

p
erato

rs

Operators in Detail | 95

• Both of the alternative operands are pointers, and one of the following is true:
— Both pointers have the same type. The result of the operation then has this

type as well.
— One operand is a null pointer constant. The result then has the type of the

other operand.
— One operand is an object pointer and the other is a pointer to void. The

result then has the type void *.

The two pointers may point to differently qualified types. In this case, the result is a
pointer to a type that has all of the type qualifiers of the two alternative operands.
For example, suppose that the following pointers have been defined:

const int *cintPtr; // Declare pointers
volatile int *vintPtr;
void *voidPtr;

The expressions in the following table then have the type indicated, regardless of the
truth value of the variable flag:

Expression Type

flag ? cintPtr : vintPtr volatile const int*

flag ? cintPtr : NULL const int*

flag ? cintPtr : voidPtr const void*

The comma operator
The comma operator is a binary operator:

expression 1 , expression 2

The comma operator ensures sequential processing: first the left operand is evalu‐
ated, then the right operand. The result of the complete expression has the type and
value of the right operand. The left operand is only evaluated for its side effects; its
value is discarded. There is a sequence point after the evaluation of the left operand.
For example:

x = 2.7, sqrt(2*x)

In this expression, the assignment takes place first, before the sqrt() function is
called. The value of the complete expression is the function’s return value.

The comma operator has the lowest precedence of all operators. For this reason, the
assignment x = 2.7 in the previous example does not need to be placed in paren‐
theses. However, parentheses are necessary if you want to use the result of the
comma operation in another assignment:

y = (x = 2.7, sqrt(2*x));

This statement assigns the square root of 5.4 to y.

96 | Chapter 5: Expressions and Operators

A comma in a list of initializers or function arguments is a list separator, not a
comma operator. In such contexts, however, you can still use a comma operator by
enclosing an expression in parentheses:

y = sqrt((x=2.7, 2*x));

This statement is equivalent to the one in the previous example. The comma opera‐
tor allows you to group several expressions into one. This ability makes it useful for
initializing or incrementing multiple variables in the head of a for loop, as in the
following example:

int i; float fArray[10], val;
for (i=0, val=0.25; i < 10; ++i, val *= 2.0)
 fArray[i] = val;

Constant Expressions
The compiler recognizes constant expressions in source code and replaces them
with their values. The resulting constant value must be representable in the expres‐
sion’s type. You may use a constant expression wherever a simple constant is permit‐
ted.

Operators in constant expressions are subject to the same rules as in other expres‐
sions. Because constant expressions are evaluated at translation time, though, they
cannot contain function calls or operations that modify variables, such as assign‐
ments.

Integer Constant Expressions
An integer constant expression is a constant expression with any integer type. These
are the expressions you use to define the following items:

• The size of an array
• The value of an enumeration constant
• The size of a bit-field

• The alignment of an object in a definition using _Alignas (C11)

• The value of a case constant in a switch statement

For example, you may define an array as follows:

#define BLOCK_SIZE 512
char buffer[4*BLOCK_SIZE];

The following kinds of operands are permissible in an integer constant expression:

• Integer, character, and enumeration constants

• sizeof expressions and _Alignof expressions

E
xp

ressio
ns

and
O

p
erato

rs

Constant Expressions | 97

However, the operand of sizeof in a constant expression must not be a variable-
length array. You can also use floating-point constants if you cast them as an integer
type.

Other Constant Expressions
You can also use constant expressions to initialize static and external objects. In
these cases, the constant expressions can have any arithmetic or pointer type
desired. You may use floating-point constants as operands in an arithmetic constant
expression.

A constant with a pointer type, called an address constant, is usually a null pointer,
an array or function name, or a value obtained by applying the address operator & to
an object with static storage duration. However, you can also construct an address
constant by casting an integer constant as a pointer type, or by pointer arithmetic.
For example:

#define ARRAY_SIZE 200
static float fArray[ARRAY_SIZE];
static float *fPtr = fArray + ARRAY_SIZE − 1; // Pointer to the last
 // array element

In composing an address constant, you can also use other operators, such as . and
->, as long as you do not actually dereference a pointer to access the value of an
object. For example, the following declarations are permissible outside any function:

struct Person { char pin[32];
 char name[64];
 /* ... */
 };
struct Person boss;
const char *cPtr = &boss.name[0]; // or: ... = boss.name;

98 | Chapter 5: Expressions and Operators

6
Statements

A statement specifies one or more actions to be performed such as assigning a value
to a variable, passing control to a function, or jumping to another statement. The
sum total of all the statements in a program determines what the program does.

Jumps and loops are statements that control the flow of the program. Except when
those control statements result in jumps, statements are executed sequentially; that
is, in the order in which they appear in the program.

Expression Statements
An expression statement is an expression followed by a semicolon:

[expression] ;

In an expression statement, the expression—whether an assignment or another oper‐
ation—is evaluated for the sake of its side effects. Following are some typical expres‐
sion statements :

y = x; // An assignment
sum = a + b; // Calculation and assignment
++x;
printf("Hello, world\n"); // A function call

The type and value of the expression are irrelevant, and are discarded before the
next statement is executed. For this reason, statements such as the following are
syntactically correct, but not very useful:

100;
y < x;

If a statement is a function call and the return value of the function is not needed, it
can be discarded explicitly by casting the function as void:

99

char name[32];
/* ... */
(void)strcpy(name, "Jim"); // Explicitly discard
 // the return value.

A statement can also consist of a semicolon alone; this is called a null statement.
Null statements are necessary in cases where syntax requires a statement but the
program should not perform any action. In the following example, a null statement
forms the body of a for loop:

for (i = 0; s[i] != '\0'; ++i) // Loop conditions
 ; // A null statement

This code sets the variable i to the index of the first null character in the array s,
using only the expressions in the head of the for loop.

Block Statements
A compound statement, called a block for short, groups a number of statements and
declarations together between braces to form a single statement:

{ [list of declarations and statements] }

Unlike simple statements, block statements are not terminated by a semicolon. A
block is used wherever the syntax calls for a single statement but the program’s pur‐
pose requires several statements. For example, you can use a block statement in an
if statement or when more than one statement needs to be repeated in a loop:

{ double result = 0.0, x = 0.0; // Declarations
 static long status = 0;
 extern int limit;

 ++x; // Statements
 if (status == 0)
 { // New block
 int i = 0;
 while (status == 0 && i < limit)
 { /* ... */ } // Another block
 }
 else
 { /* ... */ } // And yet another block
}

The declarations in a block are usually placed at the beginning, before any state‐
ments. However, C99 allows declarations to be placed anywhere.

Names declared within a block have block scope; in other words, they are visible only
from their declaration to the end of the block. Within that scope, such a declaration
can also hide an object of the same name that was declared outside the block. The
storage duration of automatic variables is likewise limited to the block in which they
occur. This means that the storage space of a variable not declared as static or

100 | Chapter 6: Statements

extern is automatically freed at the end of its block statement. For a full discussion
of scope and storage duration, see Chapter 11.

Loops
Use a loop to execute a group of statements, called the loop body, more than once. In
C, you can introduce a loop using one of three iteration statements: while, do…
while, and for.

In each of these statements, the number of iterations through the loop body is con‐
trolled by a condition, the controlling expression. This is an expression of a scalar
type; that is, an arithmetic expression or a pointer. The loop condition is true if the
value of the controlling expression is not equal to 0; otherwise, it is considered false.

The statements break and continue are used to jump out or back to the top of a
loop before the end of an iteration. They are described in “Unconditional Jumps” on
page 108.

while Statements
A while statement executes a statement repeatedly as long as the controlling expres‐
sion is true:

while (expression) statement

The while statement is a top-driven loop: first, the loop condition (i.e., the control‐
ling expression) is evaluated. If it yields true, the loop body is executed, and then
the controlling expression is evaluated again. If the condition is false, program exe‐
cution continues with the statement that follows the loop body.

Syntactically, the loop body consists of one statement. If several statements are
required, they are grouped in a block. Example 6-1 shows a simple while loop that
reads in floating-point numbers from the console and accumulates a running total
of them.

Example 6-1. A while loop

/* Read in numbers from the keyboard and
 * print out their average.
 * -------------------------------------- */
#include <stdio.h>
int main()
{
 double x = 0.0, sum = 0.0;
 int count = 0;

 printf("\t--- Calculate Averages ---\n");
 printf("\nEnter some numbers:\n"
 "(Type a letter to end your input)\n");
 while (scanf("%lf", &x) == 1)

Statem
ents

Loops | 101

 {
 sum += x;
 ++count;
 }
 if (count == 0)
 printf("No input data!\n");
 else
 printf("The average of your numbers is %.2f\n", sum/count);
 return 0;
}

In Example 6-1, the controlling expression:

scanf("%lf", &x) == 1

is true as long as the user enters a decimal number. As soon as the function scanf()
is unable to convert the string input into a floating-point number—when the user
types the letter q, for example—scanf() returns the value 0 (or -1 for EOF, if the end
of the input stream was reached or an error occurred). The condition is then false,
and execution continues at the if statement that follows the loop body.

for Statements
Like the while statement, the for statement is a top-driven loop, but with more
loop logic contained within the statement itself:

for ([expression1]; [expression2]; [expression3])
 statement

The three actions that need to be executed in a typical loop are specified together at
the top of the loop body:

expression1 (initialization)
Evaluated only once, before the first evaluation of the controlling expression, to
perform any necessary initialization.

expression2 (controlling expression)
Tested before each iteration. Loop execution ends when this expression evalu‐
ates to false.

expression3 (adjustment)
An adjustment, such as the incrementation of a counter, performed after each
loop iteration and before expression2 is tested again.

Example 6-2 shows a for loop that initializes each element of an array.

Example 6-2. Using a for loop to initialize an array

#define ARR_LENGTH 1000
/* ... */
long arr[ARR_LENGTH];

102 | Chapter 6: Statements

int i;
for (i = 0; i < ARR_LENGTH; ++i)
 arr[i] = 2*i;

Any of the three expressions in the head of the for loop can be omitted. This means
that its shortest possible form is:

for (; ;)

A missing controlling expression is considered to be always true, and so defines an
infinite loop.

The following form, with no initializer and no adjustment expression, is equivalent
to while (expression):

for (;expression;)

In fact, every for statement can also be rewritten as a while statement, and vice
versa. For example, the complete for loop in Example 6-2 is equivalent to the fol‐
lowing while loop:

i = 0; // Initialize the counter
while (i < ARR_LENGTH) // The loop condition
{
 arr[i] = 2*i;
 ++i; // Increment the counter
}

for is generally preferable to while when the loop contains a counter or index vari‐
able that needs to be initialized and then adjusted after each iteration.

In ANSI C99, a declaration can also be used in place of expression1. In this case,
the scope of the variable declared is limited to the for loop. For example:

for (int i = 0; i < ARR_LENGTH; ++i)
 arr[i] = 2*i;

The variable i declared in this for loop, unlike that in Example 6-2, no longer exists
after the end of the for loop.

The comma operator is often used in the head of a for loop in order to assign initial
values to more than one variable in expression1, or to adjust several variables in
expression3. For example, the function strReverse() shown here uses two index
variables to reverse the order of the characters in a string:

void strReverse(char* str)
{
 char ch;
 for (size_t i = 0, j = strlen(str)-1; i < j; ++i, --j)
 ch = str[i], str[i] = str[j], str[j] = ch;
}

Statem
ents

Loops | 103

The comma operator can be used to evaluate additional expressions in places where
only one expression is permitted. See “Other Operators” on page 90 for a detailed
description of the comma operator.

do…while Statements
The do…while statement is a bottom-driven loop:

do statement while (expression);

The loop body statement is executed once before the controlling expression is eval‐
uated for the first time. Unlike the while and for statements, do…while ensures that
at least one iteration of the loop body is performed. If the controlling expression
yields true, then another iteration follows. If false, the loop is finished.

In Example 6-3, the functions for reading and processing a command are called at
least once. When the user exits the menu system, the function getCommand()
returns the value of the constant END.

Example 6-3. do…while

// Read and carry out an incoming menu command.
// --
int getCommand(void);
void performCommand(int cmd);
#define END 0
/* ... */
do
{
 int command = getCommand(); // Poll the menu system.
 performCommand(command); // Execute the command received.
} while (command != END);

Example 6-4 shows a version of the standard library function strcpy(), with just a
simple statement rather than a block in the loop body. Because the loop condition is
tested after the loop body, the copy operation includes the string terminator '\0'.

Example 6-4. A strcpy() function using do…while

// Copy string s2 to string s1.
// ----------------------------
char *strcpy(char* restrict s1, const char* restrict s2)
{
 int i = 0;
 do
 s1[i] = s2[i]; // The loop body: copy each character
 while (s2[i++] != '\0'); // End the loop if we just copied a '\0'.
 return s1;
}

104 | Chapter 6: Statements

Nested Loops
A loop body can be any simple or block statement, and may include other loop
statements. Note that a break or continue statement that occurs in a nested loop
only jumps to the end or the beginning of the loop that immediately contains it (see
“Unconditional Jumps” on page 108).

Example 6-5 is an implementation of the bubble-sort algorithm using nested loops.
The inner loop in this algorithm inspects the entire array on each iteration, swap‐
ping neighboring elements that are out of order. The outer loop is reiterated until
the inner loop finds no elements to swap. After each iteration of the inner loop, at
least one element has been moved to its correct position. Hence the remaining
length of the array to be sorted, len, can be reduced by one.

Example 6-5. Nested loops in the bubble-sort algorithm

// Sort an array of float in ascending order
// using the bubble-sort algorithm.
// ---
void bubbleSort(float arr[], int len) // The array arr and
{ // its length len.
 int isSorted = 0;
 do
 {
 float temp; // Holder for values being swapped.
 isSorted = 1;
 --len;
 for (int i = 0; i < len; ++i)
 if (arr[i] > arr[i+1])
 {
 isSorted = 0; // Not finished yet.
 temp = arr[i]; // Swap adjacent values.
 arr[i] = arr[i+1];
 arr[i+1] = temp;
 }
 } while (!isSorted);
}

Note that the automatic variables temp, declared in the do…while loop, and i,
declared in the head of the for loop, are created and destroyed again on each itera‐
tion of the outer loop.

Selection Statements
A selection statement can direct the flow of program execution along different paths
depending on a given condition. There are two selection statements in C: if and
switch.

Statem
ents

Selection Statements | 105

if Statements
An if statement has the following form:

if (expression) statement1 [else statement2]

The else clause is optional. The expression is evaluated first, to determine which
of the two statements is executed. This expression must have a scalar type. If its
value is true—that is, not equal to 0—then statement1 is executed. Otherwise,
statement2, if present, is executed.

The following example uses if in a recursive function to test for the condition that
ends its recursion:

// The recursive function power() calculates
// integer powers of floating-point numbers.
// ---
double power(double base, unsigned int exp)
{
 if (exp == 0) return 1.0;
 else return base * power(base, exp-1);
}

If several if statements are nested, then an else clause always belongs to the last if
(on the same block nesting level) that does not yet have an else clause:

if (n > 0)
 if (n % 2 == 0)
 puts("n is positive and even");
 else // This is the alternative
 puts("n is positive and odd"); // to the *last* if

An else clause can be assigned to a different if by enclosing the last if statement
that should not have an else clause in a block:

if (n > 0)
{
 if (n % 2 == 0)
 puts("n is positive and even");
}
else // This is the alternative
 puts("n is negative or zero"); // to the *first* if

To select one of more than two alternative statements, if statements can be casca‐
ded in an else if chain. Each new if statement is simply nested in the else clause
of the preceding if statement:

// Test measurements for tolerance.
// --------------------------------
double spec = 10.0, measured = 10.3, diff;
/* ... */
diff = measured - spec;

if (diff >= 0.0 && diff < 0.5)

106 | Chapter 6: Statements

 printf("Upward deviation: %.2f\n", diff);
else if (diff < 0.0 && diff > -0.5)
 printf("Downward deviation: %.2f\n", diff);
else
 printf("Deviation out of tolerance!\n");

The if conditions are evaluated one after another. As soon as one of these expres‐
sion yields true, the corresponding statement is executed. Because the rest of the
else if chain is cascaded under the corresponding else clause, it is alternative to
the statement executed and hence skipped over. If none of the if conditions is true,
then the last if statement’s else clause is executed, if present.

switch Statements
A switch statement causes the flow of program execution to jump to one of several
statements according to the value of an integer expression:

switch (expression) statement

expression has an integer type, and statement is the switch body, which contains
case labels and at most one default label. The expression is evaluated once and
compared with constant expressions in the case labels. If the value of the expression
matches one of the case constants, the program flow jumps to the statement follow‐
ing that case label. If none of the case constants match, the program continues at
the default label, if there is one.

Example 6-6 uses a switch statement to process the user’s selection from a menu.

Example 6-6. A switch statement

// Handle a command that the user selects from a menu.
// ---
// Declare other functions used:
int menu(void); // Prints the menu and returns
 // a character that the user types.
void action1(void),
 action2(void);
/* ... */

switch (menu()) // Jump depending on the result of menu().
{
 case 'a':
 case 'A': action1(); // Carry out action 1.
 break; // Don't do any other "actions."

 case 'b':
 case 'B': action2(); // Carry out action 2.
 break; // Don't do the default "action."

 default: putchar('\a'); // If no recognized command,
} // output an alert.

Statem
ents

Selection Statements | 107

The syntax of the case and default labels is as follows:

case constant: statement
default: statement

constant is a constant expression with an integer type. Each case constant in a
given switch statement must have a unique value. Any of the alternative statements
may be indicated by more than one case label, though.

The default label is optional, and can be placed at any position in the switch body.
If there is no default label, and the control expression of the switch statement does
not match any of the case constants, then none of the statements in the body of the
switch statement are executed. In this case, the program flow continues with the
statement following the switch body.

The switch body is usually a block statement that begins with a case label. A state‐
ment placed before the first case label in the block would never be executed.

Labels in C merely identify potential destinations for jumps in the program flow. By
themselves, they have no effect on the program. Thus, after the jump from the
switch to the first matching case label, program execution continues sequentially,
regardless of other labels. If the statements following subsequent case labels are to
be skipped over, then the last statement to be executed must be followed by a break
statement. The program flow then jumps to the end of the switch body.

If variables are declared within a switch statement, they should be enclosed in a
nested block:

switch (x)
{
 case C1: { int temp = 10; // Declare temp only for this "case"
 /* ... */
 }
 break;
 case C2:
 /* ... */
}

Integer promotion is applied to the switch expression. The case constants are then
converted to match the resulting type of the switch expression.

You can always program a selection among alternative statements using an else if
chain. If the selection depends on the value of one integer expression, however, then
you can use a switch statement—and should, because it makes code more readable.

Unconditional Jumps
Jump statements interrupt the sequential execution of statements, so that execution
continues at a different point in the program. A jump destroys automatic variables if
the jump destination is outside their scope. There are four statements that cause
unconditional jumps in C: break, continue, goto, and return.

108 | Chapter 6: Statements

The break Statement
The break statement can occur only in the body of a loop or a switch statement,
and causes a jump to the first statement after the loop or switch statement in which
it is immediately contained:

break;

Thus, the break statement can be used to end the execution of a loop statement at
any position in the loop body. For example, the while loop in Example 6-7 may be
ended either at the user’s request (by entering a non-numeric string), or by a
numeric value outside the range that the programmer wants to accept.

Example 6-7. The break statement

// Read user input of scores from 0 to 100
// and store them in an array.
// Return value: the number of values stored.
// --
int getScores(short scores[], int len)
{
 int i = 0;
 puts("Please enter scores between 0 and 100.\n"
 "Press <Q> and <Return> to quit.\n");
 while (i < len)
 {
 printf("Score No. %2d: ", i+1);
 if (scanf("%hd", &scores[i]) != 1)
 break; // No number read: end the loop.
 if (scores[i] < 0 || scores[i] > 100)
 {
 printf("%d: Value out of range.\n", scores[i]);
 break; // Discard this value and end the loop.
 }
 ++i;
 }
 return i; // The number of values stored.
}

The continue Statement
The continue statement can be used only within the body of a loop, and causes the
program flow to skip over the rest of the current iteration of the loop:

continue;

In a while or do…while loop, the program jumps to the next evaluation of the loop’s
controlling expression. In a for loop, the program jumps to the next evaluation of
the third expression in the for statement, containing the operations that are per‐
formed after every loop iteration.

Statem
ents

Unconditional Jumps | 109

In Example 6-7, the second break statement terminates the data input loop as soon
as an input value is outside the permissible range. To give the user another chance
to enter a correct value, replace the second break with continue. Then the program
jumps to the next iteration of the while loop, skipping over the statement that
increments i:

// Read in scores.
// --------------------------
int getScores(short scores[], int len)
{
 /* ... (as in Example 6-7) ... */
 while (i < len)
 {
 /* ... (as in Example 6-7) ... */
 if (scores[i] < 0 || scores[i] > 100)
 {
 printf("%d : Value out of range.\n", scores[i]);
 continue; // Discard this value and read in another.
 }
 ++i; // Increment the number of values stored.
 }
 return i; // The number of values stored.
}

The goto Statement
The goto statement causes an unconditional jump to another statement in the same
function. The destination of the jump is specified by the name of a label:

goto label_name;

A label is a name followed by a colon:

label_name: statement

Labels have a name space of their own, which means they can have the same names
as variables or types without causing conflicts. Labels may be placed before any
statement, and a statement can have several labels. Labels serve only as destinations
of goto statements, and have no effect at all if the labeled statement is reached in the
normal course of sequential execution. The following function uses a label after a
return statement to mark the entry point to an error handling routine:

// Handle errors within the function.
// ----------------------------------
#include <stdbool.h> // Defines bool, true
 // and false (C99).
#define MAX_ARR_LENGTH 1000
bool calculate(double arr[], int len, double* result)
{
 bool error = false;
 if (len < 1 || len > MAX_ARR_LENGTH)
 goto error_exit;

110 | Chapter 6: Statements

 for (int i = 0; i < len; ++i)
 {
 /* ... Some calculation that could result in
 * the error flag being set ...
 */
 if (error)
 goto error_exit;
 /* ... Calculation continues; result is
 * assigned to the variable *result ...
 */
 }
 return true; // Flow arrives here if no error

 error_exit: // The error handler
 *result = 0.0;
 return false;
}

You should never use a goto statement to jump into a block from outside it if the
jump skips over declarations or statements that initialize variables. However, such a
jump is illegal only if it leads into the scope of an array with variable length, skip‐
ping over the definition of the array (for more information about variable-length
arrays, which were introduced with C99, see Chapter 8):

static const int maxSize = 1000;
double func(int n)
{
 double x = 0.0;
 if (n > 0 && n < maxSize)
 {
 double arr[n]; // A variable-length array
 again:
 /* ... */
 if (x == 0.0)
 goto again; // OK: the jump is entirely
 } // *within* the scope of arr.
 if (x < 0.0)
 goto again; // Illegal: the jump leads
 // *into* the scope of arr!
 return x;
}

Because code that makes heavy use of goto statements is hard to read, you should
use them only when they offer a clear benefit, such as a quick exit from deeply nes‐
ted loops. Any C program that uses goto statements can also be written without
them!

Statem
ents

Unconditional Jumps | 111

The goto statement permits only local jumps; that is, jumps
within a function. C also provides a feature to program non-
local jumps to any point in the program, using the standard
macro setjmp() and the standard function longjmp(). The
macro setjmp() marks a location in the program by storing
the necessary process information so that execution can be
resumed at that point at another time by a call to the function
longjmp(). For more information on these functions, see
Part II.

The return Statement
The return statement ends execution of the current function and jumps back to
where the function was called:

return [expression];

expression is evaluated and the result is given to the caller as the value of the func‐
tion call. This return value is converted to the function’s return type, if necessary.

A function can contain any number of return statements:

// Return the smaller of two integer arguments
int min(int a, int b)
{
 if (a < b) return a;
 else return b;
}

The contents of this function block can also be expressed by the following single
statement:

return (a < b ? a : b);

The parentheses do not affect the behavior of the return statement. However, com‐
plex return expressions are often enclosed in parentheses for the sake of readability.

A return statement with no expression can only be used in a function of type
void. In fact, such functions do not need to have a return statement at all. If no
return statement is encountered in a function, the program flow returns to the
caller when the end of the function block is reached. Function calls are described in
more detail in Chapter 7.

112 | Chapter 6: Statements

7
Functions

All the instructions of a C program are contained in functions. Each function per‐
forms a certain task. A special function name is main()—the function with this
name is the first one to run when the program starts. All other functions are sub‐
routines of the main() function (or otherwise dependent procedures, such as call-
back functions), and can have any names you wish.

Every function is defined exactly once. A program can declare and call a function as
many times as necessary.

Function Definitions
The definition of a function consists of a function head (or the declarator), and a
function block. The function head specifies the name of the function, the type of its
return value, and the types and names of its parameters, if any. The statements in
the function block specify what the function does. The general form of a function
definition is as follows:

In the function head, name is the function’s name, while type consists of at least one
type specifier, which defines the type of the function’s return value. The return type
may be void or any object type except array types. Furthermore, type may include
one of the function specifiers inline or _Noreturn, and/or one of the storage class
specifiers extern or static.

113

A function cannot return a function or an array. However, you can define a function
that returns a pointer to a function or a pointer to an array.

The parameter declarations are contained in a comma-separated list of declara‐
tions of the function’s parameters. If the function has no parameters, this list is
either empty or contains merely the word void.

The type of a function specifies not only its return type but also the types of all its
parameters. Example 7-1 is a simple function to calculate the volume of a cylinder.

Example 7-1. Function cylinderVolume()

// The cylinderVolume() function calculates the volume of a cylinder.
// Arguments: Radius of the base circle; height of the cylinder.
// Return value: Volume of the cylinder.

extern double cylinderVolume(double r, double h)
{
 const double pi = 3.1415926536; // pi is constant
 return pi * r * r * h;
}

This function has the name cylinderVolume, and has two parameters, r and h, both
with type double. It returns a value with the type double.

Functions and Storage Class Specifiers
The function in Example 7-1 is declared with the storage class specifier extern. This
is not strictly necessary, as extern is the default storage class for functions. An ordi‐
nary function definition that does not contain a static or inline specifier can be
placed in any source file of a program. Such a function can be called in all of the
program’s source files because its name is an external identifier (or in strict terms,
an identifier with external linkage; see “Linkage of Identifiers” on page 187). You
merely have to declare the function before its first use in a given translation unit
(see “Function Declarations” on page 120). Furthermore, you can arrange functions
in any order you wish within a source file. The only restriction is that you cannot
define one function within another. C does not allow you to define “local functions”
in this way.

You can hide a function from other source files. If you declare a function as static,
its name identifies it only within the source file containing the function definition.
Because the name of a static function is not an external identifier, you cannot use
it in other source files. If you try to call such a function by its name in another
source file, the linker will issue an error message, or the function call might refer to
a different function with the same name elsewhere in the program.

The function printArray() in Example 7-2 might well be defined using static
because it is a special-purpose helper function, providing formatted output of an
array of float variables.

114 | Chapter 7: Functions

Example 7-2. Function printArray()

// The static function printArray() prints the elements of an array
// of float to standard output, using printf() to format them.
// Arguments: An array of float, and its length.
// Return value: None.

static void printArray(const float array[], int n)
{
 for (int i=0; i < n; ++i)
 {
 printf("%12.2f", array[i]); // Field width: 12; decimal places: 2.
 if (i % 5 == 4) putchar('\n'); // New line after every 5 numbers.
 }
 if (n % 5 != 0) putchar('\n'); // New line at the end of the output.
}

If your program contains a call to the printArray() function before its definition,
you must first declare it using the static keyword:

static void printArray(const float [], int);

int main()
{
 float farray[123];
 /* ... */
 printArray(farray, 123);
 /* ... */
}

K&R-Style Function Definitions
In the early Kernighan-Ritchie standard, the names of function parameters were
separated from their type declarations. Function declarators contained only the
names of the parameters, which were then declared by type between the function
declarator and the function block. For example, the cylinderVolume() function
from Example 7-1 would have been written as follows:

double cylinderVolume(r, h)
double r, h; // Parameter declarations
{
 const double pi = 3.1415926536; // pi is constant
 return pi * r * r * h;
}

This notation, called a “K&R-style” or “old-style” function definition, is deprecated,
although compilers still support it. In new C source code, use only the prototype
notation for function definitions, as shown in Example 7-1.

Functio
ns

Function Definitions | 115

Function Parameters
The parameters of a function are ordinary local variables. The program creates
them and initializes them with the values of the corresponding arguments when a
function call occurs. Their scope is the function block. A function can change the
value of a parameter without affecting the value of the argument in the context of
the function call. In Example 7-3, the factorial() function, which computes the
factorial of a whole number, modifies its parameter n in the process.

Example 7-3. Function factorial()

// factorial() calculates n!, the factorial of a non-negative number n.
// For n > 0, n! is the product of all integers from 1 to n inclusive.
// 0! equals 1.
// Argument: A whole number, with type unsigned int.
// Return value: The factorial of the argument, with type long double.

long double factorial(register unsigned int n)
{
 long double f = 1;
 while (n > 1)
 f *= n--;
 return f;
}

Although the factorial of an integer is always an integer, the function uses the type
long double in order to accommodate very large results. As Example 7-3 illustrates,
you can use the storage class specifier register in declaring function parameters.
The register specifier is a request to the compiler to make a variable as quickly
accessible as possible. (The compiler may ignore it.) No other storage class specifiers
are permitted on function parameters.

Arrays as Function Parameters
If you need to pass an array as an argument to a function, you would generally
declare the corresponding parameter in the following form:

type name[]

Because array names are automatically converted to pointers when you use them as
function arguments, this statement is equivalent to the declaration:

type *name

When you use the array notation in declaring function parameters, any constant
expression between the brackets ([]) is ignored. In the function block, the parame‐
ter name is a pointer variable, and can be modified. Thus, the function addArray()
in Example 7-4 modifies its first two parameters as it adds pairs of elements in two
arrays.

116 | Chapter 7: Functions

Example 7-4. Function addArray()

// addArray() adds each element of the second array to the corresponding
// element of the first (i.e., "array1 += array2", so to speak).
// Arguments: Two arrays of float and their common length.
// Return value: None.

void addArray(register float a1[], register const float a2[], int len)
{
 register float *end = a1 + len;
 for (; a1 < end; ++a1, ++a2)
 *a1 += *a2;
}

An equivalent definition of the addArray() function, using a different notation for
the array parameters, would be:

void addArray(register float *a1, register const float *a2, int len)
{ /* Function body as earlier. */ }

An advantage of declaring the parameters with brackets ([]) is that human readers
immediately recognize that the function treats the arguments as pointers to an array,
and not just to an individual float variable. But the array-style notation also has
two peculiarities in parameter declarations:

• In a parameter declaration—and only there—C99 allows you to place any of
the type qualifiers const, volatile, and restrict inside the square brackets.
This ability allows you to declare the parameter as a qualified pointer type.

• Furthermore, in C99 you can also place the storage class specifier static,
together with a integer constant expression, inside the square brackets. This
approach indicates that the number of elements in the array at the time of the
function call must be at least equal to the value of the constant expression.

Here is an example that combines both of these possibilities:

int func(long array[const static 5])
{ /* ... */ }

In the function defined here, the parameter array is a constant pointer to long, and
so cannot be modified. It points to the first of at least five array elements.

C99 also lets you declare array parameters as variable-length arrays (see Chapter 8).
To do so, place a nonconstant integer expression with a positive value between the
square brackets. In this case, the array parameter is still a pointer to the first array
element. The difference is that the array elements themselves can also have a vari‐
able length. In Example 7-5, the maximum() function’s third parameter is a two-
dimensional array of variable dimensions.

Functio
ns

Function Definitions | 117

Example 7-5. Function maximum()

// The function maximum() obtains the greatest value in a
// two-dimensional matrix of double values.
// Arguments: The number of rows, the number of columns, and the matrix.
// Return value: The value of the greatest element.

double maximum(int nrows, int ncols, double matrix[nrows][ncols])
{
 double max = matrix[0][0];
 for (int r = 0; r < nrows; ++r)
 for (int c = 0; c < ncols; ++c)
 if (max < matrix[r][c])
 max = matrix[r][c];
 return max;
}

The parameter matrix is a pointer to an array with ncols elements.

The main() Function
C makes a distinction between two possible execution environments:

Freestanding
A program in a freestanding environment runs without the support of an oper‐
ating system, and therefore only has minimal capabilities of the standard
library available to it (see Part II).

Hosted
In a hosted environment, a C program runs under the control, and with the
support, of an operating system. The full capabilities of the standard library are
available.

In a freestanding environment, the name and type of the first function invoked
when the program starts is determined by the given implementation. Unless you
program embedded systems, your C programs generally run in a hosted environ‐
ment. A program compiled for a hosted environment must define a function with
the name main, which is the first function invoked on program start. You can define
the main() function in one of the following two forms:

int main(void) { /* … */ }

A function with no parameters, returning int

int main(int argc, char *argv[]) { /* … */ }

A function with two parameters whose types are int and char **, returning
int

These two approaches conform to the C standard. In addition, many C implementa‐
tions support a third, nonstandard syntax as well:

118 | Chapter 7: Functions

int main(int argc, char *argv[], char *envp[]) { /* … */ }

A function returning int, with three parameters, the first of which has the type
int, while the other two have the type char **

In all cases, the main() function returns its final status to the operating system as an
integer. A return value of 0 or EXIT_SUCCESS indicates that the program was suc‐
cessful; any nonzero return value, and in particular the value of EXIT_FAILURE, indi‐
cates that the program failed in some way. The constants EXIT_SUCCESS and
EXIT_FAILURE are defined in the header file stdlib.h. The function block of main()
need not contain a return statement. In the C99 and later standards, if the program
flow reaches the closing brace } of main()’s function block, the status value returned
to the execution environment is 0. Ending the main() function is equivalent to call‐
ing the standard library function exit(), whose argument becomes the return value
of main().

The parameters argc and argv (which you may give other names if you wish) repre‐
sent your program’s command-line arguments. This is how they work:

• argc (short for argument count) is either 0 or the number of string tokens in
the command line that started the program. The name of the program itself is
included in this count.

• argv (short for arguments vector) is an array of pointers to char that point to
the individual string tokens received on the command line:
— The number of elements in this array is one more than the value of argc;

the last element, argv[argc], is always a null pointer.
— If argc is greater than 0, then the first string, argv[0], contains the name by

which the program was invoked. If the execution environment does not
supply the program name, the string is empty.

— If argc is greater than 1, then the strings argv[1] through argv[argc - 1]
contain the program’s command-line arguments.

• envp (short for environment pointer) in the nonstandard, three-parameter ver‐
sion of main() is an array of pointers to the strings that make up the program’s
environment. Typically, these strings have the form name=value. In standard C,
you can access the environment variables using the getenv() function.

The sample program in Example 7-6, args.c, prints its own name and command-line
arguments as received from the operating system.

Example 7-6. The command line

#include <stdio.h>
int main(int argc, char *argv[])
{
 if (argc == 0)
 puts("No command line available.");

Functio
ns

Function Definitions | 119

 else
 { // Print the name of the program.
 printf("The program now running: %s\n", argv[0]);
 if (argc == 1)
 puts("No arguments received on the command line.");
 else
 {
 puts("The command-line arguments:");
 for (int i = 1; i < argc; ++i) // Print each argument on
 // a separate line.
 puts(argv[i]);
 }
 }
}

Suppose we run the program on a Unix system by entering the following command:

$./args one two "and three"

The output is then as follows:

The program now running: ./args
The command-line arguments:
one
two
and three

Function Declarations
By declaring a function before using it, you inform the compiler of its type: in other
words, a declaration describes a function’s interface. A declaration must indicate at
least the type of the function’s return value, as the following example illustrates:

int rename();

This line declares rename() as a function that returns a value with type int. Because
function names are external identifiers by default, that declaration is equivalent to
this one:

extern int rename();

As it stands, this declaration does not include any information about the number
and the types of the function’s parameters. As a result, the compiler cannot test
whether a given call to this function is correct. If you call the function with argu‐
ments that are different in number or type from the parameters in its definition, the
result will be a critical runtime error. To prevent such errors, you should always
declare a function’s parameters as well. In other words, your declaration should be a
function prototype. The prototype of the standard library function rename(), for
example, which changes the name of a file, is as follows:

int rename(const char *oldname, const char *newname);

120 | Chapter 7: Functions

This function takes two arguments with type pointer to const char. In other words,
the function uses the pointers only to read char objects. The arguments may thus be
string literals.

The identifiers of the parameters in a prototype declaration are optional. If you
include the names, their scope ends with the prototype itself. Because they have no
meaning to the compiler, they are practically no more than comments telling pro‐
grammers what each parameter’s purpose is. In the prototype declaration of
rename(), for example, the parameter names oldname and newname indicate that the
old filename goes first and the new filename second in your rename() function calls.
To the compiler, the prototype declaration would have exactly the same meaning
without the parameter names:

int rename(const char *, const char *);

The prototypes of the standard library functions are contained in the standard
header files. If you want to call the rename() function in your program, you can
declare it by including the file stdio.h in your source code. Usually you will place the
prototypes of functions you define yourself in a header file as well so that you can
use them in any source file simply by adding the appropriate include directive.

Declaring Optional Parameters
C allows you to define functions so that you can call them with a variable number of
arguments (for more information on writing such functions, see “Variable Numbers
of Arguments” on page 127). The best-known example of such a function is
printf(), which has the following prototype:

int printf(const char *format, ...);

As this example shows, the list of parameter types ends with an ellipsis (…) after the
last comma. The ellipsis represents optional arguments. The first argument in a
printf function call must be a pointer to char. This argument may be followed by
others. The prototype contains no information about what number or types of
optional arguments the function expects.

Declaring Variable-Length Array Parameters
When you declare a function parameter as a variable-length array elsewhere than in
the head of the function definition, you can use the asterisk character (*) to repre‐
sent the array-length specification. If you specify the array length using a nonconst‐
ant integer expression, the compiler will treat it the same as an asterisk. For exam‐
ple, all of the following declarations are permissible prototypes for the maximum()
function defined in Example 7-5:

double maximum(int nrows, int ncols, double matrix[nrows][ncols]);
double maximum(int nrows, int ncols, double matrix[][ncols]);
double maximum(int nrows, int ncols, double matrix[*][*]);
double maximum(int nrows, int ncols, double matrix[][*]);

Functio
ns

Function Declarations | 121

How Functions Are Executed
The instruction to execute a function—the function call—consists of the function’s
name and the operator () (see “Other Operators” on page 90). For example, the fol‐
lowing statement calls the function maximum() to compute the maximum of the
matrix mat, which has r rows and c columns:

maximum(r, c, mat);

The program first allocates storage space for the parameters, and then copies the
argument values to the corresponding locations. Then the program jumps to the
beginning of the function, and execution of the function begins with first variable
definition or statement in the function block.

If the program reaches a return statement or the closing brace (}) of the function
block, execution of the function ends and the program jumps back to the calling
function. If the program “falls off the end” of the function by reaching the closing
brace, the value returned to the caller is undefined. For this reason, you must use a
return statement to stop any function that does not have the type void. The value
of the return expression is returned to the calling function (see “The return State‐
ment” on page 112).

Pointers as Arguments and Return Values
C is inherently a call by value language, as the parameters of a function are local
variables initialized with the argument values. This type of language has the advan‐
tage that any expression desired can be used as an argument as long as it has the
appropriate type. On the other hand, the drawback is that copying large data objects
to begin a function call can be expensive. Moreover, a function has no way to mod‐
ify the originals—that is, the caller’s variables—as it knows how to access only the
local copy.

However, a function can directly access any variable visible to the caller if one of its
arguments is that variable’s address. In this way, C also provides call by reference
functions. A simple example is the standard function scanf(), which reads the stan‐
dard input stream and places the results in variables referenced by pointer argu‐
ments that the caller provides:

int var;
scanf("%d", &var);

This function call reads a string as a decimal numeral, converts it to an integer, and
stores the value in the location of var.

In the following example, the initNode() function initializes a structure variable.
The caller passes the structure’s address as an argument.

#include <string.h> // Prototypes of memset() and strcpy()
struct Node { long key;
 char name[32];

122 | Chapter 7: Functions

 /* ... more structure members ... */
 struct Node *next;
 };

void initNode(struct Node *pNode) // Initialize the structure *pNode
{
 memset(pNode, 0, sizeof(*pNode));
 strcpy(pNode->name, "XXXXX");
}

Even if a function needs only to read and not to modify a variable, it still may be
more efficient to pass the variable’s address rather than its value. That’s because
passing by address avoids the need to copy the data; only the variable’s address is
pushed onto the stack. If the function does not modify such a variable, then you
should declare the corresponding parameter as a read-only pointer, as in the follow‐
ing example:

void printNode(const struct Node *pNode);
{
 printf("Key: %ld\n", pNode->key);
 printf("Name: %s\n", pNode->name);
 /* ... */
}

You are also performing a “call by reference” whenever you call a function using an
array name as an argument, because the array name is automatically converted into
a pointer to the array’s first element. The addArray() function defined in
Example 7-4 has two such pointer parameters.

Often functions need to return a pointer type as well, as the mkNode() function does
in the following example. This function dynamically creates a new Node object and
gives its address to the caller:

#include <stdlib.h>
struct Node *mkNode()
{
 struct Node *pNode = malloc(sizeof(struct Node));
 if (pNode != NULL)
 initNode(pNode);
 return pNode;
}

The mkNode() function returns a null pointer if it fails to allocate storage for a new
Node object. Functions that return a pointer usually use a null pointer to indicate a
failure condition. For example, a search function may return the address of the
desired object, or a null pointer if no such object is available.

Inline Functions
Ordinarily, calling a function causes the computer to save its current instruction
address, jump to the function called and execute it, and then make the return jump

Functio
ns

Inline Functions | 123

to the saved address. With small functions that you need to call often, this can
degrade the program’s runtime behavior substantially. As a result, C99 has intro‐
duced the option of defining inline functions. The keyword inline is a request to
the compiler to insert the function’s machine code wherever the function is called in
the program. The result is that the function is executed as efficiently as if you had
inserted the statements from the function body in place of the function call in the
source code.

To define a function as an inline function, use the function specifier inline in its
definition. In Example 7-7, swapf() is defined as an inline function that exchanges
the values of two float variables, and the function selection_sortf() calls the
inline function swapf().

Example 7-7. Function swapf()

// The function swapf() exchanges the values of two float variables.
// Arguments: Two pointers to float.
// Return value: None.

inline void swapf(float *p1, float *p2) // An inline function.
{
 float tmp = *p1; *p1 = *p2; *p2 = tmp;
}

// The function selection_sortf() uses the selection-sort
// algorithm to sort an array of float elements.
// Arguments: An array of float, and its length.
// Return value: None.

void selection_sortf(float a[], int n) // Sort an array a of length n.
{
 register int i, j, mini; // Three index variables.
 for (i = 0; i < n - 1; ++i)
 {
 mini = i; // Search for the minimum starting at index i.
 for (j = i+1; j < n; ++j)
 if (a[j] < a[mini])
 mini = j;
 swapf(a+i, a+mini); // Swap the minimum with the element at index i.
 }
}

It is generally not a good idea to define a function containing loops, such as
selection_sortf(), as inline. Example 7-7 uses inline instead to speed up the
instructions inside a for loop.

The inline specifier is not imperative: the compiler may ignore it. Recursive func‐
tions, for example, are usually not compiled inline. It is up to the given compiler to
determine when a function defined with inline is actually inserted inline.

124 | Chapter 7: Functions

Unlike other functions, you must repeat the definitions of inline functions in each
translation unit in which you use them. The compiler must have the function defi‐
nition at hand in order to insert the inline code. For this reason, function defini‐
tions with inline are customarily written in header files.

If all the declarations of a function in a given translation unit have the inline speci‐
fier but not the extern specifier, then the function has an inline definition. An inline
definition is specific to the translation unit; it does not constitute an external defini‐
tion, and therefore another translation unit may contain an external definition of
the function. If there is an external definition in addition to the inline definition,
then the compiler is free to choose which of the two function definitions to use.

If you use the storage class specifier, extern, outside all other functions in a declara‐
tion of a function that has been defined with inline, then the function’s definition
is external. For example, the following declaration, if placed in the same translation
unit with the definition of swapf() in Example 7-7, would produce an external
definition:

extern void swapf(float *p1, float *p2);

Once the function swapf() has an external definition, other translation units only
need to contain an ordinary declaration of the function in order to call it. However,
calls to the function from other translation units will not be compiled inline.

Inline functions are ordinary functions except for the way they are called in
machine code. Like ordinary functions, an inline function has a unique address. If
macros are used in the statements of an inline function, the preprocessor expands
them with their values as defined at the point where the function definition occurs
in the source code. However, you should not define modifiable objects with static
storage duration in an inline function that is not likewise declared as static.

Non-Returning Functions
Not all functions return control to their caller. Examples of functions that do not
return include the standard functions abort(), exit(), _Exit(), quick_exit() and
thread_exit(); these functions do not return because their purpose is to end the
execution of a thread or of the whole program. Another example of a non-returning
function is the standard function longjmp(), which does not end the program, but
continues at the point defined by a prior call to the macro setjmp.

The function specifier _Noreturn is new in C11. It informs the compiler that the
function in question does not return, so that the compiler can further optimize the
code: on a call to a non-returning function, there is no need to push the return
address or the contents of the CPU registers onto the stack. The compiler can also
issue an “unreachable code” warning if there are other instructions in the same
block after the non-returning function call.

The following example illustrates a user-defined function that does not return:

Functio
ns

Non-Returning Functions | 125

 _Noreturn void myAbort()
 {
 /* ... Instructions to clean up and save data ... */
 abort();
 }

It is important that you only declare a function with _Noreturn if it absolutely can‐
not return. If a function declared with _Noreturn does return, the program’s behav‐
ior is undefined, and the standard requires that the compiler issue a diagnostic
message.

If your program includes the header file stdnoreturn.h, you can also use the syno‐
nym noreturn instead of the keyword _Noreturn.

Recursive Functions
A recursive function is one that calls itself, directly or indirectly. Indirect recursion
means that a function calls another function (which may call a third function, and
so on), which in turn calls the first function. Because a function cannot continue
calling itself endlessly, recursive functions must always have an exit condition.

In Example 7-8, the recursive function binarySearch() implements the binary
search algorithm to find a specified element in a sorted array. First, the function
compares the search criterion with the middle element in the array. If they are the
same, the function returns a pointer to the element found. If not, the function
searches in whichever half of the array could contain the specified element by call‐
ing itself recursively. If the length of the array that remains to be searched reaches
zero, then the specified element is not present, and the recursion is aborted.

Example 7-8. Function binarySearch()

// The binarySearch() function searches a sorted array.
// Arguments: The value of the element to find;
// the array of long to search; the array length.
// Return value: A pointer to the element found,
// or NULL if the element is not present in the array.

long *binarySearch(long val, long array[], int n)
{
 int m = n/2;
 if (n <= 0) return NULL;
 if (val == array[m]) return array + m;
 if (val < array[m]) return binarySearch(val, array, m);
 else return binarySearch(val, array+m+1, n-m-1);
}

For an array of n elements, the binary search algorithm performs at most 1+log2(n)
comparisons. With a million elements, the maximum number of comparisons per‐
formed is 20, which means at most 20 recursions of the binarySearch() function.

126 | Chapter 7: Functions

Recursive functions depend on the fact that a function’s automatic variables are cre‐
ated anew on each recursive call. These variables, and the caller’s address for the
return jump, are stored on the stack with each recursion of the function that begins.
It is up to the programmer to make sure that there is enough space available on the
stack. The binarySearch() function as defined in Example 7-8 does not place
excessive demands on the stack size, though.

Recursive functions are a logical way to implement algorithms that are recursive by
nature, such as the binary search technique or navigation in tree structures. How‐
ever, even when recursive functions offer an elegant and compact solution to a
problem, simple solutions using loops are often possible as well. For example, you
could rewrite the binary search in Example 7-8 with a loop statement instead of a
recursive function call. In such cases, the iterative solution is generally faster in exe‐
cution than the recursive function.

Variable Numbers of Arguments
C allows you to define functions that you can call with a variable number of argu‐
ments. These are sometimes called variadic functions. Such functions require a
fixed number of mandatory arguments, followed by a variable number of optional
arguments. Each such function must have at least one mandatory argument. The
types of the optional arguments can also vary. The number of optional arguments is
either determined by the values of the mandatory arguments or by a special value
that terminates the list of optional arguments.

The best-known examples of variadic functions in C are the standard library func‐
tions printf() and scanf(). Each of these two functions has one mandatory argu‐
ment: the format string. The conversion specifiers in the format string determine
the number and the types of the optional arguments.

For each mandatory argument, the function head shows an appropriate parameter,
as in ordinary function declarations. These are followed in the parameter list by a
comma and an ellipsis (…), which stands for the optional arguments.

Internally, variadic functions access any optional arguments through an object with
the type va_list, which contains the argument information. An object of this
type—also called an argument pointer—contains at least the position of one argu‐
ment on the stack. The argument pointer can be advanced from one
optional argument to the next, allowing a function to work through the list of
optional arguments. The type va_list is defined in the header file stdarg.h.

When you write a function with a variable number of arguments, you must define
an argument pointer with the type va_list in order to read the optional arguments.
In the following description, the va_list object is named argptr. You can manipu‐
late the argument pointer using four macros, which are defined in the header file
stdarg.h:

Functio
ns

Variable Numbers of Arguments | 127

void va_start(va_list argptr, lastparam);
The macro va_start initializes the argument pointer argptr with the position
of the first optional argument. The macro’s second argument must be the name
of the function’s last named parameter. You must call this macro before your
function can use the optional arguments.

type va_arg(va_list argptr, type);
The macro va_arg expands to yield the optional argument currently referenced
by argptr, and also advances argptr to reference the next argument in the list.
The second argument of the macro va_arg is the type of the argument being
read.

void va_end(va_list argptr);
When you have finished using an argument pointer, you should call the macro
va_end. If you want to use one of the macros va_start or va_copy to reinitial‐
ize an argument pointer that you have already used, then you must call va_end
first.

void va_copy(va_list dest, va_list src);

The macro va_copy initializes the argument pointer dest with the current
value of src. You can then use the copy in dest to access the list of optional
arguments again, starting from the position referenced by src.

The function in Example 7-9 demonstrates the use of these macros.

Example 7-9. Function add()

// The add() function computes the sum of the optional arguments.
// Arguments: The mandatory first argument indicates the number of
// optional arguments. The optional arguments are
// of type double.
// Return value: The sum, with type double.

double add(int n, ...)
{
 int i = 0;
 double sum = 0.0;
 va_list argptr;
 va_start(argptr, n); // Initialize argptr; that is,
 for (i = 0; i < n; ++i) // for each optional argument,
 sum += va_arg(argptr, double); // read an argument with type
 // double and accumulate in sum.
 va_end(argptr);
 return sum;
}

128 | Chapter 7: Functions

8
Arrays

An array contains objects of a given type, stored consecutively in a continuous
memory block. The individual objects are called the elements of an array. The ele‐
ments’ type can be any object type. No other types are permissible: array elements
may not have a function type or an incomplete type (see “Typology” on page 23).

An array is also an object itself, and its type is derived from its elements’ type. More
specifically, an array’s type is determined by the type and number of elements in the
array. If an array’s elements have type T, then the array is called an “array of T.” If the
elements have type int, for example, then the array’s type is “array of int.” The type
is an incomplete type, however, unless it also specifies the number of elements. If an
array of int has 16 elements, then it has a complete object type, which is “array of 16
int elements.”

Defining Arrays
The definition of an array determines its name, the type of its elements, and the
number of elements in the array. An array definition without any explicit initializa‐
tion has the following syntax:

type name[number_of_elements];

The number of elements, between square brackets ([]), must be an integer expres‐
sion whose value is greater than zero. Here is an example:

char buffer[4*512];

This line defines an array with the name buffer, which consists of 2,048 elements of
type char.

You can determine the size of the memory block that an array occupies using the
sizeof operator. The array’s size in memory is always equal to the size of one ele‐

129

ment times the number of elements in the array. Thus, for the array buffer in our
example, the expression sizeof(buffer) yields the value of 2048 * sizeof(char);
in other words, the array buffer occupies 2,048 bytes of memory because
sizeof(char) always equals one.

In an array definition, you can specify the number of elements as a constant expres‐
sion or, under certain conditions, as an expression involving variables. The resulting
array is accordingly called a fixed-length or a variable-length array.

Fixed-Length Arrays
Most array definitions specify the number of array elements as a constant expres‐
sion. An array so defined has a fixed length. Thus, the array buffer defined in the
previous example is a fixed-length array.

Fixed-length arrays can have any storage class: you can define them outside all func‐
tions or within a block, and with or without the storage class specifier static. The
only restriction is that no function parameter can be an array. An array argument
passed to a function is always converted into a pointer to the first array element (see
“Arrays as Function Parameters” on page 116).

The four array definitions in the following example are all valid:

int a[10]; // a has external linkage.
static int b[10]; // b has static storage duration and file scope.

void func()
{
 static int c[10]; // c has static storage duration and block scope.
 int d[10]; // d has automatic storage duration.
 /* ... */
}

Variable-Length Arrays
C99 also allows you to define an array using a nonconstant expression for the num‐
ber of elements if the array has automatic storage duration—in other words, if the
definition occurs within a block and does not have the specifier static. Such an
array is then called a variable-length array.

Furthermore, the name of a variable-length array must be an ordinary identifier (see
“Identifier Name Spaces” on page 16). Members of structures or unions cannot be
variable-length arrays. In the following examples, only the definition of the array
vla is a permissible definition:

void func(int n)
{
 int vla[2*n]; // OK: storage duration is automatic.
 static int e[n]; // Illegal: a variable length array cannot
 // have static storage duration.
 struct S { int f[n]; }; // Illegal: f is not an ordinary identifier.

130 | Chapter 8: Arrays

 /* ... */
}

Like any other automatic variable, a variable-length array is created anew each time
the program flow enters the block containing its definition. As a result, the array
can have a different length at each such instantiation. Once created, however, even a
variable-length array cannot change its length during its storage duration.

Storage for automatic objects is allocated on the stack, and is released when the pro‐
gram flow leaves the block. For this reason, variable-length array definitions are
useful only for small, temporary arrays. To create larger arrays dynamically, you
should generally allocate storage space explicitly using the standard functions,
malloc() and calloc(). The storage duration of such arrays then ends with the end
of the program or when you release the allocated memory by calling the function
free() (see Chapter 12).

Accessing Array Elements
The subscript operator, [], provides an easy way to address the individual elements
of an array by index. If myArray is the name of an array and i is an integer, then the
expression myArray[i] designates the array element with the index i. Array ele‐
ments are indexed beginning with 0. Thus, if len is the number of elements in an
array, the last element of the array has the index len-1 (see “Memory Addressing
Operators” on page 87).

The following code fragment defines the array myArray and assigns a value to each
element.

#define A_SIZE 4
long myArray[A_SIZE];
for (int i = 0; i < A_SIZE; ++i)
 myArray[i] = 2 * i;

The diagram in Figure 8-1 illustrates the result of this assignment loop.

Figure 8-1. Values assigned to elements by index

An array index can be any integer expression desired. The subscript operator, [],
does not bring any range checking with it; C gives priority to execution speed in this
regard. It is up to you, the programmer, to ensure that an index does not exceed the
range of permissible values. The following incorrect example assigns a value to a
memory location outside the array:

A
rrays

Accessing Array Elements | 131

long myArray[4];
myArray[4] = 8; // Error: subscript must not exceed 3.

Such “off-by-one” errors can easily cause a program to crash (or, worse still, can
cause silent data corruption), and are not always as easy to recognize as they are in
this simple example.

Another way to address array elements, as an alternative to the subscript operator, is
to use pointer arithmetic. After all, the name of an array is implicitly converted into
a pointer to the first array element in all expressions except sizeof operations. For
example, the expression myArray+i yields a pointer to the element with the index i,
and the expression *(myArray+i) is equivalent to myArray[i] (see “Pointer arith‐
metic” on page 75).

The following loop statement uses a pointer instead of an index to step through the
array myArray, and doubles the value of each element:

for (long *p = myArray; p < myArray + A_SIZE; ++p)
 *p *= 2;

Initializing Arrays
If you do not explicitly initialize an array variable, the usual rules apply: if the array
has automatic storage duration, then its elements have undefined values. Otherwise,
all elements are initialized by default to the value 0. (If the elements are pointers,
they are initialized to NULL.) For more details, see “Initialization” on page 190.

Writing Initialization Lists
To initialize an array explicitly when you define it, you must use an initialization list:
this is a comma-separated list of initializers, or initial values for the individual array
elements, enclosed in braces. Here is an example:

int a[4] = { 1, 2, 4, 8 };

This definition gives the elements of the array a the following initial values:

a[0] = 1, a[1] = 2, a[2] = 4, a[3] = 8

When you initialize an array, observe the following rules:

• You cannot include an initialization in the definition of a variable-length array.
• If the array has static storage duration, then the array initializers must be con‐

stant expressions. If the array has automatic storage duration, then you can use
variables in its initializers.

• You may omit the length of the array in its definition if you supply an initializa‐
tion list. The array’s length is then determined by the index of the last array ele‐
ment for which the list contains an initializer. For example, the definition of the
array a in the previous example is equivalent to this:

int a[] = { 1, 2, 4, 8 }; // An array with four elements.

132 | Chapter 8: Arrays

• If the definition of an array contains both a length specification and an initiali‐
zation list, then the length is that specified by the expression between the
square brackets. Any elements for which there is no initializer in the list are ini‐
tialized to zero (or NULL, for pointers). If the list contains more initializers than
the array has elements, the superfluous initializers are simply ignored.

• A superfluous comma after the last initializer is also ignored.

As a result of these rules, all of the following definitions are equivalent:

int a[4] = { 1, 2 };
int a[] = { 1, 2, 0, 0 };
int a[] = { 1, 2, 0, 0, };
int a[4] = { 1, 2, 0, 0, 5 };

In the final definition, the initializer 5 is ignored. Most compilers generate a warn‐
ing when such a mismatch occurs.

Array initializers must have the same type as the array elements. If the array ele‐
ments’ type is a union, structure, or array type, then each initializer is generally
another initialization list. Here is an example:

typedef struct { unsigned long pin;
 char name[64];
 /* ... */
 } Person;
Person team[6] = { { 1000, "Mary"}, { 2000, "Harry"} };

The other four elements of the array team are initialized to 0, or in this case, to
{ 0, "" }.

You can also initialize arrays of char, wchar_t, char16_t or char32_t with string
literals (see “Strings” on page 134).

Initializing Specific Elements
C99 has introduced element designators to allow you to associate initializers with
specific elements. To specify a certain element to initialize, place its index in square
brackets. In other words, the general form of an element designator for array ele‐
ments is:

[constant_expression]

The index must be an integer constant expression. In the following example, the ele‐
ment designator is [A_SIZE/2]:

#define A_SIZE 20
int a[A_SIZE] = { 1, 2, [A_SIZE/2] = 1, 2 };

This array definition initializes the elements a[0] and a[10] with the value 1, and
the elements a[1] and a[11] with the value 2. All other elements of the array will be
given the initial value 0. As this example illustrates, initializers without an element
designator are associated with the element following the last one initialized.

A
rrays

Initializing Arrays | 133

If you define an array without specifying its length, the index in an element designa‐
tor can have any non-negative integer value. As a result, the following definition
creates an array of 1,001 elements:

int a[] = { [1000] = -1 };

All of the array’s elements have the initial value of 0 except the last element, which is
initialized to the value -1.

Strings
A string is a continuous sequence of characters terminated by '\0', the null charac‐
ter. The length of a string is considered to be the number of characters excluding the
terminating null character. There is no string type in C, and consequently there are
no operators that accept strings as operands.

Instead, strings are stored in arrays whose elements have the type char or a wide-
character type—that is, one of the types wchar_t, char16_t, or char32_t. Strings of
wide characters are also called wide strings. The C standard library provides numer‐
ous functions to perform basic operations on strings such as comparing, copying,
and concatenating them. In addition to the traditional string functions, C11 has also
introduced “secure” versions, which ensure that string operations do not exceed the
bounds of an array (see “String Processing” on page 332).

You can initialize arrays of any character type using string literals. For example, the
following two array definitions are equivalent:

char str1[30] = "Let's go"; // String length: 8; array length: 30.

char str1[30] = { 'L', 'e', 't', '\'', 's',' ', 'g', 'o', '\0' };

An array holding a string must always be at least one element longer than the string
length to accommodate the terminating null character. The array str1 can store
strings up to a maximum length of 29. It would be a mistake to define the array with
a length of 8 rather than 30 because then it wouldn’t contain the terminating null
character.

If you define a character array without an explicit length and initialize it with a
string literal, the array created is one element longer than the string length. Here is
an example:

char str2[] = " to London!"; // String length: 11 (note leading space);
 // array length: 12.

The following statement uses the standard function strcat() to append the string
in str2 to the string in str1 (the array str1 must be large enough to hold all the
characters in the concatenated string):

#include <string.h>

char str1[30] = "Let's go";
char str2[] = " to London!";

134 | Chapter 8: Arrays

/* ... */

strcat(str1, str2);
puts(str1);

The output printed by the puts() call is the new content of the array str1:

Let's go to London!

The names str1 and str2 are pointers to the first character of the string stored in
each array. Such a pointer is called a pointer to a string, or a string pointer for short.
String manipulation functions such as strcat() and puts() receive the beginning
addresses of strings as their arguments. Such functions generally process a string
character by character until they reach the terminator, '\0'. The function in
Example 8-1 is one possible implementation of the standard function strcat(). It
uses pointers to step through the strings referenced by its arguments.

Example 8-1. Function strcat()

// The function strcat() appends a copy of the second string
// to the end of the first string.
// Arguments: Pointers to the two strings.
// Return value: A pointer to the first string, now
// concatenated with the second string.

char *strcat(char * restrict s1, const char * restrict s2)
{
 char *rtnPtr = s1;
 while (*s1 != '\0') // Find the end of string s1.
 ++s1;
 while ((*s1++ = *s2++) != '\0') // The first character from s2
 ; // replaces the terminator of s1.
 return rtnPtr;
}

The char array beginning at the address s1 must be at least as long as the sum of the
two strings’ lengths, plus one for the terminating null character. To test for this con‐
dition before calling strcat(), you might use the standard function strlen(),
which returns the length of the string referenced by its argument:

if (sizeof(str1) >= (strlen(str1) + strlen(str2) + 1))
 strcat(str1, str2);

A wide-string literal is identified by one of the prefixes L, u, or U (see “String Liter‐
als” on page 45). Accordingly, the initialization of a wchar_t array looks like this:

#include <stddef.h> // Definition of the type wchar_t
/* ... */
wchar_t dinner[] = L"chop suey"; // String length: 10;
 // array length: 11;
 // array size: 11 * sizeof(wchar_t)

A
rrays

Strings | 135

Multidimensional Arrays
A multidimensional array in C is merely an array whose elements are themselves
arrays. The elements of an n-dimensional array are (n-1)-dimensional arrays. For
example, each element of a two-dimensional array is a one-dimensional array. The
elements of a one-dimensional array, of course, do not have an array type.

A multidimensional array declaration has a pair of brackets for each dimension:

char screen[10][40][80]; // A three-dimensional array

The array screen consists of the 10 elements screen[0] to screen[9]. Each of these
elements is a two-dimensional array consisting in turn of 40 one-dimensional arrays
of 80 characters each. All in all, the array screen contains 32,000 elements of the
type char.

To access a char element in the three-dimensional array screen, you must specify
three indices. For example, the following statement writes the character Z in the last
char element of the array:

screen[9][39][79] = 'Z';

Matrices
Two-dimensional arrays are also called matrices. Because they are so frequently
used, they merit a closer look. It is often helpful to think of the elements of a matrix
as being arranged in rows and columns. Thus, the matrix mat in the following defi‐
nition has three rows and five columns:

float mat[3][5];

The three elements mat[0], mat[1], and mat[2] are the rows of the matrix mat. Each
of these rows is an array of five float elements. Thus, the matrix contains a total of
3 × 5 = 15 float elements, as the following table illustrates:

[0] [1] [2] [3] [4]

mat[0] 0.0 0.1 0.2 0.3 0.4

mat[1] 1.0 1.1 1.2 1.3 1.4

mat[2] 2.0 2.1 2.2 2.3 2.4

The values specified in the diagram can be assigned to the individual elements by a
nested loop statement. The first index specifies a row, and the second index
addresses a column in the row:

for (int row = 0; row < 3; ++row)
 for (int col = 0; col < 5; ++col)
 mat[row][col] = row + (float)col/10;

136 | Chapter 8: Arrays

In memory, the three rows are stored consecutively, as they are the elements of the
array mat. As a result, the float values in this matrix are all arranged consecutively
in memory in ascending order.

Declaring Multidimensional Arrays
In an array declaration that is not a definition, the array type can be incomplete; you
can declare an array without specifying its length. Such a declaration is a reference
to an array that you must define with a specified length elsewhere in the program.
However, you must always declare the complete type of an array’s elements. For a
multidimensional array declaration, only the first dimension can have an unspeci‐
fied length. All other dimensions must have a magnitude. In declaring a two-
dimensional matrix, for example, you must always specify the number of columns.

If the array mat in the previous example has external linkage, for example—that is, if
its definition is placed outside all functions—then it can be used in another source
file after the following declaration:

extern float mat[][5]; // External declaration

The external object so declared has an incomplete two-dimensional array type.

Initializing Multidimensional Arrays
You can initialize multidimensional arrays using an initialization list according to
the rules described in “Initializing Arrays” on page 132. There are some peculiari‐
ties, however: you do not have to show all the braces for each dimension, and you
may use multidimensional element designators.

To illustrate the possibilities, we will consider the array defined and initialized as
follows:

int a3d[2][2][3] = { { { 1, 0, 0 }, { 4, 0, 0 } },
 { { 7, 8, 0 }, { 0, 0, 0 } } };

This initialization list includes three levels of list-enclosing braces, and initializes
the elements of the two-dimensional arrays a3d[0] and a3d[1] with the following
values:

[0] [1] [2]

a3d[0][0] 1 0 0

a3d[0][1] 4 0 0

[0] [1] [2]

a3d[1][0] 7 8 0

a3d[1][1] 0 0 0

A
rrays

Multidimensional Arrays | 137

Because all elements that are not associated with an initializer are initialized by
default to 0, the following definition has the same effect:

int a3d[][2][3] = { { { 1 }, { 4 } }, { { 7, 8 } } };

This initialization list also shows three levels of braces. You do not need to specify
that the first dimension has a size of 2, as the outermost initialization list contains
two initializers.

You can also omit some of the braces. If a given pair of braces contains more initial‐
izers than the number of elements in the corresponding array dimension, then the
excess initializers are associated with the next array element in the storage sequence.
Hence these two definitions are equivalent:

int a3d[2][2][3] = { { 1, 0, 0, 4 }, { 7, 8 } };
int a3d[2][2][3] = { 1, 0, 0, 4, 0, 0, 7, 8 };

Finally, you can achieve the same initialization pattern using element designators as
follows:

int a3d[2][2][3] = { 1, [0][1][0]=4, [1][0][0]=7, 8 };

Again, this definition is equivalent to the following:

int a3d[2][2][3] = { {1}, [0][1]={4}, [1][0]={7, 8} };

Using element designators is a good idea if only a few elements need to be initialized
to a value other than 0.

Arrays as Arguments of Functions
When the name of an array appears as a function argument, the compiler implicitly
converts it into a pointer to the array’s first element. Accordingly, the corresponding
parameter of the function is always a pointer to the same object type as the type of
the array elements.

You can declare the parameter either in array form or in pointer form: type name[]
or type *name. The strcat() function defined in Example 8-1 illustrates the pointer
notation. For more details and examples, see “Arrays as Function Parameters” on
page 116. Here, however, we’ll take a closer look at the case of multidimensional
arrays.

When you pass a multidimensional array as a function argument, the function
receives a pointer to an array type. Because this array type is the type of the elements
of the outermost array dimension, it must be a complete type. For this reason, you
must specify all dimensions of the array elements in the corresponding function
parameter declaration.

For example, the type of a matrix parameter is a pointer to a “row” array, and the
length of the rows (i.e., the number of “columns”) must be included in the declara‐
tion. More specifically, if NCOLS is the number of columns, then the parameter for a
matrix of float elements can be declared as follows:

138 | Chapter 8: Arrays

#define NCOLS 10 // The number of columns.
/* ... */
void somefunction(float (*pMat)[NCOLS]); // A pointer to a row array.

This declaration is equivalent to the following:

void somefunction(float pMat[][NCOLS]);

The parentheses in the parameter declaration float (*pMat)[NCOLS] are necessary
in order to declare a pointer to an array of float. Without them, float
*pMat[NCOLS] would declare the identifier pMat as an array whose elements have the
type float*, or pointer to float. See “Complex Declarators” on page 182.

In C99, parameter declarations can contain variable-length arrays. Thus, in a decla‐
ration of a pointer to a matrix, the number of columns need not be constant but can
be another parameter of the function. For example, you can declare a function as
follows:

void someVLAfunction(int ncols, float pMat[][ncols]);

Example 7-5 shows a function that uses a variable-length matrix as a parameter.

If you use multidimensional arrays in your programs, it is a good idea to define a
type name for the (n-1)-dimensional elements of an n-dimensional array. Such
typedef names can make your programs more readable and your arrays easier to
handle. For example, the following typedef statement defines a type for the row
arrays of a matrix of float elements (see also “typedef Declarations” on page 185):

typedef float ROW_t[NCOLS]; // A type for the "row" arrays.

Example 8-2 illustrates the use of an array type name such as ROW_t. The function
printRow() provides formatted output of a row array. The function printMatrix()
prints all the rows in the matrix.

Example 8-2. Functions printRow() and printMatrix()

// Print one "row" array.
void printRow(const ROW_t pRow)
{
 for (int c = 0; c < NCOLS; ++c)
 printf("%6.2f", pRow[c]);
 putchar('\n');
}

// Print the whole matrix.
void printMatrix(const ROW_t *pMat, int nRows)
{
 for (int r = 0; r < nRows; ++r)
 printRow(pMat[r]); // Print each row.
}

A
rrays

Arrays as Arguments of Functions | 139

The parameters pRow and pMat are declared as pointers to const arrays because the
functions do not modify the matrix. Because the number of rows is variable, it is
passed to the function printMatrix() as a second argument.

The following code fragment defines and initializes an array of rows with type
ROW_t, and then calls the function printMatrix():

ROW_t mat[] = { { 0.0F, 0.1F },
 { 1.0F, 1.1F, 1.2F },
 { 2.0F, 2.1F, 2.2F, 2.3F } };
int nRows = sizeof(mat) / sizeof(ROW_t);
printMatrix(mat, nRows);

140 | Chapter 8: Arrays

9
Pointers

A pointer is a reference to a data object or a function. Pointers have many uses, such
as defining “call-by-reference” functions and implementing dynamic data structures
such as linked lists and trees, to name just two examples.

Very often the only efficient way to manage large volumes of data is to manipulate
not the data itself but pointers to the data. For example, if you need to sort a large
number of large records, it is often more efficient to sort a list of pointers to the
records, rather than moving the records themselves around in memory. Similarly, if
you need to pass a large record to a function, it’s more economical to pass a pointer
to the record than to pass the record contents, even if the function doesn’t modify
the contents.

Declaring Pointers
A pointer represents both the address and the type of an object or function. If an
object or function has the type T, then a pointer to it has the derived type pointer to
T. For example, if var is a float variable, then the expression &var—whose value is
the address of the float variable—has the type pointer to float, or in C notation,
the type float *. A pointer to any type T is also called a T pointer for short. Thus,
the address operator in &var yields a float pointer.

Because var doesn’t move around in memory, the expression &var is a constant
pointer. However, C also allows you to define variables with pointer types. A pointer
variable stores the address of another object or a function. We describe pointers to
arrays and functions a little further on. To start out, the declaration of a pointer to
an object that is not an array has the following syntax:

type * [type-qualifier-list] name [= initializer];

141

In declarations, the asterisk (*) means “pointer to.” The identifier name is declared as
an object with the type type *, or pointer to type. The optional type qualifier list
may contain any combination of the type qualifiers const, volatile, and restrict.
For details about qualified pointer types, see “Pointers and Type Qualifiers” on page
148.

Here is a simple example:

int *iPtr; // Declare iPtr as a pointer to int.

The type int is the type of object that the pointer iPtr can point to. To make a
pointer refer to a certain object, assign it the address of the object. For example, if
iVar is an int variable, then the following assignment makes iPtr point to the vari‐
able iVar:

iPtr = &iVar; // Let iPtr point to the variable iVar.

The general form of a declaration consists of a comma-separated list of declarators,
each of which declares one identifier (see Chapter 11). In a pointer declaration, the
asterisk (*) is part of an individual declarator. We can thus define and initialize the
variables iVar and iPtr in one declaration, as follows:

int iVar = 77, *iPtr = &iVar; // Define an int variable and
 // a pointer to it.

The second of these two declarations initializes the pointeriPtr with the address of
the variable iVar, so that iPtr points to iVar.

Figure 9-1 illustrates one possible arrangement of the variables iVar and iPtr in
memory. The addresses shown are purely fictitious examples. As Figure 9-1 shows,
the value stored in the pointer iPtr is the address of the object iVar.

Figure 9-1. A pointer and another object in memory

It is often useful to output addresses for verification and debugging purposes. The
printf() functions provide a format specifier for pointers: %p. The following state‐
ment prints the address and value of the variable iPtr:

printf("Value of iPtr (i.e. the address of iVar): %p\n"
 "Address of iPtr: %p\n", iPtr, &iPtr);

The size of a pointer in memory—given by the expression sizeof(iPtr), for exam‐
ple—is the same regardless of the type of object addressed. In other words, a char
pointer takes up just as much space in memory as a pointer to a large structure. On
32-bit computers, pointers are usually four bytes long.

142 | Chapter 9: Pointers

Null Pointers
A null pointer is what results when you convert a null pointer constant to a pointer
type. A null pointer constant is an integer constant expression with the value of 0, or
such an expression cast as the type void * (see “Null pointer constants” on page
64). The macro NULL is defined in stdlib.h, stdio.h, and other header files as a null
pointer constant.

A null pointer is always unequal to any valid pointer to an object or function. For
this reason, functions that return a pointer type usually use a null pointer to indicate
a failure condition. One example is the standard function fopen(), which returns a
null pointer if it fails to open a file in the specified mode:

#include <stdio.h>
/* ... */
FILE *fp = fopen("demo.txt", "r");
if (fp == NULL) // Also written as: if (!fp)
{
 // Error: unable to open the file demo.txt for reading.
}

Null pointers are implicitly converted to other pointer types as necessary for assign‐
ment operations or for comparisons using == or !=. Hence, no cast operator is nec‐
essary in the previous example. (See also “Implicit Pointer Conversions” on page
61.)

void Pointers
A pointer to void, or void pointer for short, is a pointer with the type void *. As
there are no objects with the type void, the type void * is used as the all-purpose
pointer type. In other words, a void pointer can represent the address of any
object—but not its type. To access an object in memory, you must always convert a
void pointer into an appropriate object pointer.

To declare a function that can be called with different types of pointer arguments,
you can declare the appropriate parameters as pointers to void. When you call such
a function, the compiler implicitly converts an object pointer argument into a void
pointer. A common example is the standard function memset(), which is declared in
the header file string.h with the following prototype:

void *memset(void *s, int c, size_t n);

The memset() function assigns the value of c to each of the n bytes of memory in
the block beginning at the address s. For example, the following function call
assigns the value 0 to each byte in the structure variable record:

struct Data { /* ... */ } record;
memset(&record, 0, sizeof(record));

The argument &record has the type struct Data *. In the function call, the argu‐
ment is converted to the parameter’s type, void *.

P
o

inters

Declaring Pointers | 143

The compiler likewise converts void pointers into object pointers where necessary.
For example, in the following statement, the malloc() function returns a void
pointer whose value is the address of the allocated memory block. The assignment
operation converts the void pointer into a pointer to int:

int *iPtr = malloc(1000 * sizeof(int));

For a more thorough illustration, see Example 2-3.

Initializing Pointers
Pointer variables with automatic storage duration start with an undefined value,
unless their declaration contains an explicit initializer. All variables defined within
any block have automatic storage duration unless they are defined with the storage
class specifier static. All other pointers defined without an initializer have the ini‐
tial value of a null pointer.

You can initialize a pointer with the following kinds of initializers:

• A null pointer constant
• A pointer to the same type, or to a less qualified version of the same type (see

“Pointers and Type Qualifiers” on page 148)
• A void pointer, if the pointer being initialized is not a function pointer (here

again, the pointer being initialized can be a pointer to a more qualified type)

Pointers that do not have automatic storage duration must be initialized with a con‐
stant expression such as the result of an address operation or the name of an array
or function.

When you initialize a pointer, no implicit type conversion takes place except in the
cases just listed. However, you can explicitly convert a pointer value to another
pointer type. For example, to read any object byte by byte, you can convert its
address into a char pointer to the first byte of the object:

double x = 1.5;
char *cPtr = &x; // Error: type mismatch; no implicit conversion.
char *cPtr = (char *)&x; // OK: cPtr points to the first byte of x.

For more details and examples of pointer type conversions, see “Explicit Pointer
Conversions” on page 59.

Operations with Pointers
This section describes the operations that can be performed using pointers. The
most important of these operations is accessing the object or function that the
pointer refers to. You can also compare pointers, and use them to iterate through a
memory block. For a complete description of the individual operators in C with
their precedence and permissible operands, see Chapter 5.

144 | Chapter 9: Pointers

Using Pointers to Read and Modify Objects
The indirection operator * yields the location in memory whose address is stored in
a pointer. If ptr is a pointer, then *ptr designates the object (or function) that ptr
points to. Using the indirection operator is sometimes called dereferencing a pointer.
The type of the pointer determines the type of object that is assumed to be at that
location in memory. For example, when you access a given location using an int
pointer, you read or write an object of type int.

Unlike the multiplication operator *, the indirection operator * is a unary operator;
that is, it has only one operand. In Example 9-1, ptr points to the variable x. Hence,
the expression *ptr is equivalent to the variable x itself.

Example 9-1. Dereferencing a pointer

double x, y, *ptr; // Two double variables and a pointer to double.
ptr = &x; // Let ptr point to x.
*ptr = 7.8; // Assign the value 7.8 to the variable x.
*ptr *= 2.5; // Multiply x by 2.5.
y = *ptr + 0.5; // Assign y the result of the addition x + 0.5.

Do not confuse the asterisk (*) in a pointer declaration with the indirection opera‐
tor. The syntax of the declaration can be seen as an illustration of how to use the
pointer. Here is an example:

double *ptr;

As declared here, ptr has the type double * (read: “pointer to double”). Hence the
expression *ptr would have the type double.

Of course, the indirection operator * must be used only with a pointer that contains
a valid address. This usage requires careful programming! Without the assignment
ptr = &x in Example 9-1, all of the statements containing *ptr would be
senseless—dereferencing an undefined pointer value—and might cause the program
to crash.

A pointer variable is itself an object in memory, which means that a pointer can
point to it. To declare a pointer to a pointer, you must use two asterisks, as in the
following example:

char c = 'A', *cPtr = &c, **cPtrPtr = &cPtr;

The expression *cPtrPtr now yields the char pointer cPtr, and the value of
**cPtrPtr is the char variable c. Figure 9-2 illustrates these references.

Figure 9-2. A pointer to a pointer

P
o

inters

Operations with Pointers | 145

Pointers to pointers are not restricted to the two-stage indirection illustrated here.
You can define pointers with as many levels of indirection as you need. However,
you cannot assign a pointer-to-a-pointer its value by mere repetitive application of
the address operator:

char c = 'A', **cPtrPtr = &(&c); // Wrong!

The second initialization in this example is illegal: the expression (&c) cannot be the
operand of &, because it is not an lvalue. In other words, there is no pointer to char
in this example for cPtrPtr to point to.

If you pass a pointer to a function by reference so that the function can modify its
value, then the function’s parameter is a pointer to a pointer. The following simple
example is a function that dynamically creates a new record and stores its address in
a pointer variable:

#include <stdlib.h>
// The record type:
typedef struct { long key; /* ... */ } Record;

_Bool newRecord(Record **ppRecord)
{
 *ppRecord = malloc(sizeof(Record));
 if (*ppRecord != NULL)
 {
 /* ... Initialize the new record's members ... */
 return 1;
 }
 else
 return 0;
}

The following statement is one possible way to call the newRecord() function:

Record *pRecord = NULL;
if (newRecord(&pRecord))
{
 /* ... pRecord now points to a new Record object ... */
}

The expression *pRecord yields the new record, and (*pRecord).key is the member
key in that record. The parentheses in the expression (*pRecord).key are necessary
because the dot operator (.) has higher precedence than the indirection operator
(*).

Instead of this combination of operators and parentheses, you can also use the
arrow operator -> to access structure or union members. If p is a pointer to a struc‐
ture or union with a member m, then the expression p->m is equivalent to (*p).m.
Thus, the following statement assigns a value to the member key in the structure
that pRecord points to:

pRecord->key = 123456L;

146 | Chapter 9: Pointers

Modifying and Comparing Pointers
Besides using assignments to make a pointer refer to a given object or function, you
can also modify an object pointer using arithmetic operations. When you perform
pointer arithmetic, the compiler automatically adapts the operation to the size of the
objects referred to by the pointer type.

You can perform the following operations on pointers to objects:

• Adding an integer to, or subtracting an integer from, a pointer.
• Subtracting one pointer from another.
• Comparing two pointers.

When you subtract one pointer from another, the two pointers must have the same
basic type, although you can disregard any type qualifiers. Furthermore, you may
compare any pointer with a null pointer constant using the equality operators (==
and !=), and you may compare any object pointer with a pointer to void.

The three pointer operations described here are generally useful only for pointers
that refer to the elements of an array. To illustrate the effects of these operations,
consider two pointers p1 and p2, which point to elements of an array a:

• If p1 points to the array element a[i], and n is an integer, then the expression
p2 = p1 + n makes p2 point to the array element a[i+n] (assuming that i+n is
an index within the array a).

• The subtraction p2 − p1 yields the number of array elements between the two
pointers, with the type ptrdiff_t. The type ptrdiff_t is defined in the
stddef.h header file, usually as int. After the assignment p2 = p1 + n, the
expression p2 − p1 yields the value of n.

• The comparison p1 < p2 yields true if the element referenced by p2 has a
greater index than the element referenced by p1. Otherwise, the comparison
yields false.

Because the name of an array is implicitly converted into a pointer to the first array
element wherever necessary, you can also substitute pointer arithmetic for array
subscript notation:

• The expression a + i is a pointer to a[i], and the value of *(a+i) is the ele‐
ment a[i].

• The expression p1 − a yields the index i of the element referenced by p1.

In Example 9-2, the selection_sortf() function sorts an array of float elements
using the selection-sort algorithm. This is the pointer version of the selec
tion_sortf() function in Example 7-7; in other words, this function does the same

P
o

inters

Operations with Pointers | 147

job but uses pointers instead of indices. The helper function swapf() remains
unchanged.

Example 9-2. Pointer version of the selection_sortf() function

// The swapf() function exchanges the values of two float variables.
// Arguments: Two pointers to float.

inline void swapf(float *p1, float *p2)
{
 float tmp = *p1; *p1 = *p2; *p2 = tmp; // Swap *p1 and *p2.
}
// The function selection_sortf() uses the selection-sort
// algorithm to sort an array of float elements.
// Arguments: An array of float, and its length.

void selection_sortf(float a[], int n) // Sort an array a of
 // n float elements.
{
 if (n <= 1) return; // Nothing to sort.

 register float *last = a + n-1, // A pointer to the last element.
 *p, // A pointer to a selected element.
 *minPtr; // A pointer to the current minimum.

 for (; a < last; ++a) // Walk pointer a through the array.
 {
 minPtr = a; // Find the smallest element
 for (p = a+1; p <= last; ++p) // between a and the last element.
 if (*p < *minPtr)
 minPtr = p;
 swapf(a, minPtr); // Swap the smallest element
 } // with the element at a.
}

The pointer version of such a function is generally more efficient than the index
version because accessing the elements of the array a using an index i, as in the
expression a[i] or *(a+i), involves adding the address a to the value
i*sizeof(element_type) to obtain the address of the corresponding array element.
The pointer version requires less arithmetic because the pointer is incremented
instead of the index, and points to the required array element directly.

Pointers and Type Qualifiers
The declaration of a pointer may contain the type qualifiers const, volatile,
and/or restrict. The const and volatile type qualifiers may qualify either the
pointer type itself, or the type of object it points to. The difference is important.
Those type qualifiers that occur in the pointer’s declarator—that is, between the
asterisk and the pointer’s name—qualify the pointer itself. Here is an example:

148 | Chapter 9: Pointers

short const volatile * restrict ptr;

In this declaration, the keyword restrict qualifies the pointer ptr. This pointer can
refer to objects of type short that may be qualified with const or volatile, or both.

An object whose type is qualified with const is constant: the program cannot mod‐
ify it after its definition. The type qualifier volatile is a hint to the compiler that
the object so qualified may be modified not only by the present program, but also
by other processes or events (see Chapter 11).

The most common use of qualifiers in pointer declarations is
in pointers to constant objects, especially as function parame‐
ters. For this reason, the following description refers to the
type qualifier const. The same rules govern the use of the
volatile type qualifier with pointers.

Constant Pointers and Pointers to Constant Objects
When you define a constant pointer, you must also initialize it because you can’t
modify it later. As the following example illustrates, a constant pointer is not the
same thing as a pointer to a constant object:

int var; // An object with type int.
int *const c_ptr = &var; // A constant pointer to int.
*c_ptr = 123; // OK: we can modify the object referenced.
++c_ptr; // Error: we can't modify the pointer.

You can modify a pointer that points to an object that has a const-qualified type
(also called a pointer to const). However, you can only use such a pointer to read the
referenced object, not to modify it. For this reason, pointers to const are commonly
called read-only pointers. The referenced object itself may or may not be constant.
Here is an example:

int var; // An object with type int.
const int c_var = 100, // A constant int object.
 *ptr_to_const; // A pointer to const int: the pointer
 // itself is not constant!
ptr_to_const = &c_var; // OK: Let ptr_to_const point to c_var.
var = 2 * *ptr_to_const; // OK. Equivalent to: var = 2 * c_var;
ptr_to_const = &var; // OK: Let ptr_to_const point to var.
if (c_var < *ptr_to_const) // OK: "read-only" access.
 *ptr_to_const = 77; // Error: we can't modify var using
 // ptr_to_const, even though var is
 // not constant.

Type specifiers and type qualifiers can be written in any order. Thus, the following is
permissible:

int const c_var = 100, *ptr_to_const;

P
o

inters

Pointers and Type Qualifiers | 149

The assignment ptr_to_const = &var entails an implicit conversion: the int
pointer value &var is automatically converted to the left operand’s type, pointer to
const int. For any operator that requires operands with like types, the compiler
implicitly converts a pointer to a given type T into a more qualified version of the
type T. If you want to convert a pointer into a pointer to a less-qualified type, you
must use an explicit type conversion. The following code fragment uses the vari‐
ables declared in the previous example:

int *ptr = &var; // An int pointer that points to var.
*ptr = 77; // OK: ptr is not a read-only pointer.
ptr_to_const = ptr; // OK: implicitly converts ptr from "pointer to
 // int" into "pointer to const int".
*ptr_to_const = 77; // Error: can't modify a variable through a
 // read-only pointer.
ptr = &c_var; // Error: can't implicitly convert "pointer to
 // const int" into "pointer to int".
ptr = (int *)&c_var; // OK: Explicit pointer conversions are always
 // possible.
*ptr = 200; // Attempt to modify c_var: possible runtime
 // error.

The final statement causes a runtime error if the compiler has placed the constant
object c_var in a read-only section in memory.

You can also declare a constant pointer to const, as the parameter declaration in the
following function prototype illustrates:

void func(const int * const c_ptr_to_const);

The function’s parameter is a read-only pointer that is initialized when the function
is called and remains constant within the function.

Restricted Pointers
C99 introduced the type qualifier restrict, which is applicable only to object
pointers. A pointer qualified with restrict is called a restricted pointer. There is a
special relationship between a restrict-qualified pointer and the object it points to:
during the lifetime of the pointer, either the object is not modified or the object is
not accessed except through the restrict-qualified pointer. Here is an example:

typedef struct { long key; // Define a structure type.
 /* ... other members ... */
 } Data_t;
Data_t * restrict rPtr = malloc(sizeof(Data_t)); // Allocate a
 // structure.

This example illustrates one way to respect the relationship between the restricted
pointer and its object: the return value of malloc()—the address of an anonymous
Data_t object—is assigned only to the pointer rPtr, so the program won’t access the
object in any other way.

150 | Chapter 9: Pointers

It is up to you, the programmer, to make sure that an object referenced by a
restrict-qualified pointer is accessed only through that pointer. For example, if
your program modifies an object through a restricted pointer, it must not access the
object by name or through another pointer for as long as the restricted pointer
exists.

The restrict type qualifier is a hint to the compiler that allows it to apply certain
optimization techniques that might otherwise introduce inconsistencies. However,
the restrict qualifier does not mandate any such optimization, and the compiler
may ignore it. The program’s outward behavior is the same in either case.

The restrict type qualifier is used in the prototypes of many standard library
functions. For example, the memcpy() function is declared in the string.h header file
as follows:

void *memcpy(void * restrict dest, // Destination
 const void * restrict src, // Source
 size_t n); // Number of bytes to copy

This function copies a memory block of n bytes, beginning at the address src, to the
location beginning at dest. Because the pointer parameters are both restricted, you
must make sure that the function will not use them to access the same objects; in
other words, make sure that the source and destination blocks do not overlap. The
following example contains one correct and one incorrect memcpy() call:

char a[200];
/* ... */
memcpy(a+100, a, 100); // OK: copy the first half of the array
 // to the second half; no overlap.
memcpy(a+1, a, 199); // Error: move the whole array contents
 // upward by one index; large overlap.

The second memcpy() call in this example violates the restrict condition, because
the function must modify 198 locations that it accesses using both pointers.

The standard function memmove(), unlike memcpy(), allows the source and destina‐
tion blocks to overlap. Accordingly, neither of its pointer parameters has the
restrict qualifier:

void *memmove(void *dest, const void *src, size_t n);

Example 9-3 illustrates the second way to fulfill the restrict condition: the pro‐
gram may access the object pointed to using other names or pointers if it doesn’t
modify the object for as long as the restricted pointer exists. This simple function
calculates the scalar product of two arrays.

P
o

inters

Pointers and Type Qualifiers | 151

Example 9-3. The function scalar_product()

// This function calculates the scalar product of two arrays.
// Arguments: Two arrays of double, and their length.
// The two arrays need not be distinct.

double scalar_product(const double * restrict p1,
 const double * restrict p2,
 int n)
{
 double result = 0.0;
 for (int i = 0; i < n; ++i)
 result += p1[i] * p2[i];
 return result;
}

Assuming an array named P with three double elements, you could call this func‐
tion using the expression scalar_products(P, P, 3). The function accesses
objects through two different restricted pointers, but as the const keyword in the
first two parameter declarations indicates, it doesn’t modify them.

Pointers to Arrays and Arrays of Pointers
Pointers occur in many C programs as references to arrays, and also as elements of
arrays. A pointer to an array type is called an array pointer for short, and an array
whose elements are pointers is called a pointer array.

Array Pointers
For the sake of example, the following description deals with an array of int. The
same principles apply for any other array type, including multidimensional arrays.

To declare a pointer to an array type, you must use parentheses, as the following
example illustrates:

int (* arrPtr)[10] = NULL; // A pointer to an array of
 // ten elements with type int.

Without the parentheses, the declaration int * arrPtr[10]; would define arrPtr
as an array of 10 pointers to int. Arrays of pointers are described in the next
section.

In the example, the pointer to an array of 10 int elements is initialized with NULL.
However, if we assign it the address of an appropriate array, then the expression
*arrPtr yields the array, and (*arrPtr)[i] yields the array element with the index
i. According to the rules for the subscript operator, the expression (*arrPtr)[i] is
equivalent to *((*arrPtr)+1) (see “Memory Addressing Operators” on page 87).
Hence, **arrPtr yields the first element of the array, with the index 0.

152 | Chapter 9: Pointers

In order to demonstrate a few operations with the array pointer arrPtr, the follow‐
ing example uses it to address some elements of a two-dimensional array—that is,
some rows of a matrix (see “Matrices” on page 136):

int matrix[3][10]; // Array of three rows, each with 10 columns.
 // The array name is a pointer to the first
 // element; i.e., the first row.
arrPtr = matrix; // Let arrPtr point to the first row of
 // the matrix.
(*arrPtr)[0] = 5; // Assign the value 5 to the first element of
 // the first row.
 //
arrPtr[2][9] = 6; // Assign the value 6 to the last element of
 // the last row.
 //
++arrPtr; // Advance the pointer to the next row.
(*arrPtr)[0] = 7; // Assign the value 7 to the first element
 // of the second row.

After the initial assignment, arrPtr points to the first row of the matrix, just as the
array name matrix does. At this point, you can use arrPtr in the same way as
matrix to access the elements. For example, the assignment (*arrPtr)[0] = 5 is
equivalent to arrPtr[0][0] = 5 or matrix[0][0] = 5.

However, unlike the array name matrix, the pointer name arrPtr does not repre‐
sent a constant address, as the operation ++arrPtr shows. The increment operation
increases the address stored in an array pointer by the size of one array—in this
case, one row of the matrix, or ten times the number of bytes in an int element.

If you want to pass a multidimensional array to a function, you must declare the
corresponding function parameter as a pointer to an array type. For a full descrip‐
tion and an example of this use of pointers, see “Arrays as Arguments of Functions”
on page 138.

One more word of caution: if a is an array of ten int elements, then you cannot
make the pointer from the previous example, arrPtr, point to the array a by this
assignment:

arrPtr = a; // Error: mismatched pointer types.

The reason is that an array name, such as a, is implicitly converted into a pointer to
the array’s first element, not a pointer to the whole array. The pointer to int is not
implicitly converted into a pointer to an array of int. The assignment in the exam‐
ple requires an explicit type conversion, specifying the target type int (*)[10] in
the cast operator:

arrPtr = (int (*)[10])a; // OK

You can derive this notation for the array pointer type from the declaration of
arrPtr by removing the identifier (see “Type Names” on page 184). However, for

P
o

inters

Pointers to Arrays and Arrays of Pointers | 153

more readable and more flexible code, it is a good idea to define a simpler name for
the type using typedef:

typedef int ARRAY_t[10]; // A type name for
 // "array of ten int elements".
ARRAY_t a, // An array of this type,
 *arrPtr; // and a pointer to this array type.
arrPtr = (ARRAY_t *)a; // Let arrPtr point to a.

Pointer Arrays
Pointer arrays—that is, arrays whose elements have a pointer type—are often a
handy alternative to two-dimensional arrays. Usually the pointers in such an array
point to dynamically allocated memory blocks.

For example, if you need to process strings, you could store them in a two-
dimensional array whose row size is large enough to hold the longest string that can
occur:

#define ARRAY_LEN 100
#define STRLEN_MAX 256
char myStrings[ARRAY_LEN][STRLEN_MAX] =
{ // Several corollaries of Murphy's law:
 "If anything can go wrong, it will.",
 "Nothing is foolproof, because fools are so ingenious.",
 "Every solution breeds new problems."
};

However, this technique wastes memory, as only a small fraction of the 25,600 bytes
devoted to the array is actually used. For one thing, a short string leaves most of a
row empty; for another, memory is reserved for whole rows that may never be used.
A simple solution in such cases is to use an array of pointers that reference the
objects—in this case, the strings—and to allocate memory only for the pointer array
and for objects that actually exist (unused array elements are null pointers):

#define ARRAY_LEN 100
char *myStrPtr[ARRAY_LEN] = // Array of pointers to char
{ // Several corollaries of Murphy's law:
 "If anything can go wrong, it will.",
 "Nothing is foolproof, because fools are so ingenious.",
 "Every solution breeds new problems."
};

The diagram in Figure 9-3 illustrates how the objects are stored in memory.

154 | Chapter 9: Pointers

Figure 9-3. Pointer array

The pointers not yet used can be made to point to other strings at runtime. The nec‐
essary storage can be reserved dynamically in the usual way. The memory can also
be released when it is no longer needed.

The program in Example 9-4 is a simple version of the filter utility sort. It reads text
from the standard input stream, sorts the lines alphanumerically, and prints them to
standard output. This routine does not move any strings; it merely sorts an array of
pointers.

Example 9-4. A simple program to sort lines of text

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *getLine(void); // Reads a line of text
int str_compare(const void *, const void *);

#define NLINES_MAX 1000 // Maximum number of text lines.
char *linePtr[NLINES_MAX]; // Array of pointers to char.

int main()
{
 // Read lines:
 int n = 0; // Number of lines read.
 for (; n < NLINES_MAX && (linePtr[n] = getLine()) != NULL; ++n)
 ;

 if (!feof(stdin)) // Handle errors.
 {
 if (n == NLINES_MAX)
 fputs("sorttext: too many lines.\n", stderr);
 else
 fputs("sorttext: error reading from stdin.\n", stderr);
 }
 else // Sort and print.
 {
 qsort(linePtr, n, sizeof(char*), str_compare); // Sort.
 for (char **p = linePtr; p < linePtr+n; ++p) // Print.

P
o

inters

Pointers to Arrays and Arrays of Pointers | 155

 puts(*p);
 }
 return 0;
}

// Reads a line of text from stdin; drops the terminating
// newline character.
// Return value: A pointer to the string read, or
// NULL at end-of-file, or if an error occurred.
#define LEN_MAX 512 // Maximum length of a line.

char *getLine()
{
 char buffer[LEN_MAX], *linePtr = NULL;
 if (fgets(buffer, LEN_MAX, stdin) != NULL)
 {
 size_t len = strlen(buffer);

 if (buffer[len-1] == '\n') // Trim the newline character.
 buffer[len-1] = '\0';
 else
 ++len;

 if ((linePtr = malloc(len)) != NULL) // Get memory for the line.
 strcpy(linePtr, buffer); // Copy the line to the allocated block.
 }
 return linePtr;
}

// Comparison function for use by qsort().
// Arguments: Pointers to two elements in the array being sorted:
// here, two pointers to pointers to char (char **).
int str_compare(const void *p1, const void *p2)
{
 return strcmp(*(char **)p1, *(char **)p2);
}

The maximum number of lines that the program in Example 9-4 can sort is limited
by the constant NLINES_MAX. However, we could remove this limitation by creating
the array of pointers to text lines dynamically as well.

Pointers to Functions
There are a variety of uses for function pointers in C. For example, when you call a
function, you might want to pass it not only the data for it to process but also point‐
ers to subroutines that determine how it processes the data. We have just seen an
example of this use: the standard function qsort(), used in Example 9-4, takes a
pointer to a comparison function as one of its arguments in addition to the infor‐
mation about the array to be sorted. qsort() uses the pointer to call the specified
function whenever it has to compare two array elements.

156 | Chapter 9: Pointers

You can also store function pointers in arrays, and then call the functions using
array index notation. For example, a keyboard driver might use a table of function
pointers whose indices correspond to the key numbers. When the user presses a key,
the program would jump to the corresponding function.

Like declarations of pointers to array types, function pointer declarations require
parentheses. The examples that follow illustrate how to declare and use pointers to
functions. This declaration defines a pointer to a function type with two parameters
of type double and a return value of type double:

double (*funcPtr)(double, double);

The parentheses that enclose the asterisk and the identifier are important. Without
them, the declaration double *funcPtr(double, double); would be the prototype
of a function, not the definition of a pointer.

Wherever necessary, the name of a function is implicitly converted into a pointer to
the function. Thus, the following statements assign the address of the standard
function pow() to the pointer funcPtr, and then call the function using that pointer:

double result;
funcPtr = pow; // Let funcPtr point to the function pow().
 // The expression *funcPtr now yields the
 // function pow().

result = (*funcPtr)(1.5, 2.0); // Call the function referenced by
 // funcPtr.
result = funcPtr(1.5, 2.0); // The same function call.

As the last line in this example shows, when you call a function using a pointer, you
can omit the indirection operator because the left operand of the function call oper‐
ator (i.e., the parentheses enclosing the argument list) has the type “pointer to func‐
tion” (see “Function calls” on page 91).

The simple program in Example 9-5 prompts the user to enter two numbers, and
then performs some simple calculations with them. The mathematical functions are
called by pointers that are stored in the array funcTable.

Example 9-5. Simple use of function pointers

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double Add(double x, double y) { return x + y; }
double Sub(double x, double y) { return x − y; }
double Mul(double x, double y) { return x * y; }
double Div(double x, double y) { return x / y; }

// Array of 5 pointers to functions that take two double parameters
// and return a double:

P
o

inters

Pointers to Functions | 157

double (*funcTable[5])(double, double)
 = { Add, Sub, Mul, Div, pow }; // Initializer list.

// An array of pointers to strings for output:
char *msgTable[5] = {"Sum", "Difference", "Product", "Quotient", "Power"};

int main()
{
 int i; // An index variable.
 double x = 0, y = 0;

 printf("Enter two operands for some arithmetic:\n");
 if (scanf("%lf %lf", &x, &y) != 2)
 printf("Invalid input.\n");

 for (i = 0; i < 5; ++i)
 printf("%10s: %6.2f\n", msgTable[i], funcTable[i](x, y));

 return 0;
}

The expression funcTable[i](x,y) calls the function whose address is stored in the
pointer funcTable[i]. The array name and subscript do not need to be enclosed in
parentheses because the function call operator () and the subscript operator [] both
have the highest precedence and left-to-right associativity (see Table 5-4).

Once again, complex types such as arrays of function pointers are easier to manage
if you define simpler type names using typedef. For example, you could define the
array funcTable as follows:

typedef double func_t(double, double); // The functions' type is
 // now named func_t.
func_t *funcTable[5] = { Add, Sub, Mul, Div, pow };

This approach is certainly more readable than the array definition in Example 9-5.

158 | Chapter 9: Pointers

10
Structures, Unions, and Bit-Fields

The pieces of information that describe the characteristics of objects, such as infor‐
mation on companies or customers, are generally grouped together in records.
Records make it easy to organize, present, and store information about similar
objects.

A record is composed of fields that contain the individual details, such as the name,
address, and legal form of a company. In C, you determine the names and types of
the fields in a record by defining a structure type. The fields are called the members
of the structure.

A union is defined in the same way as a structure. Unlike the members of a struc‐
ture, all the members of a union start at the same address. Hence you define a union
type when you want to use the same location in memory for different types of
objects.

In addition to the basic and derived types, the members of structures and unions
can also include bit-fields. A bit-field is an integer variable composed of a specified
number of bits. By defining bit-fields, you can break down an addressable memory
unit into groups of individual bits that you can address by name.

Structures
A structure type is a type defined within the program that specifies the format of a
record, including the names and types of its members, and the order in which they
are stored. Once you have defined a structure type, you can use it like any other type
in declaring objects, pointers to those objects, and arrays of such structure elements.

159

Defining Structure Types
The definition of a structure type begins with the keyword struct, and contains a
list of declarations of the structure’s members, in braces:

struct [tag_name] { member_declaration_list };

A structure must contain at least one member. The following example defines the
type struct Date, which has three members of type short:

struct Date { short month, day, year; };

The identifier Date is this structure type’s tag. The identifiers year, month, and day
are the names of its members. The tags of structure types are a distinct name space:
the compiler distinguishes them from variables or functions whose names are the
same as a structure tag. Likewise, the names of structure members form a separate
name space for each structure type. In this book, we have generally capitalized the
first letter in the names of structure, union, and enumeration types: this is merely a
common convention to help programmers distinguish such names from those of
variables.

The members of a structure may have any desired complete type, including previ‐
ously defined structure types. They must not be variable-length arrays, or pointers
to such arrays.

The following structure type, struct Song, has five members to store five pieces of
information about a music recording. The member published has the type struct
Date, defined in the previous example:

struct Song { char title[64];
 char artist[32];
 char composer[32];
 short duration; // Playing time in seconds.
 struct Date published; // Date of publication.
 };

A structure type cannot contain itself as a member, as its definition is not complete
until the closing brace (}). However, structure types can and often do contain point‐
ers to their own type. Such self-referential structures are used in implementing linked
lists and binary trees, for example. The following example defines a type for the
members of a singly linked list:

struct Cell { struct Song song; // This record's data.
 struct Cell *pNext; // A pointer to the next record.
 };

If you use a structure type in several source files, you should place its definition in
an included header file. Typically, the same header file will contain the prototypes of
the functions that operate on structures of that type. Then you can use the structure
type and the corresponding functions in any source file that includes the given
header file.

160 | Chapter 10: Structures, Unions, and Bit-Fields

Structure Objects and typedef Names
Within the scope of a structure type definition, you can declare objects of that type:

struct Song song1, song2, *pSong = &song1;

This example defines song1 and song2 as objects of type struct Song, and pSong as
a pointer that points to the object song1. The keyword struct must be included
whenever you use the structure type. You can also use typedef to define a one-word
name for a structure type:

typedef struct Song Song_t; // Song_t is now a synonym for
 // struct Song.
Song_t song1, song2, *pSong = &song1; // Two struct Song objects and a
 // struct Song pointer.

Objects with a structure type, such as song1 and song2 in our example, are called
structure objects (or structure variables) for short.

You can also define a structure type without a tag. This approach is practical only if
you define objects at the same time and don’t need the type for anything else, or if
you define the structure type in a typedef declaration so that it has a name after all.
Here is an example:

typedef struct { struct Cell *pFirst, *pLast; } SongList_t;

This typedef declaration defines SongList_t as a name for the structure type
whose members are two pointers to struct Cell named pFirst and pLast.

Incomplete Structure Types
You can define pointers to a structure type even when the structure type has not yet
been defined. Thus, the definition of SongList_t in the previous example would be
permissible and correct even if struct Cell had not yet been defined. In such a
case, the definition of SongList_t would implicitly declare the name Cell as a
structure tag. However, the type struct Cell would remain incomplete until
explicitly defined. The pointers pFirst and pLast, whose type is struct Cell *,
cannot be used to access objects until the type struct Cell is completely defined,
with declarations of its structure members between braces.

The ability to declare pointers to incomplete structure types allows you to define
structure types that refer to each other. Here is a simple example:

struct A { struct B *pB; /* ... other members of struct A ... */ };
struct B { struct A *pA; /* ... other members of struct B ... */ };

These declarations are correct and behave as expected, except in the following case:
if they occur within a block, and the structure type struct B has already been
defined in a larger scope, then the declaration of the member pB in structure A
declares a pointer to the type already defined, and not to the type struct B defined
after struct A. To preclude this interference from the outer scope, you can insert an
“empty” declaration of struct B before the definition of struct A:

Structures,
U

nio
ns, B

it-
Field

s

Structures | 161

struct B;
struct A { struct B *pB; /* ... */ };
struct B { struct A *pA; /* ... */ };

This example declares B as a new structure tag that hides an existing structure tag
from the larger scope, if there is one.

Accessing Structure Members
Two operators allow you to access the members of a structure object: the dot opera‐
tor (.) and the arrow operator (->). Both of them are binary operators whose right
operand is the name of a member.

The left operand of the dot operator is an expression that yields a structure object.
Here are a few examples using the structure struct Song:

#include <string.h> // Prototypes of string functions.
Song_t song1, song2, // Two objects of type Song_t,
 *pSong = &song1; // and a pointer to Song_t.

// Copy a string to the title of song1:
strcpy(song1.title, "Havana Club");

// Likewise for the composer member:
strcpy(song1.composer, "Ottmar Liebert");

song1.duration = 251; // Playing time.

// The member published is itself a structure:
song1.published.year = 1998; // Year of publication.

if ((*pSong).duration > 180)
 printf("The song %s is more than 3 minutes long.\n", (*pSong).title);

Because the pointer pSong points to the object song1, the expression *pSong denotes
the object song1, and (*pSong).duration denotes the member duration in song1.
The parentheses are necessary because the dot operator has a higher precedence
than the indirection operator (see Table 5-4).

If you have a pointer to a structure, you can use the arrow operator -> to access the
structure’s members instead of the indirection and dot operators (* and .). In other
words, an expression of the form p->m is equivalent to (*p).m. Thus, we might
rewrite the if statement in the previous example using the arrow operator as
follows:

if (pSong->duration > 180)
 printf("The song %s is more than 3 minutes long.\n", pSong->title);

You can use an assignment to copy the entire contents of a structure object to
another object of the same type:

song2 = song1;

162 | Chapter 10: Structures, Unions, and Bit-Fields

After this assignment, each member of song2 has the same value as the correspond‐
ing member of song1. Similarly, if a function parameter has a structure type, then
the contents of the corresponding argument are copied to the parameter when you
call the function. This approach can be rather inefficient unless the structure is
small, as in Example 10-1.

Example 10-1. The function dateAsString()

// The function dateAsString() converts a date from a structure of type
// struct Date into a string of the form mm/dd/yyyy.
// Argument: A date value of type struct Date.
// Return value: A pointer to a static buffer containing the date string.

const char *dateAsString(struct Date d)
{
 static char strDate[12];
 sprintf(strDate, "%02d/%02d/%04d", d.month, d.day, d.year);
 return strDate;
}

Larger structures are generally passed by reference. In Example 10-2, the function
call copies only the address of a Song object, not the structure’s contents. Further‐
more, as the function does not modify the structure object, the parameter is a read-
only pointer. Thus, you can also pass this function a pointer to a constant object.

Example 10-2. The function printSong()

// The printSong() function prints out the contents of a structure
// of type Song_t in a tabular format.
// Argument: A pointer to the structure object to be printed.
// Return value: None.

void printSong(const Song_t *pSong)
{
 int m = pSong->duration / 60, // Playing time in minutes
 s = pSong->duration % 60; // and seconds.

 printf("--\n"
 "Title: %s\n"
 "Artist: %s\n"
 "Composer: %s\n"
 "Playing time: %d:%02d\n"
 "Date: %s\n",
 pSong->title, pSong->artist, pSong->composer, m, s,
 dateAsString(pSong->published));
}

The song’s playing time is printed in the format m:ss. The function dateAsString()
converts the publication date from a structure to string format.

Structures,
U

nio
ns, B

it-
Field

s

Structures | 163

Initializing Structures
When you define structure objects without explicitly initializing them, the usual ini‐
tialization rules apply: if the structure object has automatic storage class, then its
members have indeterminate initial values. If, on the other hand, the structure
object has static storage duration, then the initial value of its members is zero, or if
they have pointer types, a null pointer (see “Initialization” on page 190).

To initialize a structure object explicitly when you define it, you must use an initiali‐
zation list: this is a comma-separated list of initializers, or initial values for the indi‐
vidual structure members, enclosed in braces. The initializers are associated with
the members in the order of their declarations: the first initializer is associated with
the first member, the second initializer goes with the second member, and so forth.
Of course, each initializer must have a type that matches (or can be implicitly con‐
verted into) the type of the corresponding member. Here is an example:

Song_t mySong = { "What It Is",
 "Aubrey Haynie; Mark Knopfler",
 "Mark Knopfler",
 297,
 { 9, 26, 2000 }
 };

This list contains an initializer for each member. Because the member published
has a structure type, its initializer is another initialization list.

You may also specify fewer initializers than the number of members in the struc‐
ture. In this case, any remaining members are initialized to zero.

Song_t yourSong = { "El Macho" };

After this definition, all members of yourSong have the value zero, except for the
first member. The char arrays contain empty strings, and the member published
contains the invalid date { 0, 0, 0 }.

The initializers may be nonconstant expressions if the structure object has auto‐
matic storage class. You can also initialize a new, automatic structure variable with a
existing object of the same type:

Song_t yourSong = mySong; // Valid initialization within a block

Initializing Specific Members
The C99 standard allows you to explicitly associate an initializer with a certain
member. To do so, you must prefix a member designator with an equal sign to the
initializer. The general form of a designator for the structure member member is:

.member // Member designator

The declaration in the following example initializes a Song_t object using the mem‐
ber designators .title and .composer:

164 | Chapter 10: Structures, Unions, and Bit-Fields

Song_t aSong = { .title = "I've Just Seen a Face",
 .composer = "John Lennon; Paul McCartney",
 127
 };

The member designator .title is actually superfluous here because title is the
first member of the structure. An initializer with no designator is associated with
the first member, if it is the first initializer, or with the member that follows the last
member initialized. Thus, in the previous example, the value 127 initializes the
member duration. All other members of the structure have the initial value 0.

Structure Members in Memory
The members of a structure object are stored in memory in the order in which they
are declared in the structure type’s definition. The address of the first member is
identical with the address of the structure object itself. The address of each member
declared after the first one is greater than those of members declared earlier.

Sometimes it is useful to obtain the offset of a member from the beginning address
of the structure. This offset, as a number of bytes, is given by the macro offsetof,
defined in the header file stddef.h. The macro’s arguments are the structure type and
the name of the member:

offsetof(structure_type, member)

The result has the type size_t. As an example, if pSong is a pointer to a Song_t
structure, then we can initialize the pointer ptr with the address of the first charac‐
ter in the member composer:

char *ptr = (char *)pSong + offsetof(Song_t, composer);

The compiler may align the members of a structure on certain kinds of addresses,
such as 32-bit boundaries, to ensure fast access to the members. This step results in
gaps, or unused bytes between the members. The compiler may also add extra bytes,
commonly called padding, to the structure after the last member. As a result, the size
of a structure can be greater than the sum of its members’ sizes. You should always
use the sizeof operator to obtain a structure’s size, and the offsetof macro to
obtain the positions of its members.

You can control the compiler’s alignment of structure members—to avoid gaps
between members, for example—by means of compiler options, such as the -fpack-
struct flag for GCC, or the /Zp1 command-line option or the pragma pack(1) for
Visual C/C++. However, you should use these options only if your program places
special requirements on the alignment of structure elements (for conformance to
hardware interfaces, for example).

Programs need to determine the sizes of structures when allocating memory for
objects, or when writing the contents of structure objects to a binary file. In the fol‐
lowing example, fp is the FILE pointer to a file opened for writing binary data:

Structures,
U

nio
ns, B

it-
Field

s

Structures | 165

#include <stdio.h> // Prototype of fwrite().

/* ... */

if (fwrite(&aSong, sizeof(aSong), 1, fp) < 1)
 fprintf(stderr, "Error writing \"%s\".\n", aSong.title);

If the function call is successful, fwrite() writes one data object of size
sizeof(aSong), beginning at the address &aSong, to the file opened with the FILE
pointer fp.

Flexible Structure Members
C99 allows the last member of a structure with more than one member to have an
incomplete array type—that is, the last member may be declared as an array of
unspecified length. Such a structure member is called a flexible array member. In the
following example, array is the name of a flexible member:

typedef struct { int len; float array[]; } DynArray_t;

There are only two cases in which the compiler gives special treatment to a flexible
member:

• The size of a structure that ends in a flexible array member is equal to the offset
of the flexible member. In other words, the flexible member is not counted in
calculating the size of the structure (although any padding that precedes the
flexible member is counted). For example, the expressions
sizeof(DynArray_t) and offsetof(DynArray_t, array) yield the same
value.

• When you access the flexible member using the dot or arrow operator (. or
->), you the programmer must make sure that the object in memory is large
enough to contain the flexible member’s value. You can do this by allocating the
necessary memory dynamically. Here is an example:

DynArray_t *daPtr = malloc(sizeof(DynArray_t) + 10*sizeof(float));

This initialization reserves space for ten elements in the flexible array member.
Now you can perform the following operations:

daPtr->len = 10;
for (int i = 0; i < daPtr->len; ++i)
 daPtr->array[i] = 1.0F/(i+1);

Because you have allocated space for only ten array elements in the flexible
member, the following assignment is not permitted:

daPtr->array[10] = 0.1F // Invalid array index.

Although some implementations of the C standard library are aimed at making
programs safer from such array index errors, you should avoid them by careful

166 | Chapter 10: Structures, Unions, and Bit-Fields

programming. In all other operations, the flexible member of the structure is
ignored, as in this structure assignment, for example:

DynArray_t da1;
da1 = *daPtr;

This assignment copies only the member len of the object addressed by daPtr, not
the elements of the object’s array member. In fact, the left operand, da1, doesn’t even
have storage space for the array. But even when the left operand of the assignment
has sufficient space available, the flexible member is still ignored.

C99 also doesn’t allow you to initialize a flexible structure member:

DynArray_t da1 = { 100 }, // OK.
 da2 = { 3, { 1.0F, 0.5F, 0.25F } }; // Error.

Nonetheless, many compilers support language extensions that allow you to initial‐
ize a flexible structure member and generate an object of sufficient size to contain
those elements that you initialize explicitly.

Pointers as Structure Members
To include data items that can vary in size in a structure, it is a good idea to use a
pointer rather than including the actual data object in the structure. The pointer
then addresses the data in a separate object for which you allocate the necessary
storage space dynamically. Moreover, this indirect approach allows a structure to
have more than one variable-length “member.”

Pointers as structure members are also very useful in implementing dynamic data
structures. The structure types SongList_t and Cell_t that we defined earlier in
this chapter for the head and items of a list are an example:

// Structures for a list head and list items:

typedef struct { struct Cell *pFirst, *pLast; } SongList_t;

typedef struct Cell { struct Song song; // The record data.
 struct Cell *pNext; // A pointer to the next
 // record.
 } Cell_t;

Figure 10-1 illustrates the structure of a singly linked list made of these structures.

Figure 10-1. A singly linked list

Structures,
U

nio
ns, B

it-
Field

s

Structures | 167

Special attention is required when manipulating such structures. For example, it
generally makes little sense to copy structure objects with pointer members, or to
save them in files. Usually, the data referenced needs to be copied or saved, and the
pointer to it does not. For example, if you want to initialize a new list, named your
List, with the existing list myList, you probably don’t want to do this:

SongList_t yourList = myList;

Such an initialization simply makes a copy of the pointers in myList without creat‐
ing any new objects for yourList. To copy the list itself, you have to duplicate each
object in it. The function cloneSongList(), defined in Example 10-3, does just that:

SongList_t yourList = cloneSongList(&myList);

The function cloneSongList() creates a new object for each item linked to myList,
copies the item’s contents to the new object, and links the new object to the new list.
cloneSongList() calls appendSong() to do the actual creating and linking. If an
error occurs, such as insufficient memory to duplicate all the list items, then clone
SongList() releases the memory allocated up to that point and returns an empty
list. The function clearSongList() destroys all the items in a list.

Example 10-3. The functions cloneSongList(), appendSong(), and
clearSongList()

// The function cloneSongList() duplicates a linked list.
// Argument: A pointer to the list head of the list to be cloned.
// Return value: The new list. If insufficient memory is available to
// duplicate the entire list, the new list is empty.
#include "songs.h" // Contains type definitions (Song_t, etc.) and
 // function prototypes for song-list operations.

SongList_t cloneSongList(const SongList_t *pList)
{
 SongList_t newSL = { NULL, NULL }; // A new, empty list.

 Cell_t *pCell = pList->pFirst; // We start with the first list item.
 while (pCell != NULL && appendSong(&newSL, &pCell->song))
 pCell = pCell->pNext;

 if (pCell != NULL) // If we didn't finish the last item,
 clearSongList(&newSL); // discard any items cloned.

 return newSL; // In either case, return the list head.
}

// The function appendSong() dynamically allocates a new list item, copies
// the given song data to the new object, and appends it to the list.
// Arguments: A pointer to a Song_t object to be copied, and a pointer
// to a list to add the copy to.
// Return value: True if successful; otherwise, false.

168 | Chapter 10: Structures, Unions, and Bit-Fields

bool appendSong(SongList_t *pList, const Song_t *pSong)
{
 Cell_t *pCell = calloc(1, sizeof(Cell_t)); // Create a new list item.

 if (pCell == NULL)
 return false; // Failure: no memory.

 pCell->song = *pSong; // Copy data to the new item.
 pCell->pNext = NULL;

 if (pList->pFirst == NULL) // If the list is still empty,
 pList->pFirst = pList->pLast = pCell; // link a first (and last) item.
 else
 { // If not,
 pList->pLast->pNext = pCell; // insert a new last item.
 pList->pLast = pCell;
 }

 return true; // Success.
}

// The function clearSongList() destroys all the items in a list.
// Argument: A pointer to the list head.

void clearSongList(SongList_t *pList)
{
 Cell_t *pCell, *pNextCell;
 for (pCell = pList->pFirst; pCell != NULL; pCell = pNextCell)
 {
 pNextCell = pCell->pNext;
 free(pCell); // Release the memory allocated for each item.
 }
 pList->pFirst = pList->pLast = NULL;
}

Before the function clearSongList() frees each item, it has to save the pointer to
the item that follows; you can’t read a structure object member after the object has
been destroyed. The header file songs.h included in Example 10-3 is the place to put
all the type definitions and function prototypes needed to implement and use the
song list, including declarations of the functions defined in the example itself. The
header songs.h must also include the header file stdbool.h because the appendSong()
function uses the identifiers bool, true, and false.

Unions
Unlike structure members, which all have distinct locations in the structure, the
members of a union all share the same location in memory; that is, all members of a
union start at the same address. Thus, you can define a union with many members,
but only one member can contain a value at any given time. Unions are an easy way
for programmers to use a location in memory in different ways.

Structures,
U

nio
ns, B

it-
Field

s

Unions | 169

Defining Union Types
The definition of a union is formally the same as that of a structure, except for the
keyword union in place of struct:

union [tag_name] { member_declaration_list };

The following example defines a union type named Data which has the three mem‐
bers i, x, and str:

union Data { int i; double x; char str[16]; };

An object of this type can store an integer, a floating-point number, or a short
string. This declaration defines var as an object of type union Data, and myData as
an array of 100 elements of type union Data (a union is at least as big as its largest
member):

union Data var, myData[100];

To obtain the size of a union, use the sizeof operator. Using our example,
sizeof(var) yields the value 16, and sizeof(myData) yields 1,600.

As Figure 10-2 illustrates, all the members of a union begin at the same address in
memory.

Figure 10-2. An object of the type union Data in memory

To illustrate how unions are different from structures, consider an object of the type
struct Record with members i, x, and str, defined as follows:

struct Record { int i; double x; char str[16]; };

As Figure 10-3 shows, each member of a structure object has a separate location in
memory.

Figure 10-3. An object of the type struct Record in memory

You can access the members of a union in the same ways as structure members. The
only difference is that when you change the value of a union member, you modify
all the members of the union. Here are a few examples using the union objects var
and myData:

170 | Chapter 10: Structures, Unions, and Bit-Fields

var.x = 3.21;
var.x += 0.5;
strcpy(var.str, "Jim"); // Occupies the place of var.x.
myData[0].i = 50;
for (int i = 0; i < 50; ++i)
 myData[i].i = 2 * i;

As for structures, the members of each union type form a name space unto them‐
selves. Hence, in the last of these statements, the index variable i and the union
member i identify two distinct objects.

You, the programmer, are responsible for making sure that the momentary contents
of a union object are interpreted correctly. The different types of the union’s mem‐
bers allow you to interpret the same collection of byte values in different ways. For
example, the following loop uses a union to illustrate the storage of a double value
in memory:

var.x = 1.25;

for (int i = sizeof(double) − 1; i >= 0; --i)
 printf("%02X ", (unsigned char)var.str[i]);

This loop begins with the highest byte of var.x, and generates the following output:

3F F4 00 00 00 00 00 00

Initializing Unions
Like structures, union objects are initialized by an initialization list. For a union,
though, the list can only contain one initializer. As for structures, C99 allows the use
of a member designator in the initializer to indicate which member of the union is
being initialized. Furthermore, if the initializer has no member designator, then it is
associated with the first member of the union. A union object with automatic stor‐
age class can also be initialized with an existing object of the same type. Here are
some examples:

union Data var1 = { 77 },
 var2 = { .str = "Mary" },
 var3 = var1,
 myData[100] = { {.x= 0.5}, { 1 }, var2 };

The array elements of myData for which no initializer is specified are implicitly ini‐
tialized to the value 0.

Anonymous Structures and Unions
Anonymous structures and unions are a new feature of the C11 standard that per‐
mits still greater flexibility in defining structure and union types. A structure or
union is called anonymous if it is defined as an unnamed member of a structure or
union type and has no tag name. In the following example, the second member of
the union type WordByte is an anonymous structure type:

Structures,
U

nio
ns, B

it-
Field

s

Anonymous Structures and Unions | 171

union WordByte
{
 short w;
 struct { char b0, b1 }; // Anonymous structure
};

The members of an anonymous structure or union are treated as members of the
structure or union type that contains the anonymous type.

union WordByte wb = { 256 };
char lowByte = wb.b0;

This rule is applied recursively if the containing structure or union is also anony‐
mous. The following example shows members in a nested anonymous type:

struct Demo
{
 union // Anonymous union
 { struct { long a, b; }; // Anonymous structure
 struct { float x, y; } fl; // Named member, not anonymous
 }
} dObj;

After this definition, the assignment dObj.a = 100; would be correct. However,
you could not directly address x and y as members of dObj; they must be identified
as members of dObj.fl:

dObj.a = 100; // Right
dObj.y = 1.0; // Wrong!
dObj.fl.y = 1.0; // Right

Bit-Fields
Members of structures or unions can also be bit-fields. A bit-field is an integer vari‐
able that consists of a specified number of bits. If you declare several small bit-fields
in succession, the compiler packs them into a single machine word. This permits
very compact storage of small units of information. Of course, you can also manip‐
ulate individual bits using the bitwise operators, but bit-fields offer the advantage of
handling bits by name, like any other structure or union member.

The declaration of a bit-field has the form:

type [member_name] : width ;

The parts of this syntax are as follows:

type
An integer type that determines how the bit-field’s value is interpreted. The
type may be _Bool, int, signed int, unsigned int, or another type defined by
the given implementation. The type may also include type qualifiers.

172 | Chapter 10: Structures, Unions, and Bit-Fields

Bit-fields with type signed int are interpreted as signed; bit-fields whose type
is unsigned int are interpreted as unsigned. Bit-fields of type int may be
signed or unsigned, depending on the compiler.

member_name
The name of the bit-field, which is optional. If you declare a bit-field with no
name, though, there is no way to access it. Nameless bit-fields can serve only as
padding to align subsequent bit-fields to a certain position in a machine word.

width
The number of bits in the bit-field. The width must be a constant integer
expression whose value is non-negative, and must be less than or equal to the
bit width of the specified type.

Nameless bit-fields can have zero width. In this case, the next bit-field declared is
aligned at the beginning of a new addressable storage unit.

When you declare a bit-field in a structure or union, the compiler allocates an
addressable unit of memory that is large enough to accommodate it. Usually, the
storage unit allocated is a machine word whose size is that of the type int. If the
following bit-field fits in the rest of the same storage unit, then it is defined as being
adjacent to the previous bit-field. If the next bit-field does not fit in the remaining
bits of the same unit, then the compiler allocates another storage unit, and may
place the next bit-field at the start of new unit, or wrap it across the end of one stor‐
age unit and the beginning of the next.

The following example redefines the structure type struct Date so that the mem‐
bers month and day occupy only as many bits as necessary. To demonstrate a bit-
field of type _Bool, we have also added a flag for daylight saving time. This code
assumes that the target machine uses words of at least 32 bits:

struct Date {
unsigned int month : 4; // 1 is January; 12 is December.
unsigned int day : 5; // The day of the month (1 to 31).
signed int year : 22; // (-2097152 to +2097151)
_Bool isDST : 1; // True if daylight saving time is in effect.
};

A bit-field of n bits can have 2n distinct values. The structure member month now
has a value range from 0 to 15; the member day has the value range from 0 to 31;
and the value range of the member year is from -2097152 to +2097151. We can ini‐
tialize an object of type struct Date in the normal way, using an initialization list:

struct Date birthday = { 5, 17, 1982 };

The object birthday occupies the same amount of storage space as a 32-bit int
object. Unlike other structure members, bit-fields generally do not occupy an
addressable location in memory. You cannot apply the address operator (&) or the
offsetof macro to a bit-field.

Structures,
U

nio
ns, B

it-
Field

s

Bit-Fields | 173

In all other respects, however, you can treat bit-fields the same as other structure or
union members; use the dot and arrow operators to access them, and perform arith‐
metic with them as with int or unsigned int variables. As a result, the new defini‐
tion of the Date structure using bit-fields does not necessitate any changes in the
dateAsString() function:

const char *dateAsString(struct Date d)
{
 static char strDate[12];
 sprintf(strDate, "%02d/%02d/%04d", d.month, d.day, d.year);
 return strDate;
}

The following statement calls the dateAsString() function for the object birthday,
and prints the result using the standard function puts():

puts(dateAsString(birthday));

174 | Chapter 10: Structures, Unions, and Bit-Fields

11
Declarations

A declaration determines the significance and properties of one or more identifiers.
_Static_assert declarations, introduced in C11, are an exception: these static
assertions do not declare identifiers, but only instruct the compiler to test whether a
constant expression is nonzero. Static assertions are only classed as declarations
because of their syntax.

In other declarations, the identifiers you declare can be the names of objects, func‐
tions, types, or other things, such as enumeration constants. Identifiers of objects
and functions can have various types and scopes. The compiler needs to know all of
these characteristics of an identifier before you can use it in an expression. For this
reason, each translation unit must contain a declaration of each identifier used in it.

Labels used as the destination of goto statements may be placed before any state‐
ment. These identifiers are declared implicitly where they occur. All other identifiers
require explicit declaration before their first use, either outside of all functions or at
the beginning of a block. Beginning with C99, declarations may also appear after
statements within a block.

After you have declared an identifier, you can use it in expressions until the end of
its scope. The identifiers of objects and functions can have file or block scope (see
“Identifier Scope” on page 17).

There are several different kinds of declarations:

• Declarations that only declare a structure, union, or enumeration tag, or the
members of an enumeration (that is, the enumeration constants)

• Declarations that declare one or more object or function identifiers

175

• typedef declarations, which declare new names for existing types

• _Static_assert declarations, which instruct the compiler to test an assertion
without declaring an identifier (C11)

Declarations of enumerated, structure, and union types are described in Chapters 2
and 10. This chapter deals mainly with object, function, and typedef declarations.

Object and Function Declarations
These declarations contain a declarator list with one or more declarators. Each
declarator declares an identifier for an object or a function. The general form of this
kind of declaration is:

[storage_class_specifier] type declarator [, declarator [, ...]];

The parts of this syntax are as follows:

storage_class_specifier

No more than one of the storage class specifiers extern, static,
_Thread_local, auto, or register, or the specifier _Thread_local in conjunc‐
tion with extern or static. The exact meanings of the storage class specifiers,
and restrictions on their use, are described in “Storage Class Specifiers” on page
178.

type
At least a type specifier, possibly with type qualifiers. The type specifier may be
any of these:

• A basic type
• The type void
• An enumerated, structure, or union type
• A name defined by a previous typedef declaration

In a function declaration, type may also include one of the type specifiers
inline or _Noreturn.

In an object declaration, type may also contain one or more of the type qualifi‐
ers const, volatile, and restrict. In C11 implementations that support
atomic objects, an object declaration may declare the object as atomic by using
the type qualifier _Atomic, or by using a type specifier of the form
_Atomic(type_name). The various type qualifiers are described with examples
in “Type Qualifiers” on page 180.

The C11 keyword _Alignas allows you to influence the alignment of objects
you declare. For more on the alignment of objects, see “The Alignment of
Objects in Memory” on page 36.

176 | Chapter 11: Declarations

declarator
The declarator list is a comma-separated list containing at least one declarator.
A declarator names the identifier that is being declared. If the declarator
defines an object, it may also include an initializer for the identifier. There are
four different kinds of declarators:

Function declarator
The identifier is declared as a function name if it is immediately followed
by a left parenthesis (().

Array declarator
The identifier is declared as an array name if it is immediately followed by
a left bracket ([).

Pointer declarator
The identifier is the name of a pointer if it is preceded by an asterisk (*)—
possibly with interposed type qualifiers—and if the declarator is neither a
function nor an array declarator.

Other
Otherwise, the identifier designates an object of the specified type.

A declarator in parentheses is equivalent to the same declarator without the
parentheses, and the rules listed here assume that declarations contain no
unnecessary parentheses. However, you can use parentheses intentionally in
declarations to control the associations between the syntax elements described.
We will discuss this in detail in “Complex Declarators” on page 182.

Examples
Let us examine some examples of object and function declarations. We discuss dec‐
larations of typedef names in “typedef Declarations” on page 185.

In the following example, the declarator list in the first line contains two declarators,
one of which includes an initializer. The line declares two objects, iVar1 and iVar2,
both with type int. iVar2 begins its existence with the value 10:

int iVar1, iVar2 = 10;
static char msg[] = "Hello, world!";

The second line in this example defines and initializes an array of char named msg
with static storage duration (we discuss storage duration in “Storage Class Specifi‐
ers” on page 178).

Next, you see the declaration of an external variable named status with the quali‐
fied type volatile short:

extern volatile short status;

D
eclaratio

ns

Object and Function Declarations | 177

The next declaration defines an anonymous enumerated type with the enumeration
constants OFF and ON, as well as the variable toggle with this type. The declaration
initializes toggle with the value ON:

enum { OFF, ON } toggle = ON;

The following example defines the structure type struct CharColor, whose mem‐
bers are the bit-fields fg, bg, and bl. It also defines the variable attribute with this
type, and initializes the members of attribute with the values 12, 1, and 0.

struct CharColor { unsigned fg:4, bg:3, bl:1; } attribute = {12, 1, 0};

The second line of the next example defines an array named clientArray with 100
elements of type struct Client, and a pointer to struct Client named
clientPtr, initialized with the address of the first element in clientArray:

struct Client { char name[64], pin[16]; /* ... */ };
struct Client clientArray[100], *clientPtr = clientArray;

Next you see a declaration of a float variable, x, and an array, flPtrArray, whose
10 elements have the type pointer to float. The first of these pointers, flPtrAr
ray[0], is initialized with &x; the remaining array elements are initialized as null
pointers:

float x, *flPtrArray[10] = { &x };

The following line declares the function func1() with the return value type int.
This declaration offers no information about the number and types of the function’s
parameters, if any:

int func1();

We’ll move on to the declaration of a static function named func2(), whose only
parameter has the type pointer to double, and which also returns a pointer to
double:

static double *func2(double *);

Last, we define the inline function printAmount(), with two parameters, returning
int:

inline int printAmount(double amount, int width)
{ return printf("%*.2lf", width, amount); }

Storage Class Specifiers
A storage class specifier in a declaration modifies the linkage of the identifier (or
identifiers) declared, and the storage duration of the corresponding objects. (The
concepts of linkage and storage duration are explained individually in later sections
of this chapter.)

178 | Chapter 11: Declarations

A frequent source of confusion in regard to C is the fact that
linkage (which is a property of identifiers) and storage dura‐
tion (which is a property of objects) are both influenced in
declarations by the same set of keywords—the storage class
specifiers. As we explain in the upcoming sections of this
chapter, the storage duration of an object can be automatic,
static, or allocated, and the linkage of an identifer can be
external, internal, or none. Expressions such as “static linkage”
or “external storage” in the context of C declarations are
meaningless except as warning signs of incipient confusion.
Remember: objects have storage duration, not linkage; and
identifiers have linkage, not storage duration.

No more than one storage class specifier may appear in a declaration. Function
identifiers may be accompanied only by the storage class specifier extern or static.
Function parameters may take only the storage class specifier register. The five
storage class specifiers have the following meanings:

auto

Objects declared with the auto specifier have automatic storage duration. This
specifier is permissible only in object declarations within a function. In ANSI
C, objects declared within a function have automatic storage duration by
default, and the auto specifier is archaic.

register

You can use the specifier register when declaring objects with automatic stor‐
age duration. The register keyword is a hint to the compiler that the object
should be made as quickly accessible as possible—ideally, by storing it in a
CPU register. However, the compiler may treat some or all objects declared
with register the same as ordinary objects with automatic storage duration.
In any case, programs must not use the address operator on objects declared
with the register specifier.

static

A function identifier declared with the specifier static has internal linkage. In
other words, such an identifier cannot be used in another translation unit to
access the function.

An object identifier declared with static has either no linkage or internal link‐
age, depending on whether the object’s definition is inside a function or outside
all functions. Objects declared with static always have static storage duration.
Thus, the specifier static allows you to define local objects—that is, objects
with block scope—that have static storage duration.

extern

Function and object identifiers declared with the extern specifier have external
linkage. You can use them anywhere in the entire program. External objects
have static storage duration.

D
eclaratio

ns

Object and Function Declarations | 179

_Thread_local

The specifier _Thread_local declares the given object as thread-local, which
means that each thread has its own separate instance of the object. Only objects
can be declared as thread-local, not functions. If you declare a thread-local
object within a function, the declaration must also have either the extern or
the static specifier. In expressions, the identifier of a thread-local object
always refers to the local instance of the object belonging to the thread in which
the expression is being evaluated. For an example, see “Using Thread-Local
Objects” on page 257.

Type Qualifiers
You can modify types in a declaration by including the type qualifiers const,
volatile, restrict, and _Atomic. A declaration may contain any number of type
qualifiers in any order. A type qualifier list may even contain the same type qualifier
several times, or the same qualifier may be applied repeatedly through qualified
typedef names. The compiler ignores such repetitions of any qualifier, treating
them as if the qualifier were present only once.

The individual type qualifiers have the following meanings:

const

An object whose type is qualified with const is constant; the program cannot
modify it after its definition.

volatile

An object whose type is qualified with volatile may be modified by other pro‐
cesses or events. The volatile keyword instructs the compiler to reread the
object’s value each time it is used, even if the program itself has not changed it
since the previous access. This is most commonly used in programming for
hardware interfaces, where a value can be changed by external events.

restrict

The restrict qualifier is applicable only to object pointer types. The type
qualifier restrict was introduced in C99, and is a hint to the compiler that the
object referenced by a given pointer, if it is modified at all, will not be accessed
in any other way except using that pointer, whether directly or indirectly. This
feature allows the compiler to apply certain optimization techniques that would
not be possible without such a restriction. The compiler may ignore the
restrict qualifier without affecting the result of the program.

_Atomic

An object declared with the type qualifier _Atomic is an atomic object. Arrays
cannot be atomic. Support for atomic objects is optional: C11 implementations
may define the macro __STDC_NO_ATOMICS__ to indicate that programs cannot
declare atomic objects. For more information about atomic objects, see “Atomic
Objects” on page 247.

180 | Chapter 11: Declarations

The compiler may store objects qualified as const but not volatile, in a read-only
segment of memory. It may also happen that the compiler allocates no storage for
such an object if the program does not use its address.

Objects qualified with both const and volatile, such as the object ticks in the fol‐
lowing example, cannot be modified by the program itself but may be modified by
something else, such as a clock chip’s interrupt handler:

extern const volatile int ticks;

Here are some more examples of declarations using qualified types:

const int limit = 10000; // A constant int object.
typedef struct { double x, y, r; } Circle; // A structure type.
const Circle unit_circle = { 0, 0, 1 }; // A constant Circle object.
const float v[] = { 1.0F, 0.5F, 0.25F }; // An array of constant
 // float elements.
volatile short * restrict vsPtr; // A restricted pointer to
 // volatile short.

With pointer types, the type qualifiers to the right of the asterisk qualify the pointer
itself, and those to the left of the asterisk qualify the type of object it points to. In the
last example, the pointer vsPtr is qualified with restrict, and the object it points
to is qualified with volatile. For more details, including more about restricted
pointers, see “Pointers and Type Qualifiers” on page 148.

Declarations and Definitions
You can declare an identifier as often as you want, but only one declaration within
its scope can be a definition. Placing the definitions of objects and functions with
external linkage in header files is a common way of introducing duplicate defini‐
tions and is therefore not a good idea.

An identifier’s declaration is a definition in the following cases:

• A function declaration is a definition if it contains the function block. Here is
an example:

int iMax(int a, int b); // This is a declaration, not a
 // definition.
int iMax(int a, int b) // This is the function's definition.
{ return (a >= b ? a : b); }

• An object declaration is a definition if it allocates storage for the object. Decla‐
rations that include initializers are always definitions. Furthermore, all declara‐
tions within function blocks are definitions unless they contain the storage
class specifier extern. Here are some examples:

int a = 10; // Definition of a.
extern double b[]; // Declaration of the array b, which is
 // defined elsewhere in the program.
void func()
{

D
eclaratio

ns

Object and Function Declarations | 181

 extern char c; // Declaration of c, not a definition.
 static short d; // Definition of d.
 float e; // Definition of e.
 /* ... */
}

If you declare an object outside of all functions, without an initializer and
without the storage class specifier extern, the declaration is a tentative defini‐
tion. Here are some examples:

int i, v[]; // Tentative definitions of i, v and j.
static int j;

A tentative definition of an identifier remains a simple declaration if the trans‐
lation unit contains another definition for the same identifier. If not, then the
compiler behaves as if the tentative definition had included an initializer with
the value zero, making it a definition. Thus, the int variables i and j in the
previous example, whose identifiers are declared without initializers, are
implicitly initialized with the value 0, and the int array v has one element, with
the initial value 0.

Complex Declarators
The symbols (), [], and * in a declarator specify that the identifier has a function,
array, or pointer type. A complex declarator may contain multiple occurrences of any
or all of these symbols. This section explains how to interpret such declarators.

The basic symbols in a declarator have the following meanings:

()
A function whose return value has the type…

[]
An array whose elements have the type…

*
A pointer to the type…

In declarators, these symbols have the same priority and associativity as the corre‐
sponding operators would have in an expression. Furthermore, as in expressions,
you can use additional parentheses to modify the order in which they are inter‐
preted. Here is an example:

int *abc[10]; // An array of 10 elements whose
 // type is pointer to int.
int (*abc)[10]; // A pointer to a array of 10
 // elements whose type is int.

In a declarator that involves a function type, the parentheses that indicate a function
may contain the parameter declarations. The following example declares a pointer
to a function type:

182 | Chapter 11: Declarations

int (*fPtr)(double x); // fPtr is a pointer to a function that has
 // one double parameter and returns int.

The declarator must include declarations of the function parameters if it is part of
the function definition.

When interpreting a complex declarator, always begin with the identifier. Starting
from there, repeat the following steps in order until you have interpreted all the
symbols in the declarator:

1. If a left parenthesis (() or bracket ([) appears immediately to the right, then
interpret the pair of parentheses or brackets.

2. Otherwise, if an asterisk (*) appears to the left, interpret the asterisk.

Here is an example:

extern char *(* fTab[])(void);

Table 11-1 interprets this example bit by bit. The third column is meant to be read
from the top row down, as a sentence.

Table 11-1. Interpretation of extern char *(* fTab[])(void);

Step Symbols interpreted Meaning (read this column
from the top down, as a
sentence)

1. Start with the identifier. fTab fTab is…

2. Brackets to the right. fTab[] an array whose elements have
the type…

3. Asterisk to the left. (* fTab[]) pointer to…

4. Function parentheses (and
parameter list) to the right.

(* fTab[])(void) a function, with no parameters,
whose return value has the
type…

5. Asterisk to the left. *(* fTab[])(void) pointer to…

6. No more asterisks, parentheses, or
brackets: read the type name.

char *(* fTab[])(void) char.

fTab has an incomplete array type because the declaration does not specify the array
length. Before you can use the array, you must define it elsewhere in the program
with a specific length.

The parentheses around *fTab[] are necessary. Without them, fTab would be
declared as an array whose elements are functions—which is impossible.

The next example shows the declaration of a function identifier, followed by its
interpretation:

D
eclaratio

ns

Object and Function Declarations | 183

float (* func())[3][10];

The identifier func is...
a function whose return value has the type...
pointer to...
an array of three elements of type...
array of ten elements of type...
float.

In other words, the function func returns a pointer to a two-dimensional array of 3
rows and 10 columns. Here again, the parentheses around * func() are necessary,
as without them the function would be declared as returning an array—which is
impossible.

Type Names
To convert a value explicitly from one type to another using the cast operator, you
must specify the new type by name. For example, in the cast expression
(char *)ptr, the type name is char * (read: “char pointer” or “pointer to char”).
When you use a type name as the operand of sizeof, it appears the same way, in
parentheses. Function prototype declarations also designate a function’s parameters
by their type names, even if the parameters themselves have no names.

The syntax of a type name is like that of an object or function declaration, but with
no identifier (and no storage class specifier). Here are two simple examples to start
with:

unsigned char

The type unsigned char

unsigned char *

The type “pointer to unsigned char”

In the examples that follow, the type names are more complex. Each type name con‐
tains at least one asterisk (*) for “pointer to,” as well as parentheses or brackets. To
interpret a complex type name, start with the first pair of brackets or parentheses
that you find to the right of the last asterisk. (If you were parsing a declarator with
an identifier rather than a type name, the identifier would be immediately to the left
of those brackets or parentheses.) If the type name includes a function type, then
the parameter declarations must be interpreted separately:

float *[]

The type “array of pointers to float.” The number of elements in the array is
undetermined.

float (*)[10]

The type “pointer to an array of ten elements whose type is float.”

184 | Chapter 11: Declarations

double *(double *)

The type “function whose only parameter has the type pointer to double, and
which also returns a pointer to double.”

double (*)()

The type “pointer to a function whose return value has the type double.” The
number and types of the function’s parameters are not specified.

int *(*(*)[10])(void)
The type “pointer to an array of ten elements whose type is pointer to a func‐
tion with no parameters which returns a pointer to int.”

typedef Declarations
The easy way to use types with complex names, such as those described in the previ‐
ous section, is to declare simple synonyms for them. You can do this using typedef
declarations.

A typedef declaration starts with the keyword typedef, followed by the normal
syntax of an object or function declaration, except that no storage class or _Alignas
specifiers and no initializers are permitted.

Each declarator in a typedef declaration defines an identifier as a synonym for the
specified type. The identifier is then called a typedef name for that type. Without the
keyword typedef, the same syntax would declare an object or function of the given
type. Here are some examples:

typedef unsigned int UINT, UINT_FUNC();
typedef struct Point { double x, y; } Point_t;
typedef float Matrix_t[3][10];

In the scope of these declarations, UINT is synonymous with unsigned int, and
Point_t is synonymous with the structure type struct Point. You can use the
typedef names in declarations, as the following examples show:

UINT ui = 10, *uiPtr = &ui;

The variable ui has the type unsigned int, and uiPtr is a pointer to unsigned int.

UINT_FUNC *funcPtr;

The pointer funcPtr can refer to a function whose return value has the type
unsigned int. The function’s parameters are not specified:

Matrix_t *func(float *);

The function func() has one parameter, whose type is pointer to float, and returns
a pointer to the type Matrix_t.

Example 11-1 uses the typedef name of one structure type, Point_t, in the typedef
definition of a second structure type.

D
eclaratio

ns

typedef Declarations | 185

Example 11-1. typedef declarations

typedef struct Point { double x, y; } Point_t;
typedef struct { Point_t top_left; Point_t bottom_right; } Rectangle_t;

Ordinarily, you would use a header file to hold the definitions of any typedef
names that you need to use in multiple source files. However, you must make an
exception in the case of typedef declarations for types that contain a variable-
length array. Variable-length arrays can only be declared within a block, and the
actual length of the array is calculated anew each time the flow of program execu‐
tion reaches the typedef declaration. Here is an example:

int func(int size)
{
 typedef float VLA[size]; // A typedef name for the type "array of
 // float whose length is the value of size."
 size *= 2;
 VLA temp; // An array of float whose length is the
 // value that size had
 // in the typedef declaration.
 /* ... */
}

The length of the array temp in this example depends on the value that size had
when the typedef declaration was reached, not the value that size has when the
array definition is reached.

One advantage of typedef declarations is that they help to make programs more
easily portable. Types that are necessarily different on different system architectures,
for example, can be called by uniform typedef names. typedef names are also help‐
ful in writing human-readable code. As an example, consider the prototype of the
standard library function qsort():

void qsort(void *base, size_t count, size_t size,
 int (*compare)(const void *, const void *));

We can make this prototype much more readable by using a typedef name for the
comparison function’s type:

typedef int CmpFn(const void *, const void *);
void qsort(void *base, size_t count, size_t size, CmpFn *compare);

_Static_assert Declarations
The _Static_assert declaration, introduced in C11, is a special case among decla‐
rations. It is only an instruction to the compiler to test an assertion, and does not
declare an identifier at all. A static assertion has the following syntax:

_Static_assert(constant_expression , string_literal);

The assertion to be tested, constant_expression, must be a constant expression
with an integer type (see “Integer Constants” on page 39). If the expression is true—

186 | Chapter 11: Declarations

that is, if its value is not 0—the _Static_assert declaration has no effect. If the
evaluation of the expression yields the value 0, however, the compiler generates a
error message containing the specified string literal. The string literal should con‐
tain only characters of the basic source character set, as extended characters are not
necessarily displayed. In the following example, a static assertion ensures that
objects of the type int are bigger than two bytes:

_Static_assert(sizeof(int) > 2 , "16-bit code not supported");

If the type int is only two bytes wide, the compiler’s error message may look like
this:

demo.c(10): fatal error:
Static assertion failed: "16-bit code not supported".

If you include the header assert.h in your program, you can also use the synonym
static_assert in place of the keyword _Static_assert.

The new capability of testing an assertion at compile time is an addition to the two
related techniques:

• The macro assert, described in Chapter 18, which tests an assertion during
the program’s execution

• The preprocessor directive #error, described in Chapter 15, which makes the
preprocessor exit with an error message on a condition specified using an #if
directive

Linkage of Identifiers
An identifier that is declared in several translation units, or several times in the
same translation unit, may refer to the same object or function in each instance. The
extent of an identifier’s identity in and among translation units is determined by the
identifier’s linkage. The term reflects the fact that identifiers in separate source files
need to be linked if they are to refer to a common object.

Identifiers in C have either external, internal, or no linkage. The linkage is deter‐
mined by the declaration’s position and storage class specifier, if any. Only object
and function identifiers can have external or internal linkage.

External Linkage
An identifier with external linkage represents the same function or object through‐
out the program. The compiler presents such identifiers to the linker, which resolves
them with other occurrences in other translation units and libraries.

Function and object identifiers declared with the storage class specifier extern have
external linkage, with one exception: if an identifier has already been declared with
internal linkage, a second declaration within the scope of the first cannot change the
identifier’s linkage to external.

D
eclaratio

ns

Linkage of Identifiers | 187

The compiler treats function declarations without a storage class specifier as if they
included the specifier extern. Similarly, any object identifiers that you declare out‐
side all functions and without a storage class specifier have external linkage.

Internal Linkage
An identifier with internal linkage represents the same object or function within a
given translation unit. The identifier is not presented to the linker. As a result, you
cannot use the identifier in another translation unit to refer to the same object or
function.

A function or object identifier has internal linkage if it is declared outside all func‐
tions and with the storage class specifier static.

Identifiers with internal linkage do not conflict with similar identifiers in other
translation units. If you declare an identifier with internal linkage in a given transla‐
tion unit, you cannot also declare and use an external identifier with the same spell‐
ing in that translation unit.

No Linkage
All identifiers that have neither external nor internal linkage have no linkage. Each
declaration of such an identifier therefore introduces a new entity. Identifiers with
no linkage include the following:

• Identifiers that are not names of variables or functions, such as label names,
structure tags, and typedef names

• Function parameters
• Object identifiers that are declared within a function and without the storage

class specifier extern

Here are a few examples:

int func1(void); // func1 has external linkage.
int a; // a has external linkage.
extern int b = 1; // b has external linkage.
static int c; // c has internal linkage.

static void func2(int d) // func2 has internal linkage; d has no
 // linkage.
{
 extern int a; // This a is the same as that above, with
 // external linkage.
 int b = 2; // This b has no linkage, and hides the
 // external b declared above.
 extern int c; // This c is the same as that above, and
 // retains internal linkage.
 static int e; // e has no linkage.
 /* ... */
}

188 | Chapter 11: Declarations

As this example illustrates, an identifier with external or internal linkage is not
always visible. The identifier b with no linkage, declared in the function func2(),
hides the identifier b with external linkage until the end of the function block (see
“Identifier Scope” on page 17).

Storage Duration of Objects
During the execution of the program, each object exists as a location in memory for
a certain period, called its lifetime. There is no way to access an object before or after
its lifetime. For example, the value of a pointer becomes invalid when the object that
it references reaches the end of its lifetime.

In C, the lifetime of an object is determined by its storage duration. Objects in C
have one of four kinds of storage duration: static, thread, automatic, or allocated.
The C standard does not specify how objects must be physically stored in any given
system architecture, but typically, objects with static or thread storage duration are
located in a data segment of the program, and objects with automatic storage dura‐
tion are located on the stack. Allocated storage is memory that the program obtains
at runtime by calling the malloc(), calloc(), and realloc() functions. Dynamic
storage allocation is described in Chapter 12.

Static Storage Duration
Objects that are defined outside all functions, or within a function and with the
storage class specifier static, have static storage duration. These include all objects
whose identifiers have internal or external linkage.

All objects with static storage duration are generated and initialized before execu‐
tion of the program begins. Their lifetime spans the program’s entire runtime.

Thread Storage Duration
Objects defined with the storage class specifier _Thread_local are called thread-
local objects and have thread storage duration. The storage duration of a thread-
local object is the entire runtime of the thread for which it is created. Each thread
has its own separate instance of a thread-local object, which is initialized when the
thread starts.

Automatic Storage Duration
Objects defined within a function and with no storage class specifier (or with the
unnecessary specifier auto) have automatic storage duration. Function parameters
also have automatic storage duration. Objects with automatic storage duration are
generally called automatic variables for short.

The lifetime of an automatic object is delimited by the braces ({}) that begin and
end the block in which the object is defined. Variable-length arrays are an excep‐
tion: their lifetime begins at the point of declaration, and ends with the identifier’s

D
eclaratio

ns

Storage Duration of Objects | 189

scope—that is, at the end of the block containing the declaration, or when a jump
occurs to a point before the declaration.

Each time the flow of program execution enters a block, new instances of any auto‐
matic objects defined in the block are generated (and initialized, if the declaration
includes an initializer). This fact is important in recursive functions, for example.

Initialization
You can explicitly specify an object’s initial value by including an initializer in its
definition. An object defined without an initializer either has an undetermined ini‐
tial value, or is implicitly initialized by the compiler.

Implicit Initialization
Objects with automatic storage duration have an undetermined initial value if their
definition does not include an initializer. Function parameters, which also have
automatic storage duration, are initialized with the argument values when the func‐
tion call occurs. All other objects have static storage duration, and are implicitly ini‐
tialized with the default value 0, unless their definition includes an explicit initial‐
izer. Or, to put it more exactly:

• Objects with an arithmetic type have the default initial value 0.
• The default initial value of pointer objects is a null pointer (see “Initializing

Pointers” on page 144).

The compiler applies these rules recursively in initializing array elements, structure
members, and the first members of unions.

Explicit Initialization
An initializer in an object definition specifies the object’s initial value explicitly. The
initializer is appended to the declarator for the object’s identifier with an equals sign
(=). The initializer can be either a single expression or a list of initializer expressions
enclosed in braces.

For objects with a scalar type, the initializer is a single expression:

#include <string.h> // Prototypes of string functions.
double var = 77, *dPtr = &var;
int (*funcPtr)(const char*, const char*) = strcmp;

The initializers here are 77 for the variable var, and &var for the pointer dPtr. The
function pointer funcPtr is initialized with the address of the standard library func‐
tion strcmp().

As in an assignment operation, the initializer must be an expression that can be
implicitly converted to the object’s type. In the previous example, the constant value
77, with type int, is implicitly converted to the type double.

190 | Chapter 11: Declarations

Objects with an array, structure, or union type are initialized with a comma-
separated list containing initializers for their individual elements or members:

short a[4] = { 1, 2, 2*2, 2*2*2 };
Rectangle_t rect1 = { { -1, 1 }, { 1, -1 } };

The type Rectangle_t used here is the typedef name of the structure we defined in
Example 11-1, whose members are structures with the type Point_t.

The initializers for objects with static storage duration must be constant expres‐
sions, as in the previous examples. Automatic objects are not subject to this restric‐
tion. You can also initialize an automatic structure or union object with an existing
object of the same type:

#include <string.h> // Prototypes of string functions.
/* ... */
void func(const char *str)
{
 size_t len = strlen(str); // Call a function to initialize len.
 Rectangle_t rect2 = rect1; // Refers to rect1 from the previous
 // example.
 /* ... */
}

More details on initializing arrays, structures, and unions, including the initializa‐
tion of strings and the use of element designators, are presented in “Initializing
Arrays” on page 132, “Initializing Structures” on page 164, and “Initializing Unions”
on page 171.

Objects declared with the type qualifier const ordinarily must have an initializer, as
you can’t assign them the desired value later. However, a declaration that is not a
definition, such as the declaration of an external identifier, must not include an ini‐
tializer. Furthermore, you cannot initialize a variable-length array.

void func(void)
{
 extern int n; // Declaration of n, not a definition.
 char buf[n]; // buf is a variable-length array.
 /* ... */
}

The declarations of the objects n and buf cannot include initializers.

D
eclaratio

ns

Initialization | 191

12
Dynamic Memory Management

When you’re writing a program, you often don’t know how much data it will have to
process, or you can anticipate that the amount of data to process will vary widely. In
these cases, efficient resource use demands that you allocate memory only as you
actually need it at runtime, and release it again as soon as possible. This is the prin‐
ciple of dynamic memory management, which also has the advantage that a pro‐
gram doesn’t need to be rewritten in order to process larger amounts of data on a
system with more available memory.

This chapter describes dynamic memory management in C, and demonstrates the
most important functions involved using a general-purpose binary tree implemen‐
tation as an example.

The standard library provides the following four functions for dynamic memory
management:

malloc(), calloc()
Allocate a new block of memory.

realloc()
Resize an allocated memory block.

free()
Release allocated memory.

All of these functions are declared in the header file stdlib.h. The size of an object in
memory is specified as a number of bytes. Various header files, including stdlib.h,
define the type size_t specifically to hold information of this kind. The sizeof
operator, for example, yields a number of bytes with the type size_t.

193

1 Perhaps in part for historic reasons: in early C dialects, malloc() returned a pointer to char.

Allocating Memory Dynamically
The two functions for allocating memory, malloc() and calloc(), have slightly dif‐
ferent parameters:

void *malloc(size_t size);
The malloc() function reserves a contiguous memory block whose size in
bytes is at least size. When a program obtains a memory block through
malloc(), its contents are undetermined.

void *calloc(size_t count, size_t size);
The calloc() function reserves a block of memory whose size in bytes is at
least count × size. In other words, the block is large enough to hold an array of
count elements, each of which takes up size bytes. Furthermore, calloc() ini‐
tializes every byte of the memory with the value 0.

Both functions return a pointer to void, also called a typeless pointer. The pointer’s
value is the address of the first byte in the memory block allocated, or a null pointer
if the memory requested is not available.

When a program assigns the void pointer to a pointer variable of a different type,
the compiler implicitly performs the appropriate type conversion. Some program‐
mers prefer to use an explicit type conversion, however.1 When you access locations
in the allocated memory block, the type of the pointer you use determines how the
contents of the location are interpreted.

Here are some examples:

#include <stdlib.h> // Provides function prototypes.
typedef struct { long key;
 /* ... more members ... */
 } Record; // A structure type.

float *myFunc(size_t n)
{
 // Reserve storage for an object of type double.
 double *dPtr = malloc(sizeof(double));
 if (dPtr == NULL) // Insufficient memory.
 {
 /* ... Handle the error ... */
 return NULL;
 }
 else // Got the memory: use it.
 {
 *dPtr = 0.07;
 /* ... */
 }

194 | Chapter 12: Dynamic Memory Management

 // Get storage for two objects of type Record.
 Record *rPtr;
 if ((rPtr = malloc(2 * sizeof(Record)) == NULL)
 {
 /* ... Handle the insufficient-memory error ... */
 return NULL;
 }
 // Get storage for an array of n elements of type float.
 float *fPtr = malloc(n * sizeof(float));
 if (fPtr == NULL)
 {
 /* ... Handle the error ... */
 return NULL;
 }
 /* ... */
 return fPtr;
}

It is often useful to initialize every byte of the allocated memory block to zero,
which ensures that not only the members of a structure object have the default value
zero but also any padding between the members. In such cases, the calloc() func‐
tion is preferable to malloc(), although it may be slower, depending on the imple‐
mentation. The size of the block to be allocated is expressed differently with the
calloc() function. We can rewrite the statements in the previous example as fol‐
lows:

// Get storage for an object of type double.
double *dPtr = calloc(1, sizeof(double));

// Get storage for two objects of type Record.
Record *rPtr;
if ((rPtr = calloc(2, sizeof(Record)) == NULL)
{ /* ... Handle the insufficient-memory error ... */ }

// Get storage for an array of n elements of type float.
float *fPtr = calloc(n, sizeof(float));

Characteristics of Allocated Memory
A successful memory allocation call yields a pointer to the beginning of a memory
block. “The beginning” means that the pointer’s value is equal to the lowest byte
address in the block. The allocated block is aligned so that any type of object can be
stored at that address.

An allocated memory block stays reserved for your program until you explicitly
release it by calling free() or realloc(). In other words, the storage duration of
the block extends from its allocation to its release, or to end of the program.

The arrangement of memory blocks allocated by successive calls to malloc(),
calloc(), and/or realloc() is unspecified.

D
ynam

ic
M

em
o

ry
M

anag
em

ent

Characteristics of Allocated Memory | 195

It is also unspecified whether a request for a block of size zero results in a null
pointer or an ordinary pointer value. In any case, however, there is no way to use a
pointer to a block of zero bytes, except perhaps as an argument to realloc() or
free().

Resizing and Releasing Memory
When you no longer need a dynamically allocated memory block, you should give it
back to the operating system. You can do this by calling the function free(). Alter‐
natively, you can increase or decrease the size of an allocated memory block by call‐
ing the function realloc(). The prototypes of these functions are as follows:

void free(void *ptr);
The free() function releases the dynamically allocated memory block that
begins at the address in ptr. A null pointer value for the ptr argument is per‐
mitted, and such a call has no effect.

void *realloc(void *ptr, size_t size);
The realloc() function releases the memory block addressed by ptr and allo‐
cates a new block of size bytes, returning its address. The new block may start
at the same address as the old one.

realloc() also preserves the contents of the original memory block—up to the
size of whichever block is smaller. If the new block doesn’t begin where the
original one did, then realloc() copies the contents to the new memory block.
If the new memory block is larger than the original, then the values of the addi‐
tional bytes are unspecified.

It is permissible to pass a null pointer to realloc() as the argument ptr. If you
do, then realloc() behaves similarly to malloc(), and reserves a new memory
block of the specified size.

The realloc() function returns a null pointer if it is unable to allocate a mem‐
ory block of the size requested. In this case, it does not release the original
memory block or alter its contents.

The pointer argument that you pass to either of the functions free() and
realloc()—if it is not a null pointer—must be the starting address of a dynamically
allocated memory block that has not yet been freed. In other words, you may pass
these functions only a null pointer or a pointer value obtained from a prior call to
malloc(), calloc(), or realloc(). If the pointer argument passed to free() or
realloc() has any other value, or if you try to free a memory block that has already
been freed, the program’s behavior is undefined.

The memory management functions keep internal records of the size of each alloca‐
ted memory block. This is why the functions free() and realloc() require only
the starting address of the block to be released, and not its size. There is no way to

196 | Chapter 12: Dynamic Memory Management

test whether a call to the free() function is successful, because it has no return
value.

The function getLine() in Example 12-1 is another variant of the function defined
with the same name in Example 9-4. It reads a line of text from standard input and
stores it in a dynamically allocated buffer. The maximum length of the line to be
stored is one of the function’s parameters. The function releases any memory it
doesn’t need. The return value is a pointer to the line read.

Example 12-1. The getLine() function

// Read a line of text from stdin into a dynamically allocated buffer.
// Replace the newline character with a string terminator.
//
// Arguments: The maximum line length to read.
// Return value: A pointer to the string read, or
// NULL if end-of-file was read or if an error occurred.

char *getLine(unsigned int len_max)
{
 char *linePtr = malloc(len_max+1); // Reserve storage for "worst case."
 if (linePtr != NULL)
 {
 // Read a line of text and replace the newline characters with
 // a string terminator:
 int c = EOF;
 unsigned int i = 0;
 while (i < len_max && (c = getchar()) != '\n' && c != EOF)
 linePtr[i++] = (char)c;
 linePtr[i] = '\0';

 if (c == EOF && i == 0) // If end-of-file before any
 { // characters were read,
 free(linePtr); // release the whole buffer.
 linePtr = NULL;
 }
 else // Otherwise, release the unused portion.
 linePtr = realloc(linePtr, i+1); // i is the string length.
 }
 return linePtr;
}

The following code shows how you might call the getLine() function:

char *line;
if ((line = getLine(128)) != NULL) // If we can read a line,
{
 /* ... */ // process the line,
 free(line); // then release the buffer.
}

D
ynam

ic
M

em
o

ry
M

anag
em

ent

Resizing and Releasing Memory | 197

An All-Purpose Binary Tree
Dynamic memory management is fundamental to the implementation of dynamic
data structures such as linked lists and trees. In Chapter 10, we presented a simple
linked list (see Figure 10-1). The advantage of linked lists over arrays is that new
elements can be inserted and existing members removed quickly. However, they
also have the drawback that you have to search through the list in sequential order
to find a specific item.

A binary search tree (BST), on the other hand, makes linked data elements more
quickly accessible. The data items must have a key value that can be used to com‐
pare and sort them. A binary search tree combines the flexibility of a linked list with
the advantage of a sorted array, in which you can find a desired data item using the
binary search algorithm.

Characteristics
A binary tree consists of a number of nodes that contain the data to be stored (or
pointers to the data), and the following structural characteristics:

• Each node has up to two direct child nodes.
• There is exactly one node, called the root of the tree, that has no parent node.

All other nodes have exactly one parent.
• Nodes in a binary tree are placed according to this rule: the value of a node is

greater than or equal to the values of any descendant in its left branch, and less
than or equal to the value of any descendant in its right branch.

Figure 12-1 illustrates the structure of a binary tree.

Figure 12-1. A binary tree

A leaf is a node that has no children. Each node of the tree is also considered as the
root of a subtree, which consists of the node and all its descendants.

An important property of a binary tree is its height. The height is the length of the
longest path from the root to any leaf. A path is a succession of linked nodes that
form the connection between a given pair of nodes. The length of a path is the num‐
ber of nodes in the path, not counting the first node. It follows from these defini‐

198 | Chapter 12: Dynamic Memory Management

tions that a tree consisting only of its root node has a height of 0, and the height of
the tree in Figure 12-1 is 3.

Implementation
The example that follows is an implementation of the principal functions for a
binary search tree, and uses dynamic memory management. This tree is intended to
be usable for data of any kind. For this reason, the structure type of the nodes
includes a flexible member to store the data, and a member indicating the size of the
data:

typedef struct Node { struct Node *left, // Pointers to the left and
 *right; // right child nodes.
 size_t size; // Size of the data payload.
 char data[]; // The data itself.
 } Node_t;

The pointers left and right are null pointers if the node has no left or right child.

As the user of our implementation, you must provide two auxiliary functions. The
first of these is a function to obtain a key that corresponds to the data value passed
to it, and the second compares two keys. The first function has the following type:

 typedef const void *GetKeyFunc_t(const void *dData);

The second function has a type like that of the comparison function used by the
standard function bsearch():

 typedef int CmpFunc_t(const void *pKey1, const void *pKey2);

The arguments passed on calling the comparison function are pointers to the two
keys that you want to compare. The function’s return value is less than zero, if the
first key is less than the second; or equal to zero, if the two keys are equal; or greater
than zero, if the first key is greater than the second. The key may be the same as the
data itself. In this case, you need to provide only a comparison function.

Next, we define a structure type to represent a tree. This structure has three mem‐
bers: a pointer to the root of the tree; a pointer to the function to calculate a key,
with the type GetKeyFunc_t; and a pointer to the comparison function, with the
type CmpFunc_t:

typedef struct { struct Node *pRoot; // Pointer to the root.
 CmpFunc_t *cmp; // Compares two keys.
 GetKeyFunc_t *getKey; // Converts data into a key
 } BST_t; // value.

The pointer pRoot is a null pointer while the tree is empty.

The elementary operations for a binary search tree are performed by functions that
insert, find, and delete nodes, and functions to traverse the tree in various ways,
performing a programmer-specified operation on each element if desired.

D
ynam

ic
M

em
o

ry
M

anag
em

ent

Implementation | 199

The prototypes of these functions, and the typedef declarations of GetKeyFunc_t,
CmpFunc_t, and BST_t, are placed in the header file BSTree.h. To use this binary tree
implementation, you must include this header file in the program’s source code.

The function prototypes in BSTree.h are:

BST_t *newBST(CmpFunc_t *cmp, GetKeyFunc_t *getKey);

This function dynamically generates a new object with the type BST_t, and
returns a pointer to it.

_Bool BST_insert(BST_t *pBST, const void *pData, size_t size);

BST_insert() dynamically generates a new node, copies the data referenced by
pData to the node, and inserts the node in the specified tree.

const void *BST_search(BST_t *pBST, const void *pKey);

The BST_search() function searches the tree and returns a pointer to the data
item that matches the key referenced by the pKey argument.

_Bool BST_erase(BST_t *pBST, const void *pKey);
This function deletes the first node whose data contents match the key refer‐
enced by pKey.

void BST_clear(BST_t *pBST);

BST_clear() deletes all nodes in the tree, leaving the tree empty.

int BST_inorder(BST_t *pBST, _Bool (*action)(void *pData));
int BST_rev_inorder(BST_t *pBST, _Bool (*action)(void *pData));

int BST_preorder(BST_t *pBST, _Bool (*action)(void *pData));

int BST_postorder(BST_t *pBST, _Bool (*action)(void *pData));
Each of these functions traverses the tree in a certain order, and calls the func‐
tion referenced by action to manipulate the data contents of each node. If the
action modifies the node’s data, then at least the key value must remain
unchanged to preserve the tree’s sorting order.

The function definitions, along with some recursive helper functions, are placed in
the source file BSTree.c. The helper functions are declared with the static specifier
because they are for internal use only, and not part of the search tree’s “public” inter‐
face. The file BSTree.c also contains the definition of the nodes’ structure type. As
the programmer, you do not need to deal with the contents of this file, and may be
content to use a binary object file compiled for the given system, adding it to the
command line when linking the program.

Generating an Empty Tree
When you create a new binary search tree, you specify how a comparison between
two data items is performed. For this purpose, the newBST() function takes as its
arguments a pointer to a function that compares two keys, and a pointer to a func‐
tion that calculates a key from an actual data item. The second argument can be a

200 | Chapter 12: Dynamic Memory Management

null pointer if the data itself serves as the key for comparison. The return value is a
pointer to a new object with the type BST_t:

const void *defaultGetKey(const void *pData) { return pData; }

BST_t *newBST(CmpFunc_t *cmp, GetKeyFunc_t *getKey)
{
 BST_t *pBST = NULL;
 if (cmp != NULL)
 pBST = malloc(sizeof(BST_t));
 if (pBST != NULL)
 {
 pBST->pRoot = NULL;
 pBST->cmp = cmp;
 pBST->getKey = (getKey != NULL) ? getKey : defaultGetKey;
 }
 return pBST;
}

The pointer to BST_t returned by newBST() is the first argument to all the other
binary-tree functions. This argument specifies the tree on which you want to per‐
form a given operation.

Inserting New Data
To copy a data item to a new leaf node in the tree, pass the data to the BST_insert()
function. The function inserts the new leaf at a position that is consistent with the
binary tree’s sorting condition. The recursive algorithm involved is simple: if the
current subtree is empty—that is, if the pointer to its root node is a null pointer—
then insert the new node as the root by making the parent point to it. If the subtree
is not empty, continue with the left subtree if the new data is less than the current
node’s data; otherwise, continue with the right subtree. The recursive helper func‐
tion insert() applies this algorithm.

The insert() function takes an additional argument, which is a pointer to a pointer
to the root node of a subtree. Because this argument is a pointer to a pointer, the
function can modify it in order to link a new node to its parent. BST_insert()
returns true if it succeeds in inserting the new data; otherwise, false.

static _Bool insert(BST_t *pBST, Node_t **ppNode, const void *pData,
 size_t size);

_Bool BST_insert(BST_t *pBST, const void *pData, size_t size)
{
 if (pBST == NULL || pData == NULL || size == 0)
 return false;
 return insert(pBST, &(pBST->pRoot), pData, size);
}

static _Bool insert(BST_t *pBST, Node_t **ppNode, const void *pData,
 size_t size)

D
ynam

ic
M

em
o

ry
M

anag
em

ent

Implementation | 201

{
 Node_t *pNode = *ppNode; // Pointer to the root node of the
 // subtree to insert the new node in.
 if (pNode == NULL)
 { // There's a place for a new leaf here.
 pNode = malloc(sizeof(Node_t) + size);
 if (pNode != NULL)
 {
 pNode->left = pNode->right = NULL; // Initialize the new node's
 // members.
 memcpy(pNode->data, pData, size);
 *ppNode = pNode; // Insert the new node.
 return true;
 }
 else
 return false;
 }
 else // Continue looking for a place ...
 {
 const void *key1 = pBST->getKey(pData),
 *key2 = pBST->getKey(pNode->data);
 if (pBST->cmp(key1, key2) < 0) // ... in the left subtree,
 return insert(pBST, &(pNode->left), pData, size);
 else // or in the right subtree.
 return insert(pBST, &(pNode->right), pData, size);
 }
}

Finding Data in the Tree
The function BST_search() uses the binary search algorithm to find a data item
that matches a given key. If a given node’s data does not match the key, the search
continues in the node’s left subtree if the key is less than that of the node’s data, or in
the right subtree if the key is greater. The return value is a pointer to the data item
from the first node that matches the key, or a null pointer if no match was found.

The search operation uses the recursive helper function search(). Like insert(),
search() takes as its second parameter a pointer to the root node of the subtree to
be searched:

static const void *search(BST_t *pBST, const Node_t *pNode,
 const void *pKey);

const void *BST_search(BST_t *pBST, const void *pKey)
{
 if (pBST == NULL || pKey == NULL) return NULL;
 return search(pBST, pBST->pRoot, pKey); // Start at the root
 // of the tree.
}

static const void *search(BST_t *pBST, const Node_t *pNode,
 const void *pKey)

202 | Chapter 12: Dynamic Memory Management

{
 if (pNode == NULL)
 return NULL; // No subtree to search;
 // no match found.
 else
 { // Compare data:
 int cmp_res = pBST->cmp(pKey, pBST->getKey(pNode->data));

 if (cmp_res == 0) // Found a match.
 return pNode->data;
 else if (cmp_res < 0) // Continue the search
 return search(pBST, pNode->left, pKey); // in the left subtree,
 else
 return search(pBST, pNode->right, pKey); // or in the right
 // subtree.
 }
}

Removing Data from the Tree
The BST_erase() function searches for a node that matches the specified key, and
deletes it if found. Deleting means removing the node from the tree structure and
releasing the memory it occupies. The function returns false if it fails to find a
matching node to delete, or true if successful.

The actual searching and deleting is performed by means of the recursive helper
function erase(). The node needs to be removed from the tree in such a way that
the tree’s sorting condition is not violated. A node that has no more than one child
can be removed simply by linking its child, if any, to its parent. If the node to be
removed has two children, though, the operation is more complicated: you have to
replace the node you are removing with the node from the right subtree that has the
smallest data value. This is never a node with two children. For example, to remove
the root node from the tree in Figure 12-1, we would replace it with the node that
has the value 11. This removal algorithm is not the only possible one, but it has the
advantage of not increasing the tree’s height.

The recursive helper function detachMin() plucks the minimum node from a speci‐
fied subtree, and returns a pointer to the node:

static Node_t *detachMin(Node_t **ppNode)
{
 Node_t *pNode = *ppNode; // A pointer to the current node.
 if (pNode == NULL)
 return NULL; // pNode is an empty subtree.
 else if (pNode->left != NULL)
 return detachMin(&(pNode->left)); // The minimum is in the left
 // subtree.
 else
 { // pNode points to the minimum node.
 *ppNode = pNode->right; // Attach the right child to the parent.
 return pNode;

D
ynam

ic
M

em
o

ry
M

anag
em

ent

Implementation | 203

 }
}

Now we can use this function in the definition of erase() and BST_erase():

static _Bool erase(BST_t *pBST, Node_t **ppNode, const void *pKey);

_Bool BST_erase(BST_t *pBST, const void *pKey)
{
 if (pBST == NULL || pKey == NULL) return false;
 return erase(pBST, &(pBST->pRoot), pKey); // Start at the root
 // of the tree.
}

static _Bool erase(BST_t *pBST, Node_t **ppNode, const void *pKey)
{
 Node_t *pNode = *ppNode; // Pointer to the current node.
 if (pNode == NULL)
 return false; // No match found.

 // Compare data:
 int cmp_res = pBST->cmp(pKey, pBST->getKey(pNode->data));

 if (cmp_res < 0) // Continue the search
 return erase(pBST, &(pNode->left), pKey); // in the left subtree,
 else if (cmp_res > 0)
 return erase(pBST, &(pNode->right), pKey); // or in the right
 // subtree.
 else
 { // Found the node to be deleted.
 if (pNode->left == NULL) // If no more than one child,
 *ppNode = pNode->right; // attach the child to the parent.
 else if (pNode->right == NULL)
 *ppNode = pNode->left;
 else // Two children: replace the node with
 { // the minimum from the right subtree.
 Node_t *pMin = detachMin(&(pNode->right));
 *ppNode = pMin; // Graft it onto the deleted node's parent.
 pMin->left = pNode->left; // Graft the deleted node's children.
 pMin->right = pNode->right;
 }
 free(pNode); // Release the deleted node's storage.
 return true;
 }
}

A function in Example 12-2, BST_clear(), deletes all the nodes of a tree. The recur‐
sive helper function clear() deletes first the descendants of the node referenced by
its argument and then the node itself.

204 | Chapter 12: Dynamic Memory Management

Example 12-2. The BST_clear() and clear() functions

static void clear(Node_t *pNode);

void BST_clear(BST_t *pBST)
{
 if (pBST != NULL)
 {
 clear(pBST->pRoot);
 pBST->pRoot = NULL;
 }
}

static void clear(Node_t *pNode)
{
 if (pNode != NULL)
 {
 clear(pNode->left);
 clear(pNode->right);
 free(pNode);
 }
}

Traversing a Tree
There are several recursive schemes for traversing a binary tree. They are often des‐
ignated by abbreviations in which L stands for a given node’s left subtree, R for its
right subtree, and N for the node itself:

In-order or LNR traversal
First traverse the node’s left subtree, then visit the node itself, then traverse the
right subtree.

Pre-order or NLR traversal
First visit the node itself, then traverse its left subtree, then its right subtree.

Post-order or LRN traversal
First traverse the node’s left subtree, then the right subtree, then visit the node
itself.

An in-order traversal visits all the nodes in their sorting order, from least to greatest.
If you print each node’s data as you visit it, the output appears sorted.

It’s not always advantageous to process the data items in their sorting order, though.
For example, if you want to store the data items in a file and later insert them in a
new tree as you read them from the file, you might prefer to traverse the tree in pre-
order. Then reading each data item in the file and inserting it will reproduce the
original tree structure. And the clear() function in Example 12-2 uses a post-order
traversal to avoid destroying any node before its children.

D
ynam

ic
M

em
o

ry
M

anag
em

ent

Implementation | 205

Each of the traversal functions takes as its second argument a pointer to an “action”
function that it calls for each node visited. The action function takes as its argument
a pointer to the current node’s data, and returns true to indicate success and false
on failure. This functioning enables the tree-traversal functions to return the num‐
ber of times the action was performed successfully.

The following example contains the definition of the BST_inorder() function, and
its recursive helper function inorder() (the other traversal functions are similar):

static int inorder(Node_t *pNode, _Bool (*action)(void *pData));

int BST_inorder(BST_t *pBST, _Bool (*action)(void *pData))
{
 if (pBST == NULL || action == NULL)
 return 0;
 else
 return inorder(pBST->pRoot, action);
}

static int inorder(Node_t *pNode, _Bool (*action)(void *pData))
{
 int count = 0;
 if (pNode == NULL)
 return 0;

 count = inorder(pNode->left, action); // L: Traverse the left
 // subtree.
 if (action(pNode->data)) // N: Visit the current
 ++count; // node itself.
 count += inorder(pNode-> right, action); // R: Traverse the right
 // subtree.
 return count;
}

A Sample Application
To illustrate one use of a binary search tree, the filter program in Example 12-3,
sortlines, presents a simple variant of the Unix utility sort. It reads text line by line
from the standard input stream, and prints the lines in sorted order to standard out‐
put. A typical command line to invoke the program might be:

sortlines < demo.txt

This command prints the contents of the file demo.txt to the console.

206 | Chapter 12: Dynamic Memory Management

Example 12-3. The sortlines program

// This program reads each line of text into a node of a binary tree,
// and then prints the text in sorted order.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "BSTree.h" // Prototypes of the BST functions.

#define LEN_MAX 1000 // Maximum length of a line.
char buffer[LEN_MAX];

// Action to perform for each line:
_Bool printStr(void *str) { return printf("%s", str) >= 0; }

int main()
{
 BST_t *pStrTree = newBST((CmpFunc_t*)strcmp, NULL);
 int n;

 while (fgets(buffer, LEN_MAX, stdin) != NULL) // Read each line.
 {
 size_t len = strlen(buffer); // Length incl.
 // newline character.
 if (!BST_insert(pStrTree, buffer, len+1)) // Insert the line in
 break; // the tree.
 }
 if (!feof(stdin))
 { // If unable to read
 // the entire text:
 fprintf(stderr, "sortlines: "
 "Error reading or storing text input.\n");
 exit(EXIT_FAILURE);
 }
 n = BST_inorder(pStrTree, printStr); // Print each line,
 // in sorted order.
 fprintf(stderr, "\nsortlines: Printed %d lines.\n", n);

 BST_clear(pStrTree); // Discard all nodes.
 return 0;
}

The loop that reads input lines breaks prematurely if a read error occurs, or if there
is insufficient memory to insert a new node in the tree. In such cases, the program
exits with an error message.

An in-order traversal visits every node of the tree in sorted order. The return value
of BST_inorder() is the number of lines successfully printed. sortlines prints the
error and success information to the standard error stream, so that it is separate

D
ynam

ic
M

em
o

ry
M

anag
em

ent

Implementation | 207

from the actual data output. Redirecting standard output to a file or a pipe affects
the sorted text but not these messages.

The BST_clear() function call is technically superfluous, as all of the program’s
dynamically allocated memory is automatically released when the program exits.

The binary search tree presented in this chapter can be used for any kind of data.
Most applications require the BST_search() and BST_erase() functions in addition
to those used in Example 12-3. Furthermore, more complex programs will no doubt
require functions not presented here, such as one to keep the tree’s left and right
branches balanced.

208 | Chapter 12: Dynamic Memory Management

13
Input and Output

Programs must be able to write data to files or to physical output devices such as
displays or printers, and to read in data from files or input devices such as a key‐
board. The C standard library provides numerous functions for these purposes.
This chapter presents a survey of the part of the standard library that is devoted to
input and output, which is often referred to as the I/O library. Further details on the
individual functions can be found in Chapter 18. Apart from these library functions,
the C language itself contains no input or output support at all.

All of the basic functions, macros, and types for input and output are declared in
the header file stdio.h. The corresponding input and output function declarations
for wide characters of the type wchar_t are contained in the header file wchar.h.

As alternatives to the traditional standard I/O functions, C11
introduces many new functions that permit more secure pro‐
gramming, in particular by checking the bounds of arrays
when copying data. These alternative functions have names
that end with the suffix _s (such as scanf_s(), for example).
Support for these “secure” functions is optional. The macro
__STDC_LIB_EXT1__ is defined in implementations that pro‐
vide them (see “Functions with Bounds-Checking” on page
287).

Streams
From the point of view of a C program, all kinds of files and devices for input and
output are uniformly represented as logical data streams regardless of whether the
program reads or writes a character or byte at a time, or text lines, or data blocks of
a given size. Streams in C can be either text or binary streams, although on some

209

systems even this difference is nil. Opening a file by means of the function fopen()
(or tmpfile()) creates a new stream, which then exists until closed by the fclose()
function. C leaves file management up to the execution environment—in other
words, the system on which the program runs. Thus, a stream is a channel by which
data can flow from the execution environment to the program, or from the program
to its environment. Devices, such as consoles, are addressed in the same way as files.

Every stream has a lock that the I/O library’s functions use for synchronization
when several threads access the same stream. All stream I/O functions first obtain
exclusive access to a stream before performing read or write operations, or querying
and moving the stream’s file position indicator. Once the operation has been per‐
formed, the stream is released again for access by other threads. Exclusive stream
access prevents “data races” and concurrent I/O operations. For more information
about multithreaded programs, see Chapter 14.

Text Streams
A text stream transports the characters of a text that is divided into lines. A line of
text consists of a sequence of characters ending in a newline character. A line of text
can also be empty, meaning that it consists of a newline character only. The last line
transported may or may not have to end with a newline character, depending on the
implementation.

The internal representation of text in a C program is the same regardless of the sys‐
tem on which the program is running. Text input and output on a given system may
involve removing, adding, or altering certain characters. For example, on systems
that are not Unix-based, end-of-line indicators ordinarily have to be converted into
newline characters when reading text files, as on Windows systems, for instance,
where the end-of-line indicator is a sequence of two control characters, \r (carriage
return) and \n (newline). Similarly, the control character ^Z (character code 26) in a
text stream on Windows indicates the end of the stream.

As the programmer, you generally do not have to worry about the necessary adapta‐
tions, because they are performed automatically by the I/O functions in the stan‐
dard library. However, if you want to be sure that an input function call yields
exactly the same text that was written by a previous output function call, your text
should contain only the newline and horizontal tab control characters, in addition
to printable characters. Furthermore, the last line should end with a newline charac‐
ter, and no line should end with a space immediately before the newline character.

Binary Streams
A binary stream is a sequence of bytes that are transmitted without modification.
That is, the I/O functions do not involve any interpretation of control characters
when operating on binary streams. Data written to a file through a binary stream
can always be read back unchanged on the same system. However, in certain imple‐
mentations there may be extra zero-valued bytes appended at the end of the stream.

210 | Chapter 13: Input and Output

Binary streams are normally used to write binary data—for example, database
records—without converting it to text. If a program reads the contents of a text file
through a binary stream, then the text appears in the program in its stored form,
with all the control characters used on the given system.

On common Unix systems, there is no difference between text
streams and binary streams.

Files
A file represents a sequence of bytes. The fopen() function associates a file with a
stream and initializes an object of the type FILE, which contains all the information
necessary to control the stream. Such information includes a pointer to the buffer
used; a file position indicator, which specifies a position to access in the file; and
flags to indicate error and end-of-file conditions.

Each of the functions that open files—namely, fopen(), freopen(), and tmpfile()
—returns a pointer to a FILE object for the stream associated with the file being
opened. Once you have opened a file, you can call functions to transfer data and to
manipulate the stream. Such functions have a pointer to a FILE object—commonly
called a FILE pointer—as one of their arguments. The FILE pointer specifies the
stream on which the operation is carried out.

The I/O library also contains functions that operate on the file system, and take the
name of a file as one of their parameters. These functions do not require the file to
be opened first. They include the following:

• The remove() function deletes a file (or an empty directory). The string argu‐
ment is the file’s name. If the file has more than one name, then remove() only
deletes the specified name, not the file itself. The data may remain accessible in
some other way, but not under the deleted filename.

• The rename() function changes the name of a file (or directory). The function’s
two string arguments are the old and new names, in that order. The remove()
and rename() functions both have the return type int, and return zero on suc‐
cess, or a nonzero value on failure. The following statement changes the name
of the file songs.dat to mysongs.dat:

if (rename("songs.dat", "mysongs.dat") != 0)
 fprintf(stderr, "Error renaming \"songs.dat\".\n");

Conditions that can cause the rename() function to fail include the following:
no file exists with the old name; the program does not have the necessary
access privileges; or the file is open. The rules for forming permissible file‐
names depend on the implementation.

Inp
ut and

O
utp

ut

Files | 211

File Position
Like the elements of a char array, each character in an ordinary file has a definite
position in the file. The file position indicator in the object representing the stream
determines the position of the next character to be read or written.

When you open a file for reading or writing, the file position indicator points to the
beginning of the file so that the next character accessed has the position 0. If you
open the file in “append” mode, the file position indicator may point to the end of
the file. Each read or write operation increases the indicator by the number of char‐
acters read from the file or written to the file. This behavior makes it simple to pro‐
cess the contents of a file sequentially. Random access within the file is achieved by
using functions that change the file position indicator, fseek(), fsetpos(), and
rewind(), which are discussed in detail in“Random File Access” on page 235.

Of course, not all files support changing access positions. Sequential I/O devices
such as terminals and printers do not, for example.

Buffers
In working with files, it is generally not efficient to read or write individual charac‐
ters. For this reason, a stream has a buffer in which it collects characters, which are
transferred as a block to or from the file. Sometimes you don’t want buffering, how‐
ever. For example, after an error has occurred, you might want to write data to a file
as directly as possible.

Streams are buffered in one of three ways:

Fully buffered
The characters in the buffer are normally transferred only when the buffer is
full.

Line-buffered
The characters in the buffer are normally transferred only when a newline
character is written to the buffer, or when the buffer is full. A stream’s buffer is
also written to the file when the program requests input through an unbuffered
stream, or when an input request on a line-buffered stream causes characters to
be read from the host environment.

Unbuffered
Characters are transferred as promptly as possible.

You can also explicitly transfer the characters in the stream’s output buffer to the
associated file by calling the fflush() function. The buffer is also flushed when you
close a stream, and normal program termination flushes the buffers of all the pro‐
gram’s streams.

When you open an ordinary file by calling fopen(), the new stream is fully buf‐
fered. Opening interactive devices is different, however: such device files are associ‐
ated on opening with a line-buffered stream. After you have opened a file, and

212 | Chapter 13: Input and Output

before you perform the first input or output operation on it, you can change the
buffering mode using the setbuf() or setvbuf() function.

The Standard Streams
Three standard text streams are available to every C program on starting. These
streams do not have to be explicitly opened. Table 13-1 lists them by the names of
their respective FILE pointers.

Table 13-1. The standard streams

FILE pointer Common name Buffering mode

stdin Standard input Line-buffered

stdout Standard output Line-buffered

stderr Standard error output Unbuffered

stdin is usually associated with the keyboard, and stdout and stderr with the con‐
sole display. These associations can be modified by redirection. Redirection is per‐
formed either by the program calling the freopen() function, or by the environ‐
ment in which the program is executed.

Opening and Closing Files
To write to a new file or modify the contents of an existing file, you must first open
the file. When you open a file, you must specify an access mode indicating whether
you plan to read, to write, or some combination of the two. When you have finished
using a file, close it to release resources.

Opening a File
The standard library provides the function fopen() to open a file (for special cases,
the freopen() and tmpfile() functions also open files):

FILE *fopen(const char * restrict filename,
 const char * restrict mode);

This function opens the file whose name is specified by the string filename. The
filename may contain a directory part, and must not be longer than the maximum
length specified by the value of the macro FILENAME_MAX. The second argument,
mode, is also a string, and specifies the access mode. The possible access modes are
described in the next section. The fopen() function associates the file with a new
stream:

FILE *freopen(const char * restrictfilename,
 const char * restrict mode,
 FILE * restrict stream);

Inp
ut and

O
utp

ut

Opening and Closing Files | 213

This function redirects a stream. Like fopen(), freopen() opens the specified file in
the specified mode. However, rather than creating a new stream, freopen() asso‐
ciates the file with the existing stream specified by the third argument. The file pre‐
viously associated with that stream is closed. The most common use of freopen() is
to redirect the standard streams, stdin, stdout, and stderr.

FILE *tmpfile(void);

The tmpfile() function creates a new temporary file whose name is distinct from
all other existing files, and opens the file for binary writing and reading (as if the
mode string "wb+" were used in an fopen() call). If the program is terminated nor‐
mally, the file is automatically deleted.

All three file-opening functions, fopen(), freopen() and tmpfile(), return a
pointer to the opened stream if successful, or a null pointer to indicate failure.

If a file is opened for writing, the program should have exclu‐
sive access to the file to prevent simultaneous write operations
by other programs. The traditional standard functions do not
guarantee exclusive file access, but three of the new “secure”
functions introduced by C11, fopen_s(), freopen_s() and
tmpfile_s(), do provide exclusive access, if the operating sys‐
tem supports it.

Access Modes
The access mode specified by the second argument to fopen() or freopen() deter‐
mines what input and output operations the new stream permits. The permissible
values of the mode string are restricted. The first character in the mode string is
always r for “read,” w for “write,” or a for “append,” and in the simplest case, the
string contains just that one character. However, the mode string may also contain
one or both of the characters + and b (in either order: +b has the same effect as b+).

A plus sign (+) in the mode string means that both read and write operations are
permitted. However, a program must not alternate immediately between reading
and writing. After a write operation, you must call the fflush() function or a posi‐
tioning function (fseek(), fsetpos(), or rewind()) before performing a read oper‐
ation. After a read operation, you must call a positioning function before perform‐
ing a write operation.

A b in the mode string causes the file to be opened in binary mode—that is, the new
stream associated with the file is a binary stream. If there is no b in the mode string,
the new stream is a text stream.

If the mode string begins with r, the file must already exist in the file system. If the
mode string begins with w, then the file will be created if it does not already exist. If

214 | Chapter 13: Input and Output

it does exist, its previous contents will be lost, because the fopen() function trun‐
cates it to zero length in “write” mode.

C11 introduces the capability to open a file in exclusive write mode, if the operating
system supports it. To specify exclusive access, you can use the suffix x in a mode
string that begins with w, such as wx or w+bx. The file-opening function then fails—
returning a null pointer—if the file already exists or cannot be created. Otherwise,
the file is created and opened for exclusive access.

A mode string beginning with a (for append) also causes the file to be created if it
does not already exist. If the file does exist, however, its contents are preserved,
because all write operations are automatically performed at the end of the file. Here
is a brief example:

#include <stdio.h>
#include <stdbool.h>
_Bool isReadWriteable(const char *filename)
{
 FILE *fp = fopen(filename, "r+"); // Open a file to read and write.

 if (fp != NULL) // Did fopen() succeed?
 {
 fclose(fp); // Yes: close the file; no error handling.
 return true;
 }
 else // No.
 return false;
}

This example also illustrates how to close a file using the fclose() function.

Closing a File
To close a file, use the fclose() function. The prototype of this function is:

int fclose(FILE *fp);

The function flushes any data still pending in the buffer to the file, closes the file,
and releases any memory used for the stream’s input and output buffers. The
fclose() function returns zero on success, or EOF if an error occurs.

When the program exits, all open files are closed automatically. Nonetheless, you
should always close any file that you have finished processing. Otherwise, you risk
losing data in the case of an abnormal program termination. Furthermore, there is a
limit to the number of files that a program may have open at one time; the number
of open files allowed is greater than or equal to the value of the constant FOPEN_MAX.

Inp
ut and

O
utp

ut

Opening and Closing Files | 215

Reading and Writing
This section describes the functions that actually retrieve data from or send data to a
stream. First, there is another detail to consider: an open stream can be used either
for byte characters or for wide characters.

Byte-Oriented and Wide-Oriented Streams
In addition to the type char, C also provides a type for wide characters, named
wchar_t. This type is wide enough to represent any character in the extended char‐
acter sets that the implementation supports (see “Wide Characters and Multibyte
Characters” on page 9). Accordingly, there are two complete sets of functions for
input and output of characters and strings: the byte-character I/O functions and the
wide-character I/O functions. Functions in the second set operate on characters with
the type wchar_t. Each stream has an orientation that determines which set of func‐
tions is appropriate.

Immediately after you open a file, the orientation of the stream associated with it is
undetermined. If the first file access is performed by a byte-character I/O function,
then from that point on the stream is byte-oriented. If the first access is by a wide-
character function, then the stream is wide-oriented. The orientation of the standard
streams, stdin, stdout, and stderr, is likewise undetermined when the program
starts.

You can call the function fwide() at any time to ascertain a stream’s orientation.
Before the first I/O operation, fwide() can also set a new stream’s orientation. To
change a stream’s orientation once it has been determined, you must first reopen the
stream by calling the freopen() function.

The wide characters written to a wide-oriented stream are stored as multibyte char‐
acters in the file associated with the stream. The read and write functions implicitly
perform the necessary conversion between wide characters of type wchar_t and the
multibyte character encoding. This conversion may be stateful. In other words, the
value of a given byte in the multibyte encoding may depend on control characters
that precede it, which alter the shift state or conversion state of the character
sequence. For this reason, each wide-oriented stream has an associated object with
the type mbstate_t, which stores the current multibyte conversion state. The func‐
tions fgetpos() and fsetpos(), which get and set the value of the file position indi‐
cator, also save and restore the conversion state for the given file position.

Error Handling
The I/O functions can use a number of mechanisms to indicate to the caller when
they incur errors, including return values, error and EOF flags in the FILE object,
and the global error variable errno. To read which mechanisms are used by a given
function, see the individual function descriptions in Chapter 18. This section
describes the I/O error-handling mechanisms in general.

216 | Chapter 13: Input and Output

Return values and status flags
The I/O functions generally indicate any errors that occur by their return value. In
addition, they also set an error flag in the FILE object that controls the stream if an
error in reading or writing occurs. To query this flag, you can call the ferror()
function. Here is an example:

(void)fputc('*', fp); // Write an asterisk to the stream fp.
if (ferror(fp))
 fprintf(stderr, "Error writing.\n");

Furthermore, read functions set the stream’s EOF flag on reaching the end of the
file. You can query this flag by calling the feof() function. A number of read func‐
tions return the value of the macro EOF if you attempt to read beyond the last char‐
acter in the file. (Wide-character functions return the value WEOF.) A return value of
EOF or WEOF can also indicate an error, however. To distinguish between the two
cases, you must call ferror() or feof(), as the following example illustrates:

int i, c;
char buffer[1024];
/* ... Open a file to read using the stream fp ... */
i = 0;
while (i < 1024 && // While there is space in the buffer
 (c = fgetc(fp)) != EOF) // ... and the stream can deliver
 buffer[i++] = (char)c; // characters.
if (i < 1024 && ! feof(fp))
 fprintf(stderr, "Error reading.\n");

The if statement in this example prints an error message if fgetc() returns EOF
and the EOF flag is not set.

The error variable errno
Several standard library functions support more specific error handling by setting
the global error variable errno to a value that indicates the kind of error that has
occurred. Stream handling functions that set the errno variable include ftell(),
fgetpos(), and fsetpos(). Depending on the implementation, other functions may
also set the errno variable. errno is declared in the header errno.h with the type int
(see Chapter 16). errno.h also defines macros for the possible values of errno.

The perror() function prints a system-specific error message for the current value
of errno to the stderr stream:

long pos = ftell(fp); // Get the current file position.
if (pos < 0L) // ftell() returns -1L if an error occurs.
 perror("ftell()");

The perror() function prints its string argument followed by a colon, the error
message, and a newline character. The error message is the same as the string that
strerror() would return if called with the given value of errno as its argument. In

Inp
ut and

O
utp

ut

Reading and Writing | 217

the previous example, the perror() function as implemented in the GCC compiler
prints the following output to indicate an invalid FILE pointer argument:

ftell(): Bad file descriptor

The error variable errno is also set by functions that convert between wide charac‐
ters and multibyte characters in reading from or writing to a wide-oriented stream.
Such conversions are performed internally by calls to the wcrtomb() and mbrtowc()
functions. When these functions are unable to supply a valid conversion, they
return the value of -1 cast to size_t, and set errno to the value of EILSEQ (for “ille‐
gal sequence”).

Unformatted I/O
The standard library provides functions to read and write unformatted data in the
form of individual characters, strings, or blocks of any given size. This section
describes these functions, listing the prototypes of both the byte-character and the
wide-character functions. The type wint_t is an integer type capable of representing
at least all the values in the range of wchar_t, and the additional value WEOF. The
macro WEOF has the type wint_t and a value that is distinct from all the character
codes in the extended character set.

Unlike EOF, the value of WEOF is not necessarily negative.

Reading characters
Use the following functions to read characters from a file:

int fgetc(FILE *fp);
int getc(FILE *fp);
int getchar(void);
wint_t fgetwc(FILE *fp);
wint_t getwc(FILE *fp);
wint_t getwchar(void);

The fgetc() function reads a character from the input stream referenced by fp.
The return value is the character read, or EOF if an error occurred. The macro
getc() has the same effect as the function fgetc(). The macro is commonly used
because it is faster than a function call. However, if the argument fp is an expression
with side effects (see Chapter 5), then you should use the function instead because a
macro may evaluate its argument more than once. The macro getchar() reads a
character from standard input. It is equivalent to getc(stdin).

218 | Chapter 13: Input and Output

fgetwc(), getwc(), and getwchar() are the corresponding functions and macros
for wide-oriented streams. These functions set the global variable errno to the value
EILSEQ if an error occurs in converting a multibyte character to a wide character.

Putting a character back
Use one of the following functions to push a character back into the stream from
whence it came:

int ungetc(intc, FILE *fp);
wint_t ungetwc(wint_t c, FILE *fp);

ungetc() and ungetwc() push the last character read, c, back onto the input stream
referenced by fp. Subsequent read operations then read the characters put back, in
LIFO (last in, first out) order—that is, the last character put back is the first one to
be read. You can always put back at least one character, but repeated attempts might
or might not succeed. The functions return EOF (or WEOF) on failure, or the charac‐
ter pushed onto the stream on success.

Writing characters
The following functions allow you to write individual characters to a stream:

int fputc(intc, FILE *fp);
int putc(int c, FILE *fp);
int putchar(int c);
wint_t fputwc(wchar_t wc, FILE *fp);
wint_t putwc(wchar_t wc, FILE *fp);
wint_t putwchar(wchar_t wc);

The function fputc() writes the character value of the argument c to the output
stream referenced by fp. The return value is the character written, or EOF if an
error occurred. The macro putc() has the same effect as the function fputc(). If
either of its arguments is an expression with side effects (see Chapter 5), then you
should use the function instead because a macro might evaluate its arguments more
than once. The macro putchar() writes the specified character to the standard out‐
put stream.

fputwc(), putwc(), and putwchar() are the corresponding functions and macros
for wide-oriented streams. These functions set the global variable errno to the value
EILSEQ if an error occurs in converting the wide character to a multibyte character.

The following example copies the contents of a file opened for reading, referenced
by fpIn, to a file opened for writing, referenced by fpOut (both streams are byte-
oriented):

_Bool error = 0;
int c;
rewind(fpIn); // Set the file position indicator to the beginning
 // of the file, and clear the error and EOF flags.
while ((c = getc(fpIn)) != EOF) // Read one character at a time.

Inp
ut and

O
utp

ut

Reading and Writing | 219

 if (putc(c, fpOut) == EOF) // Write each character to the
 { // output stream.
 error = 1; break; // A write error.
 }
if (ferror(fpIn)) // A read error.
 error = 1;

Reading strings
The following functions allow you to read a string from a stream:

char *fgets(char *buf, int n, FILE *fp);
wchar_t *fgetws(wchar_t *buf, int n, FILE *fp);
char *gets(char *buf); // Obsolete
char *gets_s(char *buf, size_t n); // C11

The functions fgets() and fgetws() read up to n − 1 characters from the input
stream referenced by fp into the buffer addressed by buf, appending a null charac‐
ter to terminate the string. If the functions encounter a newline character or the end
of the file before they have read the maximum number of characters, then only the
characters read up to that point are read into the buffer. The newline character '\n'
(or, in a wide-oriented stream, L'\n') is also stored in the buffer if read.

gets() reads a line of text from standard input into the buffer addressed by buf.
The newline character that ends the line is replaced by the null character that termi‐
nates the string in the buffer. fgets() is a preferable alternative to gets(), as
gets() offers no way to limit the number of characters read. The C11 standard
retires the function gets() and adds a further alternative to gets(), the new func‐
tion gets_s(), in implementations that support bounds-checking interfaces.

All four functions return the value of their argument buf, or a null pointer if an
error occurred, or if there were no more characters to be read before the end of the
file.

Writing strings
Use the following functions to write a null-terminated string to a stream:

int fputs(const char *s, FILE *fp);
int puts(const char *s);
int fputws(const wchar_t *s, FILE *fp);

The three puts functions have some features in common as well as certain differ‐
ences:

• fputs() and fputws() write the strings to the output stream referenced by fp.
The null character that terminates the string is not written to the output
stream.

220 | Chapter 13: Input and Output

• puts() writes the string s to the standard output stream, followed by a newline
character. There is no wide-character function that corresponds to puts().

• All three functions return EOF (not WEOF) if an error occurred, or a non-
negative value to indicate success.

The function in the following example prints all the lines of a file that contain a
specified string.

// Write to stdout all the lines containing the specified search
// string in the file opened for reading as fpIn.
// Return value: The number of lines containing the search string,
// or -1 on error.
// --
#include <stdio.h>
#include <string.h>
int searchFile(FILE*fpIn, const char *keyword)
{
 #define MAX_LINE 256
 char line[MAX_LINE] = "";
 int count = 0;

 if (fpIn == NULL || keyword == NULL)
 return -1;
 else
 rewind(fpIn);

 while (fgets(line, MAX_LINE, fpIn) != NULL)
 if (strstr(line, keyword) != NULL)
 {
 ++count;
 fputs(line, stdout);
 }

 if (!feof(fpIn))
 return -1;
 else
 return count;
}

Reading and writing blocks
The fread() function reads up to n objects whose size is size from the stream ref‐
erenced by fp, and stores them in the array addressed by buffer:

size_t fread(void *buffer, size_t size, size_t n, FILE *fp);

The function’s return value is the number of objects transferred. A return value less
than the argument n indicates that the end of the file was reached while reading, or
that an error occurred.

Inp
ut and

O
utp

ut

Reading and Writing | 221

The fwrite() function sends n objects whose size is size from the array addressed
by buffer to the output stream referenced by fp:

size_t fwrite(const void *buffer, size_t size, size_t n, FILE *fp);

Again, the return value is the number of objects written. A return value less than the
argument n indicates that an error occurred.

Because the fread() and fwrite() functions do not deal with characters or strings
as such, there are no corresponding functions for wide-oriented streams. On sys‐
tems that distinguish between text and binary streams, the fread() and fwrite()
functions should be used only with binary streams.

The function in the following example assumes that records have been saved in the
file records.dat by means of the fwrite() function. A key value of 0 indicates that a
record has been marked as deleted. In copying records to a new file, the program
skips over records whose key is 0:

// Copy records to a new file, filtering out those with the key 0.
// ---
#include <stdio.h>
#include <stdlib.h>

#define ARRAY_LEN 100 // Maximum number of records in the buffer.
// A structure type for the records:
typedef struct { long key;
 char name[32];
 /* ... other fields in the record ... */ } Record_t;

char inFile[] = "records.dat", // Filenames.
 outFile[] = "packed.dat";

// Terminate the program with an error message:
static inline void error_exit(int status, const char *error_msg)
{
 fputs(error_msg, stderr);
 exit(status);
}

int main()
{
 FILE *fpIn, *fpOut;
 Record_t record, *pArray;
 unsigned int i;

 if ((fpIn = fopen(inFile, "rb")) == NULL) // Open to read.
 error_exit(1, "Error on opening input file.");

 else if ((fpOut = fopen(outFile, "wb")) == NULL) // Open to write.
 error_exit(2, "Error on opening output file.");

 else // Create the buffer.

222 | Chapter 13: Input and Output

 if ((pArray = malloc(ARRAY_LEN * sizeof(Record_t))) == NULL)
 error_exit(3, "Insufficient memory.");

 i = 0; // Read one record at a time:
 while (fread(&record, sizeof(Record_t), 1, fpIn) == 1)
 {
 if (record.key != 0L) // If not marked as deleted ...
 { // ... then copy the record:
 pArray[i++] = record;
 if (i == ARRAY_LEN) // Buffer full?
 { // Yes: write to file.
 if (fwrite(pArray, sizeof(Record_t), i, fpOut) < i)
 break;
 i = 0;
 }
 }
 }
 if (i > 0 && !ferror(fpOut)) // Write the remaining records.
 fwrite(pArray, sizeof(Record_t), i, fpOut);

 if (ferror(fpOut)) // Handle errors.
 error_exit(4, "Error on writing to output file.");
 else if (ferror(fpIn))
 error_exit(5, "Error on reading input file.");

 return 0;
}

Formatted Output
C provides formatted data output by means of the printf() family of functions.
This section illustrates commonly used formatting options with appropriate exam‐
ples. A complete, tabular description of output formatting options is included in
Part II; see the discussion of the printf() function in Chapter 18.

The printf() function family
The printf() function and its various related functions all share the same capabili‐
ties of formatting data output as specified by an argument called the format string.
However, the various functions have different output destinations and ways of
receiving the data intended for output. The printf() functions for byte-oriented
streams are:

int printf(const char * restrict format, ...);
Writes to the standard output stream, stdout.

int fprintf(FILE * restrict fp, const char * restrict format, ...);
Writes to the output stream specified by fp. The printf() function can be con‐
sidered to be a special case of fprintf().

Inp
ut and

O
utp

ut

Reading and Writing | 223

int sprintf(char * restrict buf,
 const char * restrict format, ...);

Writes the formatted output to the char array addressed by buf, and appends a
terminating null character.

int snprintf(char * restrict buf, size_t n,
 const char * restrict format, ...);

Like sprintf(), but never writes more than n bytes to the output buffer.

The ellipsis (...) in these function prototypes stands for more arguments, which
are optional. Another subset of the printf() functions takes a pointer to an argu‐
ment list, rather than accepting a variable number of arguments directly in the func‐
tion call. The names of these functions begin with a v for “variable argument list”:

int vprintf(const char * restrictformat, va_list argptr);
int vfprintf(FILE * restrict fp, const char * restrict format,
 va_list argptr);
int vsprintf(char * restrict buf, const char * restrict format,
 va_list argptr);
int vsnprintf(char * restrict buffer, size_t n,
 const char * restrict format, va_list argptr);

To use the variable argument list functions, you must include stdarg.h in addition to
stdio.h.

There are counterparts to all of these functions for output to wide-oriented streams.
The wide-character printf() functions have names containing wprintf instead of
printf, as in vfwprintf() and swprintf(), for example. There is one exception:
there is no snwprintf(). Instead, swprintf() corresponds to the function
snprintf(), with a parameter for the maximum output length.

The C11 standard provides a new “secure” alternative to each of these functions.
The names of these new functions end in the suffix _s (for example, fprintf_s()).
The new functions test whether any pointer arguments they receive are null
pointers.

The format string
One argument passed to every printf() function is a format string. This is a defini‐
tion of the data output format, and contains some combination of ordinary charac‐
ters and conversion specifications. Each conversion specification defines how the
function should convert and format one of the optional arguments for output. The
printf() function writes the format string to the output destination, replacing each
conversion specification in the process with the formatted value of the correspond‐
ing optional argument.

A conversion specification begins with a percent sign % and ends with a letter, called
the conversion specifier. (To include a percent sign in the output, there is a special

224 | Chapter 13: Input and Output

conversion specification: %%. printf() converts this sequence into a single percent
sign.)

The syntax of a conversion specification ends with the conver‐
sion specifier. Throughout the rest of this section, we use both
these terms frequently in talking about the format strings used
in printf() and scanf() function calls.

The conversion specifier determines the type of conversion to be performed, and
must match the corresponding optional argument. Here is an example:

int score = 120;
char player[] = "Mary";
printf("%s has %d points.\n", player, score);

The format string in this printf() call contains two conversion specifications: %s
and %d. Accordingly, two optional arguments have been specified: a string, matching
the conversion specifier s (for “string”), and an int, matching the conversion speci‐
fier d (for “decimal”). The function call in the example writes the following line to
standard output:

Mary has 120 points.

All conversion specifications (with the exception of %%) have the following general
format:

%[flags][field_width][.precision][length_modifier]specifier

The parts of this syntax that are indicated in square brackets are all optional, but any
of them that you include must be placed in the order shown here. The permissible
conversion specifications for each argument type are described in the sections that
follow. Any conversion specification can include a field width. The precision does
not apply to all conversion types, however, and its significance is different depend‐
ing on the specifier.

Field widths
The field width option is especially useful in formatting tabular output. If included,
the field width must be a positive decimal integer (or an asterisk, as described
momentarily). It specifies the minimum number of characters in the output of the
corresponding data item. The default behavior is to position the converted data
right-justified in the field, padding it with spaces to the left. If the flags include a
minus sign (-), then the information is left-justified, and the excess field width pad‐
ded with space characters to the right.

The following example first prints a line numbering the character positions to illus‐
trate the effect of the field width option:

Inp
ut and

O
utp

ut

Reading and Writing | 225

printf("1234567890123456\n"); // Character positions.
printf("%-10s %s\n", "Player", "Score"); // Table headers.
printf("%-10s %4d\n", "John", 120); // Field widths: 10; 4.
printf("%-10s %4d\n", "Mary", 77);

These statements produce a little table:

1234567890123456
Player Score
John 120
Mary 77

If the output conversion results in more characters than the specified width of the
field, then the field is expanded as necessary to print the complete data output.

If a field is right-justified, it can be padded with leading zeros instead of spaces. To
do so, include a 0 (that’s the digit zero) in the conversion specification’s flags. The
following example prints a date in the format mm-dd-yyyy:

int month = 5, day = 1, year = 1987;
printf("Date of birth: %02d-%02d-%04d\n", month, day, year);

This printf() call produces the following output:

Date of birth: 05-01-1987

You can also use a variable to specify the field width. To do so, insert an asterisk (*)
as the field width in the conversion specification, and include an additional optional
argument in the printf() call. This argument must have the type int, and must
appear immediately before the argument to be converted for output. Here is an
example:

char str[] = "Variable field width";
int width = 30;
printf("%-*s!\n", width, str);

The printf statement in this example prints the string str at the left end of a field
whose width is determined by the variable width. The results are as follows:

Variable field width !

Notice the trailing spaces preceding the bang (!) character in the output. Those
spaces are not present in the string used to initialize str[]. The spaces are gener‐
ated by virtue of the fact that the printf statement specifies a 30-character width for
the string.

Printing characters and strings
The printf() conversion specifier for strings is s, as you have already seen in the
previous examples. The specifier for individual characters is c (for char). They are
summarized in Table 13-2.

226 | Chapter 13: Input and Output

Table 13-2. Conversion specifiers for printing characters and strings

Specifier Argument types Representation

c int A single character

s Pointer to any char type The string addressed by the pointer argument

The following example prints a separator character between the elements in a list of
team members:

char *team[] = { "Vivian", "Tim", "Frank", "Sally" };
char separator = ';';
for (int i = 0; i < sizeof(team)/sizeof(char *); ++i)
 printf("%10s%c ", team[i], separator);
putchar('\n');

The argument represented by the specification %c can also have a narrower type
than int, such as char. Integer promotion automatically converts such an argument
to int. The printf() function then converts the int arguments to unsigned char,
and prints the corresponding character.

For string output, you can also specify the maximum number of characters of the
string that may be printed. This is a special use of the precision option in the con‐
version specification, which consists of a dot followed by a decimal integer. Here is
an example:

char msg[] = "Every solution breeds new problems.";
printf("%.14s\n", msg); // Precision: 14.
printf("%20.14s\n", msg); // Field width is 20; precision is 14.
printf("%.8s\n", msg+6); // Print the string starting at the 7th
 // character in msg, with precision 8.

These statements produce the following output:

Every solution
 Every solution
solution

Printing integers
The printf() functions can convert integer values into decimal, octal, or hexadeci‐
mal notation. The conversion specifiers listed in Table 13-3 are provided for this
purpose.

Inp
ut and

O
utp

ut

Reading and Writing | 227

Table 13-3. Conversion specifiers for printing integers

Specifier Argument types Representation

d, i int Decimal

u unsigned int Decimal

o unsigned int Octal

x unsigned int Hexadecimal with lowercase a, b, c, d, e, f

X unsigned int Hexadecimal with uppercase A, B, C, D, E, F

The following example illustrates different conversions of the same integer value:

printf("%4d %4o %4x %4X\n", 63, 63, 63, 63);

This printf() call produces the following output:

63 77 3f 3F

The specifiers u, o, x, and X interpret the corresponding argument as an unsigned
integer. If the argument’s type is int and its value negative, the converted output is
the positive number that corresponds to the argument’s bit pattern when interpreted
as an unsigned int:

printf("%d %u %X\n", -1, -1, -1);

If int is 32 bits wide, this statement yields the following output:

-1 4294967295 FFFFFFFF

Because the arguments are subject to integer promotion, the same conversion speci‐
fiers can be used to format short and unsigned short arguments. For arguments
with the type long or unsigned long, you must prefix the length modifier l (a
lowercase L) to the d, i, u, o, x, and X specifiers. Similarly, the length modifier for
arguments with the type long long or unsigned long long is ll (two lowercase
Ls). Here is an example:

long bignumber = 100000L;
unsigned long long hugenumber = 100000ULL * 1000000ULL;
printf("%ld %llX\n", bignumber, hugenumber);

These statements produce the following output:

100000 2540BE400

Printing floating-point numbers
Table 13-4 shows the printf() conversion specifiers to format floating-point num‐
bers in various ways.

228 | Chapter 13: Input and Output

Table 13-4. Conversion specifiers for printing floating-point numbers

Specifier Argument types Representation

f double Decimal floating-point number

e, E double Exponential notation, decimal

g, G double Floating-point or exponential notation, whichever is shorter

a, A double Exponential notation, hexadecimal

The most commonly used specifiers are f and e (or E). The following example illus‐
trates how they work:

double x = 12.34;
printf("%f %e %E\n", x, x, x);

This printf() call generates following output line:

12.340000 1.234000e+01 1.234000E+01

The e that appears in the exponential notation in the output is lowercase or upper‐
case, depending on whether you use e or E for the conversion specifier. Further‐
more, as the example illustrates, the default output shows precision to six decimal
places. The precision option in the conversion specification modifies this behavior:

double value = 8.765;
printf("Value: %.2f\n", value); // Precision is 2: output to
 // two decimal places.
printf("Integer value:\n"
 " Rounded: %5.0f\n" // Field width 5; precision 0.
 " Truncated: %5d\n", value, (int)value);

These printf() calls produce the following output:

Value: 8.77
Integer value:
 Rounded: 9
 Truncated: 8

As this example illustrates, printf() rounds floating-point numbers up or down in
converting them for output. If you specify a precision of 0, the decimal point itself is
suppressed. If you simply want to truncate the fractional part of the value, you can
cast the floating-point number as an integer type.

The specifiers described can also be used with float arguments, because they are
automatically promoted to double. To print arguments of type long double, how‐
ever, you must insert the length modifier L before the conversion specifier, as in this
example:

Inp
ut and

O
utp

ut

Reading and Writing | 229

#include <math.h>
long double xxl = expl(1000);
printf("e to the power of 1000 is %.2Le\n", xxl);

Formatted Input
To read in data from a formatted source, C provides the scanf() family of func‐
tions. Like the printf() functions, the scanf() functions take as one of their argu‐
ments a format string that controls the conversion between the I/O format and the
program’s internal data. This section highlights the differences between the uses of
format strings and conversion specifications in the scanf() and printf() func‐
tions.

The scanf() function family
The various scanf() functions all process the characters in the input source in the
same way. They differ in the kinds of data sources they read, however, and in the
ways in which they receive their arguments. The scanf() functions for byte-
oriented streams are:

int scanf(const char * restrict format, ...);
Reads from the standard input stream, stdin.

int fscanf(FILE * restrict fp, const char * restrict format, ...);
Reads from the input stream referenced by fp.

int sscanf(const char * restrict src,
 const char * restrict format, ...);

Reads from the char array addressed by src.

The ellipsis (…) stands for more arguments, which are optional. The optional argu‐
ments are pointers to the variables in which the scanf() function stores the results
of its conversions.

Like the printf() functions, the scanf() family also includes variants that take a
pointer to an argument list, rather than accepting a variable number of arguments
directly in the function call. The names of these functions begin with the letter v for
“variable argument list”: vscanf(), vfscanf(), and vsscanf(). To use the variable
argument list functions, you must include stdarg.h in addition to stdio.h.

There are counterparts to all of these functions for reading wide-oriented streams.
The names of the wide-character functions contain the sequence wscanf in place of
scanf, as in wscanf() and vfwscanf(), for example.

The C11 standard provides a new “secure” alternative to each of the scanf() func‐
tions. The names of these new functions end in the suffix _s, as in fscanf_s(), for
example. The new functions test whether the array bounds would be exceeded
before reading a string into an array.

230 | Chapter 13: Input and Output

The format string
The format string for the scanf() functions contains both ordinary characters and
conversion specifications that define how to interpret and convert the sequences of
characters read. Most of the conversion specifiers for the scanf() functions are sim‐
ilar to those defined for the printf() functions. However, conversion specifications
in the scanf() functions have no flags and no precision options. The general syntax
of conversion specifications for the scanf() functions is as follows:

%[*][field_width][length_modifier]specifier

For each conversion specification in the format string, one or more characters are
read from the input source and converted in accordance with the conversion speci‐
fier. The result is stored in the object addressed by the corresponding pointer argu‐
ment. Here is an example:

int age = 0;
char name[64] = "";
printf("Please enter your first name and your age:\n");
scanf("%s%d", name, &age);

Suppose that the user enters the following line when prompted:

Bob 27\n

The scanf() call writes the string Bob into the char array name, and the value 27 in
the int variable age.

All conversion specifications, except those with the specifier c, skip over leading
whitespace characters. In the previous example, the user could type any number of
space, tab, or newline characters before the first word, Bob, or between Bob and 27,
without affecting the results.

The sequence of characters read for a given conversion specification ends when
scanf() reads any whitespace character, or any character that cannot be interpreted
under that conversion specification. Such a character is pushed back onto the input
stream so that processing for the next conversion specification begins with that
character. In the previous example, suppose the user enters this line:

Bob 27years\n

Then on reaching the character y, which cannot be part of a decimal numeral,
scanf() stops reading characters for the conversion specification %d. After the func‐
tion call, the characters years\n would remain in the input stream’s buffer.

If, after skipping over any whitespace, scanf() doesn’t find a character that matches
the current conversion specification, an error occurs and the scanf() function stops
processing the input. We’ll show you how to detect such errors in a moment.

Often the format string in a scanf() function call contains only conversion specifi‐
cations. If not, all other characters in the format string, except whitespace charac‐
ters, must literally match characters in corresponding positions in the input source.

Inp
ut and

O
utp

ut

Reading and Writing | 231

Otherwise, the scanf() function quits processing and pushes the mismatched char‐
acter back on to the input stream.

One or more consecutive whitespace characters in the format string matches any
number of consecutive whitespace characters in the input stream. In other words,
for any whitespace in the format string, scanf() reads past all whitespace characters
in the data source up to the first non-whitespace character. Knowing this, what’s the
matter with the following scanf() call?

scanf("%s%d\n", name, &age); // Problem?

Suppose that the user enters the following line:

Bob 27\n

In this case, scanf() doesn’t return after reading the newline character but instead
continues reading more input—until a non-whitespace character comes along.

Sometimes you will want to read past any sequence of characters that matches a cer‐
tain conversion specification without storing the result. You can achieve exactly this
effect by inserting an asterisk (*) immediately after the percent sign (%) in the con‐
version specification. Do not include a pointer argument for a conversion specifica‐
tion with an asterisk.

The return value of a scanf() function is the number of data items successfully
converted and stored. If everything goes well, the return value matches the number
of conversion specifications, not counting any that contain an asterisk. The scanf()
functions return the value of EOF if a read error occurs or they reach the end of the
input source before converting any data items. Here is an example:

if (scanf("%s%d", name, &age) < 2)
 fprintf(stderr, "Bad input.\n");
else
{ /* ... Test the values stored ... */ }

Field widths
The field width is a positive decimal integer that specifies the maximum number of
characters that scanf() reads for the given conversion specification. For string
input, this item can be used to prevent buffer overflows:

char city[32];
printf("Your city: ");
if (scanf("%31s", city) < 1) // Never read in more than 31
 // characters!
 fprintf(stderr, "Error reading from standard input.\ n");
else
/* ... */

Unlike printf(), which exceeds the specified field width whenever the output is
longer than that number of characters, scanf() with the s conversion specifier

232 | Chapter 13: Input and Output

never writes more characters to a buffer than the number specified by the field
width.

Reading characters and strings
The conversion specifications %c and %1c read the next character in the input
stream, even if it is a whitespace character. By specifying a field width, you can read
that exact number of characters, including whitespace characters, as long as the end
of the input stream does not intervene. When you read more than one character in
this way, the corresponding pointer argument must point to a char array that is
large enough to hold all the characters read. The scanf() function with the c con‐
version specifer does not append a terminating null character. Here is an example:

scanf("%*5c");

This scanf() call reads and discards the next five characters in the input source.

The conversion specification %s always reads just one word, as a whitespace charac‐
ter ends the sequence read. To read entire text lines, you can use the fgets() func‐
tion.

The following example reads the contents of a text file word by word. Here we
assume that the file pointer fp is associated with a text file that has been opened for
reading:

char word[128];
while (fscanf(fp, "%127s", word) == 1)
{
 /* ... process the word read ... */
}

In addition to the conversion specifier s, you can also read strings using the “scan‐
set” specifier, which consists of an unordered set of characters between square
brackets ([scanset]). The scanf() function then reads all characters, and saves
them as a string (with a terminating null character), until it reaches a character that
does not match any of those in the scanset. Here is an example:

char strNumber[32];
scanf("%[0123456789]", strNumber);

If the user enters 345X67, then scanf() stores the string 345\0 in the array
strNumber. The character X and all subsequent characters remain in the input
buffer.

To invert the scanset—that is, to match all characters except those between the
square brackets—insert a caret (^) immediately after the opening bracket. The fol‐
lowing scanf() call reads all characters, including whitespace, up to a punctuation
character that terminates a sentence, and then reads the punctuation character itself:

char ch, sentence[512];
scanf("%511[^.!?]%c", sentence, &ch);

Inp
ut and

O
utp

ut

Reading and Writing | 233

The following scanf() call can be used to read and discard all characters up to the
end of the current line:

scanf("%*[^\n]%*c");

Reading integers
Like the printf() functions, the scanf() functions offer the following conversion
specifiers for integers: d, i, u, o, x, and X. These allow you to read and convert deci‐
mal, octal, and hexadecimal notation to int or unsigned int variables. Here is an
example:

// Read a non-negative decimal integer:
unsigned int value = 0;
if (scanf("%u", &value) < 1)
 fprintf(stderr, "Unable to read an integer.\n");
else
 /* ... */

For the specifier i in the scanf() functions, the base of the numeral read is not pre‐
defined. Instead, it is determined by the prefix of the numeric character sequence
read, in the same way as for integer constants in C source code (see “Integer Con‐
stants” on page 39). If the character sequence does not begin with a zero, then it is
interpreted as a decimal numeral. If it does begin with a zero and the second charac‐
ter is not x or X, then the sequence is interpreted as an octal numeral. A sequence
that begins with 0x or 0X is read as a hexadecimal numeral.

To assign the integer read to a short, char, long, or long long variable (or to a
variable of a corresponding unsigned type), you must insert a length modifier
before the conversion specifier: h for short, hh for char, l for long, or ll for long
long. In the following example, the FILE pointer fp refers to a file opened for read‐
ing:

unsigned long position = 0;
if (fscanf(fp, "%lX", &position) < 1) // Read a hexadecimal integer.
 /* ... Handle error: unable to read a numeral ... */

Reading floating-point numbers
To process floating-point numerals, the scanf() functions use the same conversion
specifiers as printf(): f, e, E, g, and G. Furthermore, C99 has added the specifiers a
and A. All of these specifiers interpret the character sequence read in the same way.
The character sequences that can be interpreted as floating-point numerals are the
same as the valid floating-point constants in C; see “Floating-Point Constants” on
page 40. scanf() can also convert integer numerals and store them in floating-point
variables.

All of these specifiers convert the numeral read into a floating-point value with the
type float. If you want to convert and store the value read as a variable of type,

234 | Chapter 13: Input and Output

double or long double, you must insert a length modifier: either l (a lowercase L)
for double, or L for long double. Here is an example:

float x = 0.0F;
double xx = 0.0;
// Read in two floating-point numbers; convert one to float and the
// other to double:
if (scanf("%f %lf", &x, &xx) < 2)
 /* ... */

If this scanf() call receives the input sequence 12.3 7\n, then it stores the value
12.3 in the float variable x, and the value 7.0 in the double variable xx.

Random File Access
Random file access refers to the ability to read or modify information directly at any
given position in a file. You do this by getting and setting a file position indicator,
which represents the current access position in the file associated with a given
stream.

Obtaining the Current File Position
The following functions return the current file access position. Use one of these
functions when you need to note a position in the file to return to it later:

long ftell(FILE *fp);
ftell() returns the file position of the stream specified by fp. For a binary
stream, this is the same as the number of characters in the file before this given
position—that is, the offset of the current character from the beginning of the
file. ftell() returns -1 if an error occurs.

int fgetpos(FILE * restrict fp, fpos_t * restrict ppos);
fgetpos() writes the file position indicator for the stream designated by fp to
an object of type fpos_t, addressed by ppos. If fp is a wide-oriented stream,
then the indicator saved by fgetpos() also includes the stream’s current con‐
version state (see “Byte-Oriented and Wide-Oriented Streams” on page 216).
fgetpos() returns a nonzero value to indicate that an error occurred. A return
value of zero indicates success.

The following example records the positions of all lines in the text file messages.txt
that begin with the character #:

#define ARRAY_LEN 1000
long arrPos[ARRAY_LEN] = { 0L };
FILE *fp = fopen("messages.txt", "r");
if (fp != NULL)
{
 int i = 0, c1 = '\n', c2;
 while (i < ARRAY_LEN && (c2 = getc(fp)) != EOF)
 {

Inp
ut and

O
utp

ut

Random File Access | 235

 if (c1 == '\n' && c2 == '#')
 arrPos[i++] = ftell(fp) - 1;
 c1 = c2;
 }
 /* ... */
}

Setting the File Access Position
The following functions modify the file position indicator:

int fsetpos(FILE *fp, const fpos_t *ppos);
Sets both the file position indicator and the conversion state to the values
stored in the object referenced by ppos. These values must have been obtained
by a call to the fgetpos() function. If successful, fsetpos() returns 0 and
clears the stream’s EOF flag. A nonzero return value indicates an error.

int fseek(FILE *fp, long offset, int origin);
Sets the file position indicator to a position specified by the value of offset
and by a reference point indicated by the origin argument. The offset argu‐
ment indicates a position relative to one of three possible reference points,
which are identified by macro values. Table 13-5 lists these macros, as well as
the numeric values that were used for origin before ANSI C defined them. The
value of offset can be negative. The resulting file position must be greater
than or equal to zero, however.

Table 13-5. The origin parameter in fseek()

Macro name Traditional value of origin Offset is relative to

SEEK_SET 0 The beginning of the file

SEEK_CUR 1 The current file position

SEEK_END 2 The end of the file

When working with text streams—on systems that distinguish between text and
binary streams—you should always use a value obtained by calling the ftell()
function for the offset argument, and let origin have the value SEEK_SET. The
function pairs ftell()–fseek() and fgetpos()–fsetpos() are not mutually com‐
patible, because the fpos_t object used by fgetpos() and fsetpos() to indicate a
file position may not have an arithmetic type.

If successful, fseek() clears the stream’s EOF flag and returns zero. A nonzero
return value indicates an error. rewind() sets the file position indicator to the
beginning of the file and clears the stream’s EOF and error flags:

void rewind(FILE *fp);

Except for the error flag, the call rewind(fp) is equivalent to:

236 | Chapter 13: Input and Output

(void)fseek(fp, 0L, SEEK_SET)

If the file has been opened for reading and writing, you can perform either a read or
a write operation after a successful call to fseek(), fsetpos(), or rewind().

The following example uses an index table to store the positions of records in the
file. This approach permits direct access to a record that needs to be updated:

// setNewName(): Finds a keyword in an index table
// and updates the corresponding record in the file.
// The file containing the records must be opened in
// "update mode"; i.e., with the mode string "r+b".
// Arguments: - A FILE pointer to the open data file;
// - The key;
// - The new name.
// Return value: A pointer to the updated record,
// or NULL if no such record was found.
// ---
#include <stdio.h>
#include <string.h>
#include "Record.h" // Defines the types Record_t, IndexEntry_t:
 // typedef struct { long key; char name[32];
 // /* ... */ } Record_t;
 // typedef struct { long key, pos; } IndexEntry_t;

extern IndexEntry_t indexTab[]; // The index table.
extern int indexLen; // The number of table entries.

Record_t *setNewName(FILE *fp, long key, const char *newname)
{
 static Record_t record;
 int i;
 for (i = 0; i < indexLen; ++i)
 {
 if (key == indexTab[i].key)
 break; // Found the specified key.
 }
 if (i == indexLen)
 return NULL; // No match found.
 // Set the file position to the record:
 if (fseek(fp, indexTab[i].pos, SEEK_SET) != 0)
 return NULL; // Positioning failed.
 // Read the record:
 if (fread(&record, sizeof(Record_t), 1, fp) != 1)
 return NULL; // Error on reading.

 if (key != record.key) // Test the key.
 return NULL;
 else
 { // Update the record:
 size_t size = sizeof(record.name);
 strncpy(record.name, newname, size-1);

Inp
ut and

O
utp

ut

Random File Access | 237

 record.name[size-1] = '\0';

 if (fseek(fp, indexTab[i].pos, SEEK_SET) != 0)
 return NULL; // Error setting file position.
 if (fwrite(&record, sizeof(Record_t), 1, fp) != 1)
 return NULL; // Error writing to file.

 return &record;
 }
}

The second fseek() call before the write operation could also be replaced with the
following, moving the file pointer relative to its previous position:

if (fseek(fp, -(long)sizeof(Record_t), SEEK_CUR) != 0)
 return NULL; // Error setting file position.

238 | Chapter 13: Input and Output

14
Multithreading

C programs often perform several tasks simultaneously. For example, a program
may:

• Execute procedures that accomplish intermediate tasks in parallel and so
improve performance

• Process user input while carrying on time-consuming data communication or
real-time operations “in the background”

Different tasks are performed simultaneously by the concurrent execution of parts of
the program. Especially on modern multiprocessor systems—including multicore
processors, of course—it is increasingly important for programs to take advantage
of concurrency to use the system’s resources efficiently.

Until recently, C developers have had to depend on features of the operating system
or appropriate libraries to implement concurrent execution. Now, however, the new
C11 standard makes concurrency in C programming portable. C11 supports multi‐
threaded execution, or multiple parallel paths of control flow within a process, and
provides the same degree of concurrency as all modern operating systems. To this
end, C11 defines an appropriate memory model and supports atomic operations.
Support for multithreading and atomic operations are optional under the C11 stan‐
dard, however. An implementation that conforms to C11 must simply define the
macros __STDC_NO_THREADS__ and __STDC_NO_ATOMICS__ if it does not provide the
corresponding features.

You may have already worked with the POSIX threads extension to C (called
pthreads for short); that is, the library that implements multithreading in accord‐
ance with the Portable Operating System Interface for UNIX (POSIX) standard,

239

IEEE 1003.1c. If so, you will find that the C11 threads programming interface is
similar in most respects to the POSIX standard.

Threads
When you start a program, the operating system creates a new process in which the
program is executed. A process consists of one or more threads. Each thread is a
partial process that executes a sequence of instructions independently of other parts
of the process. When the process begins, its main thread is active. From then on,
any running thread can launch other threads. All threads that have been started but
not yet ended are terminated when the process terminates—for example, by execut‐
ing a return statement in the main() function or by calling the exit() function.

The system’s scheduler allocates the available CPU time to all runnable threads
equally. Usually the scheduler is preemptive: that means it interrupts the thread
being executed by a central processing unit (CPU) at brief intervals and assigns the
CPU a different thread for a time. As a result, threads appear to the user to be exe‐
cuted in parallel, even on a single-processor system. Truly simultaneous execution
of several threads is only possible on a multiprocessor system, however.

Every process has its own address space in memory, and has other exclusive resour‐
ces, such as open files. All the threads of a process inherit its resources. Most signifi‐
cantly, several threads in one process share the same address space. That makes
task-switching within a process much simpler for the scheduler than switching to a
different process.

However, each thread also has resources of its own that are necessary for task-
switching between threads: these include stack memory and CPU registers. These
allow each thread to process its own local data without interference between
threads. In addition, a thread may also have thread-specific permanent memory
(see “Thread-Local Objects and Thread-Specific Storage” on page 256).

Because the threads of a given process use the same address space, they share their
global and static data. That means, however, that two different threads can access
the same memory locations concurrently. This situation is called a data race in the C
standard, or a race condition in popular parlance. To prevent inconsistencies in
shared data, the programmer must explicitly synchronize different threads’ writing
operations or reading and writing operations if they use the same locations in
memory.

Creating Threads
The macro definitions and the declarations of types and functions to support multi‐
threading are declared in the header threads.h. All of the identifiers that are directly
related to threads begin with the prefix thrd_. For example, thrd_t is the type of an
object that identifies a thread.

240 | Chapter 14: Multithreading

The function that creates and starts executing a new thread is called thrd_create().
One of its arguments names the function to be executed in the new thread. The
complete prototype of thrd_create() is:

int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

The parameter func is a pointer to the function that the thread will execute, and the
void pointer arg is used to pass an argument to that function. In other words, the
new thread will perform the function call func(arg). The type of the func argu‐
ment, thrd_start_t, is defined as int (*)(void*) (that is, a pointer to a function
that takes a void pointer as its argument and returns an int), so the function that
the thread carries out returns a value of the type int. The program can subsequently
obtain this return value—waiting for the thread to finish if necessary—by calling
the function thread_join().

If it succeeds in starting a thread, the function thread_create() writes the identifi‐
cation of the new thread in the object pointed to by the argument thr, and returns
the value of the macro thread_success.

In most cases, other operations later in the program depend on the results of the
thread’s execution and can only be performed when it has finished. The function
thread_join() is used to ensure that a thread has finished. Its prototype is:

int thrd_join(thrd_t thr, int *result);

The thread that calls thread_join() blocks—that is, it stops at that point in the pro‐
gram as long as necessary—until the thread identified by thr finishes. Then
thread_join() writes the return value of that thread’s function in the int variable
that the pointer result refers to (unless result is a null pointer). Finally,
thread_join() releases any resources that belong to the thread.

If the program’s logic does not require it to wait for a thread to end, it should call
the function:

int thrd_detach(thrd_t thr);

Then all of the thread’s resources will be released when the thread finishes. Once a
thread has been detached, there is no way for the program to wait for it to end, nor
to obtain the return value of the thread function. A program can call either
thread_join() or thread_detach() no more than once for each thread created.

The program in Example 14-1 illustrates a way of processing an array using parallel
operations. Separate threads first process parts of the array, and then their results
are joined together. The program merely calculates the sum of a sequence of num‐
bers.

The function sum() first determines the maximum size of a block of array elements
from the number of threads to be created, and then calls the recursive helper func‐
tion parallel_sum().

M
ultithread

ing

Threads | 241

The parallel_sum() function divides the array into two halves and gives one half
to a new thread to work on, and then calls itself to process the other half. As the
example illustrates, several arguments needed by a thread function are generally
grouped in a structure.

Example 14-1. Calculating the sum of array elements in several parallel
threads

#include <stdbool.h>
#include <threads.h>

#define MAX_THREADS 8 // 1, 2, 4, 8 ... Maximum number
 // of threads to create.
#define MIN_BLOCK_SIZE 100 // Minimum size of an array block.

typedef struct // Arguments for the parallel_sum() function.
{
 float *start; // Start and length of the
 int len; // array block passed to parallel_sum().
 int block_size; // Size of the smallest blocks.
 double sum; // The result.
} Sum_arg;

int parallel_sum(void *arg); // Prototype of the thread function.

// ---
// Calculate the sum of array elements and write it to *sumPtr.
// sum() calls the function parallel_sum() for parallel processing.
// Return value: true if no error occurs; otherwise, false.
bool sum(float arr[], int len, double* sumPtr)
{
 int block_size = len / MAX_THREADS;
 if (block_size < MIN_BLOCK_SIZE) block_size = len;

 Sum_arg args = { arr, len, block_size, 0.0 };
 if (parallel_sum(&args))
 { *sumPtr = args.sum; return true; }
 else
 return false;
}
// ---
// Recursive helper function to divide the work among several threads.
int parallel_sum(void *arg)
{
 Sum_arg *argp = (Sum_arg*)arg; // A pointer to the arguments.

 if (argp->len <= argp->block_size) // If length <= block_size,
 { // add up the elements.
 for (int i = 0; i < argp->len; ++i)
 argp->sum += argp->start[i];
 return 1;

242 | Chapter 14: Multithreading

 }
 else // If length > block_size,
 { // divide the array.
 int mid = argp->len / 2;
 Sum_arg arg2 = { argp->start+mid, argp->len-mid,
 argp->block_size, 0}; // Specifies second half
 argp->len = mid; // Length of first half

 thrd_t th; // Process first half in a new thread.
 int res = 0;
 if (thrd_create(&th, parallel_sum, arg) != thrd_success)
 return 0; // Couldn't spawn a thread

 if (!parallel_sum(&arg2)) // Process second half by recursion
 // in the current thread.
 {
 thrd_detach(th); return 0; // Recursive call failed
 }
 thrd_join(th, &res);
 if (!res)
 return 0; // Sibling thread reported failure

 argp->sum += arg2.sum;
 return 1;
 }
}

Other Thread Functions
In addition to the thread_create(), thread_join() and thread_detach() func‐
tions described in the previous section, C11 provides five more functions for thread
control:

thrd_t thrd_current(void);
This function returns the identification of the thread in which it is called.

int thrd_equal(thrd_t thr0, thrd_t thr1);
Returns 0 if and only if the two thread identifiers refer to different threads.

int thrd_sleep(const struct timespec *duration,

 struct timespec *remaining);
Blocks the calling thread for the period specified by duration. The function
returns earlier only if it receives a signal that is not being ignored (see “Signals”
on page 339). In that case, the function saves the remaining countdown time in
the object pointed to by remaining, provided remaining is not a null pointer.
The pointers duration and remaining must not point to the same object.

M
ultithread

ing

Threads | 243

The structure argument timespec has two members for storing seconds and
nanoseconds:

time_t tv_sec; // Seconds >= 0
long tv_nsec; // 0 <= nanoseconds <= 999999999

The order of the members in the structure is not specified. In the following
example, the calling thread waits for at least 100 milliseconds unless interrup‐
ted by a signal:

struct timespec duration = {0};
duration.tv_nsec = 100*1E6; // 1 millisecond
 // = 1,000,000 nanoseconds
thrd_sleep(&duration,NULL); // Sleep for 100 milliseconds.

The function thrd_sleep() returns 0 if the countdown has expired, or –1 if it
was interrupted by a signal. Other negative return values indicate errors.

void thrd_yield(void);
This function advises the operating system’s scheduler to interrupt the calling
thread and give CPU time to another thread.

_Noreturn void thrd_exit(int result);
Ends the calling thread with the result result. Any function executed in the
thread may call thrd_exit(). This function call is equivalent to the statement
return result; in the thread function. Exiting the last remaining thread
causes the program to exit normally; that is, as if the exit() function were
called with the argument EXIT_SUCCESS.

Accessing Shared Data
If several threads access the same data and at least one of them modifies it, then all
access to the shared data must be synchronized in order to prevent data races.
Otherwise, a thread that reads shared data could interrupt another thread that is in
the middle of modifying the same data, and would then read inconsistent values.
Moreover, because the system may schedule the threads differently each time a pro‐
gram is executed, such errors only manifest themselves intermittently in running
programs and are difficult to reproduce in testing. As the program in Example 14-2
illustrates, a data race can occur even in such a simple operation as incrementing a
counter.

Example 14-2. Concurrent memory access without synchronization

#include <stdio.h>
#include <threads.h>

#define COUNT 10000000L

long counter = 0;
void incFunc(void) { for (long i = 0; i < COUNT; ++i) ++counter; }

244 | Chapter 14: Multithreading

void decFunc(void) { for (long i = 0; i < COUNT; ++i) --counter; }

int main(void)
{
 clock_t cl = clock();
 thrd_t th1, th2;
 if (thrd_create(&th1, (thrd_start_t)incFunc, NULL) != thrd_success
 || thrd_create(&th2, (thrd_start_t)decFunc, NULL) != thrd_success)
 {
 fprintf(stderr,"Error creating thread\n"); return -1;
 }
 thrd_join(th1, NULL);
 thrd_join(th2, NULL);

 printf("Counter: %ld \t", counter);
 printf("CPU time: %ld ms\n", (clock()-cl)*1000L/CLOCKS_PER_SEC);
 return 0;
}

The counter should be 0 when the program ends. However, without synchroniza‐
tion, that is not the case: the final counter value is different each time the program
runs. Here is a typical output sample:

Counter: -714573 CPU time: 59 ms

To permit synchronization, the C library provides mutex operations and atomic
operations.

Mutual Exclusion
The technique of mutual exclusion, or mutex for short, is used to prevent several
threads from accessing shared resources at the same time. The name mutex is given
to an object used to control exclusive access authorization. Together with condition
variables, mutexes permit extensive control of synchronized access. For example,
they allow you to specify the order in which data access operations must occur.

In C programs, a mutex is represented by an object of the type mtx_t that can be
locked by only one thread at a time, while other threads must wait until it is
unlocked. All of the declarations pertaining to operations on mutexes are contained
in the header threads.h. The most important mutex functions are:

int mtx_init(mtx_t *mtx, int mutextype);

Creates a mutex with the properties specified by mutextype. If it succeeds in
creating a new mutex, the function mtx_init() writes the ID of the new mutex
in the object pointed to by the argument mtx, and returns the value of the
macro thrd_success.

The argument mutextype can have one of the following four values:

mtx_plain
mtx_timed

M
ultithread

ing

Accessing Shared Data | 245

mtx_plain | mtx_recursive
mtx_timed | mtx_recursive

The value mtx_plain requests a simple mutex that supports neither timeouts
nor recursion; the other values specify timeout and/or recursion support.

void mtx_destroy(mtx_t *mtx);

Destroys the mutex pointed to by mtx, releasing all its resources.

int mtx_lock(mtx_t *mtx);

Blocks the calling thread until it obtains the mutex specified by mtx. The calling
thread must not already hold the mutex unless the mutex supports recursion. If
the call succeeds in obtaining the mutex, it returns the value of thrd_success.
Otherwise, it returns thrd_error.

int mtx_unlock(mtx_t *mtx);

Releases the mutex referred to by mtx. The caller must hold the mutex before
calling mtx_unlock(). If the call succeeds in releasing the mutex, it returns the
value of thrd_success. Otherwise, it returns thrd_error.

The complementary functions mtx_lock() and mtx_unlock() are called at the
beginning and end of a critical section of code which only one thread at a time must
execute. Two alternatives to mtx_lock() are the functions mtx_trylock(), which
obtains the mutex if it happens to be free but doesn’t block if it is not, and
mtx_timedlock(), which only blocks until a specified time. All of these functions
indicate by their return value whether the call succeeded in obtaining the mutex.

The program in Example 14-3 is a modification of Example 14-2 and shows how to
use a mutex to eliminate the data race for the variable counter.

Example 14-3. Adding a mutex to the program in Example 14-2

#include <stdio.h>
#include <threads.h>

#define COUNT 10000000L

long counter = 0;
mtx_t mtx; // A mutex for access to counter

void incFunc(void)
{
 for (long i = 0; i < COUNT; ++i)
 { mtx_lock(&mtx); ++counter; mtx_unlock(&mtx); }
}
void decFunc(void)
{
 for (long i = 0; i < COUNT; ++i)
 { mtx_lock(&mtx); --counter; mtx_unlock(&mtx); }
}

246 | Chapter 14: Multithreading

int main(void)
{
 if (mtx_init(&mtx, mtx_plain) != thrd_success)
 {
 fprintf(stderr, "Error initializing the mutex.\n");
 return -1;
 }
 //
 // As in Example 14-2: start threads, wait for them to finish,
 // print output.
 //
 mtx_destroy(&mtx);
 return 0;
}

The functions incFunc() and decFunc() can no longer access counter concur‐
rently, as only one of them can lock the mutex at a time. (Error checking has been
omitted for the sake of readability.) Now the counter has the correct value, 0, at the
end of the program. Here is a typical output sample:

Counter: 0 CPU time: 650 ms

Synchronization works, but at a price. The higher CPU time shows that the pro‐
gram now takes about ten times as long to run. The reason is that synchronization
by locking a mutex is a much more complex operation than incrementing and dec‐
rementing a variable. Better performance can be achieved using atomic objects in
cases where they obviate the need for a mutex lock.

Atomic Objects
An atomic object is an object that can be read or modified by means of atomic opera‐
tions; that is, by operations that cannot be interrupted by a concurrent thread. You
can declare an atomic object using the type qualifier _Atomic, introduced in C11
(unless the implementation defines the macro __STDC_NO_ATOMICS__). For example,
the counter variable in the program in Example 14-2 can be made atomic by declar‐
ing it as follows:

_Atomic long counter = ATOMIC_VAR_INIT(0L);

This declaration defines the atomic long variable counter and initializes it with the
value 0. The macro ATOMIC_VAR_INIT and all the other macros, types, and declara‐
tions for using atomic objects are found in the header stdatomic.h. In particular,
stdatomic.h defines abbreviations for atomic types corresponding to all the integer
types. For example, the type atomic_uchar is equivalent to _Atomic unsigned

char.

The syntax _Atomic(T) can also be used to specify the atomic type corresponding to
a given non-atomic type T. Array and function types cannot be atomic, however. An

M
ultithread

ing

Accessing Shared Data | 247

atomic type may have a different size and alignment from those of the correspond‐
ing non-atomic type.

Atomic Operations
Reading or writing an atomic object is an atomic operation; that is, an operation that
cannot be interrupted. That means that different threads can access an atomic
object concurrently without causing a race condition. For every atomic object, all
modifications of the object are performed in a definite global order, which is called
its modification order.

An atomic object with a structure or union type should only be read or written as a
whole: for safe access to individual members, the atomic structure or union should
first be copied to an equivalent non-atomic object.

Note that the initialization of an atomic object, whether using the macro
ATOMIC_VAR_INIT or by the generic function atomic_init(), is not an atomic oper‐
ation.

Atomic operations are typically carried out as read-modify-write operations. For
example, the postfix increment and decrement operators ++ and --, when applied to
an atomic object, are atomic read-modify-write operations. Likewise, the compound
assignment operators, such as +=, work atomically when their left operand is an
atomic object. The program in Example 14-2 can be made to deliver the correct
final counter value 0, without any other changes, by declaring the variable counter
as atomic. The program’s timekeeping shows that the version with an atomic
counter variable is more than twice as fast as the version using a mutex in
Example 14-3.

In addition to the operators already mentioned, there are a number of functions to
perform atomic operations, including atomic_store(), atomic_exchange(), and
atomic_compare_exchange_strong(). You will find an overview of this group of
functions in Chapter 17, and a detailed description of each one in Chapter 18.

An atomic type has the lock-free property if atomic access to an object of this type
can be realized without using lock and unlock operations. Only the type
atomic_flag, a structure type that can represent the two states “set” and “cleared”, is
guaranteed to have the lock-free property. The macro ATOMIC_FLAG_INIT initializes
an atomic_flag object in the “cleared” state, as in the following declaration, for
example:

atomic_flag done = ATOMIC_FLAG_INIT;

To perform the customary flag operations on an atomic_flag object, C11 provides
the functions atomic_flag_test_and_set() and atomic_flag_clear(). The inte‐
ger atomic types are usually also lock-free. To determine whether a given type is
actually lock-free, a program can check the value of a macro of the form
ATOMIC_type_LOCK_FREE, where type is a capitalized abbreviation for a specific
integer type, such as BOOL, INT, or LLONG. The corresponding macro for pointer

248 | Chapter 14: Multithreading

types is ATOMIC_POINTER_LOCK_FREE. All of these macros yield values of 0, 1, or 2.
The value 0 means that the type is never lock-free; 1 means it is lock-free for certain
objects; and 2 means it is always lock-free. Alternatively, you can find out whether a
given atomic object is lock-free by calling the generic function:

_Bool atomic_is_lock_free(const volatile A *obj);

The placeholder A in the function’s parameter declaration stands for any atomic
type. The argument obj is thus a pointer to any given atomic object.

Memory Ordering
In optimizing program code, compilers and processors are free to rearrange the
order of any instructions that are not interdependent. For example, the two assign‐
ment statements a = 0; b = 1; can be executed in either order. In a multithread‐
ing environment, however, such optimizations can lead to errors, because depen‐
dencies between memory operations in different threads are ordinarily not visible
to the compiler or processor.

Using atomic objects prevents such reordering by default. Preventing an optimiza‐
tion may mean sacrificing speed, however. Experienced programmers can improve
performance by explicitly using atomic operations with lower memory-ordering
requirements. For each function that performs an atomic operation (such as
atomic_store(), for example), there is also a version that takes an additional argu‐
ment of the type memory_order. These functions have names that end in _explicit,
such as atomic_store_explicit().

The memory_order type is an enumeration that defines the following constants to
specify the given memory ordering requirements:

memory_order_relaxed
The caller specifies that there are no memory order requirements, so that the
compiler is free to change the order of operations.

memory_order_release

Write access to an atomic object A performs a release operation. The effect of
the release operation is that all the preceding memory access operations in the
given thread are visible to another thread that performs an acquire operation
on A.

memory_order_acquire
A read operation on an atomic object performs an acquire operation. That
ensures that subsequent memory access operations are not rearranged to occur
before this function call.

M
ultithread

ing

Accessing Shared Data | 249

memory_order_consume
A consume operation is less restrictive than an acquire operation: it prevents the
reordering only of subsequent memory access operations that depend directly
on the atomic variable read.

memory_order_acq_rel
Performs both an acquire and a release operation.

memory_order_seq_cst
The request for sequential consistency includes the acquire and release opera‐
tions of memory_order_acq_rel. In addition, it also specifies that all operations
that are so qualified are performed in an absolute order that conforms to the
modification order of the atomic objects involved. Sequential consistency is the
default memory order requirement that is applied to all atomic operations if no
lower requirement is explicitly specified.

In the program in Example 14-2, modified to declare counter as atomic, the incre‐
mentation and decrementation of the counter are performed independently of other
operations so that no memory order specifications are necessary. In other words, in
place of the statement

++counter; // Implies memory_order_seq_cst

the following statement is sufficient, and allows the compiler to perform more opti‐
mization:

atomic_fetch_add_explicit(&counter, 1, memory_order_relaxed);

Release and acquire operations are an efficient way to establish a happens-before
relation between instructions. In other words, as the following example illustrates,
the _explicit functions ensure that a given operation B is only executed after
another thread has completed an operation A:

struct Data *dp = NULL, data;
atomic_intptr_t aptr = ATOMIC_VAR_INIT(0);

// Thread 1:
 data = ...; // Operation A
 atomic_store_explicit(&aptr, (intptr_t)&data,
 memory_order_release);

// Thread 2:
 dp = (struct Data*)atomic_load_explicit(&aptr,
 memory_order_acquire);
 if(dp != NULL)
 // Process the data at *dp
 // Operation B
 else
 // Data at *dp not available yet.

Synchronization using a mutex also implies an acquire operation when the mutex is
locked, and a release operation when it is unlocked. That means that if a thread T1

250 | Chapter 14: Multithreading

uses a mutex to protect an operation A, and another thread T2 uses the same mutex
to protect an operation B, then operation A will be executed completely before
operation B if T1 locks the mutex first. Conversely, if T2 locks the mutex first, then
all the modifications performed by operation B will be visible to thread T1 when T1
executes operation A.

Fences
The memory order requirements for an atomic operation can also be specified sepa‐
rately from an atomic operation. This technique is called establishing a fence or
memory barrier. To set a fence, C11 provides the function:

void atomic_thread_fence(memory_order order);

If the argument’s value is memory_order_release, the function establishes a release
fence. In this case, the atomic write operations must occur after the release fence.

The atomic_thread_fence() function establishes an acquire fence if its argument’s
value is memory_order_acquire or memory_order_consume. The atomic read opera‐
tions must occur before the acquire fence.

If the argument’s value is memory_order_relaxed, the function has no effect. The
argument values memory_order_acq_rel and memory_order_seq_cst specify a
release and acquire fence.

Fences permit a greater degree of memory-order optimization. In our previous
example, an acquire operation in the if branch is sufficient to synchronize the
thread operations:

// Thread 2:
 dp = (struct Data*)atomic_load_explicit(&aptr,
 memory_order_relaxed);
 if(dp != NULL)
 {
 atomic_thread_fence(memory_order_acquire);
 // Operation B:
 // Process the data at *dp.
 }
 else
 // Data at *dp not available yet.

Communication Between Threads: Condition Variables
The C11 standard provides condition variables for communication between threads.
Threads can use condition variables to wait for a notification from another thread
indicating that a certain condition is fulfilled. Such a notification may mean that
certain data are ready for processing, for example.

A condition variable is represented by an object of the type cnd_t, and is used in
conjunction with a mutex. The general procedure is as follows: The thread obtains
the mutex and tests the condition. If the condition is not fulfilled, the thread waits

M
ultithread

ing

Communication Between Threads: Condition Variables | 251

on the condition variable—releasing the mutex—until another thread wakes it up.
Then the thread obtains the mutex and tests the condition again. This procedure is
repeated until the condition is fulfilled.

The functions for working with condition variables, declared in the header
threads.h, are as follows:

int cnd_init(cnd_t *cond);

Initializes the condition variable pointed to by cond.

void cnd_destroy(cnd_t *cond);
Frees all the resources used by the specified condition variable.

int cnd_signal(cnd_t *cond);
Wakes up one of any number of threads that are waiting for the specified con‐
dition variable.

int cnd_broadcast(cnd_t *cond);
Wakes up all the threads waiting for the specified condition variable.

int cnd_wait(cnd_t *cond, mtx_t *mtx);
Blocks the calling thread and releases the specified mutex. A thread must hold
the mutex before calling cnd_wait(). If another thread unblocks the caller by
sending a signal—that is, by specifying the same condition variable as the argu‐
ment to a cnd_signal() or cnd_broadcast() call—then the thread that has
called cnd_wait() obtains the mutex again before cnd_wait() returns.

int cnd_timedwait(cnd_t *restrict cond, mtx_t *restrict mtx,
 const struct timespec *restrict ts);

Like cnd_wait(), cnd_timedwait() blocks the thread that calls it, but only
until the time specified by the argument ts. A struct timespec object repre‐
senting the current time can be obtained by calling the function time
spec_get().

All of the condition variable functions except cnd_destroy() return the value of
thrd_error if they incur an error, and otherwise thrd_success. The function
cnd_timedwait() can also return the value of thrd_timedout if it returns when the
time limit has been reached.

The program in Examples 14-4 and 14-5 illustrates the use of condition variables in
the common “producer-consumer” model. The program starts a new thread for
each producer and for each consumer. A producer puts a new product—in our case,
an int value—in a ring buffer, provided the buffer is not full, and signals waiting
consumers that a product is available. Each consumer takes products from the
buffer, if available, and signals the fact to waiting producers.

Only one thread can modify the ring buffer at any given time. Thread synchroniza‐
tion therefore takes place in the functions bufPut(), which inserts an element in the
buffer, and bufGet(), which removes an element from it. There are two condition

252 | Chapter 14: Multithreading

variables: a producer waits on one of them if the buffer is full, and a consumer waits
on the other if the buffer is empty. All the necessary elements of the buffer are con‐
tained in the structure Buffer. The bufInit() function initializes a Buffer object
with a specified size, and the bufDestroy() function destroys it.

Example 14-4. A ring buffer for the producer-consumer model

/* buffer.h
 * Declarations for a thread-safe buffer.
 */
#include <stdbool.h>
#include <threads.h>

typedef struct Buffer
{
 int *data; // Pointer to the array of data.
 size_t size, count; // Maximum and current numbers of elements.
 size_t tip, tail; // tip = index of the next free spot.
 mtx_t mtx; // A mutex and
 cnd_t cndPut, cndGet; // two condition variables.
} Buffer;

bool bufInit(Buffer *bufPtr, size_t size);
void bufDestroy(Buffer *bufPtr);

bool bufPut(Buffer *bufPtr, int data);
bool bufGet(Buffer *bufPtr, int *dataPtr, int sec);

/* ---
 * buffer.c
 * Definitions of functions operating on Buffer.
 */
#include "buffer.h"
#include <stdlib.h> // For malloc() and free()

bool bufInit(Buffer *bufPtr, size_t size)
{
 if ((bufPtr->data = malloc(size * sizeof(int))) == NULL)
 return false;
 bufPtr->size = size;
 bufPtr->count = 0;
 bufPtr->tip = bufPtr->tail = 0;
 return mtx_init(&bufPtr->mtx, mtx_plain) == thrd_success
 && cnd_init(&bufPtr->cndPut) == thrd_success
 && cnd_init(&bufPtr->cndGet) == thrd_success;
}

void bufDestroy(Buffer *bufPtr)
{
 cnd_destroy(&bufPtr->cndGet);
 cnd_destroy(&bufPtr->cndPut);

M
ultithread

ing

Communication Between Threads: Condition Variables | 253

 mtx_destroy(&bufPtr->mtx);
 free(bufPtr->data);
}

// Insert a new element in the buffer:
bool bufPut(Buffer *bufPtr, int data)
{
 mtx_lock(&bufPtr->mtx);

 while (bufPtr->count == bufPtr->size)
 if (cnd_wait(&bufPtr->cndPut, &bufPtr->mtx) != thrd_success)
 return false;

 bufPtr->data[bufPtr->tip] = data;
 bufPtr->tip = (bufPtr->tip + 1) % bufPtr->size;
 ++bufPtr->count;

 mtx_unlock(&bufPtr->mtx);
 cnd_signal(&bufPtr->cndGet);

 return true;
}

// Remove an element from the buffer. If the buffer is empty,
// wait no more than sec seconds.
bool bufGet(Buffer *bufPtr, int *dataPtr, int sec)
{
 struct timespec ts;
 timespec_get(&ts, TIME_UTC); // The current time
 ts.tv_sec += sec; // + sec seconds delay.

 mtx_lock(&bufPtr->mtx);

 while (bufPtr->count == 0)
 if (cnd_timedwait(&bufPtr->cndGet,
 &bufPtr->mtx, &ts) != thrd_success)
 return false;

 *dataPtr = bufPtr->data[bufPtr->tail];
 bufPtr->tail = (bufPtr->tail + 1) % bufPtr->size;
 --bufPtr->count;

 mtx_unlock(&bufPtr->mtx);
 cnd_signal(&bufPtr->cndPut);

 return true;
}

The corresponding main() function, shown in Example 14-5, creates a buffer and
starts several producer and consumer threads, giving each of them an identification
number and a pointer to the buffer. Each producer thread creates a certain number

254 | Chapter 14: Multithreading

of “products” and then quits with a return statement. A consumer thread returns if
it is unable to get a product to consume within a certain delay.

Example 14-5. Starting the producer and consumer threads

// producer_consumer.c
#include "buffer.h"
#include <stdio.h>
#include <stdlib.h>

#define NP 2 // Number of producers
#define NC 3 // Number of consumers

int producer(void *); // The thread functions.
int consumer(void *);

struct Arg { int id; Buffer *bufPtr; }; // Arguments for the
 // thread functions.
_Noreturn void errorExit(const char* msg)
{
 fprintf(stderr, "%s\n", msg); exit(0xff);
}

int main(void)
{
 printf("Producer-Consumer Demo\n\n");
 Buffer buf; // Create a buffer for
 bufInit(&buf, 5); // five products.

 thrd_t prod[NP], cons[NC]; // The threads and
 struct Arg prodArg[NP], consArg[NC]; // their arguments.
 int i = 0, res = 0;

 for (i = 0; i < NP; ++i) // Start the producers.
 {
 prodArg[i].id = i+1, prodArg[i].bufPtr = &buf;
 if (thrd_create(&prod[i], producer, &prodArg[i]) != thrd_success)
 errorExit("Thread error.");
 }

 for (i = 0; i < NC; ++i) // Start the consumers.
 {
 consArg[i].id = i+1, consArg[i].bufPtr = &buf;
 if (thrd_create(&cons[i], consumer, &consArg[i]) != thrd_success)
 errorExit("Thread error.");
 }

 for (i = 0; i < NP; ++i) // Wait for the threads to finish.
 thrd_join(prod[i], &res),
 printf("\nProducer %d ended with result %d.\n", prodArg[i].id, res);

M
ultithread

ing

Communication Between Threads: Condition Variables | 255

 for (i = 0; i < NC; ++i)
 thrd_join(cons[i], &res),
 printf("Consumer %d ended with result %d.\n", consArg[i].id, res);

 bufDestroy(&buf);
 return 0;
}

int producer(void *arg) // The producers' thread function.
{
 struct Arg *argPtr = (struct Arg *)arg;
 int id = argPtr->id;
 Buffer *bufPtr = argPtr->bufPtr;

 int count = 0;
 for (int i = 0; i < 10; ++i)
 {
 int data = 10*id + i;
 if (bufPut(bufPtr, data))
 printf("Producer %d produced %d\n", id, data), ++count;
 else
 { fprintf(stderr,
 "Producer %d: error storing %d\n", id, data);
 return -id;
 }
 }
 return count;
}

int consumer(void *arg) // The consumers' thread function.
{
 struct Arg *argPtr = (struct Arg *)arg;
 int id = argPtr->id;
 Buffer *bufPtr = argPtr->bufPtr;

 int count = 0;
 int data = 0;
 while (bufGet(bufPtr, &data, 2))
 {
 ++count;
 printf("Consumer %d consumed %d\n", id, data);
 }
 return count;
}

Thread-Local Objects and Thread-Specific Storage
Thread-local objects and thread-specific storage are two techniques by which each
thread can maintain separate data while using global identifiers for its variables.

256 | Chapter 14: Multithreading

They allow functions that are executed in a given thread to share data without
incurring conflicts, even when other threads are executing the same functions.

Using Thread-Local Objects
A global or static object whose declaration contains the new storage class specifier
_Thread_local is a thread-local object. That means that each thread possesses its
own instance of the object, which is created and initialized when the thread starts.
The object’s storage duration lasts as long as the thread runs. In expressions, the
object’s name always refers to the local instance of the object that belongs to the
thread evaluating the expression.

The specifier _Thread_local can be used together with one of the specifiers static
or extern. The header threads.h defines thread_local as a synonym for
_Thread_local. In Example 14-6, the main thread and the newly started thread
each have an instance of the thread-local variable var.

Example 14-6. Using a thread-local object

#include <stdio.h>
#include <threads.h>

thread_local int var = 10;

void print_var(void){ printf("var = %d\n", var); }
int func(void *); // Thread function

int main(int argc, char *argv[])
{
 thrd_t th1;
 if (thrd_create(&th1, func, NULL) != thrd_success){
 fprintf(stderr,"Error creating thread.\n"); return 0xff;
 }
 print_var(); // Output: var = 10
 thrd_join(th1, NULL);
 return 0;
}

int func(void *arg) // Thread function
{
 var += 10; // Thread-local variable
 print_var(); // Output: var = 20
 return 0;
}

Using Thread-Specific Storage
The technique of thread-specific storage is much more flexible than thread-local
objects. The individual threads can use different amounts of storage, for example.
They can dynamically allocate memory, and free it again by calling a destructor

M
ultithread

ing

Thread-Local Objects and Thread-Specific Storage | 257

function. At the same time, the individual threads’ distinct memory blocks can be
accessed using the same identifiers.

This flexibility is achieved by initially creating a global key that represents a pointer
to thread-specific storage. The individual threads can then load this pointer with the
location of their thread-specific storage. The key is an object of the type tss_t. The
header threads.h contains this type definition and the declarations of four functions
for managing thread-specific storage (abbreviated TSS):

int tss_create(tss_t *key, tss_dtor_t dtor);
Generates a new TSS pointer with the destructor dtor and sets the object poin‐
ted to by key to a value that uniquely identifies the pointer. The type
tss_dtor_t is a function pointer, defined as void (*)(void*) (that is, a
pointer to a function that takes one void pointer argument and has no return
value). The value of dtor may be a null pointer.

void tss_delete(tss_t key);
Frees all the resources used by the TSS key key.

int tss_set(tss_t key, void *val);
Sets the TSS pointer identified by key, for the thread that calls tss_set(), to
the memory block addressed by val.

void *tss_get(tss_t key);
Returns a pointer to the memory block that the calling thread has set by calling
tss_set(). If an error occurs, tss_get() returns NULL.

The functions tss_create() and tss_set() return thrd_error if they incur an
error; otherwise, thrd_success.

The program in Example 14-7 stores the name of a thread in dynamically allocated
thread-specific memory.

Example 14-7. Using thread-specific storage

#include <threads.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

tss_t key; // Global key for a TSS pointer

int thFunc(void *arg); // Thread function
void destructor(void *data); // Destructor function

int main(void)
{
 thrd_t th1, th2;
 int result1 = 0, result2 = 0;

258 | Chapter 14: Multithreading

 // Create the TSS key:
 if (tss_create(&key, destructor) != thrd_success)
 return -1;

 // Create threads:
 if (thrd_create(&th1, thFunc, "Thread_1") != thrd_success
 || thrd_create(&th2, thFunc, "Thread_2") != thrd_success)
 return -2;

 thrd_join(th1, &result1); thrd_join(th2, &result2);
 if (result1 != 0 || result2 != 0)
 fputs("Thread error\n", stderr);
 else
 puts("Threads finished without error.");

 tss_delete(key); // Free all resources of the TSS pointer.
 return 0;
}

void print(void) // Display thread-specific storage.
{
 printf("print: %s\n", (char*)tss_get(key));
}

int thFunc(void *arg)
{
 char *name = (char*)arg;
 size_t size = strlen(name)+1;

 // Set thread-specific storage:
 if (tss_set(key, malloc(size)) != thrd_success)
 return -1;
 // Store data:
 strcpy((char*)tss_get(key), name);
 print();
 return 0;
}

void destructor(void *data)
{
 printf("Destructor for %s\n", (char*)data);
 free(data); // Release memory.
}

M
ultithread

ing

Thread-Local Objects and Thread-Specific Storage | 259

15
Preprocessing Directives

In “How the C Compiler Works” on page 19, we outlined the eight steps in transla‐
tion from C source to an executable program. In the first four of those steps, the C
preprocessor prepares the source code for the actual compiler. The result is a modi‐
fied source in which comments have been deleted and preprocessing directives have
been replaced with the results of their execution.

This chapter describes the C preprocessing directives. Among these are directives to
insert the contents of other source files; to identify sections of code to be compiled
only under certain conditions; and to define macros, which are identifiers that the
preprocessor replaces with another text.

Each preprocessor directive appears on a line by itself, beginning with the character
#. Only space and tab characters may precede the # character on a line. A directive
ends with the first newline character that follows its beginning. The shortest prepro‐
cessor directive is the null directive. This directive consists of a line that contains
nothing but the character #, and possibly comments or whitespace characters. Null
directives have no effect: the preprocessor removes them from the source file.

If a directive doesn’t fit on one text line, you can end the line with a backslash (\)
and continue the directive on the next line. Here is an example:

#define MacroName A long, \
long macro replacement value

The backslash must be the last character before the newline character. The prepro‐
cessor concatenates the lines by removing each backslash-and-newline pair that it
encounters. Because the preprocessor also replaces each comment with a space, the
backslash no longer has the same effect if you put a comment between the backslash
and the newline character.

P
rep

ro
cessing

Preprocessing Directives | 261

Spaces and tab characters may appear between the # character that introduces a
directive and the directive name. (In the previous example, the directive name is
define.)

You can verify the results of the C preprocessor, either by running the preprocessor
as a separate program or by using a compiler option to perform only the prepro‐
cessing steps.

Inserting the Contents of Header Files
An #include directive instructs the preprocessor to insert the contents of a speci‐
fied file in the place of the directive. There are two ways to specify the file to be
inserted:

#include <filename>
#include "filename"

Use the first form, with angle brackets, when you include standard library header
files or additional header files provided by the implementation. Here is an example:

#include <math.h> // Prototypes of mathematical functions,
 // with related types and macros.

Use the second form, with double quotation marks, to include source files specific
to your programs. Files inserted by #include directives typically have names ending
in .h, and contain function prototypes, macro definitions, and type definitions.
These definitions can then be used in any program source file after the correspond‐
ing #include directive. Here is an example:

#include "myproject.h" // Function prototypes, type definitions
 // and macros used in my project.

You may use macros in an #include directive. If you do use a macro, the macro’s
replacement must result in a correct #include directive. Example 15-1 demon‐
strates such #include directives.

Example 15-1. Macros in #include directives

#ifdef _DEBUG_
 #define MY_HEADER "myProject_dbg.h"
#else
 #define MY_HEADER "myProject.h"
#endif
#include MY_HEADER

If the macro _DEBUG_ is defined when this segment is preprocessed, then the prepro‐
cessor inserts the contents of myProject_dbg.h. If not, it inserts myProject.h. The
#ifdef, #else, and #endif directives are described in detail in “Conditional
Compiling” on page 272.

262 | Chapter 15: Preprocessing Directives

How the Preprocessor Finds Header Files
It is up to the given C implementation to define where the preprocessor searches for
files specified in #include directives. Whether filenames are case-sensitive is also
implementation-dependent. For files specified between angle brackets (<file
name>), the preprocessor usually searches in certain system directories, such as /usr/
local/include and /usr/include on Unix systems, for example.

For files specified in quotation marks ("filename"), the preprocessor usually looks
in the current directory first, which is typically the directory containing the pro‐
gram’s other source files. If such a file is not found in the current directory, the pre‐
processor searches the system include directories as well. A filename may contain a
directory path. If so, the preprocessor looks for the file only in the specified direc‐
tory.

You can always specify your own search path for #include directives, either by
using an appropriate command-line option in running the compiler, or by adding
search paths to the contents of an environment variable, often named INCLUDE.
Consult your compiler’s documentation.

Nested #include Directives
#include directives can be nested; that is, a source file inserted by an #include
directive may in turn contain #include directives. The preprocessor permits at least
15 levels of nested includes.

Because header files sometimes include one another, it can easily happen that the
same file is included more than once. For example, suppose the file myProject.h con‐
tains the line:

#include <stdio.h>

Then a source file that contains the following #include directives would include the
file stdio.h twice, once directly and once indirectly:

#include <stdio.h>
#include "myProject.h"

However, you can easily guard the contents of a header file against multiple inclu‐
sions using the directives for conditional compiling (explained in “Conditional
Compiling” on page 272). Example 15-2 demonstrates this usage.

P
rep

ro
cessing

Inserting the Contents of Header Files | 263

Example 15-2. Preventing multiple inclusions

#ifndef INCFILE_H_
#define INCFILE_H_

/* ... The actual contents of the header file incfile.h are here ... */

#endif /* INCFILE_H_ */

At the first occurrence of a directive to include the file incfile.h, the macro
INCFILE_H_ is not yet defined. The preprocessor therefore inserts the contents of
the block between #ifndef and #endif—including the definition of the macro
INCFILE_H_. On subsequent insertions of incfile.h, the #ifndef condition is false,
and the preprocessor discards the block up to #endif.

Defining and Using Macros
You can define macros in C using the preprocessor directive #define. This directive
allows you to give a name to any text you want, such as a constant or a statement.
Wherever the macro’s name appears in the source code after its definition, the pre‐
processor replaces it with that text.

A common use of macros is to define a name for a numeric constant:

#define ARRAY_SIZE 100
double data[ARRAY_SIZE];

These two lines define the macro name ARRAY_SIZE for the number 100, and then
use the macro in a definition of the array data. Writing macro names in all capitals
is a widely used convention that helps to distinguish them from variable names.
This simple example also illustrates how macros can make a C program more flexi‐
ble. It’s safe to assume that the length of an array like data will be used in several
places in the program—to control for loops that iterate through the elements of the
array, for example. In each instance, use the macro name instead of a number. Then,
if a program maintainer ever needs to modify the size of the array, it needs to be
changed in only one place: in the #define directive.

In the third translation step, the preprocessor parses the source file as a sequence of
preprocessor tokens and whitespace characters (see “The C Compiler’s Translation
Phases” on page 19 in Chapter 1). If any token is a macro name, the preprocessor
expands the macro; that is, it replaces the macro name with the text it has been
defined to represent. Macro names that occur in string literals are not expanded,
because a string literal is itself a single preprocessor token.

Preprocessor directives cannot be created by macro expansion. Even if a macro
expansion results in a formally valid directive, the preprocessor doesn’t execute it.

264 | Chapter 15: Preprocessing Directives

You can define macros with or without parameters.

Macros Without Parameters
A macro definition with no parameters has the form:

#define macro_name replacement_text

Whitespace characters before and after replacement_text are not part of the
replacement text. The replacement_text can also be empty. Here are some exam‐
ples:

#define TITLE "*** Examples of Macros Without Parameters ***"
#define BUFFER_SIZE (4 * 512)
#define RANDOM (-1.0 + 2.0*(double)rand() / RAND_MAX)

The standard function rand() returns a pseudorandom integer in the interval
[0, RAND_MAX. The prototype of rand() and the definition of the macro RAND_MAX are
contained in the standard header file stdlib.h.

The following statements illustrate one possible use of the preceding macros:

#include <stdio.h>
#include <stdlib.h>
/* ... */
// Display the title:
puts(TITLE);

// Set the stream fp to "fully buffered" mode, with a buffer of
// BUFFER_SIZE bytes.
// The macro _IOFBF is defined in stdio.h as 0.
static char myBuffer[BUFFER_SIZE];
setvbuf(fp, myBuffer, _IOFBF, BUFFER_SIZE);

// Fill the array data with ARRAY_SIZE random numbers in the range
// [-10.0, +10.0]:
for (int i = 0; i < ARRAY_SIZE; ++i)
 data[i] = 10.0 * RANDOM;

Replacing each macro with its replacement text, the preprocessor produces the fol‐
lowing statements:

puts("*** Examples of Macros Without Parameters ***");

static char myBuffer[(4 * 512)];
setvbuf(fp, myBuffer, 0, (4 * 512));

for (int i = 0; i < 100; ++i)
 data[i] = 10.0 * (-1.0 + 2.0*(double)rand() / 2147483647);

In this example, the implementation-dependent value of the macro RAND_MAX is
2,147,483,647. With a different compiler, the value of RAND_MAX may be different.

P
rep

ro
cessing

Defining and Using Macros | 265

If you write a macro containing an expression with operators, you should always
enclose the expression in parentheses to avoid unexpected effects of operator prece‐
dence when you use the macro. For example, the outer parentheses in the macro
RANDOM ensure that the expression 10.0 * RANDOM yields the desired result. Without
them, macro replacement would produce this expression instead:

10.0 * -1.0 + 2.0*(double)rand() / 2147483647

This expression yields a random number in the interval [-10.0, -8.0].

Macros with Parameters
You can also define macros with parameters. When the preprocessor expands such
a macro, it incorporates arguments you specify for each use of the macro in the
replacement text. Macros with parameters are often called function-like macros.

You can define a macro with parameters in either of the following ways:

#define macro_name([parameter_list]) replacement_text
#define macro_name([parameter_list ,] ...) replacement_text

The parameter_list is a comma-separated list of identifiers for the macro’s param‐
eters. When you use such a macro, the comma-separated argument list must con‐
tain as many arguments as there are parameters in the macro definition. (However,
C99 allows you to use “empty arguments,” as we will explain in a moment.) The
ellipsis (…) stands for one or more additional arguments.

When defining a macro, you must make sure there are no whitespace characters
between the macro name and the left parenthesis ((). If there is any space after the
name, then the directive defines a macro without parameters whose replacement
text begins with the left parenthesis.

The standard library usually includes macros, defined in stdio.h, to implement the
well-known functions getchar() and putchar(). Their expansion values can vary
from one implementation to another, but in any case, their definitions are similar to
the following:

#define getchar() getc(stdin)
#define putchar(x) putc(x, stdout)

When you “call” a function-like macro, the preprocessor replaces each occurrence
of a parameter in the replacement text with the corresponding argument. C99
allows you to leave blank the place of any argument in a macro call. In this case, the
corresponding parameter is replaced with nothing; that is, it is deleted from the
replacement text. However, this use of “empty arguments” is not yet supported by all
compilers.

If an argument contains macros, these are ordinarily expanded before the argument
is substituted into the replacement text. Arguments for parameters which are
operands of the # or ## operators are treated specially. For details, see the subse‐
quent subsections “The stringify operator” on page 268 and “The token-pasting

266 | Chapter 15: Preprocessing Directives

operator” on page 269. Here are some examples of function-like macros and their
expansions:

#include <stdio.h> // Contains the definition of putchar().
#define DELIMITER ':'
#define SUB(a,b) (a-b)
putchar(DELIMITER);
putchar(str[i]);
int var = SUB(,10);

If putchar(x) is defined as putc(x, stdout), then the preprocessor expands the
last three lines as follows:

putc(':', stdout);
putc(str[i], stdout);
int var = (-10);

As the following example illustrates, you should generally enclose the parameters in
parentheses wherever they occur in the replacement text. This ensures correct eval‐
uation in case any argument is an expression:

#define DISTANCE(x, y) ((x)>=(y) ? (x)-(y) : (y)-(x))
d = DISTANCE(a, b+0.5);

This macro call expands to the following:

d = ((a)>=(b+0.5) ? (a)-(b+0.5) : (b+0.5)-(a));

Without the parentheses around the parameters x and y, the expansion would con‐
tain the expression a-b+0.5 instead of (a)-(b+0.5).

Variable numbers of arguments
The C99 standard lets you define macros with an ellipsis (…) at the end of the
parameter list to represent optional arguments. You can then invoke such a macro
with a variable number of arguments.

When you invoke a macro with optional arguments, the preprocessor groups all of
the optional arguments, including the commas that separate them, into one argu‐
ment. In the replacement text, the identifier __VA_ARGS__ represents this group of
optional arguments. The identifier __VA_ARGS__ can be used only in the replace‐
ment text of a macro definition. __VA_ARGS__ behaves the same as any other macro
parameter, except that it is replaced by all the remaining arguments in the argument
list, rather than just one argument. Here is an example of a macro that takes a vari‐
able number of arguments:

// Assume we have opened a log file to write with file pointer fp_log.
//
#define printLog(...) fprintf(fp_log, __VA_ARGS__)
// Using the printLog macro:
printLog("%s: intVar = %d\n", __func__, intVar);

P
rep

ro
cessing

Defining and Using Macros | 267

The preprocessor replaces the macro call in the last line of this example with the
following:

fprintf(fp_log, "%s: intVar = %d\n", __func__, intVar);

The predefined identifier __func__, used in any function, represents a string con‐
taining the name of that function (see “Identifiers” on page 14). Thus, the macro call
in this example writes the current function name and the contents of the variable
intVar to the log file.

The stringify operator
The unary operator # is commonly called the stringify operator (or sometimes the
stringizing operator) because it converts a macro argument into a string. The
operand of # must be a parameter in a macro replacement text. When a parameter
name appears in the replacement text with a prefixed # character, the preprocessor
places the corresponding argument in double quotation marks, forming a string lit‐
eral. All characters in the argument value itself remain unchanged, with the follow‐
ing exceptions:

• Any sequence of whitespace characters between tokens in the argument value
is replaced with a single space character.

• A backslash character (\) is prefixed to each double quotation mark character
(") in the argument.

• A backslash character is also prefixed to each existing backslash that occurs in a
character constant or string literal in the argument, unless the existing back‐
slash character introduces a universal character name (see “Universal Charac‐
ter Names” on page 12 in Chapter 1).

The following example illustrates how you might use the # operator to make a single
macro argument work both as a string and as an arithmetic expression in the
replacement text:

#define printDBL(exp) printf(#exp " = %f ", exp)
printDBL(4 * atan(1.0)); // atan() is declared in math.h.

The macro call in the last line expands to this statement:

printf("4 * atan(1.0)" " = %f ", 4 * atan(1.0));

Because the compiler merges adjacent string literals, this code is equivalent to the
following:

printf("4 * atan(1.0) = %f ", 4 * atan(1.0));

That statement would generate the following console output:

4 * atan(1.0) = 3.141593

268 | Chapter 15: Preprocessing Directives

The invocation of the showArgs macro in the following example illustrates how the
operator modifies whitespace characters, double quotation marks, and backslashes
in macro arguments:

#define showArgs(...) puts(#__VA_ARGS__)
showArgs(one\n, "2\n", three);

The preprocessor replaces this macro with the following text:

puts("one\n, \"2\\n\", three");

This statement produces the following output:

one
, "2\n", three

The token-pasting operator
The operator ## is a binary operator, and can appear in the replacement text of any
macro. It joins its left and right operands together into a single token, and for this
reason is commonly called the token-pasting operator. If the resulting text also con‐
tains a macro name, the preprocessor performs macro replacement on it. White‐
space characters that occur before and after the ## operator are removed along with
the operator itself.

Usually, at least one of the operands is a macro parameter. In this case, the argument
value is first substituted for the parameter, but the macro expansion itself is post‐
poned until after token-pasting. Here is an example:

#define TEXT_A "Hello, world!"
#define msg(x) puts(TEXT_ ## x)
msg(A);

Regardless of whether the identifier A has been defined as a macro name, the pre‐
processor first substitutes the argument A for the parameter x, and then performs
the token-pasting operation. The result of these two steps is the following line:

puts(TEXT_A);

Now, because TEXT_A is a macro name, the subsequent macro replacement yields
this statement:

puts("Hello, world!");

If a macro parameter is an operand of the ## operator and a given macro invocation
contains no argument for that parameter, then the preprocessor uses a placeholder
to represent the empty string substituted for the parameter. The result of token
pasting between such a placeholder and any token is that token. Token-pasting
between two placeholders results in one placeholder. When all the token-pasting
operations have been carried out, the preprocessor removes any remaining place‐
holders. Here is an example of a macro call with an empty argument:

P
rep

ro
cessing

Defining and Using Macros | 269

msg();

This call expands to the following line:

puts(TEXT_);

If TEXT_ is not an identifier representing a string, the compiler will issue an error
message.

The order of evaluation of the stringify and token-pasting operators # and ## is not
specified. If the order matters, you can influence it by breaking a macro up into sev‐
eral macros.

Using Macros Within Macros
After argument substitution and execution of the # and ## operations, the prepro‐
cessor examines the resulting replacement text and expands any macros it contains.
No macro can be expanded recursively, though; if the preprocessor encounters the
name of any macro in the replacement text of the same macro, or in the replace‐
ment text of any other macro nested in it, that macro name is not expanded.

Similarly, even if expanding a macro yields a valid preprocessing directive, that
directive is not executed. However, the preprocessor does process any _Pragma
operators that occur in a completely expanded macro replacement (see “The
_Pragma Operator” on page 276).

The following sample program prints a table of function values:

// fn_tbl.c: Display values of a function in tabular form.
// This program uses nested macros.
// ---
#include <stdio.h>
#include <math.h> // Prototypes of the cos() and exp() functions.

#define PI 3.141593
#define STEP (PI/8)
#define AMPLITUDE 1.0
#define ATTENUATION 0.1 // Attenuation in wave propagation.
#define DF(x) exp(-ATTENUATION*(x))
#define FUNC(x) (DF(x) * AMPLITUDE * cos(x)) // Attenuated
 // oscillation.
// For the function display:
#define STR(s) #s
#define XSTR(s) STR(s) // Expand the macros in s, then stringify.

int main()
{
 double x = 0.0;

 printf("\nFUNC(x) = %s\n", XSTR(FUNC(x))); // Print the function.

 printf("\n %10s %25s\n", "x", STR(y = FUNC(x))); // Table header.
 printf("---\n");

270 | Chapter 15: Preprocessing Directives

 for (; x < 2*PI + STEP/2; x += STEP)
 printf("%15f %20f\n", x, FUNC(x));

 return 0;
}

This example prints the following table:

FUNC(x) = (exp(-0.1*(x)) * 1.0 * cos(x))

 x y = FUNC(x)

 0.000000 1.000000
 0.392699 0.888302
...
 5.890487 0.512619
 6.283186 0.533488

Macro Scope and Redefinition
You cannot use a second #define directive to redefine an identifier that is currently
defined as a macro, unless the new replacement text is identical to the existing
macro definition. If the macro has parameters, the new parameter names must also
be identical to the old ones.

To change the meaning of a macro, you must first cancel its current definition using
the following directive:

#undef macro_name

After that point, the identifier macro_name is available for use in a new macro defini‐
tion. If the specified identifier is not the name of a macro, the preprocessor ignores
the #undef directive.

The names of several functions in the standard library are also defined as macros.
For these functions, you can use the #undef directive if you want to make sure your
program calls one of those functions and not the macro of the same name. You
don’t need to specify a parameter list with the #undef directive, even when the
macro you are undefining has parameters. Here is an example:

#include <ctype.h>
#undef isdigit // Remove any macro definition with this name.
/* ... */
if (isdigit(c)) // Call the function isdigit().
/* ... */

The scope of a macro ends with the first #undef directive with its name, or if there
is no #undef directive for that macro, then with the end of the translation unit in
which it is defined.

P
rep

ro
cessing

Defining and Using Macros | 271

Type-generic Macros
The C11 standard introduces the generic selection, which works somewhat like a
switch statement for data types. A generic selection is equivalent to an expression
selected from a list of possibilities depending on the type of another expression.
(The exact mechanism is described in “Generic Selections (C11)” on page 68.) This
means that C programmers now have a way to define their own type-generic mac‐
ros like those provided by C99 for mathematical functions in the header tgmath.h.

A generic selection begins with the new keyword _Generic. The following example
illustrates a possible implementation of the type-generic macro log10(x) from
tgmath.h:

#define log10(X) _Generic((X), \
 long double: log10l, \
 float: log10f, \
 default: log10 \
)(X)

The compiler selects one of the expressions log10l, log10f, or log10 depending on
the type of the expression X. If the macro is called with an argument arg whose type
is double or an integer type, the result of the generic selection is the default expres‐
sion, so that the macro call ultimately results in the expression log10(arg).

Conditional Compiling
The conditional compiling directives instruct the preprocessor to retain or omit parts
of the source code depending on specified conditions. You can use conditional
compiling to adapt a program to different target systems, for example, without hav‐
ing to manage a variety of source files.

A conditional section begins with one of the directives #if, #ifdef, or #ifndef, and
ends with the directive #endif. Any number of #elif directives, and at most one
#else directive, may occur within the conditional section. A conditional section
that begins with #if has the following form:

#if expression1
 [group1]
[#elif expression2
 [group2]]
...
[#elif expression(n)
 [group(n)]]
[#else
 [group(n+1)]]
#endif

The preprocessor evaluates the conditional expressions in sequence until it finds
one whose value is nonzero, or “true.” The preprocessor retains the text in the corre‐
sponding group for further processing. If none of the expressions is true, and the

272 | Chapter 15: Preprocessing Directives

conditional section contains an #else directive, then the text in the #else directive’s
group is retained.

The token groups group1, group2, and so on consist of any C source code, and may
include more preprocessing directives, including nested conditional compiling
directives. Groups that the preprocessor does not retain for further processing are
removed from the program at the end of the preprocessor phase.

The #if and #elif Directives
The expression that forms the condition of an #if or #elif directive must be an
integer constant preprocessor expression. This is different from an ordinary integer
constant expression (see “Constant Expressions” on page 97) in these respects:

• You may not use the cast operator in an #if or #elif expression.

• You may use the preprocessor operator defined (see “The defined Operator”
on page 273).

• After the preprocessor has expanded all macros and evaluated all defined
expressions, it replaces all other identifiers or keywords in the expression with
the character 0.

• All signed values in the expression have the type intmax_t, and all unsigned
values have the type uintmax_t. Character constants are subject to these rules
as well. The types intmax_t and uintmax_t are defined in the header file
stdint.h.

• The preprocessor converts characters and escape sequences in character con‐
stants and string literals into the corresponding characters in the execution
character set. Whether character constants have the same value in a preproces‐
sor expression as in later phases of compiling is up to the given implementa‐
tion, however.

The defined Operator
The unary operator defined can occur in the condition of an #if or #elif direc‐
tive. Its form is one of the following:

defined identifier
defined (identifier)

These preprocessor expressions yield the value 1 if the specified identifier is a macro
name—that is, if it has been defined in a #define directive and its definition hasn’t
been canceled by an #undef directive. For any other identifier, the defined operator
yields the value 0.

The advantage of the defined operation over the #ifdef and #ifndef directives is
that you can use its value in a larger preprocessor expression. Here is an example:

P
rep

ro
cessing

Conditional Compiling | 273

#if defined(__unix__) && defined(__GNUC__)
/* ... */
#endif

Most compilers provide predefined macros, like those used in this example, to iden‐
tify the target system and the compiler. Thus, on a Unix system, the macro
__unix__ is usually defined, and the macro __GNUC__ is defined if the compiler
being used is GCC. Similarly, the Microsoft Visual C compiler on Windows auto‐
matically defines the macros _WIN32 and _MSC_VER.

The #ifdef and #ifndef Directives
You can also test whether a given macro is defined using the #ifdef and #ifndef
directives. Their syntax is:

#ifdef identifier
#ifndef identifier

These are equivalent to the following #if directives:

#if defined identifier
#if !defined identifier

The conditional code following the #ifndef identifier is retained if identifier is
not a macro name. Examples 15-1 and 15-2 illustrate possible uses of these direc‐
tives.

Defining Line Numbers
The compiler includes line numbers and source filenames in warnings, error mes‐
sages, and information provided to debugging tools. You can use the #line directive
in the source file itself to change the compiler’s filename and line numbering infor‐
mation. The #line directive has the following syntax:

#line line_number ["filename"]

The next line after a #line directive has the number specified by line_number. If
the directive also includes the optional string literal "filename", then the compiler
uses the contents of that string as the name of the current source file.

The line_number must be a decimal constant greater than zero. Here is an example:

#line 1200 "primary.c"

The line containing the #line directive may also contain macros. If so, the prepro‐
cessor expands them before executing the #line directive. The #line directive must
then be formally correct after macro expansion.

Programs can access the current line number and filename settings as values of the
standard predefined macros __LINE__ and __FILE__:

274 | Chapter 15: Preprocessing Directives

printf("This message was printed by line %d in the file %s.\n",
 __LINE__, __FILE__);

The #line directive is typically used by programs that generate C source code as
their output. By placing the corresponding input file line numbers in #line direc‐
tives, such programs can make the C compiler’s error messages refer to the perti‐
nent lines in the original source.

Generating Error Messages
The #error directive makes the preprocessor issue an error message, regardless of
any actual formal error. Its syntax is:

#error [text]

If the optional text is present, it is included in the preprocessor’s error message.
The compiler then stops processing the source file and exits as it would on encoun‐
tering a fatal error. The text can be any sequence of preprocessor tokens. Any mac‐
ros contained in it are not expanded. It is a good idea to use a string literal here to
avoid problems with punctuation characters, such as single quotation marks.

The following example tests whether the standard macro __STDC__ is defined, and
generates an error message if it is not:

#ifndef __STDC__
 #error "This compiler does not conform to the ANSI C standard."
#endif

The #pragma Directive
The #pragma directive is a standard way to provide additional information to the
compiler. This directive has the following form:

#pragma [tokens]

If the first token after #pragma is STDC, then the directive is a standard pragma. If
not, then the effect of the #pragma directive is implementation-dependent. For the
sake of portability, you should use #pragma directives sparingly.

If the preprocessor recognizes the specified tokens, it performs whatever action they
stand for, or passes information on to the compiler. If the preprocessor doesn’t rec‐
ognize the tokens, it must ignore the #pragma directive.

Recent versions of the GNU C compiler and Microsoft’s Visual C compiler both rec‐
ognize the pragma pack(n), for example, which instructs the compiler to align
structure members on certain byte boundaries. The following example uses pack(1)
to specify that each structure member be aligned on a byte boundary:

P
rep

ro
cessing

Generating Error Messages | 275

#if defined(__GNUC__) || defined(_MSC_VER)
 #pragma pack(1) // Byte-aligned: no padding.
#endif

Single-byte alignment ensures that there are no gaps between the members of a
structure. The argument n in a pack pragma is usually a small power of two. For
example, pack(2) aligns structure members on even-numbered byte addresses, and
pack(4) on four-byte boundaries. pack() with no arguments resets the alignment
to the implementation’s default value.

C99 introduced the following three standard pragmas:

#pragma STDC FP_CONTRACT on_off_switch
#pragma STDC FENV_ACCESS on_off_switch
#pragma STDC CX_LIMITED_RANGE on_off_switch

The value of the on_off_switch must be ON, OFF, or DEFAULT. The effects of these
pragmas are discussed in “Mathematical Functions” on page 323.

The _Pragma Operator
You cannot construct a #pragma directive (or any other preprocessor directive) by
means of a macro expansion. For cases where you would want to do that, C99 has
also introduced the preprocessor operator _Pragma, which you can use with macros.
Its syntax is as follows:

_Pragma (string_literal)

Here is how the _Pragma operator works. First, the string_literal operand is “de-
stringized,” or converted into a sequence of preprocessor tokens, in this way: the
quotation marks enclosing the string are removed; each sequence of a backslash fol‐
lowed by a double quotation mark (\") is replaced by a quotation mark alone (");
and each sequence of two backslash characters (\\) is replaced with a single back‐
slash (\). Then the preprocessor interprets the resulting sequence of tokens as if it
were the text of a #pragma directive.

The following line defines a helper macro, STR, which you can use to rewrite any
#pragma directive using the _Pragma operator:

#define STR(s) #s // This # is the "stringify" operator.

With this definition, the following two lines are equivalent:

#pragma tokens
_Pragma (STR(tokens))

The following example uses the _Pragma operator in a macro:

#define ALIGNMENT(n) _Pragma(STR(pack(n)))
ALIGNMENT(2)

Macro replacement changes the ALIGNMENT(2) macro call to the following:

276 | Chapter 15: Preprocessing Directives

_Pragma("pack(2)")

The preprocessor then processes the line as it would the following directive:

#pragma pack(2)

Predefined Macros
Every compiler that conforms to the ISO C standard must define the following
seven macros. Each of these macro names begins and ends with two underscore
characters:

__DATE__
The replacement text is a string literal containing the compilation date in the
format "Mmm dd yyyy" (example: "Mar 19 2006"). If the day of the month is
less than 10, the tens place contains an additional space character.

__FILE__
A string literal containing the name of the current source file.

__LINE__
An integer constant whose value is the number of the line in the current source
file that contains the __LINE__ macro reference, counting from the beginning
of the file.

__TIME__

A string literal that contains the time of compilation, in the format "hh:mm:ss"
(example: "08:00:59").

__STDC__

The integer constant 1, indicating that the compiler conforms to the ISO C
standard.

__STDC_HOSTED__

The integer constant 1 if the current implementation is a hosted implementa‐
tion; otherwise, the constant 0.

__STDC_VERSION__

The long integer constant 199901L if the compiler supports the C99 standard of
January 1999, or 201112L if the compiler supports the C11 standard of Decem‐
ber 2011.

The values of the __FILE__ and __LINE__ macros can be influenced by the #line
directive. The values of all the other predefined macros remains constant through‐
out the compilation process.

The value of the constant __STDC_VERSION__ will be adjusted with each future revi‐
sion of the international C standard.

P
rep

ro
cessing

Predefined Macros | 277

Beginning with the C99 standard, C programs are executed either in a hosted or in a
freestanding environment. Most C programs are executed in a hosted environment,
which means that the C program runs under the control and with the support of an
operating system. In this case, the constant __STDC_HOSTED__ has the value 1, and
the full standard library is available.

A program in a freestanding environment runs without the support of an operating
system, and therefore only minimal standard library resources are available to it
(see “Execution Environments” on page 284).

Conditionally Defined Macros
Unlike the macros listed previously, the following standard macros are predefined
only under certain conditions. If any of these macros is defined, it indicates that the
implementation supports a certain IEC or ISO standard:

__STDC_IEC_559__
This constant is defined with the value 1 if the implementation’s real floating-
point arithmetic conforms to the IEC 60559 standard.

__STDC_IEC_559_COMPLEX__
This constant is defined with the value 1 if the implementation’s complex
floating-point arithmetic also conforms to the IEC 60559 standard.

__STDC_ISO_10646__

This long integer constant represents a date in the form yyyymmL (example:
199712L). This constant is defined if the encoding of wide characters with the
type wchar_t conforms to the Unicode standard ISO/IEC 10646, including all
supplements and corrections up to the year and month indicated by the mac‐
ro’s value.

The C11 standard adds the following optional macros:

__STDC_MB_MIGHT_NEQ_WC__

This constant is defined with the value 1 if a character in the basic character set,
when encoded in a wchar_t object, is not necessarily equal to its encoding in
the corresponding character constant.

__STDC_UTF_16__

This constant is defined with the value 1 if characters of the type char16_t are
encoded in UTF-16. If the type uses a different encoding, the macro is not
defined.

__STDC_UTF_32__

This constant is defined with the value 1 if characters of the type char32_t are
encoded in UTF-32. If the type uses a different encoding, the macro is not
defined.

278 | Chapter 15: Preprocessing Directives

__STDC_ANALYZABLE__

This constant is defined with the value 1 if the implementation supports the
analysis of runtime errors as specified in Annex L of the C11 standard.

__STDC_LIB_EXT1__

This constant is defined with the value 201112L if the implementation supports
the new functions with bounds-checking specified in Annex K of the C11 stan‐
dard. The names of these new function end in _s.

__STDC_NO_ATOMICS__

This constant is defined with the value 1 if the implementation does not
include the types and functions for atomic memory access operations (that is,
the header stdatomic.h is absent).

__STDC_NO_COMPLEX__

This constant is defined with the value 1 if the implementation does not sup‐
port arithmetic with complex numbers (that is, the header complex.h is absent).

__STDC_NO_THREADS__

This constant is defined with the value 1 if the implementation does not sup‐
port multithreading (that is, the header threads.h is absent).

__STDC_NO_VLA__

This constant is defined with the value 1 if the implementation does not sup‐
port variable-length arrays.

You must not use any of the predefined macro names described in this section in a
#define or #undef directive. Finally, the macro name __cplusplus is reserved for
C++ compilers, and must not be defined when you compile a C source file.

P
rep

ro
cessing

Predefined Macros | 279

II
Standard Library

P
rep

ro
cessing

Predefined Macros | 281

16
The Standard Headers

Each standard library function is declared in one or more of the standard headers.
These headers also contain all the macro and type definitions that the C standard
provides. This chapter describes the contents and use of the standard headers.

Each of the standard headers contains a set of related function declarations, macros,
and type definitions. For example, mathematical functions are declared in the
header math.h. The standard headers are also called header files, as the contents of
each header are usually stored in a file. Strictly speaking, however, the standard does
not require the headers to be organized in files.

The C standard defines the following 29 headers (those marked with an asterisk
were added in C11):

assert.h inttypes.h signal.h stdint.h threads.h*

complex.h iso646.h stdalign.h* stdio.h time.h
ctype.h limits.h stdarg.h stdlib.h uchar.h*

errno.h locale.h stdatomic.h* stdnoreturn.h* wchar.h
fenv.h math.h stdbool.h string.h wctype.h
float.h setjmp.h stddef.h tgmath.h

The headers complex.h, stdatomic.h, and threads.h are optional components. There
are standard macros that a C11 implementation can define to indicate that it does
not include these options. If the macro __STDC_NO_COMPLEX__,
__STDC_NO_ATOMICS__, or __STDC_NO_THREADS__ is defined as equal to 1, the imple‐
mentation does not include the corresponding optional header.

283

Using the Standard Headers
You can add the contents of a standard header to a source file by inserting an
#include directive, which must be placed outside all functions (see “Inserting the
Contents of Header Files” on page 262). You can include the standard headers as
many times as you want, and in any order. However, before the #include directive
for any header, your program must not define any macro with the same name as an
identifier in that header. To make sure that your programs respect this condition,
always include the required standard headers at the beginning of your source files,
before any header files of your own.

Execution Environments
C programs run in one of two execution environments: hosted or freestanding.
Most common programs run in a hosted environment; that is, under the control and
with the support of an operating system. In a hosted environment, the full capabili‐
ties of the standard library are available. Furthermore, programs compiled for a
hosted environment must define a function named main(), which is the first func‐
tion invoked on program start.

A program designed for a freestanding environment runs without the support of an
operating system. In a freestanding environment, the name and type of the first
function invoked when a program starts is determined by the given implementa‐
tion. Programs for a freestanding environment cannot use complex floating-point
types, and may be limited to the following headers:

float.h stdalign.h stddef.h
iso646.h stdarg.h stdint.h
limits.h stdbool.h stdnoreturn.h

Specific implementations may also provide additional standard library resources.

Function and Macro Calls
All standard library functions have external linkage. You may use standard library
functions without including the corresponding header by declaring them in your
own code. However, if a standard function requires a type defined in the header,
then you must include the header.

The standard library functions are not guaranteed to be reentrant—that is, two calls
to a standard library function may not safely be in execution concurrently in one
process. One reason for this rule is that several of the functions use and modify
static or thread-local variables, for example.

284 | Chapter 16: The Standard Headers

As a result, you can’t generally call standard library functions in signal handling
routines. Signals are asynchronous, which means that a program may receive a sig‐
nal at any time, even while it’s executing a standard library function. If that happens,
and the handler for that signal calls the same standard function, then the function
must be reentrant. It is up to individual implementations to determine which func‐
tions are reentrant, or whether to provide a reentrant version of the whole standard
library.

Most of the standard library functions—with a few explicitly specified exceptions—
are thread-safe, meaning they can be safely executed by several threads “simultane‐
ously.” In other words, the standard functions must be so implemented that any
objects they use internally are not subject to data races when called in more than
one thread. In particular, they must not use static objects without ensuring synchro‐
nization. However, you the programmer are responsible for coordinating different
threads’ access to any objects referred to directly or indirectly by a function’s argu‐
ments.

Each stream has a corresponding lock which the functions in the I/O library use to
obtain exclusive access to the stream before performing an operation. In this way,
the standard library functions prevent data races when several threads access a
given stream.

As the programmer, you are responsible for calling functions and function-like
macros with valid arguments. Wrong arguments can cause severe runtime errors.
Typical mistakes to avoid include the following:

• Argument values outside the domain of the function, as in the following call:
double x = -1.0, y = sqrt(x);

• Pointer arguments that do not point to an object or a function, as in this func‐
tion call with an uninitialized pointer argument:

char *msg; strcpy(msg, "error");

• Arguments whose type does not match that expected by a function with a vari‐
able number of arguments. In the following example, the conversion specifier
%f calls for a float pointer argument, but &x is a pointer to double:

double x; scanf("%f", &x);

• Array address arguments that point to an array that isn’t large enough to
accommodate data written by the function. Here is an example:

char name[] = "Hi "; strcat(name, "Alice");

Macros in the standard library make full use of parentheses so that you can use
them in expressions in the same way as individual identifiers. Furthermore, each

Stand
ard

H
ead

ers

Using the Standard Headers | 285

1 The C11 standard contradicts itself on this point. In describing the use of library functions, it
says, “Any invocation of a library function that is implemented as a macro shall expand to code
that evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments,” but in its descriptions of the
functions putc(), putwc(), getc(), and getwc(), the standard contains warnings like this one:
“The putc function is equivalent to fputc, except that if it is implemented as a macro, it may
evaluate stream more than once, so that argument should never be an expression with side
effects.”

function-like macro in the standard library uses its arguments only once.1 This
means that you can call these macros in the same way as ordinary functions, even
using expressions with side effects as arguments. Here is an example:

int c = 'A';
while (c <= 'Z') putchar(c++); // Output: 'ABC ... XYZ'

The functions in the standard library may be implemented both as macros and as
functions. In such cases, the same header file contains both a function prototype
and a macro definition for a given function name. As a result, each use of the func‐
tion name after you include the header file invokes the macro. The following exam‐
ple calls the macro or function toupper() to convert a lowercase letter to uppercase:

#include <ctype.h>
/* ... */
 c = toupper(c); // Invokes the macro toupper(), if there is one.

However, if you specifically want to call a function and not a macro with the same
name, you can use the #undef directive to cancel the macro definition:

#include <ctype.h>
#undef toupper // Remove any macro definition with this name.
/* ... */
 c = toupper(c) // Calls the function toupper().

You can also call a function rather than a macro with the same name by setting the
name in parentheses:

#include <ctype.h>
/* ... */
 c = (toupper)(c) // Calls the function toupper().

Finally, you can omit the header containing the macro definition, and declare the
function explicitly in your source file:

extern int toupper(int);
/* ... */
 c = toupper(c) // Calls the function toupper().

286 | Chapter 16: The Standard Headers

Reserved Identifiers
When choosing identifiers to use in your programs, you must be aware that certain
identifiers are reserved for the standard library. Reserved identifiers include the fol‐
lowing:

• All identifiers that begin with an underscore followed by a second underscore
or an uppercase letter are always reserved. Thus, you cannot use identifiers
such as __x or _Max, even for local variables or labels.

• All other identifiers that begin with an underscore are reserved as identifiers
with file scope. Thus, you cannot use an identifier such as _a_ as the name of a
function or a global variable, although you can use it for a parameter, a local
variable, or a label. The identifiers of structure or union members can also
begin with an underscore, as long as the second character is not another under‐
score or an uppercase letter.

• Identifiers declared with external linkage in the standard headers are reserved
as identifiers with external linkage. Such identifiers include function names, as
well as the names of global variables such as errno. Although you cannot
declare these identifiers with external linkage as names for your own functions
or objects, you may use them for other purposes. For example, in a source file
that does not include string.h, you may define a static function named
strcpy().

• The identifiers of all macros defined in any header you include are reserved.
• Identifiers declared with file scope in the standard headers are reserved within

their respective name spaces. Once you include a header in a source file, you
cannot use any identifier that is declared with file scope in that header for
another purpose in the same name space (see “Identifier Name Spaces” on page
16) or as a macro name.

Although some of the conditions listed here have “loopholes” that allow you to
reuse identifiers in a certain name space or with static linkage, overloading identifi‐
ers can cause confusion, and it’s generally safest to avoid the identifiers declared in
the standard headers completely. In the following sections, we also list identifiers
that have been reserved for future extensions of the C standard. The last three rules
in the previous list apply to such reserved identifiers as well.

Functions with Bounds-Checking
Many traditional functions in the C standard library copy strings to arrays that are
provided by the programmer as pointer arguments. There is no way for these func‐
tions to test whether the given destination array is large enough to accommodate
the result. The programmer alone is responsible for ensuring that no data is written
past the end of an array, where it could modify adjacent objects in memory. This is a
significant threat to the reliability and security of a program, and can cause it to
crash.

Stand
ard

H
ead

ers

Functions with Bounds-Checking | 287

To alleviate this problem, Appendix K of the C11 standard, “Bounds-checking
Interfaces,” introduces many new functions as secure alternatives to the traditional
standard C functions. These alternative functions, also called the secure functions,
take an additional argument which specifies the size of the destination array. The
secure functions use this information to ensure that the results they produce do not
exceed the array’s bounds. The names of the secure functions end with the suffix _s
(s for “secure”), as in strcpy_s(), for example. Unlike the traditional function
strcpy(), the function strcpy_s() only copies a string if the specified destination
vector is large enough to accommodate it.

Availability
Support for the bounds-checking functions is optional. They are available only in
implementations that define the macro __STDC_LIB_EXT1__.

If these functions are provided, their declarations and the accompanying type and
macro definitions are included in the same headers that provide the corresponding
traditional functions. For example, the header stdio.h then contains the declaration
of scanf_s() in addition to scanf(), and string.h contains the declaration of
strcpy_s() alongside strcpy(). To make the declarations of the secure functions
visible to the compiler, however, your program must define the macro
__STDC_WANT_LIB_EXT1__ as equal to 1 before including the corresponding headers,
for example, by using the lines:

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>

To prevent name conflicts with functions defined in your program or in other libra‐
ries it uses, you can ensure that the secure functions are not visible by defining the
macro __STDC_WANT_LIB_EXT1__ as equal to 0. If __STDC_WANT_LIB_EXT1__ is not
defined before the program includes a standard header, the corresponding secure
functions may or may not be available, depending on the given compiler.

Runtime Constraints
The parameter that specifies the size of an array in a bounds-checking function has
the type rsize_t. This type is defined in the header stddef.h as equal to size_t.
However, rsize_t places a special restriction on the value of a variable: a variable of
the type rsize_t must not be assigned a value greater than that of the macro
RSIZE_MAX. Passing an array length argument greater than RSIZE_MAX to a bounds-
checking function causes an error. This constraint can detect errors that arise
through the conversion of negative numbers to unsigned types, as such conversions
result in very large positive numbers.

The secure functions perform other tests in addition to bounds-checking. For
example, they test whether pointers passed as arguments are non-null. All the con‐
ditions that must be fulfilled for a function to execute successfully are called the
function’s runtime constraints.

288 | Chapter 16: The Standard Headers

If a secure function’s runtime constraints are violated, the destination objects
remain unchanged, and the function calls a runtime constraint handler, passing it a
return value and an error message. The handler can end the program by calling
abort(), or return to the secure function which called it. A program may replace
the default runtime constraint handler with another standard handler or with a
function of its own by calling the function set_constraint_handler_s(). For
details, see the description of the function set_constraint_handler_s() in Chap‐
ter 18.

The return value of a secure function indicates whether an error has occurred.
Many of the secure functions have a return value of the type errno_t. This type is
defined in the header errno.h as int. These secure functions return the value 0 after
a successful call, and a nonzero value if an error has occured.

Contents of the Standard Headers
The following subsections list the standard headers in alphabetical order, with brief
descriptions of their contents, including all the types and macros defined in them.

The standard functions are described in the next two chapters: Chapter 17 summa‐
rizes the functions that the standard library provides for each area of application—
the mathematical functions, string manipulation functions, functions for time and
date operations, and so on. Chapter 18 then provides a detailed description of each
function individually, in alphabetical order, with examples illustrating their use.

assert.h
This header defines the function-like macro assert(), which tests whether the
value of an expression is nonzero in the running program. If you define the macro
NDEBUG before including assert.h , then calls to assert() have no effect.

In C11, the header assert.h defines the macro static_assert as a synonym for the
keyword _Static_assert. A _Static_assert declaration tests a constant expres‐
sion for a nonzero value at compile time (see “_Static_assert Declarations” on page
186).

complex.h
C99 supports arithmetic with complex numbers by introducing complex floating-
point types and including appropriate functions in the math library. The header file
complex.h contains the prototypes of the complex math functions and defines the
related macros. For a brief description of complex numbers and their representation
in C, see “Complex Floating-Point Types” on page 32.

Under the C11 standard, support for complex numbers is optional. The header
complex.h is absent if the macro __STDC_NO_COMPLEX__ is defined.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 289

The names of the mathematical functions for complex numbers all begin with the
letter c. For example, csin() is the complex sine function, and cexp() the complex
exponential function. You can find a complete list of these functions in “Mathemati‐
cal Functions” on page 323. In addition, the following function names are reserved
for future extensions:

cerf() cerfc() cexp2() cexpm1() clog10() clog1p()
clog2() clgamma() ctgamma()

The same names with the suffixes f (for float _Complex) and l (for long double
_Complex) are also reserved.

The header file complex.h defines the following macros:

complex

This is a synonym for the keyword _Complex.

_Complex_I

This macro represents an expression of type const float _Complex whose
value is the imaginary unit, i.

I

This macro is a synonym for _Complex_I (or for _Imaginary_I, if defined), and
likewise represents the imaginary unit, i.

A C11 implementation may also include types to represent pure imaginary numbers.
If and only if a given C implementation includes such types, it defines the two fol‐
lowing macros:

imaginary

This is a synonym for the keyword _Imaginary.

_Imaginary_I

This macro represents an expression of type const float _Imaginary whose
value is the imaginary unit, i. If _Imaginary_I is defined, the macro I is
defined as a synonym for it.

C11 also provides the function-like macros CMPLX, CMPXF, and CMPLXL to compose a
complex number from its real and imaginary parts.

ctype.h
This header contains the declarations of functions to classify and convert single
characters. These include the following functions, which are usually also imple‐
mented as macros:

isalnum() isalpha() isblank() iscntrl() isdigit() isgraph()
islower() isprint() ispunct() isspace() isupper() isxdigit()
tolower() toupper()

290 | Chapter 16: The Standard Headers

These functions or macros take an argument of type int, whose value must be
between 0 and 255, inclusive, or EOF. The macro EOF is defined in stdio.h. The classi‐
fication of characters, and hence the behavior of these functions (except isdigit()
and isxdigit()), is dependent on the current locale.

All names that begin with is or to followed by a lowercase letter are reserved for
future extensions.

errno.h
The header errno.h defines the macro errno as representing a thread-local error
variable of the type int. Various functions in the standard library set errno to a
specified positive value to indicate the type of error encountered during execution.
For each function that uses errno, its possible values are indicated in the function’s
description in Chapter 18.

The identifier errno is not necessarily declared as a global variable. It may be a
macro that represents a modifiable lvalue with the type int. For example, if
_errno() is a function that returns a pointer to int, then errno could be defined as
follows:

#define errno (* _errno())

When the program starts, errno in the initial thread has the value zero. The initial
value of errno in any other thread is undetermined. Because no standard function
sets the value of errno to zero, a program that uses errno to detect errors should set
the value of errno to zero before calling a standard library function.

The header errno.h also defines an appropriate macro constant for each possible
value of errno. The names of these macros begin with E, and include at least these
three:

EDOM
Domain error; the function is mathematically not defined for the given value of
the argument.

EILSEQ
Illegal sequence. For example, a multibyte character conversion function may
have encountered a sequence of bytes that cannot be interpreted as a multibyte
character in the encoding used.

ERANGE
Range error; the function’s mathematical result is not representable by its
return type.

All macro names that begin with E followed by a digit or an uppercase letter are
reserved for future extensions.

C11 implementations that support the new bounds-checking, “secure” functions
also define the type errno_t in the header errno.h as a synonym for int.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 291

fenv.h
C99 introduced the floating-point environment, which provides system variables to
allow programs to deal flexibly with floating-point exceptions and control modes.
(See also “Mathematical Functions” on page 323.) The header fenv.h contains all the
declarations that may be used in accessing the floating-point environment, although
implementations are not required to support floating-point exceptions or control
modes.

Macro and type definitions for the floating-point environment
The header fenv.h contains the following definitions to manipulate the floating-
point environment:

fenv_t
A type capable of representing the floating-point environment as a whole.

FE_DFL_ENV

An object of the type const fenv_t *; points to the default floating-point envi‐
ronment, which is in effect when the program starts.

Macro and type definitions for floating-point exceptions
Implementations that support floating-point exceptions also define an integer
macro corresponding to the status flag for each kind of exception that can occur.
Standard names for these macros are:

FE_DIVBYZERO, FE_INEXACT, FE_INVALID, FE_OVERFLOW, FE_UNDERFLOW
These macros allow you to select one or more kinds of exceptions when access‐
ing the status flags. You can also combine several such macros using the bitwise
OR operator (|) to obtain a value that represents several kinds of exceptions.

FE_ALL_EXCEPT
This macro represents the bitwise OR of all the exception macros defined in
the given implementation.

If a given implementation does not support one or more of the exceptions indicated
by these macros, then the corresponding macro is not defined. Furthermore, imple‐
mentations may also define other exception macros, with names that begin with FE_
followed by an uppercase letter.

In addition to the macros listed previously, implementations that support floating-
point exceptions also define a type for the floating-point exception status flags:

292 | Chapter 16: The Standard Headers

fexcept_t
This type represents all of the floating-point exception status flags, including all
the information that the given implementation provides about exceptions. Such
information may include the address of the instruction that raised the excep‐
tion, for example. This type is used by the functions fegetexceptflag() and
fesetexceptflag().

Macro definitions for rounding modes
Implementations may allow programs to query or set the way floating-point results
are rounded. If so, the header fenv.h defines the following macros as distinct integer
constants:

FE_DOWNWARD FE_TOWARDZERO

FE_TONEAREST FE_UPWARD

A given implementation might not define all of these macros if it does not support
the corresponding rounding direction, and might also define macro names for
other rounding modes that it does support. The function fegetround() returns the
current rounding mode—that is, the value of the corresponding macro name; and
fesetround() sets the rounding mode as specified by its argument.

float.h
The header file float.h defines macros that describe the value range, the precision,
and other properties of the types float, double, and long double.

Normalized representation of floating-point numbers
The values of the macros in float.h refer to the following normalized representation
of a floating-point number x:

x = s × 0.d1d2...dp × be

The symbols in this representation have the following meanings and conditions:

s

The sign of x; s = 1 or s = -1

di

A base b digit in the significand (also called the mantissa) of x (0.d1d2…dp in the
general representation); d1 > 0 if x ≠ 0

Stand
ard

H
ead

ers

Contents of the Standard Headers | 293

p
The number of digits in the significand (or to be more precise, in the fraction
part)

b

The base of the exponent; b > 1

e

The integer exponent; emin ≤ e ≤ emax

The floating-point types may also be able to represent other values besides normal‐
ized floating-point numbers, such as the following kinds of values:

• Subnormal floating-point numbers, or those for which x ≠ 0, e = emin, and d1 =
0.

• Non-normalized floating-point numbers, for which x ≠ 0, e > emin, and d1 = 0.

• Infinities; that is, values that represent +∞ or −∞.
• NaNs, or values that do not represent valid floating-point numbers. NaN stands

for “not a number.”

NaNs can be either quiet or signaling NaNs. When a signaling NaN occurs in the
evaluation of an arithmetic expression, it sets the exception flag FE_INVALID in the
floating-point environment. Quiet NaNs do not set the exception flag.

Rounding mode and evaluation method
The following two macros defined in the header float.h provide details about how
floating-point arithmetic is performed:

FLT_ROUNDS
This macro represents the currently active rounding direction, and is the only
macro defined in float.h whose value can change during runtime. It can have
the following values:

-1 Undetermined

0 Toward zero

1 Toward the nearest representable value

2 Toward the next greater value

3 Toward the next smaller value

Other values may stand for implementation-defined rounding modes. If the
implementation supports different rounding modes, you can change the active
rounding mode by calling the function fesetround().

294 | Chapter 16: The Standard Headers

FLT_EVAL_METHOD

The macro FLT_EVAL_METHOD has one of several possible values, but does not
change during the program’s runtime. This macro indicates the floating-point
format used internally for operations on floating-point numbers. The internal
format may have greater precision and a broader value range than the
operands’ type. The possible values of FLT_EVAL_METHOD have the following
meanings:

-1 Undetermined

0 Arithmetic operations are performed with the precision of the operands’ type.

1 Operations on float or double values are executed in double precision, and operations on
long double are executed in long double precision.

2 All operations are performed internally in long double precision.

Precision and value range
For a given base, the precision with which numbers are represented is determined
by the number of digits in the significand, and the value range is indicated by the
least and greatest values of the exponent. These values are provided, for each real
floating-point type, by the following macros. The macro names with the prefix FLT_
represent characteristics of the type float; those with the prefix DBL_ refer to
double; and those with LDBL_ refer to long double. The value of FLT_RADIX applies
to all three floating-point types.

FLT_RADIX

The radix or base (b) of the exponential representation of floating point num‐
bers; usually 2

FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG
The number of digits in the significand or mantissa (p)

FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP
The smallest negative exponent to the base FLT_RADIX (emin)

FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP
The largest positive exponent to the base FLT_RADIX (emax)

In practice, it is useful to have the precision and the value range of a floating-point
type in decimal notation. Macros for these characteristics are listed in Table 16-1.
The values in the second column represent the C standard’s minimum require‐
ments. The values in the third column are the requirements of the IEC 60559 stan‐
dard for floating-point numbers with single and double precision. In most C imple‐
mentations, the types float and double have these IEC 60559 characteristics.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 295

Table 16-1. Macros for the range and precision of floating-point types in decimal
notation

Macro ISO 9899 IEC 60559 Meaning

FLT_DIG

DBL_DIG

LDBL_DIG

6
10
10

6
15

The precision as a number of decimal
digits. A decimal floating-point number of
this many digits, stored in binary
representation, always yields the same
value to this many digits when converted
back to decimal notation.

DECIMAL_DIG 10 17 The number of decimal digits necessary to
represent any number of the largest
floating-point type supported so that it can
be converted to decimal notation and back
to binary representation without its value
changing.

FLT_MIN_10_EXP

DBL_MIN_10_EXP

LDBL_MIN_10_EXP

-37
-37
-37

-37
-307

The smallest negative exponent to base 10,
n, such that 10n is within the positive
range of the type.

FLT_MAX_10_EXP

DBL_MAX_10_EXP

LDBL_MAX_10_EXP

+37
+37
+37

+38
+308

The greatest exponent to base 10, n, such
that 10n is within the range of the type.

FLT_MIN

DBL_MIN

LDBL_MIN

1E-37
1E-37
1E-37

1.17549435E-38F
2.2250738585072014E-308

The smallest representable positive
floating-point number.

FLT_MAX

DBL_MAX

LDBL_MAX

1E+37
1E+37
1E+37

3.40282347E+38F
1.7976931348623157E+308

The greatest representable finite floating-
point number.

FLT_EPSILON

DBL_EPSILON

LDBL_EPSILON

1E-5
1E-9
1E-9

1.19209290E-07F
2.2204460492503131E-16

The positive difference between 1 and the
smallest representable number greater
than 1.

inttypes.h
The header inttypes.h includes the header stdint.h, and contains extensions to it. The
header stdint.h defines integer types with specified bit widths, including the types
intmax_t and uintmax_t, which represent the widest integer types implemented.
(See also “Integer Types Defined in Standard Headers” on page 29.)

Types
The header inttypes.h defines the following structure type:

imaxdiv_t

This is a structure type of two members named quot and rem, whose type is
intmax_t. The function imaxdiv() divides one number of type intmax_t by

296 | Chapter 16: The Standard Headers

another, and stores the quotient and remainder in an object of type struct
imaxdiv_t.

Functions
In addition to imaxdiv(), the header inttypes.h also declares the function imax
abs(), which returns the absolute value of an integer of the type intmax_t, and four
functions to convert strings into integers with the type intmax_t or uintmax_t.

Macros
Furthermore, inttypes.h defines macros for string literals that you can use as type
specifiers in format string arguments to the printf and scanf functions. The
header contains macros to specify each of the types defined in stdint.h.

The names of the type specifier macros for the printf family of functions begin
with the prefix PRI, followed by a conversion specifier (d, i, o, x, or X) and a
sequence of uppercase letters that refers to a type name. For example, the macro
names with the conversion specifier d are:

PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR

The letter N at the end of the first three macro names listed here is a placeholder for
a decimal number indicating the bit width of a given type. Commonly implemented
values are 8, 16, 32, and 64.

Other PRI… macro names are analogous to the five just listed, but have different
conversion specifiers in place of the letter d, such as i, o, x, or X. The following
example uses a variable with the type int_fast32_t:

#include <inttypes.h>
int_fast32_t i32Var;
/* ... */
 printf("The value of i32Var, in hexadecimal notation: "
 "%10" PRIxFAST32 "\n", i32Var);

The preprocessor concatenates the string literals "%10" and PRIxFAST32 to form the
full conversion specification. The resulting output of i32Var has a field width of 10
characters.

The names of the conversion specifier macros for the scanf family of functions
begins with the prefix SCN. The remaining characters are the same as the corre‐
sponding PRI… macros, except that there is no conversion specifier X for scanf().
For example, the macro names with the conversion specifier d are:

 SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR

Again, the letter N at the end of the first three macro names as listed here is a place‐
holder for a decimal number indicating the bit width of a given type. Commonly
implemented values are 8, 16, 32, and 64.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 297

iso646.h
The header iso646.h defines the eleven macros listed in Table 16-2, which you can
use as synonyms for C’s logical and bitwise operators.

Table 16-2. ISO 646 operator names

Macro Meaning

and &&

or ||

not !

bitand &

bitor |

xor ^

compl ~

and_eq &=

or_eq |=

xor_eq ^=

not_eq !=

limits.h
The header limits.h contains macros to represent the least and greatest representable
value of each integer type. These macros are listed in Table 16-3. The numeric val‐
ues in the table represent the minimum requirements of the C standard.

Table 16-3. Value ranges of the integer types

Type Minimum Maximum Maximum value of the unsigned type

char CHAR_MIN CHAR_MAX UCHAR_MAX

28 − 1

signed char SCHAR_MIN

-(27 − 1)
SCHAR_MAX

27 − 1

short SHRT_MIN

-(215 − 1)
SHRT_MAX

215 − 1
USHRT_MAX

216 − 1

int INT_MIN

-(215 − 1)
INT_MAX

215 − 1
UINT_MAX

216 − 1

long LONG_MIN

-(231 − 1)
LONG_MAX

231 − 1
ULONG_MAX

232 − 1

long long LLONG_MIN

-(263 − 1)
LLONG_MAX

263 − 1
ULLONG_MAX

264 − 1

298 | Chapter 16: The Standard Headers

The range of the type char depends on whether char is signed or unsigned. If char
is signed, then CHAR_MIN is equal to SCHAR_MIN and CHAR_MAX equal to SCHAR_MAX. If
char is unsigned, then CHAR_MIN is zero and CHAR_MAX is equal to UCHAR_MAX.

The header limits.h also defines the following two macros:

CHAR_BIT
The number of bits in a byte, which must be at least 8.

MB_LEN_MAX
The maximum number of bytes in a multibyte character, which must be at least
1.

The value of the macro CHAR_BIT determines the value of UCHAR_MAX: UCHAR_MAX is
equal to 2CHAR_BIT − 1.

The value of MB_LEN_MAX is greater than or equal to the value of MB_CUR_MAX, which
is defined in the header stdlib.h. MB_CUR_MAX represents the maximum number of
bytes in a multibyte character in the current locale. More specifically, the value
depends on the locale setting for the LC_CTYPE category (see the description of set
locale() in Chapter 18 for details). If the current locale uses a stateful multibyte
encoding, then both MB_LEN_MAX and MB_CUR_MAX include the number of bytes nec‐
essary for a state-shift sequence before the actual multibyte character.

locale.h
The standard library supports the development of C programs that are able to adapt
to local cultural conventions. For example, programs may use locale-specific charac‐
ter sets or formats for currency information.

The header locale.h declares two functions, the type struct lconv, the macro NULL
for the null pointer constant, and macros whose names begin with LC_ for the locale
information categories.

The function setlocale() allows you to query or set the current locale. The infor‐
mation that makes up the locale is divided into categories, which you can query and
set individually. The following integer macros are defined to designate these cate‐
gories:

LC_ALL LC_COLLATE LC_CTYPE
LC_MONETARY LC_NUMERIC LC_TIME

The function setlocale() takes one of these macros as its first argument, and oper‐
ates on the corresponding locale category. The meanings of the macros are
described under the setlocale() function in Chapter 18. Implementations may
also define additional macros whose names start with LC_ followed by an uppercase
letter.

The second function declared in locale.h is localeconv(), which supplies informa‐
tion about the conventions of the current locale by filling the members of a struc‐

Stand
ard

H
ead

ers

Contents of the Standard Headers | 299

ture of the type struct lconv. localeconv() returns a pointer to the structure. The
structure contains members to describe the local formatting of numerals, monetary
amounts, and date and time information. For details, see the description of locale
conv() in Chapter 18.

math.h
The header math.h declares the mathematical functions for real floating-point num‐
bers, and the related macros and types.

The mathematical functions for integer types are declared in stdlib.h, and those for
complex numbers in complex.h. In addition, the header tgmath.h defines the type-
generic macros, which allow you to call mathematical functions by uniform names
regardless of the arguments’ type. For a summary of the mathematical functions in
the standard library, see “Mathematical Functions” on page 323.

The types float_t and double_t
The header math.h defines the two types float_t and double_t. These types repre‐
sent the floating-point precision used internally by the given implementation in
evaluating arithmetic expressions of the types float and double. (If you use
operands of the type float_t or double_t in your programs, they will not need to
be converted before arithmetic operations, as float and double may.) The value of
the macro FLT_EVAL_METHOD, defined in the header float.h, indicates which basic
types correspond to float_t and double_t. The possible values of
FLT_EVAL_METHOD are explained in Table 16-4.

Table 16-4. The types float_t and double_t

FLT_EVAL_METHOD float_t double_t

0 float double

1 double double

2 long double long double

Any other value of FLT_EVAL_METHOD indicates that the evaluation of floating-point
expressions is implementation-defined.

Classification macros
In addition to normalized floating-point numbers, the floating-point types can also
represent other values, such as infinities and NaNs (see “Normalized representation
of floating-point numbers” on page 293). C99 specifies five classes of floating-point
values, and defines an integer macro to designate each of these categories. The five
macros are:

 FP_ZERO FP_NORMAL FP_SUBNORMAL FP_INFINITE FP_NAN

300 | Chapter 16: The Standard Headers

Implementations may also define additional categories, and corresponding macros
whose names begin with FP_ followed by an uppercase letter.

math.h defines the following function-like macros to classify floating-point values:

fpclassify()

This macro expands to the value of the FP_… macro that designates the cate‐
gory of its floating-point argument.

isfinite(), isinf(), isnan(), isnormal(), signbit()
These function-like macros test whether their argument belongs to a specific
category.

Other macros in math.h
The header math.h also defines the following macros:

HUGE_VAL, HUGE_VALF, HUGE_VALL
HUGE_VAL represents a large positive value with the type double. Mathematical
functions that return double can return the value of HUGE_VAL, with the appro‐
priate sign, when the result exceeds the finite value range of double. The value
of HUGE_VAL may also represent a positive infinity, if the implementation sup‐
ports such a value.

HUGE_VALF and HUGE_VALL are analogous to HUGE_VAL, but have the types float
and long double.

INFINITY

This macro’s value is constant expression of type float that represents a posi‐
tive or unsigned infinity, if such a value is representable in the given implemen‐
tation. If not, then INFINITY represents a constant expression of type float
that yields an overflow when evaluated, so that the compiler generates an error
message when processing it.

NAN

NaN stands for “not a number.” The macro NAN is a constant of type float
whose value is not a valid floating-point number. It is defined only if the imple‐
mentation supports quiet NaNs—that is, if a NaN can occur without raising a
floating-point exception.

FP_FAST_FMA, FP_FAST_FMAF, FP_FAST_FMAL
FMA stands for “fused multiply-and-add.” The macro FP_FAST_FMA is defined
if the function call fma(x,y,z) can be evaluated at least as fast as the mathe‐
matically equivalent expression x*y+z, for x, y, and z of type double. This is
typically the case if the fma() function makes use of a special FMA machine
operation.

The macros FP_FAST_FMAF and FP_FAST_FMAL are analogous to FP_FAST_FMA,
but refer to the types float and long double.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 301

FP_ILOGB0, FP_ILOGBNAN
These macros represent the respective values returned by the function call
ilogb(x) when the argument x is zero or NaN. FP_ILOGB0 is equal either to
INT_MIN or to -INT_MAX, and FP_ILOGBNAN equals either INT_MIN or INT_MAX.

MATH_ERRNO, MATH_ERREXCEPT, math_errhandling
MATH_ERRNO is the constant 1 and MATH_ERREXCEPT is the constant 2. These val‐
ues are represented by distinct bits, and hence can be used as bit masks in
querying the value of math_errhandling. The identifier math_errhandling is
either a macro or an external variable with the type int. Its value is constant
throughout runtime, and you can query it in your programs to determine
whether the mathematical functions indicate errors by raising exceptions or by
providing an error code, or both. If the expression math_errhandling &

MATH_ERRNO is not equal to zero, then the program can read the global error
variable errno to identify domain and range errors in math function calls. Sim‐
ilarly, if math_errhandling & MATH_ERREXCEPT is nonzero, then the math func‐
tions indicate errors using the floating-point environment’s exception flags. For
more details, see “Error Handling” on page 329.

If a given implementation supports programs that use floating-point exceptions,
then the header fenv.h must define at least the macros FE_DIVBYZERO, FE_INVALID,
and FE_OVERFLOW.

setjmp.h
The header setjmp.h declares the function longjmp(), and defines the array type
jmp_buf and the function-like macro setjmp().

Calling setjmp() saves the current execution environment, including at least the
momentary register and stack values, in a variable whose type is jmp_buf. In this
way, the setjmp() call bookmarks a point in the program, which you can then jump
back to at any time by calling the companion function longjmp(). In effect,
setjmp() and longjmp() allow you to program a nonlocal “goto.”

signal.h
The header signal.h declares the functions raise() and signal(), as well as related
macros and the following integer type:

sig_atomic_t

You can use the type sig_atomic_t to define objects that are accessible in an
atomic operation. Such objects are suitable for use in hardware interrupt signal
handlers, for example. The value range of this type is described by the values of
the macros SIG_ATOMIC_MIN and SIG_ATOMIC_MAX, which are defined in the
header stdint.h.

302 | Chapter 16: The Standard Headers

A signal handler is a function that is automatically executed when the program
receives a given signal from the operating environment. You can use the function
signal() in your programs to install functions of your own as signal handlers.

Each type of signal that programs can receive is identified by a signal number.
Accordingly, signal.h defines macros of type int to designate the signal types. The
required signal type macros are:

SIGABRT SIGILL SIGSEGV

SIGFPE SIGINT SIGTERM

The meanings of these signal types are described along with the signal() function
in Chapter 18. Implementations may also define other signals. The names of the
corresponding macros begin with SIG or SIG_, followed by an uppercase letter.

The first argument to the function signal() is a signal number. The second is the
address of a signal handler function, or one of the following macros:

SIG_DFL, SIG_IGN
These macros are constant expressions whose values cannot be equal to the
address of any declarable function. SIG_DFL installs the implementation’s
default signal handler for the given signal type. If you call signal() with
SIG_IGN as the second argument, the program ignores signals of the given type,
if the implementation allows programs to ignore them.

SIG_ERR

This macro represents the value returned by the signal() function if an error
occurs.

stdalign.h
The header stdalign.h is new in C11, and defines the following four macros:

alignas

This is a synonym for the specifier _Alignas. When an object is defined with
the specifier _Alignas, it can have a stricter alignment than its type requires.

alignof

This is a synonym for the operator _Alignof, which obtains the alignment of a
type.

__alignas_is_defined, __alignof_is_defined
These macros are equal to the integer constant 1.

For more information on the alignment of objects, see “The Alignment of Objects
in Memory” on page 36.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 303

stdarg.h
The header stdarg.h defines one type and four macros for use in accessing the
optional arguments of functions that support them (see “Variable Numbers of
Arguments” on page 127):

va_list
Functions with variable numbers of arguments use an object of the type
va_list to access their optional arguments. Such an object is commonly called
an argument pointer, as it serves as a reference to a list of optional arguments.

The following function-like macros operate on objects of the type va_list:

va_start()
Sets the argument pointer to the first optional argument in the list.

va_arg()
Returns the current argument and sets the argument pointer to the next one in
the list.

va_copy()

Copies the va_list object in its current state.

va_end()

Cleans up after the use of a va_list object. A function with a variable number
of arguments must contain a va_end() macro call corresponding to each invo‐
cation of va_start() or va_copy().

The macros va_copy() and va_end() may also be implemented as functions.

stdatomic.h
The header stdatomic.h is new in C11. It contains function declarations and defini‐
tions of various types and macros for atomic operations on data that is shared by
several threads. For explanations and examples of atomic operations, see “Accessing
Shared Data” on page 244.

Support for atomic operations is optional: C11 implementations that define the
macro __STDC_NO_ATOMICS__ need not provide the header stdatomic.h.

The names of the functions declared begin with the prefix atomic_, as in
atomic_store(). All function names that begin with the prefix atomic_ followed by
a lowercase letter are reserved for future extensions. Type names that begin with
atomic_ or memory_ followed by a lowercase letter are likewise reserved, as are
macro names that begin with ATOMIC_ followed by an uppercase letter.

304 | Chapter 16: The Standard Headers

Types defined in stdatomic.h

atomic_flag
A structure type that is capable of representing the states “set” and “clear,” and
is atomically accessible without using a lock.

memory_order
An enumerated type that defines the following constants used for specifying
the memory-ordering constraints of atomic operations:

 memory_order_relaxed memory_order_release memory_order_acquire
 memory_order_consume memory_order_acq_rel memory_order_seq_cst

For a description of these enumeration constants with examples, see “Memory
Ordering” on page 249. An argument of the type memory_order is used with the
atomic functions whose names end with the suffix _explicit, such as
atomic_store_explicit(), and with the function atomic_thread_fence().

The header stdatomic.h also defines the type names listed in Table 16-5, which are
synonyms for the integer atomic types named in the right column.

Table 16-5. Integer atomic types

Atomic type name Type

atomic_bool _Atomic _Bool

atomic_char _Atomic char

atomic_schar _Atomic signed char

atomic_uchar _Atomic unsigned char

atomic_short _Atomic short

atomic_ushort _Atomic unsigned short

atomic_int _Atomic int

atomic_uint _Atomic unsigned int

atomic_long _Atomic long

atomic_ulong _Atomic unsigned long

atomic_llong _Atomic long long

atomic_ullong _Atomic unsigned long long

atomic_char16_t _Atomic char16_t

atomic_char32_t _Atomic char32_t

atomic_wchar_t _Atomic wchar_t

atomic_int_least8_t _Atomic int_least8_t

atomic_uint_least8_t _Atomic uint_least8_t

atomic_int_least16_t _Atomic int_least16_t

atomic_uint_least16_t _Atomic uint_least16_t

Stand
ard

H
ead

ers

Contents of the Standard Headers | 305

Atomic type name Type

atomic_int_least32_t _Atomic int_least32_t

atomic_uint_least32_t _Atomic uint_least32_t

atomic_int_least64_t _Atomic int_least64_t

atomic_uint_least64_t _Atomic uint_least64_t

atomic_int_fast8_t _Atomic int_fast8_t

atomic_uint_fast8_t _Atomic uint_fast8_t

atomic_int_fast16_t _Atomic int_fast16_t

atomic_uint_fast16_t _Atomic uint_fast16_t

atomic_int_fast32_t _Atomic int_fast32_t

atomic_uint_fast32_t _Atomic uint_fast32_t

atomic_int_fast64_t _Atomic int_fast64_t

atomic_uint_fast64_t _Atomic uint_fast64_t

atomic_intptr_t _Atomic intptr_t

atomic_uintptr_t _Atomic uintptr_t

atomic_size_t _Atomic size_t

atomic_ptrdiff_t _Atomic ptrdiff_t

atomic_intmax_t _Atomic intmax_t

atomic_uintmax_t _Atomic uintmax_t

Macros Defined in stdatomic.h
The values of the following macros indicate whether the corresponding atomic
types (signed and unsigned) are “lock free”—in other words, whether they permit
atomic access without the use of a lock.

ATOMIC_BOOL_LOCK_FREE ATOMIC_SHORT_LOCK_FREE

ATOMIC_CHAR_LOCK_FREE ATOMIC_INT_LOCK_FREE

ATOMIC_CHAR16_T_LOCK_FREE ATOMIC_LONG_LOCK_FREE

ATOMIC_CHAR32_T_LOCK_FREE ATOMIC_LLONG_LOCK_FREE

ATOMIC_WCHAR_T_LOCK_FREE ATOMIC_POINTER_LOCK_FREE

All of these macros have values of 0, 1, or 2. The value 0 means that the type is never
lock-free, 1 means it is lock-free for certain objects, and 2 means it is always lock-
free.

In addition to the LOCK_FREE macros, stdatomic.h also defines three other macros:

306 | Chapter 16: The Standard Headers

ATOMIC_FLAG_INIT

This macro is an initializer used to initialize an object of the type atomic_flag
to the “clear” state.

ATOMIC_VAR_INIT(value)
This function-like macro expands to an initializer which can be used to initial‐
ize an atomic object that is capable of storing the argument’s value.

Atomic objects can also be initialized using the generic function atomic_init(). In
any case, the initialization of an atomic object is not an atomic operation. Like non-
atomic objects, atomic objects with static or thread-local storage duration which are
not explicitly initialized have the initial value 0.

kill_dependency(y)
This function-like macro breaks a dependency chain that was started by a con‐
sume operation—that is, by an atomic load operation with the memory order
specification memory_order_consume. The macro’s return value is the value of
the argument y, and is no longer a part of a dependency chain. This allows the
compiler to apply further optimization.

stdbool.h
The header stdbool.h defines the following four macros:

bool

A synonym for the type _Bool

true
The constant 1

false
The constant 0

__bool_true_false_are_defined
The constant 1

stddef.h
The header stddef.h defines three types and two macros for use in all kinds of pro‐
grams. The three types are:

ptrdiff_t
A signed integer type that represents the difference between two pointers.

size_t

An unsigned integer type used to represent the result of sizeof operations; also
defined in stdlib.h, wchar.h, stdio.h, and string.h.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 307

wchar_t
An integer type that is wide enough to store any code in the largest extended
character set that the implementation supports; also defined in stdlib.h and
wchar.h.

Macros that specify the least and greatest representable values of these three types
are defined in the header stdint.h .

In C11 implementations, one or two other types are also defined in stddef.h:

max_align_t
In C11, this is an object type with the largest possible alignment that the imple‐
mentation supports in all contexts. It may be a type with an alignment of 8 or
16, for example.

rsize_t

This type is equivalent with size_t, and is defined only if the C11 implementa‐
tion supports the secure standard functions with bounds-checking. If rsize_t
is defined, then the macro RSIZE_MAX is also defined in the header stdint.h, typ‐
ically with a value less than that of SIZE_MAX. In standard functions with a
parameter of the type rsize_t, passing a value greater than RSIZE_MAX violates
a runtime constraint.

The two macros defined in stddef.h are:

NULL
This macro represents a null pointer constant, which is an integer constant
expression with the value 0, or such an expression cast as the type void *. The
macro NULL is also defined in the headers stdio.h, stdlib.h, string.h, time.h, and
wchar.h.

offsetof(structure_type, member)
This macro yields an integer constant with type size_t whose value is the
number of bytes between the beginning of the structure and the beginning of
its member member. The member must not be a bit-field.

stdint.h
The header stdint.h defines integer types with specific bit widths, and macros that
indicate the value ranges of these and other types. For example, you can use the
int64_t type, defined in stdint.h, to define a signed, 64-bit integer.

Value ranges of the integer types with specific widths
If a signed type of a given specific width is defined, then the corresponding
unsigned type is also defined, and vice versa. Unsigned types have names that start
with u (such as uint64_t, for example), which is followed by the name of the corre‐
sponding signed type (such as int64_t).

308 | Chapter 16: The Standard Headers

For each type defined in stdint.h, macros are also defined to designate the type’s least
and greatest representable values. Table 16-6 lists the names of these macros, with
the standard’s requirements for their values. The word “exactly” in the table indi‐
cates that the standard specifies an exact value rather than a maximum or mini‐
mum. Otherwise, the standard allows the implementation to exceed the ranges
given in the table. The letter N before an underscore in the type names as listed here
is a placeholder for a decimal number indicating the bit width of a given type. Com‐
monly implemented values are 8, 16, 32, and 64.

Table 16-6. Value ranges of the integer types with specific widths

Type Minimum Maximum Maximum value of the unsigned type

intN_t INTN_MIN

Exactly −(2N−1)

INTN_MAX

Exactly 2N−1 − 1

UINTN_MAX

Exactly 2N − 1

int_leastN_t INT_LEASTN_MIN

−(2N−1 − 1)

INT_LEASTN_MAX

2N−1 − 1

UINT_LEASTN_MAX

2N − 1

int_fastN_t INT_FASTN_MIN

−(2N−1 − 1)

INT_FASTN_MAX

2N−1 − 1

UINT_FASTN_MAX

2N − 1

intmax_t INTMAX_MIN

−(263 − 1)
INTMAX_MAX

263 − 1
UINTMAX_MAX

264 − 1

intptr_t INTPTR_MIN

−(215 − 1)
INTPTR_MAX

215 − 1
UINTPTR_MAX

216 − 1

For the meanings of the fixed-width integer type names, and the C standard’s
requirements as to which of them must be defined, see “Integer Types Defined in
Standard Headers” on page 29.

Value ranges of other integer types
The header stdint.h also contains macros to document the value ranges of types
defined in other headers. These types are listed in Table 16-7. The numbers in the
table represent the minimum requirements of the C standard. The types
sig_atomic_t, wchar_t, and wint_t may be defined as signed or unsigned.

Table 16-7. Value ranges of other integer types

Type Minimum Maximum

ptrdiff_t PTRDIFF_MIN

−65535
PTRDIFF_MAX

+65535

sig_atomic_t SIG_ATOMIC_MIN

If signed: ≤ −127
If unsigned: 0

SIG_ATOMIC_MAX

If signed: ≥ 127
If unsigned: ≥ 255

size_t N/A SIZE_MAX

65535

Stand
ard

H
ead

ers

Contents of the Standard Headers | 309

Type Minimum Maximum

rsize_t N/A RSIZE_MAX

≤ SIZE_MAX

wchar_t WCHAR_MIN

If signed: ≤ −127
If unsigned: 0

WCHAR_MAX

If signed: ≥ 127
If unsigned: ≥ 255

wint_t WINT_MIN

If signed: ≤ −32767
If unsigned: 0

WINT_MAX

If signed: ≥ 32767
If unsigned: ≥ 65535

The types ptrdiff_t, size_t, rsize_t and wchar_t are described in “stddef.h” on
page 307. The type rsize_t, and hence the corresponding macro RSIZE_MAX, are
only defined if the implementation supports the bounds-checking, “secure” func‐
tions. The type sig_atomic_t is described in “signal.h” on page 302, and wint_t is
described in “wchar.h” on page 318.

Macros for integer constants
For each decimal number N for which the stdint.h header defines a type int_least
N_t (an integer type that is at leastN bits wide), the header also defines two function-
like macros to generate values with the type int_leastN_t. Arguments to these
macros must be constants in decimal, octal, or hexadecimal notation, and must be
within the value range of the intended type (see “Integer Constants” on page 39).
The macros are:

INTN_C(value), UINTN_C(value)
Expands to a signed or unsigned integer constant with the specified value and
the type int_leastN_t or uint_leastN_t, which is at least N bits wide. For
example, if uint_least32_t is defined as a synonym for the type unsigned
long, then the macro call UINT32_C(123) may expand to the constant 123UL.

The following macros are defined for the types intmax_t and uintmax_t:

INTMAX_C(value), UINTMAX_C(value)
These macros expand to a constant with the specified value and the type
intmax_t or uintmax_t.

stdio.h
The header stdio.h contains the declarations of all the basic functions for input and
output, as well as related macro and type definitions. The declarations for wide-
character I/O functions—that is, for input and output of characters with the type
wchar_t—are contained in the header file wchar.h (see also Chapter 13).

In addition to size_t, which is discussed in “stddef.h” on page 307, stdio.h defines
the following two types:

310 | Chapter 16: The Standard Headers

FILE

An object of the type FILE contains all the information necessary for control‐
ling an I/O stream. This information includes a pointer to the stream’s buffer, a
file access position indicator, and flags to indicate error and end-of-file condi‐
tions.

fpos_t

Objects of this type, which is the return type of the fgetpos() function, are
able to store all the information pertaining to a file access position. You can use
the fsetpos() function to resume file processing at the position described by
an fpos_t object.

In C11 implementations that support the bounds-checking,
“secure” functions, the header stdio.h also declares the types
errno_t (see “errno.h” on page 291) and rsize_t (see
“stddef.h” on page 307).

The header stdio.h defines the macro NULL (described in “stddef.h” on page 307) as
well as the following 12 macros, all of which represent integer constant expressions:

_IOFBF, _IOLBF, _IONBF
These constants are used as arguments to the setvbuf() function, and specify
I/O buffering modes. The names stand for “fully buffered,” “line buffered,” and
“not buffered.”

BUFSIZ

This is the size of the buffer activated by the setbuf() function, in bytes.

EOF

“End of file.” A negative value (usually -1) with type int. Various functions
return the constant EOF to indicate an attempt to read at the end of a file, or to
indicate an error.

FILENAME_MAX

This constant indicates how big a char array must be to store the longest file‐
name supported by the fopen() function.

FOPEN_MAX
Programs are allowed to have at least this number of files open simultaneously.

L_tmpnam

This constant indicates how big a char array must be to store a filename gener‐
ated by the tmpnam() function.

SEEK_SET, SEEK_CUR, SEEK_END
These constants are used as the third argument to the fseek() function.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 311

TMP_MAX

The maximum number of unique filenames that the tmpnam() function can
generate. This number is at least 25.

C11 implementations that support the new bounds-checking, “secure” functions
also define the following macros:

L_tmpnam_s, TMP_MAX_S
The meanings of these macros in the context of the function tmpnam_s() are
analogous to those of the macros L_tmpnam and TMP_MAX, described in the pre‐
ceding list, for the function tmpnam().

The header stdio.h also declares three objects:

stdin, stdout, stderr
These are the standard I/O streams. They are pointers to the FILE objects asso‐
ciated with the “standard input,” “standard output,” and “standard error output”
streams.

stdlib.h
The header stdlib.h declares general utility functions for the following purposes:

• Conversion of numeral strings into binary numeric values
• Random number generation
• Memory management
• Communication with the operating system
• Searching and sorting
• Integer arithmetic
• Conversion of multibyte characters to wide characters and vice versa

stdlib.h also defines the types size_t and wchar_t, which are described in “stddef.h”
on page 307, as well as the following three types:

div_t, ldiv_t, lldiv_t
These are structure types used to hold the results of the integer division func‐
tions div(), ldiv(), and lldiv(). These types are structures of two members,
quot and rem, which have the type int, long, or long long.

In C11 implementations that support the bounds-checking, “secure” functions, the
header stdlib.h also declares the types errno_t (see “errno.h” on page 291), and
rsize_t (see “stddef.h” on page 307), and the following type:

constraint_handler_t
This is the function-pointer type of the constraint handler argument passed to
the function set_constraint_handler_s(). The last handler function passed

312 | Chapter 16: The Standard Headers

in this way to the set_constraint_handler_s() function is called when a run‐
time constraint is violated during a call to a “secure” function.

The header stdlib.h defines the macro NULL (see “stddef.h” on page 307) as well as
the following four macros:

EXIT_FAILURE, EXIT_SUCCESS
Integer constants that you can pass as arguments to the functions exit() and
_Exit() to report your program’s exit status to the operating environment.

MB_CUR_MAX

A nonzero integer expression with the type size_t. This is the maximum num‐
ber of bytes in a multibyte character under the current locale setting for the
locale category LC_CTYPE. This value must be less than or equal to MB_LEN_MAX,
defined in limits.h.

RAND_MAX
An integer constant that indicates the greatest possible value that can be
returned by the function rand().

stdnoreturn.h
The header stdnoreturn.h is new in C11 and defines only one macro, noreturn, as a
synonym for the keyword _Noreturn.

string.h
The header string.h declares the string manipulation functions, along with other
functions that operate on byte arrays. The names of these functions begin with str,
as in strcpy(), for example, or with mem, as in memcpy(). Function names beginning
with str, mem, or wcs followed by a lowercase letter are reserved for future exten‐
sions.

The header string.h also defines the type size_t and the macro NULL, described in
“stddef.h” on page 307.

In C11 implementations that support the bounds-checking,
“secure” functions, the header string.h also declares the types
errno_t (described in “errno.h” on page 291) and rsize_t
(described in “stddef.h” on page 307).

tgmath.h
The header tgmath.h includes the headers math.h and complex.h, and defines the
type-generic macros. These macros allow you to call different variants of mathemati‐
cal functions by a uniform name, regardless of the arguments’ type.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 313

The mathematical functions in the standard library are defined with parameters of
specific real or complex floating-point types. Their names indicate types other than
double by the prefix c for _Complex, or by the suffixes f for float and l for long
double. The type-generic macros are overloaded names for these functions that you
can use with arguments of any arithmetic type. These macros detect the arguments’
type and call the appropriate math function.

The header tgmath.h defines type-generic macros for all the mathematical functions
with floating-point parameters except modf(), modff(), and modfl(). If a given
function is defined for both real and complex or only for real floating-point types,
then the corresponding type-generic macro has the same name as the function ver‐
sion for arguments of the type double—that is, the base name of the function with
no c prefix and no f or l suffix. For an example, assume the following declarations:

#include <tgmath.h>
float f = 0.5F;
double d = 1.5;
double _Complex z1 = -1;
long double _Complex z2 = I;

Each of the macro calls in Table 16-8 then expands to the function call shown in the
right column.

Table 16-8. Expansion of type-generic macros

Type-generic macro call Expansion

sqrt(f) sqrtf(f)

sqrt(d) sqrt(d)

sqrt(z1) csqrt(z1)

sqrt(z2) csqrtl(z2)

Arguments with integer types are automatically converted to double. If you use
arguments of different types in invoking a type-generic macro with two parameters,
such as pow(), the macro calls the function version for the argument type with the
higher rank (see “Hierarchy of Types” on page 50). If any argument has a complex
floating-point type, the macro calls the function for complex numbers.

Several functions are defined only for complex floating-point types. The type-
generic macros for these functions have names that start with c, but with no f or l
suffix:

carg() cimag() conj() cproj() creal()

If you invoke one of these macros with a real argument, it calls the function for the
complex type that corresponds to the argument’s real floating-point type.

314 | Chapter 16: The Standard Headers

threads.h
The header threads.h, which was introduced in C11, declares the functions for mul‐
tithreading support, and defines the accompanying types and macros. The header
threads.h also includes the header time.h. For details and examples on multithrea‐
ded programming using C11 features, see Chapter 14.

Multithreading support is optional in C11: implementations that define the macro
__STDC_NO_THREADS__ need not provide the header threads.h.

The functions and types defined in threads.h are related to threads, mutex objects,
condition variables and thread-specific storage. Accordingly, the names of the func‐
tions and types begin with one of the prefixes thrd_, mtx_, cnd_ and tss_. Other
names beginning with any of these prefixes, followed by a lowercase letter, are
reserved for future extensions.

Types Defined in threads.h

thrd_t
The type of an object that represents a thread.

thrd_start_t

The type int (*)(void*) (that is, a pointer to a function that takes one void-
pointer argument and returns an integer). This is the function pointer type
passed as an argument to the function thrd_create() to specify the function
that a new thread will execute.

mtx_t
The type of an object that represents a mutex.

cnd_t
The type of an object that represents a condition variable.

tss_t
The type of an object that represents a pointer to thread-specific storage.

tss_dtor_t

The type void (*)(void*) (that is, a pointer to a function that takes one void-
pointer argument and has no return value). This is the function-pointer type of
the argument passed to the function tss_create() to specify the destructor
function for the thread-specific storage requested.

once_flag

The type of a flag used by the function call_once().

Enumeration constants defined in threads.h
The header threads.h defines the following enumeration constants for the return
value of the thread functions:

Stand
ard

H
ead

ers

Contents of the Standard Headers | 315

thrd_success
Indicates that the function succeeded in performing the requested operation.

thrd_error
Indicates that an error occurred during the execution of the function.

thrd_busy
Indicates that the function failed because a required resource is still in use.

thrd_nomem
Indicates that the function was unable to allocate sufficient memory.

thrd_timeout
Indicates that the time limit specified in the function call expired before the
function was able to obtain the required resource.

Three constants are defined for use as an argument to the function mtx_init() to
specify the properties of the new mutex to be created. The three constants are used
to form one of four argument values as follows:

mtx_plain
Create a simple mutex without support for recursion or timeouts.

mtx_timed
Create a mutex that supports timeouts.

mtx_plain|mtx_recursive
Create a mutex that supports recursion.

mtx_timed|mtx_recursive
Create a mutex that supports timeouts and recursion.

Macros defined in threads.h
The threads.h header defines the following three macros:

thread_local

This is a synonym for the keyword _Thread_local.

ONCE_FLAG_INIT

This macro represents an initializer for objects of the type once_flag.

TSS_DTOR_ITERATIONS
A constant integer expression that specifies the maximum number of times a
thread-specific storage destructor will be called on thread termination.

316 | Chapter 16: The Standard Headers

time.h
The header time.h declares the standard functions, macros, and types for manipu‐
lating date and time information (by the Gregorian calendar). These functions are
listed in “Date and Time” on page 337.

The types declared in time.h are size_t (see stddef.h in this chapter) and the follow‐
ing three types:

clock_t

This is the arithmetic type returned by the function clock() (usually defined as
unsigned long).

time_t

This is an arithmetic type returned by the functions timer() and mktime()
(usually defined as long).

struct tm
The members of this structure represent a date or a time, broken down into
seconds, minutes, hours, the day of the month, and so on. The functions
gmtime() and localtime() return a pointer to struct tm. The structure’s
members are described under the gmtime() function in Chapter 18.

In C11 implementations that support the bounds-checking,
“secure” functions, the header time.h also declares the types
errno_t (see “errno.h” on page 291) and rsize_t (see
“stddef.h” on page 307).

The header time.h defines the macro NULL (see stddef.h) and the following macro:

CLOCKS_PER_SEC

This is a constant expression with the type clock_t. You can divide the return
value of the clock() function by CLOCKS_PER_SEC to obtain your program’s
CPU use in seconds.

uchar.h
In C11, the new header uchar.h declares types and functions for processing Unicode
characters. The types declared are size_t (see “stddef.h” on page 307), mbstate_t
(see “wchar.h” on page 318), and the following two new types:

char16_t
An unsigned integer type for 16-bit characters. This type is the same as
uint_least16_t. Implementations that define the macro __STDC_UTF_16__ use
UTF-16 encoding for characters of the type char16_t. The macro is not
defined if a different encoding is used.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 317

char32_t
An unsigned integer type for 32-bit characters. This type is the same as
uint_least32_t. Implementations that define the macro __STDC_UTF_32__ use
UTF-32 encoding for characters of the type char32_t. The macro is not
defined if a different encoding is used.

The types uint_least16_t and uint_least32_t are described in “stdint.h” on page
308. The header uchar.h declares the following four functions for converting 16-bit
or 32-bit Unicode characters to multibyte characters and vice versa: mbrtoc16(),
c16rtomb(), mbrtoc32(), and c32rtomb().

Functions and types for processing wide characters of the type wchar_t are declared
in the header wchar.h.

wchar.h
The headers stdio.h, stdlib.h, string.h, and time.h all declare functions for processing
byte-character strings—that is, strings of characters with the type char. The header
wchar.h declares similar functions for wide strings: strings of wide characters, which
have the type wchar_t. The names of these functions generally contain an additional
w, as in wprintf(), for example, or start with wcs instead of str, as in wcscpy(),
which is the name of the wide-string version of the strcpy() function.

Furthermore, the header wchar.h declares more functions for converting multibyte
characters to wide characters and vice versa, in addition to those declared in stdlib.h.
wchar.h declares functions for the following kinds of purposes:

• Wide and multibyte character I/O
• Conversion of wide-string numerals
• Copying, concatenating, and comparing wide strings and wide-character arrays
• Formatting date and time information in wide strings
• Conversion of multibyte characters to wide characters and vice versa

The types defined in wchar.h are size_t and wchar_t (explained in “stddef.h” on
page 307); struct tm (see time.h); and the following two types:

mbstate_t
Objects of this type store the parsing state information involved in the conver‐
sion of a multibyte string to a wide-character string, or vice versa.

wint_t

An integer type whose bit width is at least that of int. wint_t must be wide
enough to represent the value range of wchar_t and the value of the macro
WEOF. The types wint_t and wchar_t may be identical.

318 | Chapter 16: The Standard Headers

In C11 implementations that support the bounds-checking,
“secure” functions, the header wchar.h also declares the types
errno_t (see “errno.h” on page 291) and rsize_t (see
“stddef.h” on page 307).

The header wchar.h defines the macro NULL (see “stddef.h” on page 307), the macros
WCHAR_MIN and WCHAR_MAX (see “stdint.h” on page 308), and the following macro:

WEOF

The macro WEOF has the type wint_t and a value that is distinct from all the
character codes in the extended character set. Unlike EOF, its value may be posi‐
tive. Various functions return the constant WEOF to indicate an attempt to read
at the end of a file, or to indicate an error.

wctype.h
The header wctype.h declares functions to classify and convert wide characters.
These functions are analogous to those for byte characters declared in the header
ctype.h. In addition, wctype.h declares extensible wide-character classification and
conversion functions.

The types defined in wctype.h are wint_t (described in “wchar.h” on page 318) and
the following two types:

wctrans_t
This is a scalar type to represent locale-specific mapping rules. You can obtain a
value of this type by calling the wctrans() function, and use it as an argument
to the function towctrans() to perform a locale-specific wide-character con‐
version.

wctype_t
This is a scalar type to represent locale-specific character categories. You can
obtain a value of this type by calling the wctype() function, and pass it as an
argument to the function iswctype() to determine whether a given wide char‐
acter belongs to the given category.

The header wctype.h also defines the macro WEOF, described in “wchar.h” on page
318.

Stand
ard

H
ead

ers

Contents of the Standard Headers | 319

17
Functions at a Glance

This chapter lists the functions in the standard library according to their respective
areas of application, describing shared features of the functions and their relation‐
ships to one another. This compilation might help you to find the right function for
your purposes while programming.

The individual functions are described in detail in Chapter 18,
which explains them in alphabetical order, with examples.

The alternative functions with bounds-checking introduced in C11, also called the
secure functions, are listed in Tables 17-1 and 17-2. The names of these functions
end with the suffix _s (s for “secure”), as in scanf_s(). Note that C implementa‐
tions are not required to support the secure functions. For more information on
using the secure functions, see “Functions with Bounds-Checking” on page 287.

Input and Output
We have dealt with this topic in detail in Chapter 13, which contains sections on I/O
streams, sequential and random file access, formatted I/O, and error handling. A
tabular list of the I/O functions will therefore suffice here. Table 17-1 lists general
file access functions declared in the header stdio.h.

321

Table 17-1. General file access functions

Purpose Functions

Rename a file, delete a file rename(), remove()

Create and/or open a file fopen(), freopen(), tmpfile()
fopen_s(), freopen_s(), tmpfile_s()

Close a file fclose()

Generate a unique filename tmpnam(), tmpnam_s()

Query or clear file access flags feof(), ferror(), clearerr()

Query the current file access position ftell(), fgetpos()

Change the current file access position rewind(), fseek(), fsetpos()

Write buffer contents to file fflush()

Control file buffering setbuf(), setvbuf()

There are two complete sets of functions for input and output of characters and
strings: the byte-character and the wide-character I/O functions (see “Byte-Oriented
and Wide-Oriented Streams” on page 216 for more information). The wide-
character functions operate on characters with the type wchar_t, and are declared in
the header wchar.h. Table 17-2 lists both sets.

Table 17-2. File I/O functions

Purpose Functions in stdio.h Functions in wchar.h

Get/set stream orientation fwide()

Write characters fputc(), putc(), putchar() fputwc(), putwc(), putwchar()

Read characters fgetc(), getc(), getchar() fgetwc(), getwc(), getwchar()

Put back characters read ungetc() ungetwc()

Write lines fputs(), puts() fputws()

Read lines fgets(), gets(), gets_s() fgetws()

Write blocks fwrite()

Read blocks fread()

Write formatted strings printf(), vprintf()
fprintf(), vfprintf()
sprintf(), vsprintf()
snprintf(), vsnprintf()

wprintf(), vwprintf()
fwprintf(), vfwprintf()
swprintf(), vswprintf()

Read formatted strings scanf(), vscanf()
fscanf(), vfscanf()
sscanf(), vsscanf()

wscanf(), vwscanf()
fwscanf(), vfwscanf()
swscanf(), vswscanf()

322 | Chapter 17: Functions at a Glance

For each function in the printf and scanf families, there is a secure alternative
function whose name ends in the suffix _s.

Mathematical Functions
The standard library provides many mathematical functions. Most of them operate
on real or complex floating-point numbers. However, there are also several func‐
tions with integer types, such as the functions to generate random numbers.

The functions to convert numeral strings into arithmetic types are listed in “String
Processing” on page 332. The remaining math functions are described in the follow‐
ing subsections.

Mathematical Functions for Integer Types
The math functions for the integer types are declared in the header stdlib.h. Two of
these functions, abs() and div(), are declared in three variants to operate on the
three signed integer types int, long, and long long. As Table 17-3 shows, the func‐
tions for the type long have names beginning with the letter l; those for long long
begin with ll. Furthermore, the header inttypes.h declares function variants for the
type intmax_t, with names that begin with imax.

Table 17-3. Integer arithmetic functions

Purpose Functions declared in stdlib.h Functions declared in stdint.h

Absolute value abs(), labs(), llabs() imaxabs()

Division div(), ldiv(), lldiv() imaxdiv()

Random numbers rand(), srand()

Floating-Point Functions
The functions for real floating-point types are declared in the header math.h, and
those for complex floating-point types are declared in complex.h. Table 17-4 lists the
functions that are available for both real and complex floating-point types. The
complex versions of these functions have names that start with the prefix c.
Table 17-5 lists the functions that are only defined for the real types; and Table 17-6
lists the functions that are specific to complex types.

For the sake of readability, Tables 17-4 through 17-6 show only the names of the
functions for the types double and double _Complex. Each of these functions also
exists in variants for the types float (or float _Complex) and long double (or
long double _Complex). The names of these variants end in the suffix f for float
or l for long double. For example, the functions sin() and csin() listed in
Table 17-4 also exist in the variants sinf(), sinl(), csinf(), and csinl() (but see
also “Type-generic macros” on page 325).

Functio
ns at

a G
lance

Mathematical Functions | 323

Table 17-4. Functions for real and complex floating-point types

Mathematical function C functions in math.h C functions in complex.h

Trigonometry sin(), cos(), tan()
asin(), acos(), atan()

csin(), ccos(), ctan()
casin(), cacos(), catan()

Hyperbolic trigonometry sinh(), cosh(), tanh()
asinh(), acosh(), atanh()

casinh(), cacosh(), catanh()
csinh(), ccosh(), ctanh()

Exponential function exp() cexp()

Natural logarithm log() clog()

Powers, square root pow(), sqrt() cpow(), csqrt()

Absolute value fabs() cabs()

Table 17-5. Functions for real floating-point types

Mathematical function C function

Arctangent of a quotient atan2()

Exponential functions exp2(), expm1(), frexp(), ldexp(),
scalbn(), scalbln()

Logarithmic functions log10(), log2(), log1p(),
logb(), ilogb()

Roots cbrt(), hypot()

Error functions for normal distributions erf(), erfc()

Gamma function tgamma(), lgamma()

Remainder fmod(), remainder(), remquo()

Separate integer and fractional parts modf()

Next integer ceil(), floor()

Next representable number nextafter(), nexttoward()

Rounding functions trunc(), round(), lround(), llround(), nearbyint(),
rint(), lrint(), llrint()

Positive difference fdim()

Multiply and add fma()

Minimum and maximum fmin(), fmax()

Assign one number’s sign to another copysign()

Generate a NaN nan()

324 | Chapter 17: Functions at a Glance

Table 17-6. Functions for complex floating-point types

Mathematical function C function

Isolate real and imaginary parts creal(), cimag()

Argument (the angle in polar coordinates) carg()

Conjugate conj()

Project onto the Riemann sphere cproj()

Function-Like Macros
The standard headers math.h and tgmath.h define a number of function-like macros
that can be invoked with arguments of different floating-point types. Variable argu‐
ment types in C are supported only in macros, not in function calls.

Type-generic macros
Each floating-point math function exists in three or six different versions: one for
each of the three real types, or for each of the three complex types, or for both real
and complex types. The header tgmath.h defines the type-generic macros, which
allow you to call any version of a given function under a uniform name. The com‐
piler detects the appropriate function from the arguments’ type. Thus, you do not
need to edit the math function calls in your programs when you change an argu‐
ment’s type from double to long double, for example. The type-generic macros are
described in “tgmath.h” on page 313.

Categories of floating-point values
C99 defines five kinds of values for the real floating-point types, with distinct inte‐
ger macros to designate them (see the section on math.h in Chapter 16):

FP_ZERO FP_NORMAL FP_SUBNORMAL FP_INFINITE FP_NAN

These classification macros, and the function-like macros listed in Table 17-7, are
defined in the header math.h. The argument of each of the function-like macros
must be an expression with a real floating-point type.

Table 17-7. Function-like macros to classify floating-point values

Purpose Function-like macros

Get the category of a floating-point value fpclassify()

Test whether a floating-point value belongs to a certain category isfinite(), isinf(), isnan(),
isnormal(), signbit()

Functio
ns at

a G
lance

Mathematical Functions | 325

For example, the following two tests are equivalent:

if (fpclassify(x) == FP_INFINITE) /* ... */ ;
if (isinf(x)) /* ... */ ;

Comparison macros
Any two real, finite floating-point numbers can be compared. In other words, one is
always less than, equal to, or greater than the other. However, if one or both
operands of a comparative operator is a NaN—a floating-point value that is not a
number—for example, then the operands are not comparable. In this case, the oper‐
ation yields the value 0, or “false,” and may raise the floating-point exception
FE_INVALID.

In practice, you may want to avoid risking an exception when comparing floating-
point objects. For this reason, the header math.h defines the function-like macros
listed in Table 17-8. These macros yield the same results as the corresponding
expressions with comparative operators, but perform a “quiet” comparison; that is,
they never raise exceptions, but simply return false if the operands are not compa‐
rable. The two arguments of each macro must be expressions with real floating-
point types.

Table 17-8. Function-like macros to compare floating-point values

Comparison Function-like macro

(x) > (y) isgreater(x, y)

(x) >= (y) isgreaterequal(x,y_)
(x) < (y) isless(x, y)

(x) <= (y) islessequal(x, y)

((x) < (y) || (x) > (y)) islessgreater(x, y)a

Test for comparability isunordered(x, y)

a Unlike the corresponding operator expression, the function-like macro islessgreater() evaluates its
arguments only once.

Pragmas for Arithmetic Operations
The following two standard pragmas influence the way in which arithmetic expres‐
sions are compiled:

#pragma STDC FP_CONTRACT on_off_switch
#pragma STDC CX_LIMITED_RANGE on_off_switch

The value of on_off_switch must be ON, OFF, or DEFAULT. If switched ON, the first of
these pragmas, FP_CONTRACT, allows the compiler to contract floating-point expres‐
sions with several C operators into fewer machine operations, if possible. Contrac‐
ted expressions are faster in execution. However, because they also eliminate round‐
ing errors, they may not yield precisely the same results as uncontracted expres‐

326 | Chapter 17: Functions at a Glance

sions. Furthermore, an uncontracted expression may raise floating-point exceptions
that are not raised by the corresponding contracted expression. It is up to the com‐
piler to determine how contractions are performed, and whether expressions are
contracted by default.

The second pragma, CX_LIMITED_RANGE, affects the multiplication, division, and
absolute values of complex numbers. These operations can cause problems if their
operands are infinite, or if they result in invalid overflows or underflows. When
switched ON, the pragma CX_LIMITED_RANGE instructs the compiler that it is safe to
use simple arithmetic methods for these three operations, as only finite operands
will be used, and no overflows or underflows need to be handled. By default, this
pragma is switched OFF.

In source code, these pragma directives can be placed outside all functions, or at the
beginning of a block, before any declarations or statements. The pragmas take effect
from the point where they occur in the source code. If a pragma directive is placed
outside all functions, its effect ends with the next directive that invokes the same
pragma, or at the end of the translation unit. If the pragma directive is placed within
a block, its effect ends with the next directive that invokes the same pragma in a
nested block, or at the end of the containing block. At the end of a block, the com‐
piler behavior returns to the state that was in effect at the beginning of the block.

The Floating-Point Environment
The floating-point environment consists of system variables for floating-point status
flags and control modes. Status flags are set by operations that raise floating-point
exceptions, such as division by zero. Control modes are features of floating-point
arithmetic behavior that programs can set, such as the way in which results are
rounded to representable values. Support for floating-point exceptions and control
modes is optional.

All of the declarations involved in accessing the floating-point environment are con‐
tained in the header fenv.h (see Chapter 16).

Programs that access the floating-point environment should inform the compiler
beforehand by means of the following standard pragma:

#pragma STDC FENV_ACCESS ON

This directive prevents the compiler from applying optimizations, such as changes
in the order in which expressions are evaluated, that might interfere with querying
status flags or applying control modes.

FENV_ACCESS can be applied in the same ways as FP_CONTRACT and
CX_LIMITED_RANGE: outside all functions, or locally within a block (see the preced‐
ing section). It is up to the compiler whether the default state of FENV_ACCESS is ON
or OFF.

Functio
ns at

a G
lance

Mathematical Functions | 327

Accessing status flags
The functions in Table 17-9 allow you to access the exception status flags. One argu‐
ment to these functions indicates the kind or kinds of exceptions to operate on. The
following integer macros are defined in the header fenv.h to designate the individual
exception types:

FE_DIVBYZERO FE_INEXACT FE_INVALID FE_OVERFLOW FE_UNDERFLOW

Each of these macros is defined only if the implementation supports the corre‐
sponding exception. The macro FE_ALL_EXCEPT designates all the supported excep‐
tion types.

Table 17-9. Functions giving access to the floating-point exceptions

Purpose Function

Test floating-point exceptions fetestexcept()

Clear floating-point exceptions feclearexcept()

Raise floating-point exceptions feraiseexcept()

Save floating-point exceptions fegetexceptflag()

Restore floating-point exceptions fesetexceptflag()

Rounding modes
The floating-point environment also includes the rounding mode currently in effect
for floating-point operations. The header fenv.h defines a distinct integer macro for
each supported rounding mode. Each of the following macros is defined only if the
implementation supports the corresponding rounding direction:

FE_DOWNWARD FE_TONEAREST FE_TOWARDZERO FE_UPWARD

Implementations may also define other rounding modes and macro names for
them. The values of these macros are used as return values or as argument values by
the functions listed in Table 17-10.

Table 17-10. Rounding mode functions

Purpose Function

Get the current rounding mode fegetround()

Set a new rounding mode fesetround()

Saving the whole floating-point environment
The functions listed in Table 17-11 operate on the floating-point environment as a
whole, allowing you to save and restore the floating-point environment’s state.

328 | Chapter 17: Functions at a Glance

Table 17-11. Functions that operate on the whole floating-point environment

Purpose Function

Save the floating-point environment fegetenv()

Restore the floating-point environment fesetenv()

Save the floating-point environment and switch to nonstop
processing

feholdexcept()a

Restore a saved environment and raise any exceptions that are
currently set

feupdateenv()

a In the nonstop processing mode activated by a call to feholdexcept(), floating-point exceptions do not
interrupt program execution.

Error Handling
C99 defines the behavior of the functions declared in math.h in cases of invalid
arguments or mathematical results that are out of range. The value of the macro
math_errhandling, which is constant throughout a program’s runtime, indicates
whether the program can handle errors using the global error variable errno, or the
exception flags in the floating-point environment, or both.

Domain errors
A domain error occurs when a function is mathematically not defined for a given
argument value. For example, the real square root function sqrt() is not defined
for negative argument values. The domain of each function in math.h is indicated in
the description of the function in Chapter 18.

In the case of a domain error, functions return a value determined by the imple‐
mentation. In addition, if the expression math_errhandling & MATH_ERRNO is not
equal to zero—in other words, if the expression is true—then a function incurring a
domain error sets the error variable errno to the value of EDOM. If the expression
math_errhandling & MATH_ERREXCEPT is true, then the function raises the floating-
point exception FE_INVALID.

Range errors
A range error occurs if the mathematical result of a function is not representable in
the function’s return type without a substantial rounding error. An overflow occurs
if the range error is due to a mathematical result whose magnitude is finite, but too
large to be represented by the function’s return type. If the default rounding mode is
in effect when an overflow occurs, or if the exact result is infinity, then the function
returns the value of HUGE_VAL (or HUGE_VALF or HUGE_VALL, if the function’s type is
float or long double) with the appropriate sign. In addition, if the expression
math_errhandling & MATH_ERRNO is true, then the function sets the error variable
errno to the value of ERANGE. If the expression math_errhandling &

Functio
ns at

a G
lance

Mathematical Functions | 329

MATH_ERREXCEPT is true, then an overflow raises the exception FE_OVERFLOW if the
mathematical result is finite, or FE_DIVBYZERO if it is infinite.

An underflow occurs when a range error is due to a mathematical result whose mag‐
nitude is nonzero, but too small to be represented by the function’s return type.
When an underflow occurs, the function returns a value that is defined by the
implementation but less than or equal to the value of DBL_MIN (or FLT_MIN, or
LDBL_MIN, depending on the function’s type). The implementation also determines
whether the function sets the error variable errno to the value of ERANGE if the
expression math_errhandling & MATH_ERRNO is true. Furthermore, the implemen‐
tation defines whether an underflow raises the exception FE_UNDERFLOW if the
expression math_errhandling & MATH_ERREXCEPT is true.

Character Classification and Conversion
The standard library provides a number of functions to classify characters and to
perform conversions on them. The header ctype.h declares such functions for byte
characters, with character codes from 0 to 255. The header wctype.h declares similar
functions for wide characters, which have the type wchar_t. These functions are
commonly implemented as macros.

The results of these functions, except for isdigit() and isxdigit(), depends on
the current locale setting for the locale category LC_CTYPE. You can query or change
the locale using the setlocale() function.

Character Classification
The functions listed in Table 17-12 test whether a character belongs to a certain cat‐
egory. Their return value is nonzero, or true, if the argument is a character code in
the given category.

Table 17-12. Character classification functions

Category Functions in ctype.h Functions in wctype.h

Letters isalpha() iswalpha()

Lowercase letters islower() iswlower()

Uppercase letters isupper() iswupper()

Decimal digits isdigit() iswdigit()

Hexadecimal digits isxdigit() iswxdigit()

Letters and decimal digits isalnum() iswalnum()

Printable characters (including whitespace) isprint() iswprint()

Printable, non-whitespace characters isgraph() iswgraph()

Whitespace characters isspace() iswspace()

Whitespace characters that separate words in a line of text isblank() iswblank()

330 | Chapter 17: Functions at a Glance

Category Functions in ctype.h Functions in wctype.h

Punctuation marks ispunct() iswpunct()

Control characters iscntrl() iswcntrl()

The functions isgraph() and iswgraph() behave differently if the execution char‐
acter set contains other byte-coded, printable, whitespace characters (that is, white‐
space characters that are not control characters) in addition to the space character
(' '). In that case, iswgraph() returns false for all such printable whitespace char‐
acters, while isgraph() returns false only for the space character (' ').

The header wctype.h also declares the two additional functions listed in Table 17-13
to test wide characters. These are called the extensible classification functions, which
you can use to test whether a wide-character value belongs to an implementation-
defined category designated by a string.

Table 17-13. Extensible character classification functions

Purpose Function

Map a string argument that designates a character class to a scalar value that can be used as
the second argument to iswctype()

wctype()

Test whether a wide character belongs to the class designated by the second argument iswctype()

The two functions in Table 17-13 can be used to perform at least the same tests as
the functions listed in Table 17-12. The strings that designate the character classes
recognized by wctype() are formed from the name of the corresponding test func‐
tions, minus the prefix isw. For example, the string "alpha", like the function name
iswalpha(), designates the category “letters.” Thus, for a wide-character value wc,
the following tests are equivalent:

iswalpha(wc)
iswctype(wc, wctype("alpha"))

Implementations may also define other such strings to designate locale-specific
character classes.

Case Mapping
The functions listed in Table 17-14 yield the uppercase letter that corresponds to a
given lowercase letter, and vice versa. All other argument values are returned
unchanged.

Table 17-14. Character conversion functions

Conversion Functions in ctype.h Functions in wctype.h

Upper- to lowercase tolower() towlower()

Lower- to uppercase toupper() towupper()

Functio
ns at

a G
lance

Character Classification and Conversion | 331

Here again, as in the previous section, the header wctype.h declares two additional
extensible functions to convert wide characters. These are described in Table 17-15.
Each kind of character conversion supported by the given implementation is desig‐
nated by a string.

Table 17-15. Extensible character conversion functions

Purpose Function

Map a string argument that designates a character conversion to a scalar value that can be
used as the second argument to towctrans()

wctrans()

Perform the conversion designated by the second argument on a given wide character towctrans()

The two functions in Table 17-15 can be used to perform at least the same conver‐
sions as the functions listed in Table 17-14. The strings that designate those conver‐
sions are "tolower" and "toupper". Thus, for a wide-character wc, the following
two calls have the same result:

towupper(wc);
towctrans(wc, wctrans("toupper"));

Implementations may also define other strings to designate locale-specific character
conversions.

String Processing
A string is a continuous sequence of characters terminated by '\0', the string termi‐
nator character. The length of a string is considered to be the number of characters
before the string terminator. Strings can be either byte strings, which consist of byte
characters, or wide strings, which consist of wide characters. Byte strings are stored
in arrays of char, and wide strings are stored in arrays whose elements have one of
the wide-character types: wchar_t, char16_t, or char32_t.

C does not have a basic type for strings, and hence has no operators to concatenate,
compare, or assign values to strings. Instead, the standard library provides numer‐
ous functions, listed in Table 17-16, to perform these and other operations with
strings. The header string.h declares the functions for conventional strings of char.
The names of these functions begin with str. The header wchar.h declares the cor‐
responding functions for strings of wide characters, with names beginning with wcs.

Like any other array, a string that occurs in an expression is implicitly converted
into a pointer to its first element. Thus, when you pass a string as an argument to a
function, the function receives only a pointer to the first character, and can deter‐
mine the length of the string only by the position of the string terminator character.

332 | Chapter 17: Functions at a Glance

Table 17-16. String-processing functions

Purpose Functions in string.h Functions in wchar.h

Find the length of a string strlen() ,
strnlen_s()

wcslen(),
wcsnlen_s()

Copy a string strcpy(),
strncpy(),
strcpy_s(),
strncpy_s()

wcscpy(),
wcsncpy(),
wcscpy_s(),
wcsncpy_s()

Concatenate strings strcat(),
strncat(),
strcat_s(),
strncat_s()

wcscat(),
wcsncat(),
wcscat_s(),
wcsncat_s()

Compare strings strcmp(),
strncmp(),
strcoll()

wcscmp(),
wcsncmp(),
wcscoll()

Transform a string so that a comparison of two
transformed strings using strcmp() yields the same
result as a comparison of the original strings using the
locale-sensitive function strcoll()

strxfrm() wcsxfrm()

In a string, find:

… the first or last occurrence of a given character strchr(),
strrchr()

wcschr(),
wcsrchr()

… the first occurrence of another string strstr() wcsstr()

… the first occurrence of any of a given set of
characters

strcspn(),
strpbrk()

wcscspn(),
wcspbrk()

… the first character that is not a member of a given
set

strspn() wcsspn()

Parse a string into tokens strtok(),
strtok_s()

wcstok(),
wcstok_s()

Multibyte Characters
In multibyte character sets, each character is coded as a sequence of one or more
bytes (see “Wide Characters and Multibyte Characters” on page 9). While each wide
character is represented by one object of the type wchar_t, char16_t, or char32_t,
the number of bytes necessary to represent a given character in a multibyte encod‐
ing is variable. However, the number of bytes that represent a multibyte character,
including any necessary state-shift sequences, is never more than the value of the
macro MB_CUR_MAX, which is defined in the header stdlib.h.

Standard library functions allow you to obtain the character code of the wide char‐
acter corresponding to any multibyte character, and the multibyte representation of
any wide character. Some multibyte encoding schemes are stateful; the interpreta‐

Functio
ns at

a G
lance

Multibyte Characters | 333

tion of a given multibyte sequence may depend on its position with respect to con‐
trol characters, called shift sequences, that are used in the multibyte stream or string.
In such cases, the conversion of a multibyte character to a wide character, or the
conversion of a multibyte string into a wide string, depends on the current shift state
at the point where the first multibyte character is read. For the same reason, con‐
verting a wide character to a multibyte character, or a wide string to a multibyte
string, may entail inserting appropriate shift sequences in the output. An example of
a multibyte-encoding that uses shift sequences is BOCU-1, a MIME-compatible,
compressed Unicode encoding that takes up less space than UTF-8. UTF-8 itself, on
the other hand, does not use shift sequences.

Conversions between wide and multibyte characters or strings may be necessary
when you read or write characters from a wide-oriented stream (see “Byte-Oriented
and Wide-Oriented Streams” on page 216).

Table 17-17 lists all of the standard library functions for handling multibyte charac‐
ters.

Table 17-17. Multibyte character functions

Purpose Functions in stdlib.h Functions in wchar.h Functions in
uchar.h

Find the length of a multibyte
character

mblen() mbrlen()

Find the wide character corresponding
to a given multibyte character

mbtowc() mbrtowc() mbrtoc16(),
mbrtoc32()

Find the multibyte character
corresponding to a given wide
character

wctomb(),
wctomb_s()

wcrtomb(),
wcrtomb_s()

c16rtomb(),
c32rtomb()

Convert a multibyte string into a wide
string

mbstowcs(),
mbstowcs_s()

mbsrtowcs(),
mbsrtowcs_s()

Convert a wide string into a multibyte
string

wcstombs(),
wcstombs_s()

wcsrtombs(),
wcsrtombs_s()

Convert between byte characters and
wide characters

btowc(), wctob()

Test for the initial shift state mbsinit()

The letter r in the names of functions declared in wchar.h stands for “restartable.”
The restartable functions—in contrast to those declared in stdlib.h, without the r in
their names—take an additional argument, which is a pointer to an object that
stores the shift state of the multibyte character or string argument.

334 | Chapter 17: Functions at a Glance

Converting Between Numbers and Strings
The standard library provides a variety of functions to interpret a numeral string
and return a numeric value. These functions are listed in Table 17-18. The numeral
conversion functions differ both in their target types and in the string types they
interpret. The functions for char strings are declared in the header stdlib.h, and
those for wide strings in wchar.h. Furthermore, C99 introduced four functions to
convert a string into a number of the widest available signed or unsigned integer
type, intmax_t or uintmax_t. These four functions are declared in inttypes.h.

Table 17-18. Conversion of numeral strings

Conversion Functions in stdlib.h Functions in wchar.h Functions in
inttypes.h

String to int atoi()

String to long atol(), strtol() wcstol()

String to unsigned long strtoul() wcstoul()

String to long long atoll(), strtoll() wcstoll()

String to unsigned long long strtoull() wcstoull()

String to intmax_t strtoimax(),
wcstoimax()

String to uintmax_t strtoumax(),
wcstoumax()

String to float strtof() wcstof()

String to double atof(), strtod() wcstod()

String to long double strtold() wcstold()

The functions strtol(), strtoll(), and strtod() can be more practical to use
than the corresponding functions atol(), atoll(), and atof(), as they return the
position of the next character in the source string after the character sequence that
was interpreted as a numeral.

In addition to the functions listed in Table 17-18, you can also perform string-to-
number conversions using one of the sscanf() functions with an appropriate for‐
mat string. Similarly, you can use the sprintf() functions to perform the reverse
conversion, generating a numeral string from a numeric argument. These functions
are declared in the header stdio.h. Once again, the corresponding functions for wide
strings are declared in the header wchar.h. Both sets of functions are listed in
Table 17-19.

Functio
ns at

a G
lance

Converting Between Numbers and Strings | 335

Table 17-19. Conversions between strings and numbers using format strings

Conversion Functions in stdio.h Functions in wchar.h

String to number sscanf(), vsscanf() swscanf(), vswscanf()

Number to string sprintf(), snprintf(), vsprintf(),
vsnprintf()

swprintf(), vswprintf()

For each of these functions, there is a secure alternative function whose name ends
in the suffix _s.

Searching and Sorting
Table 17-20 lists the standard library’s four general searching and sorting functions,
which are declared in the header stdlib.h. The functions to search the contents of a
string are listed in “String Processing” on page 332.

Table 17-20. Searching and sorting functions

Purpose Function

Sort an array qsort(), qsort_s()

Search a sorted array bsearch(), bsearch_s()

These functions feature an abstract interface that allows you to use them for arrays
of any element type. One parameter of the qsort() and qsort_s() functions is a
pointer to a call-back function that qsort() and qsort_s() can use to compare
pairs of array elements. Usually you will need to define this function yourself. The
bsearch() and bsearch_s() functions, which find the array element designated by
a “key” argument, use the same technique, calling a user-defined function to com‐
pare array elements with the specified key.

The bsearch() and bsearch_s() functions use the binary search algorithm, and
therefore require that the array be sorted beforehand. Although the names of the
qsort() and qsort_s() functions suggest that they implement the quick-sort algo‐
rithm, the standard does not specify which sorting algorithm they use.

Memory Block Handling
The functions listed in Table 17-21 initialize, copy, search, and compare blocks of
memory. The functions declared in the header string.h access a memory block byte
by byte, and those declared in wchar.h read and write units of the type wchar_t.
Accordingly, the size parameter of each function indicates the size of a memory
block as a number of bytes, or as a number of wide characters.

336 | Chapter 17: Functions at a Glance

Table 17-21. Functions to manipulate blocks of memory

Purpose Functions in string.h Functions in wchar.h

Copy a memory block, where
source and destination do not
overlap

memcpy(), memcpy_s() wmemcpy(), wmemcpy_s()

Copy a memory block, where
source and destination may
overlap

memmove(), memmove_s() wmemmove(), wmemmove_s()

Compare two memory blocks memcmp() wmemcmp()

Find the first occurrence of a given
character

memchr() wmemchr()

Fill the memory block with a given
character value

memset(), memset_s() wmemset(), wmemset_s()

Dynamic Memory Management
Many programs, including those that work with dynamic data structures, for exam‐
ple, depend on the ability to allocate and release blocks of memory at runtime. C
programs can do that by means of the four dynamic memory management func‐
tions declared in the header stdlib.h, which are listed in Table 17-22. The use of
these functions is described in detail in Chapter 12.

Table 17-22. Dynamic memory management functions

Purpose Function

Allocate a block of memory malloc()

Allocate a memory block and fill it with null bytes calloc()

Resize an allocated memory block realloc()

Release a memory block free()

Date and Time
The header time.h declares the standard library functions to obtain the current date
and time, to obtain the process’s running time, to perform certain conversions on
date and time information, and to format it for output. A key function is time(),
which yields the current calendar time in the form of an arithmetic value of the type
time_t. This is usually encoded as the number of seconds elapsed since a specified
moment in the past, called the epoch. The Unix epoch is 00:00:00 o’clock on January
1, 1970, UTC (Coordinated Universal Time, formerly called Greenwich Mean Time
or GMT).

There are also standard functions to convert a calendar time value with the type
time_t into a string or a structure of type struct tm. The structure type has mem‐

Functio
ns at

a G
lance

Dynamic Memory Management | 337

bers of type int for the second, minute, hour, day, month, year, day of the week, day
of the year, and a daylight saving time flag (see the description of the gmtime()
function in Chapter 18). Table 17-23 lists all the date and time functions.

Table 17-23. Date and time functions

Purpose Function

Get the amount of CPU time used clock()

Get the current calendar time time()

Get the difference between two calendar times difftime()

Convert calendar time to struct tm gmtime(), gmtime_s()

Convert calendar time to struct tm with local time values localtime(),
localtime_s()

Normalize the values of a struct tm object and return the calendar
time with type time_t

mktime()

Convert calendar time to a string ctime(), ctime_s(),
asctime(), asctime_s(),
strftime(), wcsftime()

The extremely flexible strftime() function uses a format string (in a similar way as
the printf() functions) and the LC_TIME locale category to generate a date and time
string. You can query or change the locale using the setlocale() function. The
function wcsftime() is the wide-string version of strftime(), and is declared in
the header wchar.h rather than time.h.

The diagram in Figure 17-1 offers an organized summary of the available date and
time functions.

Figure 17-1. Date and time functions

338 | Chapter 17: Functions at a Glance

Process Control
A process is a program that is being executed. Each process has a number of
attributes, such as its open files. The exact attributes of processes are dependent on
the given system. The standard library’s process control features can be divided into
two kinds: those for communication with the operating system, and those con‐
cerned with signals.

Communication with the Operating System
The functions in Table 17-24 are declared in the header stdlib.h, and allow programs
to communicate with the operating system.

Table 17-24. Functions for communication with the operating system

Purpose Function

Query the value of an environment variable getenv(), getenv_s()

Execute a system command system()

Register a function to be executed when the program exits atexit(), at_quick_exit()

Exit the program normally exit(), _Exit(), quick_exit()

Exit the program abruptly abort()

In Unix and Windows, one attribute of a process is the environment, which consists
of a list of strings of the form name=value. Usually, a process inherits an environ‐
ment generated by its parent process. The getenv() function is one way for a pro‐
gram to receive control information, such as the names of directories containing
files to use.

In contrast to exit(), the _Exit() function ignores all signals, and does not call any
functions registered by atexit(). The quick_exit() function, introduced in C99,
first calls all the functions that have been registered by calls to the at_quick_exit()
function, and then terminates the program by calling _Exit(). The abort() func‐
tion causes an abnormal program termination by raising the SIGABRT signal.

Signals
An operating system sends various signals to processes to notify them of unusual
events. Such events typically include severe errors, such as illegal memory access, or
hardware interrupts such as timer alarms. Signals may also be caused by a user at
the console, however, or by the program itself calling the raise() function.

Each program may determine for itself how to react to specific signals. A program
can choose to ignore signals, let the default signal handler deal with them, or install
its own signal handler function. A signal handler is a function that is executed auto‐
matically when the program receives a given type of signal.

Functio
ns at

a G
lance

Process Control | 339

The two C functions that deal with signals are declared, along with macros to desig‐
nate the signal types, in the header signal.h. The functions are listed in Table 17-25.

Table 17-25. Signal functions

Purpose Function

Set the response to a given signal type signal()

Send a signal to the calling process raise()

Internationalization
The standard library supports the development of C programs that are able to adapt
to local cultural conventions. For example, programs may use locale-specific charac‐
ter sets or formats for currency information.

All programs start in the default locale, named "C", which contains no country or
language-specific information. During runtime, programs can change their locale or
query information about the current locale. The information that makes up a locale
is divided into categories, which you can query and set individually.

The functions that operate on the current locale are declared, along with the related
types and macros, in the header locale.h. They are listed in Table 17-26.

Table 17-26. Locale functions

Purpose Function

Query or set the locale for a specified category of information setlocale()

Get information about the local formatting conventions for numeric and monetary strings localeconv()

Many functions make use of locale-specific information. The standard library func‐
tion descriptions in Chapter 18 point out whenever a given function accesses locale
settings. Such functions include the following:

• Character classification and case mapping functions

• Locale-sensitive string comparison (strcoll() and wcscoll())

• Date and time formatting (strftime() and wcsftime())
• Conversion of numeral strings
• Conversions between multibyte and wide characters

340 | Chapter 17: Functions at a Glance

Nonlocal Jumps
The goto statement in C can be used to jump only within a function. For greater
freedom, the header setjmp.h declares a pair of functions that permit jumps to any
point in a program. Table 17-27 lists these functions.

Table 17-27. Nonlocal jump functions

Purpose Function

Save the current execution context as a jump target for the longjmp() function setjmp()

Jump to a program context saved by a call to the setjmp() function longjmp()

When you call the function-like macro setjmp(), it stores a value in its argument
with the type jmp_buf that acts as a bookmark to that point in the program. The
jmp_buf object holds all the necessary parts of the current execution state (including
registers and stack). When you pass a jmp_buf object to longjmp(), longjmp()
restores the saved state, and the program continues at the point following the earlier
setjmp() call. The longjmp() call must not occur after the function that called
setjmp() returns. Furthermore, if any variables with automatic storage duration in
the function that called setjmp() were modified after the setjmp() call (and were
not declared as volatile), then their values after the longjmp() call are indetermi‐
nate.

The return value of setjmp() indicates whether the program has reached that point
after the original setjmp() call, or through a longjmp() call: setjmp() itself returns
0. If setjmp() appears to return any other value, then that point in the program was
reached by calling longjmp(). If the second argument in the longjmp() call—that is,
the requested return value—is 0, it is replaced with 1 as the apparent return value
after the corresponding setjmp() call.

Multithreading (C11)
The features provided by the C11 standard for programming multithreaded appli‐
cations in C are described in detail in Chapter 14. The tables in this section simply
present a summary of the C multithreading library. Note that support for multi‐
threading and atomic operations is optional. An implementation that conforms to
C11 must simply define the macros __STDC_NO_THREADS__ and
__STDC_NO_ATOMICS__ if it does not provide the corresponding features.

Thread Functions
The threads library provides functions for the following kinds of tasks:

• Managing threads
• Synchronizing thread execution using mutex objects

Functio
ns at

a G
lance

Nonlocal Jumps | 341

• Using condition variables for communication between threads
• Thread-specific storage

Accordingly, the names of the multithreading functions begin with one of the pre‐
fixes thrd_, mtx_, cnd_, or tss_. The only exception is the function call_once()
(see Table 17-28). All of these functions are declared in the header threads.h.

Table 17-28. Initialization function

Purpose Function

Call a function exactly once call_once()

call_once() guarantees that only the first call to the function specified by the argu‐
ment will be executed. This is useful in initializing data to be shared among several
threads, for example.

The functions listed in Table 17-29 perform operations on a program’s threads of
execution, such as starting and stopping them.

Table 17-29. Functions for managing threads

Purpose Function

Create and start a new thread to execute a specified function thrd_create()

Get the ID of the thread performing this function call thrd_current()

Test whether two thread IDs refer to the same thread thrd_equal()

Suspend execution of the current thread for a specified time thrd_sleep()

Advise the system to let other threads run thrd_yield()

Terminate the current thread thrd_exit()

Wait for another thread to terminate thrd_join()

Disown a thread thrd_detach()

C provides the functions listed in Table 17-30 to synchronize different threads’ work
using mutexes.

Table 17-30. Mutex functions

Purpose Function

Create and initialize a mutex mtx_init()

Lock a mutex; block until it becomes available mtx_lock()

Lock a mutex only if it becomes available within a specified time mtx_timedlock()

Lock a mutex only if it is available now mtx_trylock()

Destroy a specified mutex mtx_destroy()

342 | Chapter 17: Functions at a Glance

Condition variables are used for communication between a program’s various
threads, as when one thread needs to notify others that certain data are available, for
example. Table 17-31 lists all the functions provided for working with condition
variables.

Table 17-31. Functions for condition variables

Purpose Function

Initialize a condition variable cnd_init()

Wake up one of the threads waiting for a condition variable cnd_signal()

Wake up all the threads waiting for a condition variable cnd_broadcast()

Wait for a condition variable until woken up by another thread cnd_wait()

Wait a limited time for a condition variable cnd_timedwait()

Destroy a condition variable cnd_destroy()

The four functions listed in Table 17-32 operate on thread-specific storage (TSS).
Multiple threads use a global key that represents each thread’s pointer to a thread-
specific memory block.

Table 17-32. Functions for thread-specific storage

Purpose Function

Create a TSS key and optionally specify a destructor to be called when a thread exits tss_create()

Set the memory block for the current thread to access using a given key tss_set()

Get the pointer to the current thread’s memory block for the given key tss_get()

Release the resources used by a TSS key tss_delete()

Atomic Operations
The function declarations and the definitions of types and macros for atomic opera‐
tions are contained in the header stdatomic.h.

The macro ATOMIC_VAR_INIT can be used to initialize atomic objects. The macros of
the form _ATOMIC_type_LOCK_FREE indicate whether an atomic object with the cor‐
responding integer type type has the “lock-free” property. (For details, see “stda‐
tomic.h” on page 304.). The generic functions listed in Table 17-33 can also be used
as an alternative to these macros.

Functio
ns at

a G
lance

Multithreading (C11) | 343

Table 17-33. Functions for initializing atomic objects and determining whether
atomic objects are lock-free

Purpose Function

Initialize an atomic object atomic_init()

Test whether an atomic object is lock-free atomic_is_lock_free()

Reading or writing an atomic object is an atomic operation. “Read-modify-write”
operations, like those performed by the increment and decrement operators (++ and
--), and by the compound assignment operators (+= etc.) when the left operand is
an atomic object, are also atomic operations. Initializing an atomic object is not an
atomic operation, however.

Besides the operators named, the standard library provides a number of functions
to perform atomic operations, such as atomic_load(). By default, atomic opera‐
tions are performed with the strictest memory-ordering constraint: sequential con‐
sistency. To perform atomic operations with lower memory-ordering constraints,
another version of each atomic operation function takes an additional argument to
explicitly specify a memory-ordering constraint. The latter functions have names
that end in _explicit, such as atomic_load_explicit(). For details on these func‐
tions, see “Memory Ordering” on page 249.

The generic functions listed in Table 17-34 can be used with objects of all the atomic
types that are defined in stdatomic.h. For a complete list of these types, see “stda‐
tomic.h” on page 304.

Table 17-34. Generic functions for atomic operations

Purpose Function

Get the value of an atomic object atomic_load(), atomic_load_explicit()

Write a value to an atomic object atomic_store(), atomic_store_explicit()

Get the existing value and write a new value atomic_exchange(),
atomic_exchange_explicit()

Compare the value of an atomic object with
an expected value; if equal, write a new
value to the object

atomic_compare_exchange_strong(),
atomic_compare_exchange_strong_explicit(),
atomic_compare_exchange_weak(),
atomic_compare_exchange_weak_explicit()

344 | Chapter 17: Functions at a Glance

Purpose Function

Replace the value of an integer atomic
object with the result of an arithmetic
operation or a bit operation; unlike the
corresponding compound assignments, these
functions return the object’s original value
before the operation

atomic_fetch_add(),
atomic_fetch_add_explicit(),
atomic_fetch_sub(),
atomic_fetch_sub_explicit(),
atomic_fetch_or(),
atomic_fetch_or_explicit(),
atomic_fetch_xor(),
atomic_fetch_xor_explicit(),
atomic_fetch_and(),
atomic_fetch_and_explicit()

Objects of the type atomic_flag are guaranteed to be lock-free. The functions listed
in Table 17-35 provide the usual flag-operations for atomic_flag objects.

Table 17-35. Functions for atomic_flag objects

Purpose Function

Clear an atomic flag atomic_flag_clear(),
atomic_flag_clear_explicit()

Set an atomic flag and return its prior state atomic_flag_test_and_set(),
atomic_flag_test_and_set_explicit()

Memory fences specify the memory-ordering constraint that must be observed in
the synchronization of atomic write and read operations (see “Fences” on page 251
for more information).

Table 17-36. Functions for memory fences

Purpose Function

Insert an acquire, release, or acquire-and-release fence atomic_thread_fence()

Insert a fence that applies ordering constraints only between the operations
in a thread and in a signal handler executed in that thread

atomic_signal_fence()

Debugging
Using the macro assert() is a simple way to find logical mistakes during program
development. This macro is defined in the header assert.h. It simply tests its scalar
argument for a nonzero value. If the argument’s value is zero, assert() prints an
error message that lists the argument expression, function, filename, and line num‐
ber, and then calls abort() to stop the program. In the following example, the
assert() calls perform some plausibility checks on the argument to be passed to
free():

Functio
ns at

a G
lance

Debugging | 345

#include <stdlib.h>
#include <assert.h>

char *buffers[64] = { NULL }; // An array of pointers
int i;

/* ... allocate some memory buffers; work with them ... */

 assert(i >= 0 && i < 64); // Index out of range?
 assert(buffers[i] != NULL); // Was the pointer used at all?
 free(buffers[i]);

Rather than trying to free a nonexistent buffer, this code aborts the program (here
compiled as assert.c) with the following diagnostic output:

assert: assert.c:14: main: Assertion 'buffers[i] != ((void *)0)' failed.
Aborted

When you have finished testing, you can disable all assert() calls by defining the
macro NDEBUG before the #include directive for assert.h. The macro does not need
to have a replacement value. For example:

#define NDEBUG
#include <assert.h>
/* ... */

C11 has introduced the capability to test the assertion of an integer constant expres‐
sion during compiling. This is done using _Static_assert declarations. For details
and an example, see “_Static_assert Declarations” on page 186.

Error Messages
Various standard library functions set the global variable errno to a value indicating
the type of error encountered during execution (see “errno.h” on page 291). The
functions in Table 17-37 generate an appropriate error message for the current value
of errno.

Table 17-37. Error message functions

Purpose Function Header

Print an appropriate error message on stderr for the current value
of errno

perror() stdio.h

Return a pointer to the appropriate error message for a given error
number

strerror() string.h

Copy the error message corresponding to a given errno value to an
array

strerror_s() string.h

Find the length of the error message corresponding to a given
errno value

strerrorlen_s() string.h

346 | Chapter 17: Functions at a Glance

The function perror() prints the string passed to it as an argument, followed by a
colon and the error message that corresponds to the value of errno. This error mes‐
sage is the one that strerror() would return if called with the same value of errno
as its argument. Here is an example:

if (remove("test1") != 0) // If we can't delete the file ...
 perror("Couldn't delete 'test1'");

This perror() call produces the same output as the following statement:

fprintf(stderr, "Couldn't delete 'test1': %s\n", strerror(errno));

In this example, if the file test1 does not exist, a program compiled with GCC
prints the following message:

 Couldn't delete 'test1': No such file or directory

The error message whose address is provided by the function strerror() may be
replaced on a subsequent strerror() call. To avoid data races, multithreaded pro‐
grams should therefore use the alternative function strerror_s(), which copies the
error message to an array provided by the caller.

Functio
ns at

a G
lance

Error Messages | 347

18
Standard Library Functions

This chapter describes in alphabetical order the functions available in the standard
ANSI C libraries. Most of the functions described here were included in the 1989
ANSI standard or in the 1995 “Normative Addendum” and are currently supported
by all major compilers. The ISO/IEC 9899:1999 standard (“C99”) introduced several
new functions, which are also widely supported by today’s compilers. The same can‐
not be said of the new, mostly optional features, such as multithreading and
bounds-checking functions, introduced by the new ISO/IEC standard 9899:2011.
The new functions introduced in that standard are labeled “C11” in this chapter.

Each description includes the function’s purpose and return value, the function pro‐
totype, the header file in which the function is declared, and a brief example. For the
sake of brevity, the examples do not always show a main() function or the #include
directives that indicate the header file with the function’s declaration. When using
the functions described in this chapter, remember that you must provide a declara‐
tion of each standard function used in your program by including the appropriate
header file. Also, any filename may also contain a relative or absolute directory path.
For more information about errors and exceptions that can occur in standard func‐
tion calls, see the sections on the standard headers math.h, fenv.h, and errno.h in
Chapter 16.

In C11 implementations that support the “secure” alternative functions—that is, the
bounds-checking functions with names ending in _s—the following rule applies:
before the include directive that includes the header containing the declaration of
the desired function, the macro __STDC_WANT_LIB_EXT1__ must be defined as equal
to 1. For more information on using the secure functions, see “Functions with
Bounds-Checking” on page 287.

349

_Exit C99_Exit C99

Ends program execution without calling atexit() functions or signal handlers.

#include <stdlib.h>
_Noreturn void _Exit(int status);

The _Exit() function terminates the program normally but without calling any
cleanup functions that you have installed using atexit() or at_quick_exit(), or
signal handlers you have installed using signal(). _Exit() returns a status value to
the operating system in the same way as the exit() function does.

Whether _Exit() flushes the program’s file buffers or removes its temporary files
may vary from one implementation to another.
Example

int main (int argc, char *argv[])
{
 if (argc < 3)
 {
 fprintf(stderr, "Missing required arguments.\n");
 _Exit(-1);
 }
 /* ... */
}

See Also

abort(), exit(), atexit(), quick_exit(), at_quick_exit(), raise()

abortabort

Ends program execution immediately.

#include <stdlib.h>
_Noreturn void abort(void);

The abort() function terminates execution of a program by raising the SIGABRT
signal.

For a “clean” program termination, use the exit() function. The abort() function
does not flush the buffers of open files or call any cleanup functions that you have
installed using atexit() or at_quick_exit(). The abort() function generally
prints a message on the stderr stream such as:

Abnormal program termination

In Unix, aborting a program also produces a core dump.
Example

struct record { long id;
 int data[256];
 struct record *next;

350 | Chapter 18: Standard Library Functions

 };
/* ... */
struct record *new = (struct record *)malloc(sizeof(struct record));
if (new == NULL) // Check whether malloc failed!
{
 fprintf(stderr, "%s: out of memory!\n", __func__);
 abort();
}
else /* ... */

See Also

_Exit(), exit(), atexit(), quick_exit(), at_quick_exit(), raise()

abort_handler_s C11abort_handler_s C11

Handles errors occurring in secure function calls.

#include <stdlib.h>
void abort_handler_s(const char * restrict msg, void * restrict ptr,
 errno_t error);

If the function abort_handler_s() is passed as an argument to the function
set_constraint_handler_s(), it is installed as a runtime error handler so that
abort_handler_s() is called if one of the secure functions (with names ending in
_s) violates its runtime constraints. A runtime constraint is violated if the function
call contains an invalid pointer argument, or if the bounds of an array are exceeded
during the execution of the function.

If such an error occurs, the function abort_handler_s() outputs a message to
stderr containing the string passed in the parameter msg (usually the name of the
function which incurred the error). Then the abort_handler_s() function termi‐
nates the program by calling abort().
Example

 char name[15]= "NN";

 set_constraint_handler_s(abort_handler_s);
 strcpy_s(name, sizeof(name), "Abraham Lincoln");

Because the array name is too small for the string being copied, this code snippet
results in an error message like the following:

Runtime-constraint: Range error
abort -- terminating

See Also

ignore_handler_s(), set_constraint_handler_s()

Lib
rary

Functio
ns

Standard Library Functions | 351

absabs

Gives the absolute value of an integer.

#include <stdlib.h>
int abs(int n);
long labs(long n);
long long llabs(long long n);

The abs() functions return the absolute value of the integer argument n; if n is
greater than or equal to 0, the return value is equal to n. If n is less than 0, the func‐
tion returns -n.
Example

int amount = -1234;
char currencysym[2] = "$";
char sign[2] = "-";
div_t dollarsandcents = { 0, 0 };

if (amount >= 0)
 sign[0] = '\0';

dollarsandcents = div(abs(amount), 100);

printf("The balance is %s%s%d.%2d\n", sign, currencysym,
 dollarsandcents.quot, dollarsandcents.rem);

This code produces the following output:

The balance is -$12.34

See Also

The C99 absolute value function imaxabs(), declared in the header file inttypes.h
for the type intmax_t; the absolute value functions for real numbers, fabs(),
fabsf(), and fabsl(); the absolute value functions for complex numbers, cabs(),
cabsf(), and cabsl()

acosacos

Calculates the inverse cosine of a number.

#include <math.h>
double acos(double x);
float acosf(float x); (C99)
long double acosl(long double x); (C99)

acos() implements the inverse cosine function, commonly called arc cosine. The
argument x must be between −1 and 1, inclusive: −1 ≤ x ≤ 1. If x is outside the func‐
tion’s domain—that is, greater than 1 or less than −1—the function incurs a domain
error.

352 | Chapter 18: Standard Library Functions

The return value is given in radians, and is thus in the range 0 ≤ acos(x) ≤ π.
Example

/*
 * Calculate the pitch of a roof given
 * the sloping width from eaves to ridge and
 * the horizontal width of the floor below it.
 */
#define PI 3.141593
#define DEG_PER_RAD (180.0/PI)

double floor_width = 30.0;
double roof_width = 34.6;

double roof_pitch = acos(floor_width / roof_width) * DEG_PER_RAD ;
printf("The pitch of the roof is %2.0f degrees.\n", roof_pitch);

This code produces the following output:

The pitch of the roof is 30 degrees.

See Also

The arc cosine functions for complex numbers: cacos(), cacosf(), and cacosl()

acosh C99acosh C99

Calculates the inverse hyperbolic cosine of a number.

#include <math.h>
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

The acosh() functions return the non-negative number whose hyperbolic cosine is
equal to the argument x. Because the hyperbolic cosine of any number is greater
than or equal to 1, acosh() incurs a domain error if the argument is less than 1.
Example

double x, y1, y2;

puts("acosh(x) is equal to log(x + sqrt(x*x − 1))\n");
puts("Enter some numbers greater than or equal to 1.0"
 "\n(type any letter to quit):");
while (scanf("%lf", &x) == 1)
{
 errno = 0;
 y1 = acosh(x);
 if (errno == EDOM)
 {
 perror("acosh"); break;
 }
 y2 = log(x + sqrt(x*x − 1));

Lib
rary

Functio
ns

Standard Library Functions | 353

 printf("x = %f; acosh(x) = %f; log(x + sqrt(x*x-1)) = %f\n",
 x, y1, y2);
}

This code produces the following output:

Enter some numbers greater than or equal to 1.0
(type any letter to quit):
1.5
x = 1.500000; acosh(x) = 0.962424; log(x + sqrt(x*x-1)) = 0.962424
0.5
acosh: Numerical argument out of domain

See Also

Other hyperbolic trigonometry functions for real numbers: asinh(), atanh(),
sinh(), cosh(), and tanh(); the hyperbolic cosine and inverse hyperbolic cosine
functions for complex numbers: ccosh() and cacosh()

asctimeasctime

Converts a date-and-time structure to string form.

#include <time.h>
char *asctime(struct tm *systime);

The single argument of the asctime() function is a pointer to a structure of type
struct tm, in which a date and time is represented by elements for the year, month,
day, hour, and so on. The structure is described under mktime() in this chapter. The
asctime() function returns a pointer to a static string of 26 bytes containing the
date and time in a timestamp format:

"Wed Apr 13 07:23:20 2005\n"

The day of the week and the month are abbreviated with the first three letters of
their English names, with no period. If the day of the month is a single digit, an
additional space fills the place of its tens digit. If the hour is less than ten, it is repre‐
sented with a leading zero. The function strftime() permits more flexible date and
time output using a format string.
Example

time_t now;
time(&now); /* Get the time (seconds since 1/1/70) */
printf("Date: %.24s GMT\n", asctime(gmtime(&now)));

Typical output:

Date: Sun Aug 28 14:22:05 2005 GMT

See Also

localtime(), localtime_s(), gmtime(), gmtime_s(), ctime(), ctime_s(), diff
time(), mktime(), strftime(), time(). The localtime(), localtime_s(),
gmtime(), and gmtime_s() functions are the most common ways of filling in the

354 | Chapter 18: Standard Library Functions

values in the tm structure. The function call ctime(&seconds) is equivalent to the
call asctime(localtime(&seconds)).

asctime_s C11asctime_s C11

Converts a date-and-time structure to string form with bounds-checking.

#include <time.h>
errno_t asctime_s(char *s, rsize_t maxsize,
 const struct tm *tmPtr);

The function asctime_s(), like asctime(), converts the contents of the structure
pointed to by its tmPtr argument into a date-and-time string of 26 bytes in a time‐
stamp format: "Thu Oct 7 09:33:02 2014\n"

Unlike the function asctime(), asctime_s() does not use an internal, static string
buffer. Instead it copies the result to the address passed in the argument s, whose
length, given by maxsize, must be at least 26 bytes. This makes the function
asctime_s() safe for use in multithreading environments.

The function has the following runtime constraints: the pointers s and tmPtr must
not be null pointers, and the value of maxsize must be between 26 and RSIZE_MAX.
Furthermore, the members of the struct tm object pointed to by tmPtr must con‐
tain valid, normalized values. The member tm_year must represent a year between
0 and 9999. The tm structure is described in the section on gmtime() in this chapter.

The function asctime_s() returns 0 if no error occurs. Otherwise, it returns a non‐
zero error code, and writes the string terminator character '\0' to s[0], if the val‐
ues of s and maxsize permit.
Example

time_t now;
struct tm timeStruct;
char timeStr[26];

time(&now); // Date and time as an integer.
localtime_s(&now, &timeStruct); // Convert to a structure.
if(asctime_s(timeStr, sizeof(timeStr), &timeStruct) == 0)
 printf("Date and time: %s", timeStr);

Typical output:

Date and time: Thu Jan 29 08:30:09 2015

See Also

asctime(), localtime(), localtime_s(), gmtime(), gmtime_s(), ctime(),
ctime_s(), difftime(), mktime(), strftime(), time(). The functions local
time(), localtime_s(), gmtime(), and gmtime_s() can be called to fill in the mem‐
bers of an object of the type struct tm.

Lib
rary

Functio
ns

Standard Library Functions | 355

asinasin

Calculates the inverse sine of a number.

#include <math.h>
double asin(double x);
float asinf(float x); (C99)
long double asinl(long double x); (C99)

asin() implements the inverse sine function, commonly called arc sine. The argu‐
ment x must be between -1 and 1, inclusive: -1 ≤ x ≤ 1. If x is outside the function’s
domain—that is, if x is greater than 1 or less than −1—the function incurs a domain
error.

The return value is given in radians, and is thus in the range -π/2 ≤ asin(x) ≤ π/2.
Example

/*
 * Calculate the altitude of the sun (its angle upward from the horizon)
 * given the height of a vertical object and the length of the object's
 * shadow.
 */
#define PI 3.141593
#define DEG_PER_RAD (180.0/PI)

float height = 2.20F;
float length = 1.23F;
float altitude = asinf(height / sqrtf(height*height + length*length));
printf("The sun's altitude is %2.0f\xB0.\n", altitude * DEG_PER_RAD);

This code produces the following output:

The sun's altitude is 61°.

See Also

Arcsine functions for complex numbers: casin(), casinf(), and casinl()

asinh C99asinh C99

Calculates the inverse hyperbolic sine of a number.

#include <math.h>
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

The asinh() functions return the number whose hyperbolic sine is equal to the
argument x.
Example

puts(" x asinh(x) log(x + sqrt(x*x+1))\n"
 "---");

356 | Chapter 18: Standard Library Functions

for (double x = -2.0; x < 2.1; x += 0.5)
 printf("%6.2f %15f %20f\n", x, asinh(x), log(x + sqrt(x*x+1)));

This code produces the following output:

 x asinh(x) log(x + sqrt(x*x+1))

 -2.00 -1.443635 -1.443635
 -1.50 -1.194763 -1.194763
 -1.00 -0.881374 -0.881374
 -0.50 -0.481212 -0.481212
 0.00 0.000000 0.000000
 0.50 0.481212 0.481212
 1.00 0.881374 0.881374
 1.50 1.194763 1.194763
 2.00 1.443635 1.443635

See Also

Other hyperbolic trigonometry functions for real numbers: acosh(), atanh(),
sinh(), cosh(), and tanh(); the hyperbolic sine and inverse hyperbolic sine func‐
tions for complex numbers: csinh() and casinh()

assertassert

Tests an expression.

#include <assert.h>
void assert(int expression);

The assert() macro evaluates a given expression and aborts the program if the
result is 0 (that is, false). In this case, assert() also prints a message on stderr,
indicating the name of the program, and the source file, line number, and function
in which the failing assert() call occurs:

program: file:line: function: Assertion 'expression' failed.

If the value of expression is true (that is, nonzero), assert() does nothing and the
program continues.

Use assert() during development to guard against logical errors in your program.
When debugging is complete, you can instruct the preprocessor to suppress all
assert() calls by defining the symbolic constant NDEBUG before you include
assert.h.
Example

int units_in_stock = 10;
int units_shipped = 9;
/* ... */
 units_shipped++;
 units_in_stock--;
/* ... */
 units_in_stock -= units_shipped;
 assert(units_in_stock >= 0);

Lib
rary

Functio
ns

Standard Library Functions | 357

This code produces the following output:

inventory: inventory.c:110: main: Assertion 'units_in_stock >= 0' failed.
Aborted.

See Also

exit(), _Exit(), quick_exit(), at_quick_exit(), raise(), abort()

at_quick_exit C99at_quick_exit C99

Registers a function to be called on program termination by quick_exit().

#include <stdlib.h>
int at_quick_exit(void (*func)(void));

The function at_quick_exit() registers the function specified by the argument
func following the same rules as the atexit() function. The functions so registered
are called only if the program is terminated by quick_exit(), not on normal pro‐
gram termination. If you want a function to be executed in either case, you must
register it using both atexit() and at_quick_exit().

The argument func is a pointer to a function with no parameters and the return
type void. The function at_quick_exit() can be called several times to register
multiple functions. The number of possible calls is at least 32. If the program is
ended by a call to quick_exit(), all the functions so registered are called in last-in,
first-out order: that is, in the opposite order in which they were registered.

The function at_quick_exit() returns zero to indicate that the specified function
was successfully registered.
Example

void nexit(void) { puts("Program terminated normally."); }
void qexit(void) { puts("Programm terminated by \"quick_exit()\"."); }

int main(void)
{
 int a = -1;
 atexit(nexit);
 at_quick_exit(qexit);

 if(a < 0)
 quick_exit(EXIT_FAILURE);

 return 0;
}

This example would generate the following console output:

Program terminated by "quick_exit()".

See Also

quick_exit(), exit(), atexit(), _Exit(), abort()

358 | Chapter 18: Standard Library Functions

atanatan

Calculates the inverse tangent of a number.

#include <math.h>
double atan(double x);
float atanf(float x); (C99)
long double atanl(long double x); (C99)

atan() implements the inverse tangent function, commonly called arc tangent.

The return value is given in radians, and is thus in the range -π/2 ≤ atan(x) ≤ π/2.
Example

#ifdef PI
 printf("The symbol PI was already defined.\n");
 long double pi = (long double) PI;
#else
 long double pi = 4.0L * atanl(1.0L); // Because tan(pi/4) = 1
#endif
 printf("Assume pi equals %.17Lf.\n", pi);

This code produces the following output:

Assume pi equals 3.14159265358979324.

See Also

The arc tangent functions for complex numbers: catan(), catanf(), and catanl()

atan2atan2

Calculates the inverse tangent of a quotient.

#include <math.h>
double atan2(double y, double x);
float atan2f(float y, float x); (C99)
long double atan2l(long double y, long double x); (C99)

The atan2() function divides the first argument by the second and returns the arc
tangent of the result, or arctan(y/x).

The return value is given in radians, and is in the range -π ≤ atan2(y,x) ≤ π. The
signs of x and y determine the quadrant of the result:

x > 0, y > 0:
0 ≤ atan2(y,x) ≤ π/2

x < 0, y > 0:
π/2 ≤ atan2(y,x) ≤ π

x < 0, y < 0:
-π ≤ atan2(y,x) ≤ -π/2

Lib
rary

Functio
ns

Standard Library Functions | 359

x > 0, y < 0:
-π/2 ≤ atan2(y,x) ≤ 0

If both arguments are zero, then the function may incur a domain error.
Example

/*
 * Calculate an acute angle of a right triangle, given
 * the adjacent and opposite sides.
 */
#define PI 3.141593
#define DEG_PER_RAD (180.0/PI)

double adjacent = 3.0;
double opposite = 4.0;
double angle = atan2(opposite, adjacent) * DEG_PER_RAD;

printf("The acute angles of a 3-4-5 right triangle are %4.2f\xB0 "
 "and %4.2f\xB0.\n", angle, 90.0 - angle);

This code produces the following output:

The acute angles of a 3-4-5 right triangle are 53.13° and 36.87°.

See Also

The arc tangent function for a single argument: atan()

atanh C99atanh C99

Calculates the inverse hyperbolic tangent of a number.

#include <math.h>
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

The atanh() functions return the number whose hyperbolic tangent is equal to
their argument x. Because the hyperbolic tangent of any number is between -1 and
+1, atanh() incurs a domain error if the absolute value of the argument is greater
than 1. Furthermore, a range error may result if the absolute value of the argument
is equal to 1.
Example

double x[] = { -1.0, -0.5, 0.0, 0.5, 0.99, 1.0, 1.01 };

puts(" x atanh(x) \n"
 " ---------------------------------------");
for (int i = 0; i < sizeof(x) / sizeof(x[0]); ++i)
{
 errno = 0;
 printf("%+15.2f %+20.10f\n", x[i], atanh(x[i]));
 if (errno)

360 | Chapter 18: Standard Library Functions

 perror("atanh");
}

This code produces the following output:

 x atanh(x)

 -1.00 -inf
atanh: Numerical argument out of domain
 -0.50 -0.5493061443
 +0.00 +0.0000000000
 +0.50 +0.5493061443
 +0.99 +2.6466524124
 +1.00 +inf
atanh: Numerical argument out of domain
 +1.01 +nan
atanh: Numerical argument out of domain

See Also

Other hyperbolic trigonometry functions for real numbers: asinh(), acosh(),
sinh(), cosh(), and tanh(); the hyperbolic tangent and inverse hyperbolic tangent
functions for complex numbers: ctanh() and catanh()

atexitatexit

Registers a function to be called when the program exits.

#include <stdlib.h>
int atexit(void (*func)(void));

The argument of the atexit() function is a pointer to a function that has no
parameters and the return type void. If the atexit() call is successful, your pro‐
gram will call the function referenced by this pointer if and when it exits normally;
that is, if the program is terminated by a return statement in main() or by a call to
exit(). The atexit() call returns 0 to indicate that the specified function has been
registered successfully.

You may call atexit() up to 32 times in a program. If you register more than one
function in this way, they will be called in LIFO order: the last function registered
will be the first one called when your program exists.
Example

int main()
{
 void f1(void), f2(void);

 printf("Registering the \"at-exit\" functions f1 and f2:");

 if (atexit(f1) || atexit(f2))
 printf(" failed.\n");
 else
 printf(" done.\n");

Lib
rary

Functio
ns

Standard Library Functions | 361

 printf("Exiting now.\n");
 exit(0); // Equivalent to return 0;
}
void f1(void)
{ printf("Running the \"at-exit\" function f1().\n"); }
void f2(void)
{ printf("Running the \"at-exit\" function f2().\n"); }

This code produces the following output:

Registering the "at-exit" functions f1 and f2: done.
Exiting now.
Running the "at-exit" function f2().
Running the "at-exit" function f1().

See Also

_Exit(), exit(), quick_exit(), at_quick_exit(), abort()

atofatof

Converts a string to a floating-point number.

#include <stdlib.h>
double atof(const char *s);

The atof() function converts a string of characters representing a numeral into a
floating-point number of type double. The string must be in a customary floating-
point numeral format, including scientific notation (e.g., 0.0314 or 3.14e-2). The
conversion ignores any leading whitespace (space, tab, and newline) characters. A
minus sign may be prefixed to the mantissa or exponent to make it negative; a plus
sign in either position is permissible.

Any character in the string that cannot be interpreted as part of a floating-point
numeral has the effect of terminating the input string, and atof() converts only the
partial string to the left of that character. If the string cannot be interpreted as a
numeral at all, atof() returns 0.
Example

char string[] = " -1.02857e+2 \260C"; // symbol for degrees Celsius
double z;

z = atof(string);
printf("\"%s\" becomes %.2f\n", string, z);

This code produces the following output:

" -1.02857e+2 °C" becomes -102.86

See Also

strtod(), atoi(), atol(), atoll(), strtol(), strtoll()

362 | Chapter 18: Standard Library Functions

atoiatoi

Converts a string to an integer.

#include <stdlib.h>
int atoi(const char *s);
long atol(const char *s);
long long atoll(const char *s); (C99)

The atoi() function converts a string of characters representing a numeral into a
number of type int. Similarly, atol() returns a long integer, and in C99, the
atoll() function converts a string into an integer of type long long.

The conversion ignores any leading whitespace characters (spaces, tabs, newlines).
A leading plus sign is permissible; a minus sign makes the return value negative.
Any character that cannot be interpreted as part of an integer, such as a decimal
point or exponent sign, has the effect of terminating the numeral input so that
atoi() converts only the partial string to the left of that character. If, under these
conditions, the string still does not appear to represent a numeral, then atoi()
returns 0.
Example

char *s = " -135792468.00 Balance on Dec. 31";
printf("\"%s\" becomes %ld\n", s, atol(s));

These statements produce the output:

" -135792468.00 Balance on Dec. 31" becomes -135792468

See Also

strtol() and strtoll(); atof() and strtod()

atol, atollatol, atoll

See atoi().

atomic_compare_exchange_strong,
atomic_compare_exchange_strong_explicit,
atomic_compare_exchange_weak,
atomic_compare_exchange_weak_explicit C11

atomic_compare_exchange_strong,
atomic_compare_exchange_strong_explicit,
atomic_compare_exchange_weak,
atomic_compare_exchange_weak_explicit C11

Exchanges the value of an atomic object after a successful comparison.

#include <stdatomic.h>
_Bool atomic_compare_exchange_strong(volatile A *object,
 C *expected, C desired);
_Bool atomic_compare_exchange_strong_explicit(volatile A *object,
 C *expected, C desired,
 memory_order success, memory_order failure);

Lib
rary

Functio
ns

Standard Library Functions | 363

_Bool atomic_compare_exchange_weak(volatile A *object,
 C *expected, C desired);
_Bool atomic_compare_exchange_weak_explicit(volatile A *object,
 C *expected, C desired,
 memory_order success, memory_order failure);

In these prototypes, A stands for any atomic type defined in stdatomic.h, and C
stands for the corresponding non-atomic type. Each of these functions first com‐
pares the value of the atomic object pointed to by the argument object with the
value of the object pointed to by expected. If the values are equal, the value of the
argument desired is written to the atomic object. If they are not equal, the value of
the atomic object is copied to the address specified by expected. The operations are
carried out as atomic read-modify-write operations. The return value of all the
functions is the result of the initial comparison; that is, true if the compared values
are equal, and false if they are not equal.

The explicit versions of the functions apply the memory-ordering requirement
specified by success if the compared values are equal, and the memory ordering
specified by failure if they are not equal. The argument failure must not be
memory_order_release or memory_order_acq_rel, and must not be stricter than
the memory-ordering requirement specified by success.

The weak versions of the functions can also fail when the compared values are equal,
in which case they behave as if the values were not equal. They must therefore be
called inside a loop. When the compare-and-exchange operation is executed in a
loop, the weak function versions offer better performance on some computers than
the strong versions.

The weak versions permit efficient implementation of the compare-and-exchange
operation on a broader range of computers, including those with Advanced RISC
Machine (ARM) architecture, which provides “load-locked store-conditional” CPU
instructions.
Example

This example illustrates a possible implementation of the *= operator for objects of
the type atomic_long. This corresponds to the code sequence indicated in the foot‐
note to Section 6.5.16.2 of the C11 standard.

long mulwith(volatile atomic_long *alPtr, long val)
{
 long old = *alPtr, new;

 do { new = old * val; }
 while (!atomic_compare_exchange_weak(alPtr, &old, new));

 return new;
}

364 | Chapter 18: Standard Library Functions

See Also

atomic_exchange(), atomic_exchange_explicit(), atomic_store(),
atomic_store_explicit()

atomic_exchange, atomic_exchange_explicit C11atomic_exchange, atomic_exchange_explicit C11

Exchange the value of an atomic object.

#include <stdatomic.h>
C atomic_exchange(volatile A *object, C desired);
C atomic_exchange_explicit(volatile A *object, C desired,
 memory_order order);

In these prototypes, A stands for any atomic type defined in stdatomic.h, and C
stands for the corresponding non-atomic type. These generic functions replace the
value of the atomic object referenced by object with the value of the object
desired, and return the previous value of the atomic object. The explicit version
applies the memory-ordering requirement specified by order. These operations are
carried out as atomic read-modify-write operations.
Example

Implements a spin-lock mutex using atomic_exchange().

atomic_bool lock = ATOMIC_VAR_INIT(false); // false if not locked;
 // true if locked.
void func(char *msg)
{
 static int count; // Initial value is 0.
 while(atomic_exchange(&lock, true)) // Spin until we lock.
 ;
 ++count; // Critical section ...
 printf("%3u. %s\n", count, msg);
 lock = false; // Release the lock.
}

#define NUM_THREADS 20
int main()
{
 struct { thrd_t th; char msg[32]; } th_arr[NUM_THREADS];

 for(int i = 0; i < NUM_THREADS; ++i)
 {
 sprintf(th_arr[i].msg,"Thread %2u", i);
 if(thrd_create(&th_arr[i].th, (thrd_start_t)func,
 (void*)th_arr[i].msg) != thrd_success)
 return EXIT_FAILURE;
 }
 for(int i = 0; i < NUM_THREADS; ++i)
 thrd_join(th_arr[i].th, NULL);
 return EXIT_SUCCESS;
}

Lib
rary

Functio
ns

Standard Library Functions | 365

Sample output:

 1. Thread 0
 2. Thread 12
 3. Thread 9
 ... (17 more lines)

See Also

atomic_compare_exchange_strong(), atomic_compare_exchange_weak(),
atomic_load(), atomic_store(), atomic_flag_test_and_set()

atomic_fetch_op, atomic_fetch_op_explicit C11atomic_fetch_op, atomic_fetch_op_explicit C11

Replaces the value of an atomic object with the result of an operation.

#include <stdatomic.h>
C atomic_fetch_op(volatile A *object, M operand);
C atomic_fetch_op_explicit(volatile A *object, M operand,
 memory_order order);

The placeholder op in these function names stands for one of five abbreviations,
shown in Table 18-1, indicating the operation to be performed.

In these prototypes, A stands for any atomic type defined in stdatomic.h except the
type atomic_bool, and C stands for the corresponding non-atomic type. M is the
type ptrdiff_t if A is an atomic pointer type; otherwise, M is the same type as C.

Table 18-1. Compound atomic-fetch operations

op Operation

add Addition (+)

sub Subtraction (-)

or Bitwise OR (|)

xor Bitwise exclusive OR (^)

and Bitwise AND (&)

These generic functions atomically replace the value of the atomic object referenced
by object with the result of the operation *object op operand. For example, the
function atomic_fetch_add() adds the value of operand to the atomic object. The
atomic_fetch_op() functions are thus similar to the corresponding compound
assignments, op=, except that the atomic_fetch_op() functions return the previous
value of the atomic object, not its new value after the operation.

For atomic signed integer types, the arithmetic operations use two’s-complement
representation with silent overflow. None of the operations have undefined results.
Operations on pointers can result in invalid addresses, however.

366 | Chapter 18: Standard Library Functions

The operations are carried out as atomic read-modify-write operations, with the
usual strict memory ordering, memory_order_seq_cst. The explicit version
applies the memory-ordering requirement specified by order.
Example

This code implements a semaphore using atomic_fence_sub() and
atomic_fence_add().

#define MAX_READERS 5 // Number of data-reading threads.

// Semaphore counts the number of idle resources (here: readers),
// or -1 if locked by writer. Busy readers == MAX_READERS - count.
atomic_int count = ATOMIC_VAR_INIT(MAX_READERS);

int data = 0; // Valid data are positive.

// 1 millisecond = 1,000,000 nanoseconds
const struct timespec ms = { .tv_nsec = 1000*1000 };

void reader(int* idPtr)
{
 int id = *idPtr;
 while(1)
 {
 // Check semaphore; decrement and read if count > 0.
 while(atomic_fetch_sub(&count, 1) <= 0)
 { atomic_fetch_add(&count, 1); thrd_yield(); }

 if(data > 0) // Read valid data.
 printf("Reader %d is reading %d\n", id, data);
 if(data < 0) // End marker: stop looping.
 break;

 atomic_fetch_add(&count, 1); // Release our reader slot.
 thrd_sleep(&ms,NULL); // Simulate data processing.
 }
}

void writer(void) // Writes positive values; ends with a negative value.
{
 const int N = 20; // Number of data values to write.
 for(int n = 0; n <= N; ++n)
 {
 int d = n < N ? 10+n : -1; // Prepare data or end marker.
 // When no readers are busy, lock the semaphore (count = -1):
 while(atomic_fetch_sub(&count,MAX_READERS+1) != MAX_READERS)
 atomic_fetch_add(&count, MAX_READERS+1);
 printf("Writer is writing %d\n", d), // Critical section.
 data = d;
 atomic_fetch_add(&count, MAX_READERS+1); // Release the
 // semaphores.
 thrd_sleep(&ms,NULL); // Simulate data production.

Lib
rary

Functio
ns

Standard Library Functions | 367

 }
}

int main(void)
{
 thrd_t wth;
 struct { thrd_t th; int id; } th_arr[MAX_READERS];

 // Writer thread:
 if(thrd_create(&wth,(thrd_start_t)writer, NULL) != thrd_success)
 return EXIT_FAILURE;

 // Reader threads:
 for(int i = 0; i < MAX_READERS; ++i)
 {
 th_arr[i].id = i;
 if(thrd_create(&th_arr[i].th, (thrd_start_t)reader,
 &th_arr[i].id) != thrd_success)
 return EXIT_FAILURE;
 }

 thrd_join(wth, NULL);
 for(int i = 0; i < MAX_READERS; ++i)
 thrd_join(th_arr[i].th, NULL);
 return EXIT_SUCCESS;
}

See Also

atomic_load(), atomic_store(), atomic_flag_test_and_set(), atomic_com

pare_exchange_strong(), atomic_compare_exchange_weak()

atomic_flag_clear, atomic_flag_clear_explicit C11atomic_flag_clear, atomic_flag_clear_explicit C11

Clears a flag atomically.

#include <stdatomic.h>
void atomic_flag_clear(volatile atomic_flag *obj);
void atomic_flag_clear_explicit(volatile atomic_flag *obj,
 memory_order order);

These functions atomically clear the flag pointed to by obj—that is, they set the flag
to false. The explicit version applies the memory-ordering requirement specified
by order. This argument must not be memory_order_acquire or
memory_order_acq_rel.
Example

See the example for atomic_flag_test_and_set() in this chapter.
See Also

atomic_flag_test_and_set()

368 | Chapter 18: Standard Library Functions

atomic_flag_test_and_set, atomic_flag_test_and_set_explicit C11atomic_flag_test_and_set, atomic_flag_test_and_set_explicit C11

Sets a flag atomically.

#include <stdatomic.h>
_Bool atomic_flag_test_and_set(volatile atomic_flag *obj);
_Bool atomic_flag_test_and_set_explicit(volatile atomic_flag *obj,
 memory_order order);

These functions atomically set the flag pointed to by obj to true, and return the
flag’s previous value. These operations are carried out as atomic read-modify-write
operations. The explicit version applies the memory-ordering requirement speci‐
fied by order.
Example

A spin-lock using atomic_flag_test_and_set().

atomic_flag lock = ATOMIC_FLAG_INIT; // false if not locked;
 // true if locked.
void th_func(char *msg)
{
 static int count; // Initial value is 0

 while(atomic_flag_test_and_set(&lock)) // Spin until we lock.
 ;
 ++count; // Critical section ...
 printf("%3u. %s\n", count, msg);
 atomic_flag_clear(&lock); // Release lock.
}

See Also

atomic_flag_clear()

atomic_init C11atomic_init C11

Initializes an atomic object.

#include <stdatomic.h>
void atomic_init(volatile A *obj, C value);

In these prototypes, A stands for any atomic type defined in stdatomic.h, and C
stands for the corresponding non-atomic type. This generic function initializes the
atomic object referenced by obj to the value of value. The initialization includes all
the operations necessary to provide atomic access to the object. The initialization
itself is not an atomic operation, however! The function has no return value.
Example

atomic_long count;
atomic_init(&count, 0L);

Lib
rary

Functio
ns

Standard Library Functions | 369

See Also

The macro ATOMIC_VAR_INIT and the function call_once()

atomic_is_lock_free C11atomic_is_lock_free C11

Tests whether an atomic object is lock-free.

#include <stdatomic.h>
_Bool atomic_is_lock_free(const volatile A *obj);

The generic function atomic_is_lock_free() indicates whether the atomic object
pointed to by obj is lock-free. The function returns a value not equal to 0 (i.e., true)
if the atomic object is lock-free, and 0 (false) if it is not.

An atomic object is lock-free if it can be implemented without using a mutex or
another locking mechanism—that is, atomic operations are performed on the object
simply by means of atomic CPU instructions. If an atomic object is lock-free, that
does not imply that other atomic objects of the same type are also lock-free. A dif‐
ferent lock-free status may be caused by different alignment of the objects, for
example.
Example

_Atomic(int_least64_t) avar64 = ATOMIC_VAR_INIT(0);
if(atomic_is_lock_free(&avar64))
{ /* ... avar64 is lock-free; use without a mutex ... */ }

See Also

The macros ATOMIC_type_LOCK_FREE in the header stdatomic.h.

atomic_load, atomic_load_explicit C11atomic_load, atomic_load_explicit C11

Reads the value of an atomic object.

#include <stdatomic.h>
C atomic_load(volatile A *obj);
C atomic_load_explicit(volatile A *obj, memory_order order);

In these prototypes, A stands for any atomic type defined in stdatomic.h, and C
stands for the corresponding non-atomic type. These generic functions return the
value of the atomic object referenced by obj. The explicit version applies the
memory-ordering requirement specified by order, which must not be
memory_order_release or memory_order_acq_rel.
Example

struct Data { double x; } data[10]; // Shared data
atomic_int ai = ATOMIC_VAR_INIT(0);
...
// In first thread:
 for(int i = 0; i < 10; ++i) // Operation A
 data[i].x = 0.5 *i;

370 | Chapter 18: Standard Library Functions

 atomic_store_explicit(&ai,10, memory_order_release);
...
// In second thread:
 int n = atomic_load_explicit(&ai, memory_order_acquire);
 if(n > 0)
 {
 for(int i = 0; i < n; ++i) // Operation B
 printf("%8.2lf", data[i].x);
 putchar('\n');
 }
 else
 printf("\nData not yet available.\n");

See Also

atomic_store(), atomic_exchange(), atomic_compare_exchange_strong(),
atomic_compare_exchange_weak(), atomic_flag_test_and_set()

atomic_signal_fence C11atomic_signal_fence C11

Sets a memory fence for synchronization with a signal handler.

#include <stdatomic.h>
void atomic_signal_fence(memory_order order);

The function atomic_signal_fence(), like atomic_thread_fence(), creates a
memory fence. However, the specified ordering requirements for the synchroniza‐
tion of read and write operations are applied only between a thread and a signal
handler executed in that thread.
Example

static_assert(ATOMIC_INT_LOCK_FREE == 2,
 "atomic_int must be lock-free in the signal handler.");

atomic_int guide = ATOMIC_VAR_INIT(0),
 data = ATOMIC_VAR_INIT(0);

void SIGTERM_handler(int sig)
{

 if(atomic_load_explicit(&guide, memory_order_relaxed) == 1)
 {
 atomic_signal_fence(memory_order_acquire);
 int d = atomic_load_explicit(&data, memory_order_relaxed);
 assert(d == 100); // Condition fulfilled!
 // ...
 }
 _Exit(0);
}

int main(void)
{
 if(signal(SIGTERM, SIGTERM_handler) == SIG_ERR)

Lib
rary

Functio
ns

Standard Library Functions | 371

 perror("signal"), exit(1);
// ...
 atomic_store_explicit(&data, 100, memory_order_relaxed);
 atomic_signal_fence(memory_order_release);
 atomic_store_explicit(&guide, 1, memory_order_relaxed);
// ...
 return 0;
}

See Also

atomic_thread_fence(), signal()

atomic_store, atomic_store_explicit C11atomic_store, atomic_store_explicit C11

Writes a value to an atomic object.

#include <stdatomic.h>
void atomic_store(volatile A *obj, C desired);
void atomic_store_explicit(volatile A *obj, C desired,
 memory_order order);

In these prototypes, A stands for any atomic type defined in stdatomic.h, and C
stands for the corresponding non-atomic type. These generic functions replace the
value of the atomic object referenced by obj with the value of desired. The
explicit version applies the memory-ordering requirement specified by order,
which may be memory_order_relaxed, memory_order_release, or mem

ory_order_seq_cst.
Example

See the example for atomic_load() in this chapter.
See Also

atomic_load(), atomic_exchange(), atomic_compare_exchange_strong(),
atomic_compare_exchange_weak(), atomic_flag_test_and_set()

atomic_thread_fence C11atomic_thread_fence C11

Sets a memory fence for synchronization with other threads.

#include <stdatomic.h>
void atomic_thread_fence(memory_order order);

The function atomic_thread_fence() creates a memory fence for the synchroniza‐
tion of read and write access to objects that are shared among several threads. A
fence specifies memory-ordering requirements but does not perform an atomic
operation.

The resulting fence is a release fence if the argument is memory_order_release, and
an acquire fence if the argument is memory_order_acquire or memory_order_con
sume. If the argument is memory_order_acq_rel or memory_order_seq_cst, the

372 | Chapter 18: Standard Library Functions

fence established is a release-and-acquire fence. The function has no effect when
called with the argument memory_order_relaxed.

The basic pattern for synchronization between threads by means of fences is as
follows:

Thread 1
1. Performs an operation A.
2. Sets a release fence.

3. Writes to an atomic variable M, without any memory-ordering require‐
ments (in other words, with the semantics of memory_order_relaxed).

Thread 2
1. Reads the atomic variable M without any memory-ordering requirements.
2. Sets an acquire fence.
3. Performs an operation B.

If Thread 1 writes to the atomic variable M before Thread 2 reads the value of M, the
fences guarantee that operation A is completed before operation B begins.
Example

Here’s a variation on the example for atomic_load() in this chapter, but using an
acquire fence.

struct Data { double x; } data[10]; // Shared data.
atomic_int ai = ATOMIC_VAR_INIT(0);
...
// In first thread:
 for(int i = 0; i < 10; ++i) // Operation A.
 data[i].x = 0.5 *i;
// atomic_fetch_add_explicit(&ai,10, memory_order_release);
// Replacing above line with:
 atomic_thread_fence(memory_order_release);
 atomic_fetch_add_explicit(&ai,10, memory_order_relaxed);
...
// In second thread:
 int n1 = 0;
 // ...
 int n2 = atomic_load_explicit(&ai, memory_order_relaxed);
 if(n2 > n1)
 {
 atomic_thread_fence(memory_order_acquire);
 for(int i = n1; i < n2; ++i) // Operation B.
 printf("%8.2lf", data[i].x); // Process the data.
 putchar('\n');
 n1 = n2;
 }

Lib
rary

Functio
ns

Standard Library Functions | 373

 else // No fence necessary.
 printf("\nNo new data available.\n");

See Also

atomic_signal_fence()

bsearchbsearch

Searches an array for a specified key.

#include <stdlib.h>
void *bsearch(const void *key, const void *array, size_t n, size_t size,
 int (*compare)(const void *, const void *));

The bsearch() function uses the binary search algorithm to find an element that
matches key in a sorted array of n elements of size size. (The type size_t is defined
in stdlib.h, usually as unsigned int.) The last argument, compare, gives bsearch() a
pointer to a function that it calls to compare the search key with any array element.
This function must return a value that indicates whether its first argument, the
search key, is less than, equal to, or greater than its second argument, an array ele‐
ment to test. For a detailed description of such comparison functions, see qsort()
in this chapter.

You should generally use qsort() before bsearch() because the array must be sor‐
ted before searching. This step is necessary because the binary search algorithm
tests whether the search key is higher or lower than the middle element in the array,
then eliminates half of the array, tests the middle of the result, eliminates half again,
and so forth. If you define the comparison function for bsearch() with identical
types for its two arguments, then qsort() can use the same comparison function.

The bsearch() function returns a pointer to the first array element found that
matches the search key. If several elements in the array match the key, which one of
them the return value points to is undetermined. If no matching element is found,
bsearch() returns a null pointer.
Example

#include <stdio.h>
#include <stdlib.h>

typedef struct { unsigned long id;
 int data;
 } record ;

int main()
{
 //Declare comparison function:
 int id_cmp(const void *s1, const void *s2);

 record recordset[] = { {3, 5}, {5, -5}, {4, 10}, {2, 2}, {1, -17} };
 record querykey;
 record *found = NULL;

374 | Chapter 18: Standard Library Functions

 int recordcount = sizeof(recordset) / sizeof (record);

 printf("Query record number: ");
 scanf("%lu", &querykey.id);

 printf("\nRecords before sorting:\n\n"
 "%8s %8s %8s\n", "Index", "ID", "Data");

 for (int i = 0; i < recordcount ; i++)
 printf("%8d %8u %8d\n", i, recordset[i].id, recordset[i].data);

 qsort(recordset, recordcount, sizeof(record), id_cmp);

 printf("\nRecords after sorting:\n\n"
 "%8s %8s %8s\n", "Index", "ID", "Data");
 for (int i = 0; i < recordcount ; i++)
 printf("%8d %8u %8d\n", i, recordset[i].id, recordset[i].data);

 found = (record *) bsearch(&querykey, recordset, recordcount,
 sizeof(record), id_cmp);
 if (found == NULL)
 printf("No record with the ID %lu found.\n", querykey.id);
 else
 printf("The data value in record %lu is %d.\n",
 querykey.id, found->data);

} // End of main().

int id_cmp(const void *s1, const void *s2)
/* Compares records by ID, not data content. */
{
 record *p1 = (record *)s1;
 record *p2 = (record *)s2;

 if (p1->id < p2->id) return -1;
 else if (p1->id == p2->id) return 0;
 else return 1;
}

This example produces the following output:

Query record number: 4

Records before sorting:

 Index ID Data
 0 3 5
 1 5 -5
 2 4 10
 3 2 2
 4 1 -17

Lib
rary

Functio
ns

Standard Library Functions | 375

Records after sorting:

 Index ID Data
 0 1 -17
 1 2 2
 2 3 5
 3 4 10
 4 5 -5
The data value in record 4 is 10.

See Also

bsearch_s(), qsort()

bsearch_s C11bsearch_s C11

Searches a sorted array for a member that matches a specified key.

#include <stdlib.h>
void *bsearch_s(const void *key, const void *array, rsize_t n,
 rsize_t size,
 int (*compare)(const void *k, const void *el, void *context),
 void *context);

The function bsearch_s(), like bsearch(), searches the sorted array array for an
element that matches the search key key. The array consists of n elements, and the
size of each element is size. The type rsize_t is equivalent with size_t.

The bsearch_s() function tests the following runtime constraints: the values of n
and size must not be greater than RSIZE_MAX, and if n is not 0, then key, array, and
compare must not be null pointers.

The bsearch_s() function passes the value of the parameter context to the func‐
tion compare. That makes the use of a comparison function more flexible at run‐
time. For example, context may be used to determine the sorting order of charac‐
ters. It is permissible to pass a null pointer to bsearch_s() as the context argu‐
ment.

The bsearch_s() function calls the comparison function compare to compare the
search key key with an array element. The return value of compare must be less than
0 if the search key is smaller than the array element, 0 if they are equal, and greater
than 0 if the search key is greater than the array element.

The function bsearch_s() returns the address of an array element that matches the
search key. If several elements in the array match the key, it is undetermined which
one of them the return value points to. If the array contains no matching element,
or if a violation of the runtime constraints occurs, bsearch_s() returns NULL.
Example

typedef struct { unsigned long id;
 const char* value;
 } record;

376 | Chapter 18: Standard Library Functions

int main(void)
{
 // Declaration of the comparison function:
 int cmp(const void *r1, const void *r2, void *ct);

 record data[] = { {1789,"George"}, {1809,"James"},
 {1797,"John"}, {1801,"Thomas"} };
 size_t datacount = sizeof(data) / sizeof(data[0]);
 record querykey = { .id=1801 };
 record *found = NULL;

 // Sort the array:
 qsort_s(data, datacount, sizeof(data[0]), cmp, NULL);
 // Search the array:
 found = bsearch_s(&querykey, data, datacount, sizeof(data[0]),
 cmp, NULL);
 if(found == NULL)
 printf("No record with the ID %lu found.\n", querykey.id);
 else
 printf("The record %lu contains the value %s.\n",
 querykey.id, found->value);
} // End of main().

int cmp(const void *r1, const void *r2, void *ct)
// Compares the IDs of the records, not their data values.
// The context parameter ct is not used here.
{
 const record *p1 = (const record *)r1;
 const record *p2 = (const record *)r2;

 if (p1->id < p2->id) return -1;
 else if (p1->id == p2->id) return 0;
 else return 1;
}

See Also

bsearch(), qsort(), qsort_s()

btowcbtowc

Converts a byte character into a wide character.

#include <stdio.h>
#include <wchar.h>
wint_t btowc(int c);

The btowc() function returns the corresponding wide character for its byte charac‐
ter argument, if possible. A return value of WEOF indicates that the argument’s value
is EOF, or that the argument does not represent a valid byte character representation
in the initial shift state of a multibyte stream.

Lib
rary

Functio
ns

Standard Library Functions | 377

Example
/* Build a table of wide characters for the first 128 byte values */
wchar_t low_table[128];

for (int i = 0; i < 128 ; i++)
 low_table[i] = (wchar_t)btowc(i);

See Also

wctob(), mbtowc(), wctomb()

c16rtomb C11c16rtomb C11

Converts a 16-bit Unicode character into a multibyte character.

#include <uchar.h>
size_t c16rtomb(char * restrict dst, char16_t c16,
 mbstate_t * restrict ps);

The function c16rtomb() determines the multibyte representation corresponding to
the wide character c16 and stores that result, including any necessary shift sequen‐
ces, in the char array beginning at the address dst. The number of bytes written to
the array is at most MB_CUR_MAX. The third argument, ps, points to an object that
contains the current shift state, which is taken into account in converting the char‐
acter. The function c16rtomb() also updates the shift state referenced by ps, so that
it represents the appropriate shift state for the next character conversion.

If c16 is a null character, c16rtomb() writes a zero byte to the array, preceded by a
shift sequence if necessary to restore the shift state to the initial state. In this case,
the state variable referenced by ps is updated to represent the initial shift state.

If the argument dst is a null pointer, the function call is equivalent to

c16rtomb(buf, L'\0', ps)

where buf is an internal buffer.

The function c16rtomb() returns the number of bytes written to the destination
array. If c16 is not a valid wide character, c16rtomb() then returns the value
(size_t)(-1), and sets the error variable errno to the value of EILSEQ. In that case,
the status of the conversion is undetermined.
Example

 char16_t c16Str[] = u"Grüße";
 char mbChar[MB_CUR_MAX];
 mbstate_t mbstate = {0};

 if(setlocale(LC_ALL, "en_US.UTF-8") == NULL)
 fputs("Unable to set the locale.\n", stderr);

 for(int i = 0; c16Str[i] != 0; ++i)
 {

378 | Chapter 18: Standard Library Functions

 size_t nBytes = c16rtomb(mbChar, c16Str[i], &mbstate);
 printf("0x%04X %lc Multibyte: [", c16Str[i], c16Str[i]);
 for(size_t j=0; j < nBytes; ++j)
 printf(" 0x%02X", (unsigned char)mbChar[j]);
 puts("]");
 }

Examples from the output of this code:

0x0047 G Multibyte: [0x47]
0x0072 r Multibyte: [0x72]
0x00FC ü Multibyte: [0xC3 0xBC]
0x00DF ß Multibyte: [0xC3 0x9F]
0x0065 e Multibyte: [0x65]

See Also

mbrtoc16(), c32rtomb(), mbrtoc32(), wctomb(), wcrtomb(), wcstombs(),
wcsrtombs()

c32rtomb C11c32rtomb C11

Converts a 32-bit Unicode character into a multibyte character.

#include <uchar.h>
size_t c32rtomb(char * restrict dst, char32_t c32,
 mbstate_t * restrict ps);

The function c32rtomb(), like c16rtomb(), converts a wide character to the appro‐
priate multibyte representation, except that its wide-character parameter has the
type char32_t.
Example

See the example for c16rtomb() in this chapter (note that, for 32-bit characters, you
would use the format specifier 0x%08X in the first printf() statement).
See Also

mbrtoc32(), c16rtomb(), mbrtoc16(), wctomb(), wcrtomb(), wcstombs(),
wcsrtombs()

cabs C99cabs C99

Obtains the absolute value of a complex number.

#include <complex.h>
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

For a complex number z = x + y × i, where x and y are real numbers, cabs(z) is
equal to the square root of x2 + y2, or hypot(x,y). The result is a non-negative real
number.

Lib
rary

Functio
ns

Standard Library Functions | 379

Example
The absolute value of a complex number is its absolute distance from the origin in
the complex plane—in other words, a positive real number, as this example demon‐
strates:

double complex z[4];
z[0] = 3.0 + 4.0 * I;
z[1] = conj(z[0]);
z[2] = z[0] * I;
z[3] = -(z[0]);

for (int i = 0; i < 4 ; i++)
 {
 double a = creal(z[i]);
 double b = cimag(z[i]);
 printf ("The absolute value of (%4.2f %+4.2f × I) is ", a, b);

 double absolute_z = cabs(z[i]);
 printf ("%4.2f.\n", absolute_z);
 }

The output of the sample code is as follows:

The absolute value of (3.00 +4.00 × I) is 5.00.
The absolute value of (3.00 -4.00 × I) is 5.00.
The absolute value of (-4.00 +3.00 × I) is 5.00.
The absolute value of (-3.00 -4.00 × I) is 5.00.

See Also

cimag(), creal(), carg(), conj(), cproj()

cacos C99cacos C99

Calculates the inverse cosine of a complex number.

#include <complex.h>
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

The cacos() functions accept a complex number as their argument and return a
complex number, but otherwise work the same as acos().
Example

double complex v, z ;
double a = 0.0, b = 0.0;

puts("Calculate the arc cosine of a complex number, cacos(z)\n");
puts("Enter the real and imaginary parts of a complex number:");
if (scanf("%lf %lf", &a, &b) == 2)
{
 z = a + b * I;

380 | Chapter 18: Standard Library Functions

 printf("z = %.2f %+.2f*I.\n", creal(z), cimag(z));

 v = cacos(z);
 printf("The cacos(z) function yields %.2f %+.2f*I.\n",
 creal(v), cimag(v));
 printf("The inverse function, ccos(cacos(z)), yields %.2f %+.2f*I.\n",
 creal(ccos(v)), cimag(ccos(v)));
}
else
 printf("Invalid input. \n");

See Also

ccos(), csin(), ctan(), cacos(), casin(), catan()

cacosh C99cacosh C99

Calculates the inverse hyperbolic cosine of a complex number.

#include <complex.h>
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

The cacosh() functions return the complex number whose hyperbolic cosine is
equal to the argument z. The real part of the return value is non-negative; the imag‐
inary part is in the interval [-πi, +πi].
Example

double complex v, z ;
double a = 0.0, b = 0.0;

puts("Calculate the inverse hyperbolic cosine of a complex number,"
 " cacosh(z)\n");
puts("Enter the real and imaginary parts of a complex number:");
if (scanf("%lf %lf", &a, &b) == 2)
{
 z = a + b * I;
 printf("z = %.2f %+.2f*I.\n", creal(z), cimag(z));

 v = cacosh(z);
 printf("The cacosh(z) function yields %.2f %+.2f*I.\n",
 creal(v), cimag(v));
 printf("The inverse function, ccosh(cacosh(z)),"
 " yields %.2f %+.2f*I.\n",
 creal(ccosh(v)), cimag(ccosh(v)));
}
else
 printf("Invalid input.\n");

Lib
rary

Functio
ns

Standard Library Functions | 381

See Also

Other hyperbolic trigonometry functions for complex numbers: casinh(),
catanh(), csinh(), ccosh(), and ctanh(); the hyperbolic cosine and inverse hyper‐
bolic cosine functions for real numbers: cosh() and acosh()

call_once C11call_once C11

Ensures that a function is called exactly once.

#include <threads.h>
void call_once(once_flag *flag, void (*func)(void));

The function call_once() guarantees that the function passed to it as the argument
func is called only once. That is, only the first call to call_once() causes it to call
func. The function call_once() is controlled by a flag of the type once_flag poin‐
ted to by the argument flag. Subsequent calls to call_once() with the same flag
pointer argument do not result in a call to the function func specified in the second
argument.
Example

once_flag flag = ONCE_FLAG_INIT;

void doOnce(void) { puts("Function doOnce()."); }

int th_func(void * arg)
{
 puts((char*)arg);
 call_once(&flag, doOnce);
 return 0;
}

int main()
{
 thrd_t th1, th2, th3;

 if (thrd_create(&th1, th_func, "Thread 1") != thrd_success
 || thrd_create(&th2, th_func, "Thread 2") != thrd_success
 || thrd_create(&th3, th_func, "Thread 3") != thrd_success)
 {
 fprintf(stderr,"Error creating thread.\n"); return 0xff;
 }
 puts("Hello ...");

 thrd_join(th1, NULL);
 thrd_join(th2, NULL);
 thrd_join(th3, NULL);
 return 0;
}

382 | Chapter 18: Standard Library Functions

Possible output of this program:

Thread 1
Thread 2
Hello ...
Function doOnce().
Thread 3

See Also

thrd_create(), atomic_init()

calloccalloc

Allocates memory for an array.

#include <stdlib.h>
void *calloc(size_t n, size_t size);

The calloc() function obtains a block of memory from the operating system that is
large enough to hold an array of n elements of size size.

If successful, calloc() returns a void pointer to the beginning of the memory block
obtained. void pointers are converted automatically to another pointer on assign‐
ment, so that you do not need to use an explicit cast, although you may want do so
for the sake of clarity. If no memory block of the requested size is available, the
function returns a null pointer. Unlike malloc(), calloc() initializes every byte of
the block allocated with the value 0.
Example

size_t n;
int *p;
printf("\nHow many integers do you want to enter? ");
scanf("%u", &n);
p = (int *)calloc(n, sizeof(int)); /* Allocate some memory */
if (p == NULL)
 printf("\nInsufficient memory.");
else
 /* read integers into array elements ... */

See Also

malloc(), realloc(), free(), memset()

carg C99carg C99

Calculates the argument of a complex number.

#include <complex.h>
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

Lib
rary

Functio
ns

Standard Library Functions | 383

The carg() function determines the argument of a complex number, or the angle it
forms with the origin and the positive part of the real axis. A complex number is
defined in polar coordinates by its argument and modulus (or radius), which is the
same as the absolute value of the complex number, given by cabs(). The return
value of carg() is in radians, and within the range [-π, π]. For a complex number z
= x + y × i, where x and y are real numbers, carg(z) is equal to atan2(y, x).
Example

/* Convert a complex number from Cartesian to polar coordinates. */
double complex z = -4.4 + 3.3 * I;
double radius = cabs(z);
double argument = carg(z);

double x = creal(z);
double y = cimag(z);

printf("Cartesian (x, y): (%4.1f, %4.1f)\n", x, y);
printf("Polar (r, theta): (%4.1f, %4.1f)\n", radius, argument);

This code produces the following output:

Cartesian (x, y): (-4.4, 3.3)
Polar (r, theta): (5.5, 2.5)

See Also

cabs(), cimag(), creal(), carg(), conj(), cproj()

casin C99casin C99

Calculates the inverse sine of a complex number.

#include <complex.h>
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

The casin() functions accept a complex number as their argument and return a
complex number, but otherwise work the same as asin(). The real part of the
return value is in the interval [-π/2, π/2].
Example

puts("Results of the casin() function for integer values:");
float complex z = 0;
for (int n = -3; n <= 3; ++n)
{
 z = casinf(n);
 printf(" casin(%+d) = %+.2f %+.2f*I\n", n, crealf(z), cimagf(z));
}

This code produces the following output:

384 | Chapter 18: Standard Library Functions

Results of the casin() function for integer values:
 casin(-3) = -1.57 +1.76*I
 casin(-2) = -1.57 +1.32*I
 casin(-1) = -1.57 -0.00*I
 casin(+0) = +0.00 +0.00*I
 casin(+1) = +1.57 -0.00*I
 casin(+2) = +1.57 +1.32*I
 casin(+3) = +1.57 +1.76*I

See Also

ccos(), csin(), ctan(), cacos(), casin(), catan()

casinh C99casinh C99

Calculates the inverse hyperbolic sine of a number.

#include <complex.h>
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

The casinh() functions return the complex number whose hyperbolic sine is equal
to their argument z.
Example

double complex v, w, z ;
double a = 0.0, b = 0.0;

puts("Enter the real and imaginary parts of a complex number:");
if (scanf("%lf %lf", &a, &b) == 2)
{
 z = a + b * I;
 printf("z = %.2f %+.2f*I.\n", creal(z), cimag(z));

 v = casin(z);
 w = casinh(z);
 printf("z is the sine of %.2f %+.2f*I\n", creal(v), cimag(v));
 printf("and the hyperbolic sine of %.2f %+.2f*I.\n",
 creal(w), cimag(w));
}
else
 printf("Invalid input. \n");

See Also

cacosh(), catanh(), ccosh(), csinh(), ctanh(); the hyperbolic trigonometry func‐
tions for real numbers: acosh(), atanh(), sinh(), cosh(), and tanh()

Lib
rary

Functio
ns

Standard Library Functions | 385

catan C99catan C99

Calculates the inverse tangent of a complex number.

#include <complex.h>
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(double long complex z);

The catan() functions accept a complex number as their argument and return a
complex number, but otherwise work the same as atan().
Example

double complex v, w, z ;
double a = 0.0, b = 0.0;

puts("Enter the real and imaginary parts of a complex number:");
if (scanf("%lf %lf", &a, &b) == 2)
{
 z = a + b * I;
 printf("z = %.2f %+.2f*I.\n", creal(z), cimag(z));

 v = catan(z);
 w = catanh(z);
 printf("z is the tangent of %.2f %+.2f*I\n", creal(v), cimag(v));
 printf("and the hyperbolic tangent of %.2f %+.2f*I.\n",
 creal(w), cimag(w));
}
else
 printf("Invalid input. \n");

This code produces output like the following:

Enter the real and imaginary parts of a complex number:30 30
z = 30.00 +30.00*I.
z is the tangent of 1.55 +0.02*I
and the hyperbolic tangent of 0.02 +1.55*I.

See Also

ccos(), csin(), ctan(), cacos(), casin()

catanh C99catanh C99

Calculates the inverse hyperbolic tangent of a complex number.

#include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(double long complex z);

386 | Chapter 18: Standard Library Functions

The catanh() functions return the number whose hyperbolic tangent is equal to
their argument z. The imaginary part of the return value is in the interval [-π/2 × i,
π/2 × i].
Example

See the example for catan() in this chapter.
See Also

Other hyperbolic trigonometry functions for complex numbers: casinh(),
cacosh(), csinh(), ccosh(), and ctanh(); the hyperbolic tangent and inverse
hyperbolic tangent functions for real numbers: tanh() and atanh()

cbrt C99cbrt C99

Calculates the cube root of a number.

#include <math.h>
double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

The cbrt() functions return the cube root of their argument x.
Example

#define KM_PER_AU (149597870.691) // An astronomical unit is the mean
 // distance between Earth and Sun:
 // about 150 million km.
#define DY_PER_YR (365.24)

double dist_au, dist_km, period_dy, period_yr;

printf("How long is a solar year on your planet (in Earth days)?\n");
scanf("%lf", &period_dy);

period_yr = period_dy / DY_PER_YR;
dist_au = cbrt(period_yr * period_yr); // by Kepler's Third Law
dist_km = dist_au * KM_PER_AU;

printf("Then your planet must be about %.0lf km from the Sun.\n",
 dist_km);

See Also

sqrt(), hypot(), pow()

Lib
rary

Functio
ns

Standard Library Functions | 387

ccos C99ccos C99

Calculates the cosine of a complex number.

#include <complex.h>
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

The ccos() function returns the cosine of its complex number argument z, which is
equal to (eiz + e−iz)/2.
Example

/* Demonstrate the exponential definition
 * of the complex cosine function.
 */
double complex z = 2.2 + 3.3 * I;
double complex c, d;

c = ccos(z);
d = 0.5 * (cexp(z * I) + cexp(− z * I));

printf("The ccos() function returns %.2f %+.2f × I.\n",
 creal(c), cimag(c));
printf("Using the cexp() function, the result is %.2f %+.2f × I.\n",
 creal(d), cimag(d));

This code produces the following output:

The ccos() function returns -7.99 -10.95 × I.
Using the cexp() function, the result is -7.99 -10.95 × I.

See Also

csin(), ctan(), cacos(), casin(), catan(), cexp()

ccosh C99ccosh C99

Calculates the hyperbolic cosine of a complex number.

#include <complex.h>
double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

The hyperbolic cosine of a complex number z is equal to (exp(z) + exp(-z)) / 2. The
ccosh functions return the hyperbolic cosine of their complex argument.
Example

double complex v, w, z = 1.2 − 3.4 * I;

v = ccosh(z);
w = 0.5 * (cexp(z) + cexp(-z));

388 | Chapter 18: Standard Library Functions

printf("The ccosh() function returns %.2f %+.2f*I.\n",
 creal(v), cimag(v));
printf("Using the cexp() function, the result is %.2f %+.2f*I.\n",
 creal(w), cimag(w));

This code produces the following output:

The ccosh() function returns -1.75 +0.39*I.
Using the cexp() function, the result is -1.75 +0.39*I.

See Also

csinh(), ctanh(), cacosh(), casinh(), catanh()

ceilceil

Rounds a real number up to an integer value.

#include <math.h>
double ceil(double x);
float ceilf(float x); (C99)
long double ceill(long double x); (C99)

The ceil() function returns the smallest integer that is greater than or equal to its
argument. However, the function does not have an integer type; it returns an integer
value, but with a floating-point type.
Example

/* Amount due = unit price * count * VAT, rounded up to the next cent */
div_t total = { 0, 0 };
int count = 17;
int price = 9999; // 9999 cents is $99.99
double vat_rate = 0.055; // Value-added tax of 5.5%

total = div((int)ceil((count * price) * (1 + vat_rate)), 100);

printf("Total due: $%d.%2d\n", total.quot, total.rem);

This code produces the following output:

Total due: $1793.33

See Also

floor(), floorf(), and floorl(), round(), roundf(), and roundl(); the C99
rounding functions that return floating-point types: trunc(), rint(), nearbyint(),
nextafter(), nexttoward(); the C99 rounding functions that return integer types:
lrint(), lround(), llrint(), llround(); the fesetround() and fegetround()
functions, which operate on the C99 floating-point environment

Lib
rary

Functio
ns

Standard Library Functions | 389

cexp C99cexp C99

Calculates the natural exponential of a complex number.

#include <complex.h>
double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

The return value of the cexp() function is e raised to the power of the function’s
argument, or ez, where e is Euler’s number, 2.718281.... Furthermore, in complex
mathematics, ezi = cos(z) + sin(z) × i for any complex number z.

The natural exponential function cexp() is the inverse of the
natural logarithm, clog().

Example
// Demonstrate Euler's theorem in the form
// e^(I*z) = cos(z) + I * sin(z)

double complex z = 2.2 + 3.3 * I;
double complex c, d;

c = cexp(z * I);
d = ccos(z) + csin(z) * I ;

printf("cexp(z*I) yields %.2f %+.2f × I.\n",
 creal(c), cimag(c));
printf("ccos(z) + csin(z) * I yields %.2f %+.2f × I.\n",
 creal(d), cimag(d));

This code produces the following output:

cexp(z*I) yields -0.02 +0.03 × I.
ccos(z) + csin(z) * I yields -0.02 +0.03 × I.

See Also

ccos(), csin(), clog(), cpow(), csqrt()

cimag C99cimag C99

Obtains the imaginary part of a complex number.

#include <complex.h>
double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

390 | Chapter 18: Standard Library Functions

A complex number is represented as two floating-point numbers, one quantifying
the real part and one quantifying the imaginary part. The cimag() function returns
the floating-point number that represents the imaginary part of the complex argu‐
ment.
Example

double complex z = 4.5 − 6.7 * I;

printf("The complex variable z is equal to %.2f %+.2f × I.\n",
 creal(z),cimag(z));

This code produces the following output:

The complex variable z is equal to 4.50 -6.70 × I.

See Also

cabs(), creal(), carg(), conj(), cproj()

clearerrclearerr

Clears the file error and EOF flags.

#include <stdio.h>
void clearerr(FILE *fp);

The clearerr() function is useful in handling errors in file I/O routines. It clears
the end-of-file (EOF) and error flags associated with a specified FILE pointer.
Example

FILE *fp;
int c;
if ((fp = fopen("infile.dat", "r")) == NULL)
 fprintf(stderr, "Couldn't open input file.\n");
else
{
 c = fgetc(fp); // fgetc() returns a character on success;
 if (c == EOF) // EOF means either an error or end-of-file.
 {
 if (feof(fp))
 fprintf(stderr, "End of input file reached.\n");
 else if (ferror(fp))
 fprintf(stderr, "Error on reading from input file.\n");
 clearerr(fp); // Same function clears both conditions.
 }
 else
 { /* ... */ } // Process the character that we read.
}

See Also

feof(), ferror(), rewind() Lib
rary

Functio
ns

Standard Library Functions | 391

clockclock

Obtains the CPU time used by the process.

#include <time.h>
clock_t clock(void);

If you want to know how much CPU time your program has used, call the clock()
function. The function’s return type, clock_t, is defined in time.h as long. If the
function returns -1, then the CPU time is not available. Note that the value of
clock() does not reflect actual elapsed time, as it doesn’t include any time the sys‐
tem may have spent on other tasks.

The basic unit of CPU time, called a “tick,” varies from one system to another. To
convert the result of the clock() call into seconds, divide it by the constant
CLOCKS_PER_SEC, which is also defined in time.h.
Example

#include <stdio.h>
#include <time.h>
time_t start, stop;
clock_t ticks; long count;

int main()
{
 time(&start);
 for (count = 0; count <= 50000000; ++count)
 {
 if (count % 1000000 != 0) continue; // measure only full millions
 ticks = clock();
 printf("Performed %ld million integer divisions; "
 "used %0.2f seconds of CPU time.\n", count / 1000000,
 (double)ticks/CLOCKS_PER_SEC);
 }
 time(&stop);
 printf("Finished in about %.0f seconds.\n", difftime(stop, start));
 return 0;
}

This program produces 51 lines of output, ending with something like this:

Performed 50 million integer divisions; used 2.51 seconds of CPU time.
Finished in about 6 seconds.

See Also

time(), difftime()

392 | Chapter 18: Standard Library Functions

clog C99clog C99

Calculates the natural logarithm of a complex number.

#include <complex.h>
double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

The clog() functions calculate the natural logarithm—that is, the logarithm to base
e—of their complex argument. The imaginary part of the return value is in the
interval [-πi, +πi].
Example

double complex z = clog(-1.0); // z = 0.0 + 3.1415926 * I

See Also

cexp(), cpow()

cnd_broadcast C11cnd_broadcast C11

Wakes up all threads waiting for a condition variable.

#include <threads.h>
int cnd_broadcast(cnd_t *cond);

The function cnd_broadcast() wakes up all the threads waiting for the condition
variable referenced by its pointer argument cond. The return value is thrd_success
if no error occurs; otherwise, thrd_error. If there is no thread waiting on the con‐
dition variable *cond, the function does nothing, and returns thrd_success.
Example

// Wake up three threads waiting for one condition variable using
// cnd_signal() and cnd_broadcast().
#include <stdio.h>
#include <threads.h>
#include <stdatomic.h>

cnd_t cv;
mtx_t mtx; // Mutex for the condition variable cv
atomic_bool go = ATOMIC_VAR_INIT(0); // Initially false

int th_func(void * arg) // Thread function
{
 mtx_lock(&mtx);
 printf("%s waiting ... \n", (char*)arg);

 while(!go)
 if(cnd_wait(&cv, &mtx) != thrd_success)
 return -1;

Lib
rary

Functio
ns

Standard Library Functions | 393

 printf("%s finished.\n", (char*)arg);
 mtx_unlock(&mtx);
 return 0;
}

int main(void)
{
 thrd_t th1, th2, th3;

 if(cnd_init(&cv) != thrd_success
 || mtx_init(&mtx, mtx_plain) != thrd_success)
 {
 fputs("Initialization error.\n", stderr); return 1;
 }

 if(thrd_create(&th1, th_func, "Thread 1") != thrd_success
 || thrd_create(&th2, th_func, "Thread 2") != thrd_success
 || thrd_create(&th3, th_func, "Thread 3") != thrd_success)
 {
 fputs("Thread error.\n", stderr); return 2;
 }

 struct timespec duration = { .tv_sec = 1 };
 thrd_sleep(&duration, NULL); // Wait 1 second.

 go = 1;
 puts("cnd_signal ...");
 if (cnd_signal(&cv) != thrd_success)
 { fputs("Signal error.\n", stderr); return 3; }

 thrd_sleep(&duration, NULL); // Wait 1 second.
 puts("cnd_broadcast ...");
 if (cnd_broadcast(&cv) != thrd_success)
 { fputs("Broadcast error.\n", stderr); return 4; }

 thrd_join(th1, NULL); thrd_join(th2, NULL); thrd_join(th3, NULL);

 cnd_destroy(&cv);
 mtx_destroy(&mtx);
 return 0;
}

Possible output of this program:

Thread 1 waiting ...
Thread 2 waiting ...
Thread 3 waiting ...
cnd_signal ...
Thread 1 finished.
cnd_broadcast ...

394 | Chapter 18: Standard Library Functions

Thread 3 finished.
Thread 2 finished.

See Also

cnd_signal(), cnd_wait(), cnd_timedwait()

cnd_destroy C11cnd_destroy C11

Destroys a condition variable.

#include <threads.h>
void cnd_destroy(cnd_t *cond);

The function cnd_destroy() frees all the resources used by the condition variable
referenced by its pointer argument cond. There must be no threads waiting for the
condition variable when cnd_destroy() is called.
Example

cnd_t cv; // A condition variable.

int func()
{
 if(cnd_init(&cv) != thrd_success)
 {
 fputs("Initialization error.\n", stderr); return -1;
 }
// ... Use the condition variable ...

 cnd_destroy(&cv);
 return 0;
}

See Also

cnd_init(), cnd_wait(), cnd_signal()

cnd_init C11cnd_init C11

Creates a condition variable.

#include <threads.h>
int cnd_init(cnd_t *cond);

The cnd_init() function creates a new condition variable and initializes the vari‐
able referenced by its pointer argument cond to a unique identifier value for the new
condition variable. If no error occurs, cnd_init() returns thrd_success. If there is
not enough memory available to create the condition variable, the function returns
thrd_nomem. Other errors produce the return value thrd_error.
Example

See the examples for cnd_destroy() and cnd_broadcast() in this chapter.

Lib
rary

Functio
ns

Standard Library Functions | 395

See Also

cnd_destroy(), cnd_wait(), cnd_signal()

cnd_signal C11cnd_signal C11

Wakes up one thread waiting for a condition variable.

#include <threads.h>
int cnd_signal(cnd_t *cond);

The function cnd_signal() wakes up one of the threads that are waiting for the
condition variable referenced by its pointer argument cond. The return value is
thrd_success if no error occurs; otherwise, thrd_error. If there is no thread wait‐
ing for the condition variable *cond, the function does nothing, and returns
thrd_success.
Example

See the example for cnd_broadcast() in this chapter, and Example 14-4 in Chap‐
ter 14.
See Also

cnd_broadcast(), cnd_wait(), cnd_timedwait()

cnd_timedwait C11cnd_timedwait C11

Blocks the thread on a condition variable for a limited time.

#include <threads.h>
int cnd_timedwait(cnd_t *restrict cond, mtx_t *restrict mtx,
 const struct timespec *restrict ts);

The calling thread must hold the mutex referenced by the mtx argument. The func‐
tion cnd_timedwait() releases the mutex and blocks the thread on the condition
variable referenced by the pointer argument cond. The function sleeps until another
thread wakes it up by calling cnd_signal() or cnd_broadcast() with the same con‐
dition variable argument, or until the time specified by the argument ts. Before the
cnd_timedwait() function returns, it obtains the mutex again for the calling thread.

The parameter ts specifies a point in Coordinated Universal
Time, or UTC (also called Greenwich Mean Time). The cur‐
rent time in UTC can be obtained using the function
timespec_get().

The return value is thrd_success if no error occurs, thrd_timedout if the time
limit elapsed, or thrd_error if an error occurred.

396 | Chapter 18: Standard Library Functions

Example
cnd_t cv;
mtx_t mtx; // Mutex for the condition variable cv
atomic_bool go = ATOMIC_VAR_INIT(0); // Initially false.

int th_func(void * millisec) // Thread function.
{
 int res = thrd_success;
 struct timespec ts;
 timespec_get(&ts, TIME_UTC); // The current time
 ts.tv_nsec += *(long*)millisec * 1E6; // + millions of ns.

 mtx_lock(&mtx);
 puts("Waiting ...");
 while(!go && res == thrd_success)
 res = cnd_timedwait(&cv, &mtx, &ts);
 switch(res)
 {
 case thrd_success:
 puts("Working ... done."); break;
 case thrd_timedout:
 puts("Timed out."); break;
 default:
 puts("cnd_timedwait: error.");
 };
 mtx_unlock(&mtx);
 return res;
}

int main(void)
{
 thrd_t th1, th2;
 long tm_limit1 = 100, tm_limit2 = 500; // In milliseconds.

 if(cnd_init(&cv) != thrd_success
 || mtx_init(&mtx, mtx_plain) != thrd_success)
 {
 fputs("Initialization error.\n", stderr); return 1;
 }

 if(thrd_create(&th1, th_func, &tm_limit1) != thrd_success
 || thrd_create(&th2, th_func, &tm_limit2) != thrd_success)
 {
 fputs("Thread error.\n", stderr); return 2;
 }

 struct timespec dura = { 0 };
 dura.tv_nsec = 200 *1E6; // 200 million nanoseconds.
 thrd_sleep(&dura, NULL); // Wait 200 milliseconds.

 go = 1;

Lib
rary

Functio
ns

Standard Library Functions | 397

 puts("Sending broadcast ...");
 cnd_broadcast(&cv);

 thrd_join(th1, NULL); thrd_join(th2, NULL);
 cnd_destroy(&cv);
 mtx_destroy(&mtx);
 return 0;
}

Typical output:

Waiting ...
Waiting ...
Timed out.
Sending broadcast ...
Working ... done.

See Also

cnd_wait(), cnd_signal(), cnd_broadcast(), timespec_get()

cnd_wait C11cnd_wait C11

Blocks the thread on a condition variable.

#include <threads.h>
int cnd_wait(cnd_t *cond, mtx_t *mtx);

The calling thread must hold the mutex referenced by the mtx argument. The func‐
tion cnd_wait() releases the mutex and blocks the thread on the condition variable
referenced by the pointer argument cond. The function sleeps until another wakes it
up by calling cnd_signal() or cnd_broadcast() with the same condition variable
argument. Before the cnd_wait() function returns, it obtains the mutex again for
the calling thread.

The return value is thrd_success if no error occurs; otherwise, thrd_error.
Example

See the example for cnd_broadcast() in this chapter.
See Also

cnd_timedwait(), cnd_signal(), cnd_broadcast()

conj C99conj C99

Obtains the conjugate of a complex number.

#include <complex.h>
double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

398 | Chapter 18: Standard Library Functions

The conj() function returns the complex conjugate of its complex argument. The
conjugate of a complex number x + yi, where x and y are the real and imaginary
parts, is defined as x − yi. Accordingly, the conj() function calculates the conjugate
by changing the sign of the imaginary part.
Example

See the example for cabs() in this chapter.
See Also

cabs(), cimag(), creal(), carg(), conj(), cproj()

copysign C99copysign C99

Makes the sign of a number match that of another number.

#include <math.h>
double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

The copysign() function returns a value with the magnitude of its first argument
and the sign of its second argument.
Example

/* Test for signed zero values */
double x = copysign(0.0, -1.0);
double y = copysign(0.0, +1.0);

printf("x is %+.1f; y is %+.1f.\n", x, y);
printf("%+.1f is %sequal to %+.1f.\n",
 x, (x == y) ? "" : "not ", y);

This code produces the following output:

x is -0.0; y is +0.0.
-0.0 is equal to +0.0.

See Also

abs(), fabs(), fdim(), fmax(), fmin()

coscos

Calculates the cosine of an angle.

#include <math.h>
double cos(double x);
float cosf(float x); (C99)
long double cosl(long double x); (C99)

The cos() function returns the cosine of its argument, which is an angle measure in
radians. The return value is in the range -1 ≤ cos(x) ≤ 1.

Lib
rary

Functio
ns

Standard Library Functions | 399

Example
/*
 * Calculate the sloping width of a roof
 * given the horizontal width
 * and the angle from the horizontal.
 */
#define PI 3.141593
#define DEG_PER_RAD (180.0/PI)

double roof_pitch = 20.0; // In degrees
double floor_width = 30.0; // In feet, say.
double roof_width = 1.0 / cos(roof_pitch / DEG_PER_RAD) * floor_width;

printf("The sloping width of the roof is %4.2f ft.\n", roof_width);

This code produces the following output:

The sloping width of the roof is 31.93 ft.

See Also

sin(), tan(), acos(), ccos()

coshcosh

Calculates the hyperbolic cosine of a number.

#include <math.h>
double cosh(double x);
float coshf(float x); (C99)
long double coshl(long double x); (C99)

The hyperbolic cosine of any number x equals (ex + e−x)/2 and is always greater than
or equal to 1. If the result of cosh() is too great for the double type, the function
incurs a range error.
Example

double x, sum = 1.0;
unsigned max_n;
printf("Cosh(x) is the sum as n goes from 0 to infinity "
 "of x^(2*n) / (2*n)!\n");
 // That's x raised to the power of 2*n, divided by 2*n factorial.
printf("Enter x and a maximum for n (separated by a space): ");
if (scanf(" %lf %u", &x, &max_n) < 2)
{
 printf("Couldn't read two numbers.\n");
 return -1;
}
printf("cosh(%.2f) = %.4f;\n", x, cosh(x));
for (unsigned n = 1 ; n <= max_n ; n++)
{
 unsigned factor = 2 * n; // Calculate (2*n)!
 unsigned divisor = factor;

400 | Chapter 18: Standard Library Functions

 while (factor > 1)
 {
 factor--;
 divisor *= factor;
 }
 sum += pow(x, 2 * n) / divisor; // Accumulate the series
}
printf("Approximation by series of %u terms = %.4f.\n", max_n+1, sum);

With the numbers 1.72 and 3 as input, the program produces the following output:

cosh(1.72) = 2.8818;
Approximation by series of 4 terms = 2.8798.

See Also

The C99 inverse hyperbolic cosine function, acosh(); the hyperbolic cosine and
inverse hyperbolic cosine functions for complex numbers, ccosh(), cacosh(); the
example for sinh()

cpow C99cpow C99

Raises a complex number to a complex power.

#include <complex.h>
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,
 long double complex y);

The cpow() function raises its first complex argument x to the power of the second
argument, y. In other words, it returns the value of xy.

The cpow() function has a branch cut along the negative real axis to yield a unique
result.
Example

double complex z = 0.0 + 2.7 * I;
double complex w = 2.7 + 0.0 * I;

double complex c = cpow(w, z); // Raise e to the power of i*2.7

printf("%.2f %+.2f × I raised to the power of %.2f %+.2f × I \n"
 "is %.2f %+.2f × I.\n",
 creal(w), cimag(w), creal(z), cimag(z), creal(c), cimag(c));

This code produces the following output:

2.70 +0.00 × I raised to the power of 0.00 +2.70 × I
is -0.90 +0.44 × I.

See Also

The corresponding function for real numbers, pow(); the complex math functions
cexp(), clog(), cpow(), csqrt()

Lib
rary

Functio
ns

Standard Library Functions | 401

cproj C99cproj C99

Calculates the projection of a complex number on the Riemann sphere.

#include <complex.h>
double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

The Riemann sphere is a surface that represents the entire complex plane and one
point for infinity. The cproj() function yields the representation of a complex
number on the Riemann sphere. The value of cproj(z) is equal to z, except in cases
where the real or complex part of z is infinite. In all such cases, the real part of the
result is infinity, and the imaginary part is zero with the sign of the imaginary part
of the argument z.
Example

double complex z = -INFINITY − 2.7 * I;

double complex c = cproj(z);
printf("%.2f %+.2f * I is projected to %.2f %+.2f * I.\n",
 creal(z), cimag(z), creal(c), cimag(c));

This code produces the following output:

-inf -2.70 * I is projected to inf -0.00 * I.

See Also

cabs(), cimag(), creal(), carg(), conj()

creal C99creal C99

Obtains the real part of a complex number.

#include <complex.h>
double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

A complex number is represented as two floating-point numbers, one quantifying
the real part and one quantifying the imaginary part. The creal() function returns
the floating-point number that represents the real part of the complex argument.
Example

double complex z = 4.5 − 6.7 * I;

printf("The complex variable z is equal to %.2f %+.2f × I.\n",
 creal(z), cimag(z));

This code produces the following output:

The complex variable z is equal to 4.50 -6.70 × I.

402 | Chapter 18: Standard Library Functions

See Also

cimag(), cabs(), carg(), conj(), cproj()

csin C99csin C99

Calculates the sine of a complex number.

#include <complex.h>
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

The csin() function returns the sine of its complex number argument z, which is
equal to (eiz − e−iz)/2 × i.
Example

// Demonstrate the exponential definition of the complex sine function.
double complex z = 4.3 − 2.1 * I;
double complex c, d;

c = csin(z);
d = (cexp(z * I) − cexp(− z * I)) / (2 * I);

printf("The csin() function returns %.2f %+.2f × I.\n",
 creal(c), cimag(c));
printf("Using the cexp() function, the result is %.2f %+.2f × I.\n",
 creal(d), cimag(d));

This code produces the following output:

The csin() function returns -3.80 +1.61 × I.
Using the cexp() function, the result is -3.80 +1.61 × I.

See Also

ccos(), ctan(), cacos(), casin(), catan()

csinh C99csinh C99

Calculates the hyperbolic sine of a complex number.

#include <complex.h>
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

The hyperbolic sine of a complex number z is equal to (exp(z) − exp(−z)) / 2. The
csinh functions return the hyperbolic sine of their complex argument.

Lib
rary

Functio
ns

Standard Library Functions | 403

Example
double complex v, w, z = -1.2 + 3.4 * I;

v = csinh(z);
w = 0.5 * (cexp(z) − cexp(−z));

printf("The csinh() function returns %.2f %+.2f*I.\n",
 creal(v), cimag(v));
printf("Using the cexp() function, the result is %.2f %+.2f*I.\n",
 creal(w), cimag(w));

This code produces the following output:

The csinh() function returns 1.46 -0.46*I.
Using the cexp() function, the result is 1.46 -0.46*I.

See Also

ccosh(), ctanh(), cacosh(), casinh(), catanh()

csqrt C99csqrt C99

Calculates the square root of a complex number.

#include <complex.h>
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

The csqrt() function returns the complex square root of its complex number argu‐
ment.
Example

double complex z = 1.35 − 2.46 * I;
double complex c, d;

c = csqrt(z);
d = c * c;

printf("If the square root of %.2f %+.2f × I equals %.2f %+.2f × I,"
 "\n", creal(z), cimag(z), creal(c), cimag(c));
printf("then %.2f %+.2f × I squared should equal %.2f %+.2f × I.\n",
 creal(c), cimag(c), creal(d), cimag(d));

This code produces the following output:

If the square root of 1.35 -2.46 × I equals 1.44 -0.85 × I,
then 1.44 -0.85 × I squared should equal 1.35 -2.46 × I.

See Also

cexp(), clog(), cpow(), csqrt()

404 | Chapter 18: Standard Library Functions

ctan C99ctan C99

Calculates the tangent of a complex number.

#include <complex.h>
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

The ctan() function returns the tangent of its complex number argument z, which
is equal to sin(z) / cos(z).
Example

double complex z = − 0.53 + 0.62 * I;
double complex c, d;

c = ctan(z);
d = csin(z) / ccos(z);

printf("The ctan() function returns %.2f %+.2f × I.\n",
 creal(c), cimag(c));
printf("Using the csin() and ccos() functions yields %.2f %+.2f × I.\n",
 creal(d), cimag(d));

This code produces the following output:

The ctan() function returns -0.37 +0.67 × I.
Using the csin() and ccos() functions yields -0.37 +0.67 × I.

See Also

csin(), ccos(), cacos(), casin(), catan()

ctanh C99ctanh C99

Calculates the hyperbolic tangent of a complex number.

#include <complex.h>
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

The hyperbolic tangent of a complex number z is equal to sinh(z) / cosh(z). The
ctanh functions return the hyperbolic tangent of their complex argument.
Example

double complex v, w, z = -0.5 + 1.23 * I;

v = ctanh(z);
w = csinh(z) / ccosh(z);

printf("The ctanh() function returns %.2f %+.2f*I.\n",
 creal(v), cimag(v));

Lib
rary

Functio
ns

Standard Library Functions | 405

printf("Using the csinh() and ccosh() functions yields %.2f %+.2f*I.\n",
 creal(w), cimag(w));

This code produces the following output:

The ctanh() function returns -1.53 +0.82*I.
Using the csinh() and ccosh() functions yields -1.53 +0.82*I.

See Also

ccosh(), csinh(), cacosh(), casinh(), catanh()

ctimectime

Converts an integer time value into a date-and-time string.

#include <time.h>
char *ctime(const time_t *seconds);

The argument passed to the ctime() function is a pointer to a number interpreted
as a number of seconds elapsed since the epoch (on Unix systems, January 1, 1970).

The function converts this value into a human-readable character string showing
the local date and time, and returns a pointer to that string. The string is exactly 26
bytes long, including the terminating null character, and has the following format:

Thu Apr 28 15:50:56 2005\n

The argument’s type, time_t, is defined in time.h, usually as a long or unsigned
long integer.

The function call ctime(&seconds) is equivalent to asctime(localtime(&sec
onds)). A common way to obtain the argument value passed to ctime() is by call‐
ing the time() function, which returns the current time in seconds.
Example

void logerror(int errorcode)
{
 time_t eventtime;

 time(&eventtime);
 fprintf(stderr, "%s: Error number %d occurred.\n",
 ctime(&eventtime), errorcode);
}

This code produces output like the following:

Wed Sep 9 14:58:03 2015
: Error number 23 occurred.

The output contains a line break because the string produced by ctime() ends in a
newline character.

406 | Chapter 18: Standard Library Functions

See Also

asctime(), asctime_s(), difftime(), gmtime(), gmtime_s(), localtime(), local
time_s(), mktime(), strftime(), time()

ctime_s C11ctime_s C11

Converts an integer time value into a date-and-time string.

#include <time.h>
errno_t ctime_s(char *s, rsize_t maxsize, const time_t *timer);

Like the function ctime(), the function ctime_s() converts the integer calendar
time addressed by the pointer timer into a string showing the local date and time.
The parameter timer is in UTC, or Greenwich Mean Time. The output string is
exactly 26 bytes long, including the null terminator character, and has the following
timestamp format:

Thu Jan 29 09:30:01 2015

Unlike ctime(), the ctime_s() function does not return a pointer to a static string
but instead copies the output string to the address specified by the s argument. This
makes the function ctime_s() safe for use in multithreading environments. The
length of the buffer at s, specified by maxsize, must be at least 26 bytes. A call to the
function ctime_s() is equivalent to the following asctime_s() call:

asctime_s(s, maxsize, localtime_s(timer, &tmStruct))

where tmStruct has the type struct tm.

The function ctime_s() tests the following runtime constraints: the pointer argu‐
ments s and timer must not be null pointers, and the value of maxsize must be
between 26 and RSIZE_MAX.

The ctime_s() function returns zero if no error occurs. Otherwise, it returns a non‐
zero error code, and writes the string terminator character '\0' to s[0], if the values
of s and maxsize permit.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
// ...

 time_t now = 0;
 char timeStr[26];

 time(&now); // Date and time as an integer.
 if(ctime_s(timeStr, sizeof(timeStr), &now) == 0)
 printf("Date and time: %s", timeStr);

Typical output for this code is:

Date and time: Sun May 17 14:40:04 2015

Lib
rary

Functio
ns

Standard Library Functions | 407

See Also

ctime(), asctime(), asctime_s(), localtime(), localtime_s(), gmtime(),
gmtime_s(), difftime(), mktime(), strftime(), time()

difftimedifftime

Calculates the difference between two arithmetic time values.

#include <time.h>
double difftime(time_t time2, time_t time1);

The difftime() function returns the difference between two time values, time2 −
time1, as a number of seconds. While difftime() has the return type double, its
arguments have the type time_t. The time_t type is usually, but not necessarily,
defined as an integer type such as long or unsigned long.

A common way to obtain the argument values passed to difftime() is by succes‐
sive calls to the time() function, which returns the current time as a single arith‐
metic value.
Example

See the sample program for clock() in this chapter.
See Also

asctime(), ctime(), gmtime(), localtime(), mktime(), strftime(), time()

divdiv

Performs integer division, returning quotient and remainder.

#include <stdlib.h>
div_t div(int dividend, int divisor);
ldiv_t ldiv(long dividend, long divisor);
lldiv_t lldiv(long long dividend, long long divisor); (C99)

The div() functions divide an integer dividend by an integer divisor, and return
the integer part of the quotient along with the remainder in a structure of two inte‐
ger members named quot and rem. div() obtains the quotient and remainder in a
single machine operation, replacing both the / and % operations. The header file
stdlib.h defines this structure for the various integer types as follows:

typedef struct { int quot; int rem; } div_t;
typedef struct { long int quot; long int rem; } ldiv_t;
typedef struct { long long int quot; long long int rem; } lldiv_t;

Example
int people, apples;
div_t share;

for (apples = -3 ; apples < 6 ; apples += 3)
{

408 | Chapter 18: Standard Library Functions

 if (apples == 0)
 continue; // Don't bother dividing up nothing.
 for (people = -2 ; people < 4 ; people += 2)
 {
 if (people == 0)
 continue; // Don't try to divide by zero.
 share = div(apples, people);

 printf("If there are %+i of us and %+i apples, "
 "we each get %+i with %+i left over.\n",
 people, apples, share.quot, share.rem);
 }
}

As the output of the preceding code illustrates, any nonzero remainder has the same
sign as the dividend:

If there are -2 of us and -3 apples, we each get +1 with -1 left over.
If there are +2 of us and -3 apples, we each get -1 with -1 left over.
If there are -2 of us and +3 apples, we each get -1 with +1 left over.
If there are +2 of us and +3 apples, we each get +1 with +1 left over.

See Also

imaxdiv(), remainder()

erf C99erf C99

Calculates the error function of a floating-point number.

#include <math.h>
double erf(double x);
float erff(float x);
long double erfl(long double x);

The function erf(), called the error function, is associated with the Gaussian func‐
tion or normal distribution. If the measured values of a given random variable con‐
form to a normal distribution with the standard deviation σ, then the probability
that a single measurement has an error within ± a is erf(a / (σ × √2)).

The return value of erf(x) is

The function erfc() is the complementary error function, defined as erfc(x) = 1 −
erf(x).

Lib
rary

Functio
ns

Standard Library Functions | 409

Example
/*
 * Given a normal distribution with mean 0 and standard deviation 1,
 * calculate the probability that the random variable is within the
 * range [0, 1.125]
 */
double sigma = 1.0; // The standard deviation
double bound = 1.125;
double probability; // probability that mean <= value <= bound

probability = 0.5 *erf(bound / (sigma * sqrt(2.0)));

See Also

erfc()

erfc C99erfc C99

Calculates the complementary error function of a floating-point number.

#include <math.h>
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

The function erfc() is the complementary error function, defined as erfc(x) = 1 −
erf(x).
See Also

erf()

exitexit

Terminates the program normally.

#include <stdlib.h>
_Noreturn void exit(int status);

The exit() function ends the program and returns a value to the operating envi‐
ronment to indicate the program’s final status. Control never returns from the
exit() function.

Before terminating the program, exit() calls any functions that have been regis‐
tered by the atexit() function (in LIFO order), closes any open files, and deletes
any files created by the tmpfile() function. Functions registered by
at_quick_exit() are not called.

The header stdlib.h defines two macros for use as arguments to exit():
EXIT_SUCCESS and EXIT_FAILURE. If the argument is equal to one of these values,
the program returns a corresponding system-specific value to the operating system
to indicate success or failure. An argument value of 0 is treated the same as

410 | Chapter 18: Standard Library Functions

EXIT_SUCCESS. For other argument values, the value returned to the host environ‐
ment is determined by the implementation.
Example

FILE *f_in, *f_out;

enum { X_OK = 0, X_ARGS, X_NOIN, X_NOOUT };

if (argc != 3) {
 fprintf(stderr, "Usage: program input-file output-file\n");
 exit(X_ARGS);
}

f_in = fopen(argv[1], "r");
if (f_in == NULL) {
 fprintf(stderr, "Unable to open input file.\n");
 exit(X_NOIN);
}
f_out = fopen(argv[2], "a+");
if (f_out == NULL) {
 fprintf(stderr, "Unable to open output file.\n");
 exit(X_NOOUT);
}

/* ... read, process, write, close files ... */

exit(X_OK);

See Also

_Exit(), atexit(), abort()

expexp

Calculates the natural exponential of a number.

#include <math.h>
double exp(double x);
float expf(float x);
long double expl(long double x);

The return value of the exp() function is e raised to the power of the function’s
argument, or ex, where e is Euler’s number, 2.718281.... If the result is beyond the
range of the function’s type, a range error occurs.

The natural exponential function exp() is the inverse of the
natural logarithm function, log().

Lib
rary

Functio
ns

Standard Library Functions | 411

Example
/* Amount owed = principal * e^(interest_rate * time) */
int principal = 10000; // Initial debt is ten thousand dollars.
int balance = 0;
double rate = 0.055; // Interest rate is 5.5% annually.
double time = 1.5; // Period is eighteen months.

balance = principal * exp(rate * time);
printf("Invest %d dollars at %.1f%% compound interest, and "
 "in %.1f years you'll have %d dollars.\n",
 principal, rate*100.0, time, balance);

This code produces the following output:

Invest 10000 dollars at 5.5% compound interest, and in 1.5 years
you'll have 10859 dollars.

See Also

The C99 exponential functions exp2() and expm1(); the exponential functions for
complex numbers, cexp(), cexpf(), and cexpl(); the general exponential function
pow()

exp2 C99exp2 C99

Calculates the base 2 exponential of a number.

#include <math.h>
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

The return value of the exp2() function is 2 raised to the power of the function’s
argument, or 2x. If the result is beyond the range of the function’s type, a range error
occurs.

The base 2 exponential function exp2() is the inverse of the
base 2 logarithm function, log2().

Example
// The famous grains-of-rice-on-a-chessboard problem.
// The sultan loses a chess game. The wager was one grain for square 1
// on the chessboard, then double the last number for each successive
// square. How much rice in all?

int squares = 64;
long double gramspergrain = 0.0025L; // A grain of rice weighs 25 mg.
long double sum = 0.0L;

412 | Chapter 18: Standard Library Functions

for (int i = 0; i < squares; i++)
 sum += gramspergrain * exp2l((long double)i);

 printf("The sultan's wager costs him %.3Lf metric tons of rice.\n",
 sum / 1000000.0L); // A million grams per ton.

This code produces the following output:

The sultan's wager costs him 46116860184.274 metric tons of rice.

See Also

exp(), expm1(), log(), log1p(), log2(), log10()

expm1 C99expm1 C99

Calculates the natural exponential of a number, minus one.

#include <math.h>
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

The return value of the expm1() function is one less than e raised to the power of
the function’s argument, or ex, where e is Euler’s number, 2.718281.... The expm1()
function is designed to yield a more accurate result than the expression exp(x)-1,
especially when the value of the argument is close to zero. If the result is beyond the
range of the function’s type, a range error occurs.
Example

/* let y = (−e^(−2x) − 1) / (e^(−2x) + 1), for certain values of x */

double w, x, y;
if ((x > 1.0E-12) && (x < 1.0))
{
 w = expm1(-(x+x));
 y = − w / (w + 2.0);
}
else
 /* ... handle other values of x ... */

See Also

exp(), log1p(), log()

fabsfabs

Obtains the absolute value of a number.

#include <math.h>
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

Lib
rary

Functio
ns

Standard Library Functions | 413

The fabs() function returns the absolute value of its floating-point argument x; if x
is greater than or equal to 0, the return value is equal to x. If x is less than 0, the
function returns -x.
Example

float x = 4.0F * atanf(1.0F);
long double y = 4.0L * atanl(1.0L);

if (x == y)
 printf("x and y are exactly equal.\n");
else if (fabs(x − y) < 0.0001 * fabsl(y))
 printf("x and y are approximately equal:\n"
 "x is %.8f; y is %.8Lf.\n", x, y);

This code produces the following output:

x and y are approximately equal:
x is 3.14159274; y is 3.14159265.

See Also

The absolute value functions for integer types, abs(), labs(), llabs(), and imax
abs(); the absolute value functions for complex numbers, cabs(), cabsf(),
cabsl(); the C99 functions fdim() and copysign(); the functions fmax() and
fmin()

fclosefclose

Closes a file or stream.

#include <stdio.h>
int fclose(FILE *fp);

The fclose() function closes the file associated with a given FILE pointer, and
releases the memory occupied by its I/O buffer. If the file was opened for writing,
fclose() flushes the contents of the file buffer to the file.

The fclose() function returns 0 on success. If fclose() fails, it returns the value
EOF.
Example

/* Print a file to the console, line by line. */
FILE *fp_infile;
char linebuffer[512];

if ((fp_infile= fopen("input.dat", "r")) == NULL)
{
 fprintf(stderr, "Couldn't open input file.\n");
 return -1;
}

while (fgets(linebuffer, sizeof(linebuffer), fp_infile) != NULL)
 fputs(linebuffer, stdout);

414 | Chapter 18: Standard Library Functions

if (! feof(fp_infile)) // This means "if not end of file"
 fprintf(stderr, "Error reading from input file.\n");

if (fclose(fp_infile) != 0)
{
 fprintf(stderr, "Error closing input file.\n");
 return -2;
}

See Also

fflush(), fopen(), setbuf()

fdim C99fdim C99

Obtains the positive difference between two numbers.

#include <math.h>
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

The fdim() function return x − y or 0, whichever is greater. If the implementation
has signed zero values, the zero returned by fdim() is positive.
Example

/* Make sure an argument is within the domain of asin() */

double sign, argument, result;
/* ... */

sign = copysign(1.0, argument); // Save the sign ...
argument = copysign(argument, 1.0); // then use only positive values
argument = 1.0 − fdim(1.0, argument); // Trim excess beyond 1.0
result = asin(copysign(argument, sign)); // Restore sign and
 // call asin()

See Also

copysign(), fabs(), fmax(), fmin()

feclearexcept C99feclearexcept C99

Clears status flags in the floating-point environment.

#include <fenv.h>
int feclearexcept(int excepts);

The feclearexcept() function clears the floating-point exceptions specified by its
argument. The value of the argument is the bitwise OR of one or more of the integer
constant macros described under feraiseexcept() in this chapter. Lib

rary
Functio

ns

Standard Library Functions | 415

The function returns 0 if successful; a nonzero return value indicates that an error
occurred.
Example

double x, y, result;
int exceptions;

#pragma STDC FENV_ACCESS ON
feclearexcept(FE_ALL_EXCEPT);
result = somefunction(x, y); // This function may raise exceptions!
exceptions = fetestexcept(FE_INEXACT | FE_UNDERFLOW);

if (exceptions & FE_UNDERFLOW)
{
 /* ... handle the underflow ... */
}
else if (exceptions & FE_INEXACT)
{
 /* ... handle the inexact result ... */
}

See Also

feraiseexcept(), feholdexcept(), fetestexcept()

fegetenv C99fegetenv C99

Stores a copy of the current floating-point environment.

#include <fenv.h>
int fegetenv(fenv_t *envp);

The fegetenv() function saves the current state of the floating-point environment
in the object referenced by the pointer argument. The function returns 0 if success‐
ful; a nonzero return value indicates that an error occurred.

The object type that represents the floating-point environment, fenv_t, is defined in
fenv.h. It contains at least two kinds of information: floating-point status flags, which
are set to indicate specific floating-point processing exceptions, and a floating-point
control mode, which can be used to influence the behavior of floating-point arith‐
metic, such as the direction of rounding.
Example

The fegetenv() and fesetenv() functions can be used to provide continuity of the
floating-point environment between different locations in a program:

static fenv_t fpenv; // Global environment variables.
static jmp_buf env;
/* ... */

#pragma STDC FENV_ACCESS ON
fegetenv(&fpenv); // Store a copy of the floating-point
 // environment

416 | Chapter 18: Standard Library Functions

if (setjmp(env) == 0) // setjmp() returns 0 when actually called
{
 /* ... Proceed normally; floating-point environment unchanged ... */
}
else // Nonzero return value means longjmp() occurred
{
 fesetenv(&fpenv); // Restore floating-point environment
 // to known state
 /* ... */
}

See Also

fegetexceptflag(), feholdexcept(), fesetenv(), feupdateenv(), feclearex
cept(), feraiseexcept(), fetestexcept()

fegetexceptflag C99fegetexceptflag C99

Stores the floating-point environment’s exception status flags.

#include <fenv.h>
int fegetexceptflag(fexcept_t *flagp, int excepts);

The fegetexceptflag() function saves the current state of specified status flags in
the floating-point environment, which indicate specific floating-point processing
exceptions, in the object referenced by the pointer argument. The object type that
represents the floating-point status flags, fexcept_t, is defined in fenv.h. Unlike the
integer argument that represents the floating-point exception status flags in this and
other functions that manipulate the floating-point environment, the object with
type fexcept_t cannot be directly modified by user programs.

The integer argument is a bitwise OR of the values of macros defined in fenv.h to
represent the floating-point exception flags. The macros are listed under feraiseex
cept() in this chapter. fegetexceptflag() stores the state of those flags that corre‐
spond to the values that are set in this mask.

The function returns 0 if successful; a nonzero return value indicates that an error
occurred.
Example

/* Temporarily store the state of the FE_INEXACT, FE_UNDERFLOW
 * and FE_OVERFLOW flags
 */
fexcept_t fpexcepts;

#pragma STDC FENV_ACCESS ON
/* Save state: */
fegetexceptflag(&fpexcepts, FE_INEXACT | FE_UNDERFLOW | FE_OVERFLOW);

feclearexcept(FE_INEXACT | FE_UNDERFLOW | FE_OVERFLOW);

Lib
rary

Functio
ns

Standard Library Functions | 417

/* ... Perform calculations that might raise those exceptions ... */

/* ... Handle (or ignore) the exceptions our calculations raised ... */

/* Restore state as saved: */
fesetexceptflag(&fpexcepts, FE_INEXACT | FE_UNDERFLOW | FE_OVERFLOW);

See Also

fesetexceptflag(), feraiseexcept(), feclearexcept(), fetestexcept()

fegetround C99fegetround C99

Determines the current rounding direction in the floating-point environment.

#include <fenv.h>
int fegetround(void);

The fegetround() function obtains the current rounding direction. The integer
return value is negative if the rounding direction is undetermined, or equal to one
of the following macros, defined in fenv.h as integer constants, if the function is suc‐
cessful:

FE_DOWNWARD
Round down to the next lower integer.

FE_UPWARD
Round up to the next greater integer.

FE_TONEAREST
Round up or down toward whichever integer is nearest.

FE_TOWARDZERO
Round positive values downward and negative values upward.

Example

See the examples for fmod() and fesetround() in this chapter.
See Also

fesetround(), fegetenv(), fegetexceptflag()

feholdexcept C99feholdexcept C99

Saves the current floating-point environment and switches to nonstop mode.

#include <fenv.h>
int feholdexcept(fenv_t *envp);

Like fegetenv(), the feholdexcept() function saves the current floating-point
environment in the object pointed to by the pointer argument. However,
feholdexcept() also clears the floating-point status flags and switches the floating-

418 | Chapter 18: Standard Library Functions

point environment to a nonstop mode, meaning that after any floating-point excep‐
tion, normal execution continues uninterrupted by signals or traps. The function
returns 0 if it succeeds in switching to nonstop floating-point processing; otherwise,
the return value is nonzero.
Example

/*
 * Compute the hypotenuse of a right triangle, avoiding intermediate
 * overflow or underflow.
 *
 * (This example ignores the case of one argument having
 * great magnitude and the other small, causing both overflow
 * and underflow!)
 */
double hypotenuse(double sidea, double sideb)
{
#pragma STDC FENV_ACCESS ON
 double sum, scale, ascaled, bscaled, invscale;
 fenv_t fpenv;
 int fpeflags;

 if (signbit(sidea)) sidea = fabs(sidea);
 if (signbit(sideb)) sideb = fabs(sideb);

 feholdexcept(&fpenv); // Save previous environment,
 // clear exceptions,
 // switch to nonstop processing.
 invscale = 1.0;
 sum = sidea * sidea + sideb * sideb; // First try whether a^2 + b^2
 // causes any exceptions.

 fpeflags = fetestexcept(FE_UNDERFLOW | FE_OVERFLOW); // Did it?
 if (fpeflags & FE_OVERFLOW && sidea > 1.0 && sideb > 1.0)
 {
 /* a^2 + b^2 caused an overflow. Scale the triangle down. */
 feclearexcept(FE_OVERFLOW);
 scale = scalbn(1.0, (DBL_MIN_EXP /2));
 invscale = 1.0 / scale;
 ascaled = scale * sidea;
 bscaled = scale * sideb;
 sum = ascaled * ascaled + bscaled * bscaled;
 }
 else if (fpeflags & FE_UNDERFLOW && sidea < 1.0 && sideb < 1.0)
 {
 /* a^2 + b^2 caused an underflow. Scale the triangle up. */
 feclearexcept(FE_UNDERFLOW);
 scale = scalbn(1.0, (DBL_MAX_EXP /2));
 invscale = 1.0 / scale;
 ascaled = scale * sidea;
 bscaled = scale * sideb;
 sum = ascaled * ascaled + bscaled * bscaled;
 }

Lib
rary

Functio
ns

Standard Library Functions | 419

 feupdateenv(&fpenv); // restore the caller's environment, and
 // raise any new exceptions

 /* c = (1/scale) * sqrt((a * scale)^2 + (b * scale)^2): */
 return invscale * sqrt(sum);
}

See Also

fegetenv(), fesetenv(), feupdateenv(), feclearexcept(), feraiseexcept(),
fegetexceptflag(), fesetexceptflag(), fetestexcept()

feoffeof

Tests whether the file position is at the end.

#include <stdio.h>
int feof(FILE *fp);

The feof() macro tests whether the file position indicator of a given file is at the
end of the file.

The feof() macro’s argument is a FILE pointer. One attribute of the file or stream
referenced by this pointer is the end-of-file flag, that indicates whether the program
has attempted to read past the end of the file. The feof() macro tests the end-of-file
flag and returns a nonzero value if the flag is set. If not, feof() returns 0.
Example

See the examples for clearerr() and fclose() in this chapter.
See Also

rewind(), fseek(), clearerr(), ferror()

feraiseexcept C99feraiseexcept C99

Raises floating-point exceptions.

#include <fenv.h>
int feraiseexcept(int excepts);

The feraiseexcept() function raises the floating-point exceptions represented by
its argument. Unlike the fesetexceptflag() function, feraiseexcept() invokes
any traps that have been enabled for the given exceptions.

The argument is a bitwise OR of the values of the following macros, defined in
fenv.h to represent the floating-point exception flags:

FE_DIVBYZERO
This exception occurs when a nonzero, noninfinite number is divided by zero.

420 | Chapter 18: Standard Library Functions

FE_INEXACT
This exception indicates that true result of an operation cannot be represented
with the available precision, and has been rounded in the current rounding
direction.

FE_INVALID
This exception flag is set when the program attempts an operation which has
no defined result, such as dividing zero by zero or subtracting infinity from
infinity. Some systems may also set FE_INVALID whenever an overflow or
underflow exception is raised.

FE_OVERFLOW
The result of an operation exceeds the range of representable values.

FE_UNDERFLOW
The result of an operation is nonzero, but too small in magnitude to be repre‐
sented.

Each of these macros is defined if and only if the system supports the corresponding
floating-point exception. Furthermore, the macro FE_ALL_EXCEPT is the bitwise OR
of all of the macros that are supported.

If feraiseexcept() raises the FE_INEXACT exception in conjunction with FE_UNDER
FLOW or FE_OVERFLOW, then the underflow or overflow exception is raised first.
Otherwise, multiple exceptions are raised in an unspecified order.

The function returns 0 if successful; a nonzero return value indicates that an error
occurred.
Example
Although user programs rarely need to raise a floating-point exception by artificial
means, the following example illustrates how to do so:

int result, except_set, except_test;

#pragma STDC FENV_ACCESS ON
feclearexcept (FE_ALL_EXCEPT);
except_set = FE_OVERFLOW;
result = feraiseexcept(except_set);
if (result != 0)
{
 printf("feraisexcept() failed (%d)\n", result);
 exit(result);
}
except_test = fetestexcept(except_set);
if (except_test != except_set)
 printf("Tried to raise flags %X, but only raised flags %X.\n",
 except_set, except_test);

Lib
rary

Functio
ns

Standard Library Functions | 421

See Also

feclearexcept(), feholdexcept(), fetestexcept(), fegetexceptflag(), fesetex
ceptflag()

ferrorferror

Tests whether a file access error has occurred.

#include <stdio.h>
int ferror(FILE *fp);

The ferror() function—often implemented as a macro—tests whether an error has
been registered in reading or writing a given file.

ferror()’s argument is a FILE pointer. One attribute of the file or stream referenced
by this pointer is an error flag which indicates that an error has occurred during a
read or write operation. The ferror() function or macro tests the error flag and
returns a nonzero value if the flag is set. If not, ferror() returns 0.
Example

See the examples for clearerr() and fclose() in this chapter.
See Also

rewind(), clearerr(), feof()

fesetenv C99fesetenv C99

Sets the floating-point environment to a previously saved state.

#include <fenv.h>
int fesetenv(const fenv_t *envp);

The fesetenv() function reinstates the floating-point environment from an object
obtained by a prior call to fegetenv() or feholdexcept(), or a macro such as
FE_DFL_ENV, which is defined as a pointer to an object of type fenv_t representing
the default floating-point environment. Although a call to fesetenv() may result in
floating-point exception flags being set, the function does not raise the correspond‐
ing exceptions. The function returns 0 if successful; a nonzero return value indicates
that an error occurred.
Example

See the example for fegetenv() in this chapter.
See Also

fegetenv(), feholdexcept(), fegetexceptflag(), fesetexceptflag(), feupda
teenv(), feclearexcept(), feraiseexcept(), fetestexcept()

422 | Chapter 18: Standard Library Functions

fesetexceptflag C99fesetexceptflag C99

Reinstates the floating-point environment’s exception status flags.

#include <fenv.h>
int fesetexceptflag(const fexcept_t *flagp, int excepts);

The fesetexceptflag() function resets the exception status flags in the floating-
point environment to a state that was saved by a prior call to fegetexceptflag().
The object type that represents the floating-point status flags, fexcept_t, is defined
in fenv.h.

The second argument is a bitwise OR of the values of macros defined in fenv.h to
represent the floating-point exception flags. The macros are listed under feraiseex
cept() in this chapter. fesetexceptflag() sets those flags that correspond to the
values that are set in this mask.

All of the flags specified in the mask argument must be represented in the status
flags object passed to fesetexceptflag() as the first argument. Thus, in the
fegetexceptflag() call used to save the flags, the second argument must have
specified at least all of the flags to be set by the call to fesetexceptflag().

The function returns 0 if successful (or if the value of the integer argument was
zero). A nonzero return value indicates that an error occurred.
Example

See the example for fegetexceptflag() in this chapter.
See Also

fegetexceptflag(), feraiseexcept(), feclearexcept(), fetestexcept(), fege
tenv(), feholdexcept(), fesetenv(), feupdateenv()

fesetround C99fesetround C99

Sets the rounding direction in the floating-point environment.

#include <fenv.h>
int fesetround(int round);

The fesetround() function sets the current rounding direction in the program’s
floating-point environment to the direction indicated by its argument. On success,
the function returns 0. If the argument’s value does not correspond to a rounding
direction, the current rounding direction is not changed.

Recognized values of the argument are given by macros in the following list, defined
in fenv.h as integer constants. A given implementation may not define all of these
macros if it does not support the corresponding rounding direction, and may also
define macro names for other rounding modes that it does support.

Lib
rary

Functio
ns

Standard Library Functions | 423

FE_DOWNWARD
Round down to the next lower integer.

FE_UPWARD
Round up to the next greater integer.

FE_TONEAREST
Round up or down toward whichever integer is nearest.

FE_TOWARDZERO
Round positive values downward and negative values upward.

The function returns zero if successful; a nonzero return value indicates that an
error occurred.
Example

/*
 * Save, set, and restore the rounding direction.
 * Report an error and abort if setting the rounding direction fails.
 */
#pragma STDC FENV_ACCESS ON
int prev_rounding_dir;
int result;
prev_rounding_dir = fegetround();
result = fesetround(FE_TOWARDZERO);

/* ... perform a calculation that requires rounding toward 0 ... */

fesetround(prev_rounding_dir);
#pragma STDC FENV_ACCESS OFF

See also the example for fmod() in this chapter.
See Also

fegetround(), round(), lround(), llround(), nearbyint(), rint(), lrint(),
llrint()

fetestexcept C99fetestexcept C99

Tests the status flags in the floating-point environment against a bit mask.

#include <fenv.h>
int fetestexcept(int excepts);

The fetestexcept() function takes as its argument a bitwise OR of the values of
macros defined in fenv.h to represent the floating-point exception flags. The macros
are listed under feraiseexcept() in this chapter.

fetestexcept() returns the bitwise AND of the values representing the exception
flags that were set in the argument and the exception flags that are currently set in
the floating-point environment.

424 | Chapter 18: Standard Library Functions

Example

See the examples for feclearexcept() and feholdexcept() in this chapter.
See Also

feclearexcept(), feraiseexcept(), feholdexcept(), fesetexceptflag(),
feupdateenv(), fegetenv(), fesetenv()

feupdateenv C99feupdateenv C99

Sets the floating-point environment to a previously saved state, but preserves
exceptions.

#include <fenv.h>
void feupdateenv(const fenv_t *envp);

The feupdateenv() function internally saves the current floating-point exception
status flags before installing the floating-point environment stored in the object ref‐
erenced by its pointer argument. Then the function raises floating-point exceptions
that were set in the saved status flags.

The argument must be a pointer to an object obtained by a prior call to fegetenv()
or feholdexcept(), or a macro such as FE_DFL_ENV, which is defined as a pointer to
an object of type fenv_t representing the default floating-point environment.

The function returns 0 if successful; a nonzero return value indicates that an error
occurred.
Example

See the example for feholdexcept() in this chapter.
See Also

fegetexceptflag(), feraiseexcept(), feclearexcept(), fetestexcept(),
fegetenv(), feholdexcept(), fesetenv(), feupdateenv()

fflushfflush

Clears a file buffer.

#include <stdio.h>
int fflush(FILE *fp);

The fflush() function empties the I/O buffer of the open file specified by the FILE
pointer argument. If the file was opened for writing, or if it was opened for reading
and writing and the last operation on it was not a read operation, fflush() writes
the contents of the file. If the file is only opened for reading, the behavior of
fflush() is not specified by the standard. Most implementations simply clear the
input buffer. The function returns 0 if successful, or EOF if an error occurs in writing
to the file. Lib

rary
Functio

ns

Standard Library Functions | 425

The argument passed to fflush() may be a null pointer. In this case, fflush()
flushes the output buffers of all the program’s open streams. The fflush() function
does not close the file, and has no effect at all on unbuffered files (see “Files” on
page 211 for more information on unbuffered input and output).
Example
In the following example, the program fflush.c writes two lines of text to a file. If the
macro FLUSH is defined, the program flushes the file output buffer to disk after each
line. If not, only the first output line is explicitly flushed. Then the program raises a
signal to simulate a fatal error so that we can observe the effect with and without the
second fflush() call.

/* fflush.c: Tests the effect of flushing output file buffers. */
FILE *fp;

#ifdef FLUSH
char filename[] = "twice.txt";
#else
char filename[] = "once.txt";
#endif /* FLUSH */

fp = fopen(filename, "w");
if (fp == NULL)
 fprintf(stderr, "Failed to open file '%s' to write.\n", filename);

fputs("Going once ...\n", fp);
fflush(fp); // Flush the output unconditionally

fputs("Going twice ...\n", fp);

#ifdef FLUSH
fflush(fp); // Now flush only if compiled with '-DFLUSH'
#endif

raise(SIGKILL); // End the program abruptly.

fputs("Gone.\n", fp); // These three lines will never be executed.
fclose(fp);
exit(0);

When we compile and test the program, the output looks like this:

$cc -DFLUSH -o fflushtwice fflush.c
$./fflushtwice
Killed
$ cc -o fflushonce fflush.c
$./fflushonce
Killed
$ ls -l
-rw-r--r-- 1 tony tony 781 Jul 22 12:36 fflush.c
-rwxr-xr-x 1 tony tony 12715 Jul 22 12:38 fflushonce
-rwxr-xr-x 1 tony tony 12747 Jul 22 12:37 fflushtwice

426 | Chapter 18: Standard Library Functions

-rw-r--r-- 1 tony tony 15 Jul 22 12:38 once.txt
-rw-r--r-- 1 tony tony 31 Jul 22 12:37 twice.txt

The two cc commands have created two different executables, named fflushonce
and fflushtwice, and each version of the program has run and killed itself in the pro‐
cess of generating an output file. The contents of the two output files, once.txt and
twice.txt, are different:

$cat twice.txt
Going once ...
Going twice ...
$ cat once.txt
Going once ...
$

When the fputs() call returned, the output string was still in the file buffer, waiting
for the operating system to write it to disk. Without the second fflush() call, the
intervening “kill” signal caused the system to abort the program, closing all its files,
before the disk write occurred.
See Also

setbuf(), setvbuf()

fgetcfgetc

Reads a character from a file.

#include <stdio.h>
int fgetc(FILE *fp);

The fgetc() function reads the character at the current file position in the specified
file, and increments the file position.

The return value of fgetc() has the type int. If the file position is at the end of the
file, or if the end-of-file flag was already set, fgetc() returns EOF and sets the end-
of-file flag. If you convert the function’s return value to char, you might no longer
be able to distinguish a value of EOF from a valid character such as '\xFF'.
Example

FILE *fp;
int c;
char buffer[1024];
int i = 0;

/* ... Open input file ... */

while (i < 1023)
{
 c = fgetc(fp); // Returns a character on success;
 if (c == EOF) // EOF means either an error or end-of-file.
 {
 if (feof(fp))

Lib
rary

Functio
ns

Standard Library Functions | 427

 fprintf(stderr, "End of input.\n");
 else if (ferror(fp))
 fprintf(stderr, "Input error.\n");
 clearerr(fp); // Clear the file's error or EOF flag.
 break;
 }
 else
 {
 buffer[i++] = (char) c; // Use value as char *after* checking
 // for EOF.
 }
}
buffer[i] = '\0'; // Terminate string.

See Also

getc(), getchar(), putc(), fputc(), fgets(), fgetwc(), getwc()

fgetposfgetpos

Obtains the current read/write position in a file.

#include <stdio.h>
int fgetpos(FILE * restrict fp, fpos_t * restrict ppos);

The fgetpos() function determines the current value of the file position indicator
in an open file, and places the value in the variable referenced by the pointer argu‐
ment ppos. You can use this value in subsequent calls to fsetpos() to restore the
file position.

If the FILE pointer argument refers to a multibyte stream, then the fgetpos() func‐
tion also obtains the stream’s multibyte parsing state. In this case, the type fpos_t is
defined as a structure to hold both the file position information and the parsing
state.

The fgetpos() function returns 0 if successful. If an error occurs, fgetpos()
returns a nonzero return value and sets the errno variable to indicate the type of
error.
Example

FILE *datafile; fpos_t bookmark;

if ((datafile = fopen(".testfile", "r+")) == NULL)
{
 fprintf(stderr, "Unable to open file %s.\n",".testfile");
 return 1;
}

if (fgetpos(datafile, &bookmark)) // Save initial position
 perror("Saving file position");
else
{
 /* ... Read data, modify data ... */

428 | Chapter 18: Standard Library Functions

 if (fsetpos(datafile, &bookmark)) // Back to initial position
 perror("Restoring file position");

 /* ... write data back at the original position in the file ... */
}

See Also

fsetpos(), fseek(), ftell(), rewind()

fgetsfgets

Reads a string from a file.

#include <stdio.h>
char *fgets(char * restrict buffer, int n, FILE * restrict fp);

The fgets() function reads a sequence of up to n − 1 characters from the file refer‐
enced by the FILE pointer argument, and writes it to the buffer indicated by the
char pointer argument, appending the string terminator character '\0'. If a new‐
line character ('\n') is read, reading stops and the string written to the buffer is ter‐
minated after the newline character.

The fgets() function returns the pointer to the string buffer if anything was writ‐
ten to it, or a null pointer if an error occurred or if the file position indicator was at
the end of the file.
Example

FILE *titlefile;
char title[256];
int counter = 0;

if ((titlefile = fopen("titles.txt", "r")) == NULL)
 perror("Opening title file");
else
{
 while (fgets(title, 256, titlefile) != NULL)
 {
 title[strlen(title) -1] = '\0'; // Trim off newline character.
 printf("%3d: \"%s\"\n", ++counter, title);
 }
 /* fgets() returned NULL: either EOF or an error occurred. */
 if (feof(titlefile))
 printf("Total: %d titles.\n", counter);
}

If the working directory contains an appropriate text file, the program produces
output like this:

Lib
rary

Functio
ns

Standard Library Functions | 429

 1: "The Amazing Maurice"
 2: "La condition humaine"
 3: "Die Eroberung der Maschinen"
Total: 3 titles.

See Also

fputs(), puts(), fgetc(), fgetws(), fputws()

fgetwcfgetwc

Reads a wide character from a file.

#include <stdio.h>
#include <wchar.h>
wint_t fgetwc(FILE *fp);

The fgetwc() function reads the wide character at the current file position in the
specified file and increments the file position.

The return value of fgetwc() has the type wint_t. If the file position is at the end of
the file, or if the end-of-file flag was already set, fgetwc() returns WEOF and sets the
end-of-file flag. If a wide-character encoding error occurs, fgetwc() sets the errno
variable to EILSEQ (“illegal sequence”) and returns WEOF. Use feof() and ferror()
to distinguish errors from end-of-file conditions.
Example

char file_in[] = "local_in.txt",
 file_out[] = "local_out.txt";
FILE *fp_in_wide, *fp_out_wide;
wint_t wc;

if (setlocale(LC_CTYPE, "") == NULL)
 fwprintf(stderr,
 L"Sorry, couldn't change to the system's native locale.\n"),
 exit(1);

if ((fp_in_wide = fopen(file_in, "r")) == NULL)
 fprintf(stderr, "Error opening the file %s\n", file_in), exit(2);

if ((fp_out_wide = fopen(file_out, "w")) == NULL)
 fprintf(stderr, "Error opening the file %s\n", file_out), exit(3);

fwide(fp_in_wide, 1); // Not strictly necessary, since first
fwide(fp_out_wide, 1); // file access also sets wide or byte mode.

while ((wc = fgetwc(fp_in_wide)) != WEOF)
{
 // ... process each wide character read ...

 if (fputwc((wchar_t)wc, fp_out_wide) == WEOF)
 break;
}

430 | Chapter 18: Standard Library Functions

if (ferror(fp_in_wide))
 fprintf(stderr, "Error reading the file %s\n", file_in);
if (ferror(fp_out_wide))
 fprintf(stderr, "Error writing to the file %s\n", file_out);

See Also

getwc(), getwchar(), fputwc(), putwc(), fgetc()

fgetwsfgetws

Reads a wide-character string from a file.

#include <stdio.h>
#include <wchar.h>
wchar_t *fgetws(wchar_t * restrict buffer, int n, FILE * restrict fp);

The fgetws() function reads a sequence of up to n – 1 wide characters from the file
referenced by the FILE pointer argument, and writes it to the wchar_t array
addressed by the pointer argument buffer, appending the string terminator charac‐
ter L'\0'. If a newline character (L'\n') is read, reading stops and the string written
to the buffer is terminated after the newline character.

The fgetws() function returns the pointer to the wide-string buffer if anything was
written to it, or a null pointer if an error occurred or if the file position indicator
was at the end of the file.
Example

FILE *fp_in_wide;
wchar_t buffer[4096];
wchar_t *line = buffer;

if ((fp_in_wide = fopen("local.doc", "r")) == NULL)
 perror("Opening input file");
fwide(fp_in_wide);

line = fgetws(buffer, sizeof(buffer), fp_in_wide);
if (line == NULL)
 perror("Reading from input file");

See Also

fputws(), putwc(), fgetwc(), fgets(), fputs()

floorfloor

Rounds a real number down to an integer value.

#include <math.h>
double floor(double x);
float floorf(float x); (C99)
long double floorl(long double x); (C99)

Lib
rary

Functio
ns

Standard Library Functions | 431

The floor() function returns the greatest integer that is less than or equal to its
argument. However, the function does not have an integer type; it returns an integer
value, but with a floating-point type.
Example

/* Scale a point by independent x and y factors */
struct point { int x, y; };

int width_orig = 1024, height_orig = 768;
int width_new = 800, height_new = 600;

struct point scale(struct point orig)
{
 struct point new;
 new.x = (int)floor(orig.x * (double)width_new / (double)width_orig);
 new.y = (int)floor(orig.y * (double)height_new / (double)height_orig);
 return new;
}

See Also

ceil(), round(); the C99 rounding functions that return floating-point types,
trunc(), rint(), nearbyint(), nextafter(), and nexttoward(); the C99 rounding
functions that return integer types, lrint(), lround(), llrint(), and llround();
the fesetround() and fegetround() functions, which operate on the C99 floating-
point environment

fma C99fma C99

Multiplies two numbers and adds a third number to their product.

#include <math.h>
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

The name of the fma() function stands for “fused multiply-add.” fma() multiplies
its first two floating-point arguments, and then adds the third argument to the
result. The advantage over the expression (x * y) + z, with two separate arithmetic
operations, is that fma() avoids the error that would be incurred by intermediate
rounding, as well as intermediate overflows or underflows that might otherwise be
caused by the separate multiplication.

If the implementation defines the macro FP_FAST_FMA in math.h, that indicates that
the fma() function is about as fast to execute as, or faster than, the expression
(x * y) + z. This is typically the case if the fma() function makes use of a special
FMA machine operation. The corresponding macros FP_FAST_FMAF and
FP_FAST_FMAL provide the same information about the float and long double
versions.

432 | Chapter 18: Standard Library Functions

Example
double x, y, z;

x = nextafter(3.0, 4.0); // Smallest possible double value
 // greater than 3
y = 1.0/3.0;
z = -1.0;

printf("x = %.15G\n"
 "y = %.15G\n"
 "z = %.15G\n", x, y, z);

#ifdef FP_FAST_FMA

printf("fma(x, y, z) = %.15G\n", fma(x, y, z));

#else // i.e., not def FP_FAST_FMA

double product = x * y;

printf("x times y = %.15G\n", product);
printf("%.15G + z = %.15G\n", product, product + z);

#endif // def FP_FAST_FMA

fmax C99fmax C99

Determines the greater of two floating-point numbers.

#include <math.h>
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x , long double y);

The fmax() functions return the value of the greater argument.
Example

// Let big equal the second-greatest-possible double value ...
const double big = nextafter(DBL_MAX, 0.0);
// ... and small the second-least possible-double value:
const double small = nextafter(DBL_MIN, 0.0);

double a, b, c;

/* ... */

if (fmin(fmin(a, b), c) <= small)
 printf("At least one value is too small.\n");
if (fmax(fmax(a, b), c) >= big)
 printf("At least one value is too great.\n");

Lib
rary

Functio
ns

Standard Library Functions | 433

See Also

fabs(), fmin()

fmin C99fmin C99

Determines the lesser of two floating-point numbers.

#include <math.h>
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x , long double y);

The fmin() functions return the value of the lesser argument.
Example

See the example for fmax().
See Also

fabs(), fmax()

fmodfmod

Performs the modulo operation.

#include <math.h>
double fmod(double x, double y);
float fmodf(float x, float y); (C99)
long double fmodl(long double x, long double y); (C99)

The fmod() function returns the remainder of the floating-point division of x by y,
called “x modulo y.” The remainder is equal to x minus the product of y and the
largest integer quotient whose absolute value is not greater than that of y. This quo‐
tient is negative (or 0) if x and y have opposite signs, and the return value has the
same sign as x. If the argument y is zero, fmod() may incur a domain error, or
return 0.
Example

double people = -2.25, apples = 3.3, eachgets = 0.0, someleft = 0.0;
int saverounding = fegetround(); // Save previous setting

fesetround(FE_TOWARDZERO);

eachgets = rint(apples / people);
someleft = fmod(apples, people);

printf("If there are %+.2f of us and %+.2f apples, \n"
 "each of us gets %+.2f, with %+.2f left over.\n",
 people, apples, eachgets, someleft);

fesetround(saverounding); // Restore previous setting

434 | Chapter 18: Standard Library Functions

This code produces the following output:

If there are -2.25 of us and +3.30 apples,
each of us gets -1.00, with +1.05 left over.

See Also

The C99 functions remainder() and remquo()

fopenfopen

Opens a file.

#include <stdio.h>
FILE *fopen(const char * restrict name, const char * restrict mode);

The fopen() function opens the file with the specified name. The second argument
is a character string that specifies the requested access mode. The possible values of
the mode string argument are shown in Table 18-2.

fopen() returns the FILE pointer for you to use in subsequent input or output oper‐
ations on the file, or a null pointer if the function fails to open the file with the
requested access mode.

Table 18-2. File access modes

Mode string Access mode Notes

"r"

"r+"

Read
Read and write

The file must already exist

"w"

"w+"

Write
Write and read

If the file does not exist, fopen() creates it; if it does exist, fopen()
erases its contents on opening

"a"

"a+"

Append
Append and read

If the file does not exist, fopen() creates it

When a file is first opened, the file position indicator points to the first byte in the
file. If a file is opened with the mode string "a" or "a+", then the file position indi‐
cator is automatically placed at the end of the file before each write operation so that
existing data in the file cannot be written over.

If the mode string includes a plus sign, then the mode allows both input and output,
and you must synchronize the file position indicator between reading from and
writing to the file. Do this by calling fflush() or a file-positioning function—
fseek(), fsetpos(), or rewind()—after writing and before reading, and by calling
a file-positioning function after reading and before writing (unless it’s certain that
you have read to the end of the file).

The mode string may also include b as the second or third letter (that is, "ab+" is the
same as "a+b", for example), which indicates a binary file, as opposed to a text file.
The exact significance of this distinction depends on the given system.

Lib
rary

Functio
ns

Standard Library Functions | 435

The C11 standard allows you to create a file exclusively: this means that the fopen()
call fails if the file already exists. To do so, append an "x" to the file mode strings that
begin with "w", forming, for example, the mode string "wx" or "w+bx".
Example

FILE *in, *out;
int c;

if (argc != 3)
 fprintf(stderr, "Usage: program input-file output-file\n"), exit(1);

// If "-" appears in place of input filename, use stdin:
in = (strcmp(argv[1], "-") == 0) ? stdin : fopen(argv[1], "r");
if (in == NULL)
 { perror("Opening input file"); return -1; }

// If "-" appears in place of output filename, use stdout:
out = (strcmp(argv[2], "-") == 0) ? stdout : fopen(argv[2], "a+");
if (out == NULL)
 { perror("Opening output file"); return -1; }

while ((c = fgetc(in)) != EOF)
 if (fputc(c, out) == EOF)
 break;

if (!feof(in))
 perror("Error while copying");
fclose(in), fclose(out);

See Also

fopen_s(), fclose(), fflush(), freopen(), setbuf()

fopen_s C11fopen_s C11

Opens a file.

#include <stdio.h>
errno_t fopen_s(FILE * restrict * restrict streamPtr,
 const char * restrict name, const char * restrict mode);

The function fopen_s(), like fopen(), opens a file with the specified name and
access mode. For the possible values of the mode string argument, see the descrip‐
tion of the fopen() function in this chapter. The new FILE pointer is given to the
caller, not as the return value but in the variable addressed by the first argument of
fopen_s(). The type of the parameter streamPtr is therefore a pointer to a FILE
pointer.

If the operating system supports opening files for exclusive write access, fopen_s()
does so to prevent simultaneous write operations to the file. The fopen_s() func‐
tion assigns access privileges to the file so that no other user can open it, provided

436 | Chapter 18: Standard Library Functions

the operating system supports such access restrictions. To assign a new file the sys‐
tem’s default access privileges, as fopen() does, prefix the letter "u" to the mode
string, forming a string such as "uwx" or "ua+", for example.

Before opening the file, the function fopen_s() tests the following runtime con‐
straints: the pointer arguments streamPtr, name, and mode must not be null
pointers.

If the file has been opened successfully, fopen_s() returns zero, and writes the new
FILE pointer to the variable addressed by streamPtr. If unsuccessful, the function
returns a nonzero value and places a null pointer in the variable addressed by
streamPtr, provided streamPtr is not a null pointer itself.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
// ...

 FILE *fp; errno_t err; char filename[] = "new.txt";

 // Open a new file for writing and reading:
 err = fopen_s(&fp, filename, "w+x");
 if(err != 0)
 {
 fprintf(stderr, "Unable to create the file \"%s\".\n", filename);
 exit(err);
 }
 // ... The file is open.

See Also

fopen(), fclose(), freopen(), freopen_s(), setbuf()

fpclassify C99fpclassify C99

Obtains a classification of a real floating-point number.

#include <math.h>
int fpclassify(x);

The fpclassify() macro determines whether its argument is a normal floating-
point number, or one of several special categories of values, including NaN (not a
number), infinity, subnormal floating-point values, zero, and possibly other
implementation-specific categories.

To determine what category the argument belongs to, compare the return value of
fpclassify() with the values of the following number classification macros,
defined in math.h:

FP_INFINITE

FP_NAN

Lib
rary

Functio
ns

Standard Library Functions | 437

FP_NORMAL

FP_SUBNORMAL

FP_ZERO

These five macros expand to distinct integer values.
Example

double minimum(double a, double b)
{
 register int aclass = fpclassify(a);
 register int bclass = fpclassify(b);

 if (aclass == FP_NAN || bclass == FP_NAN)
 return NAN;

 if (aclass == FP_INFINITE) // -Inf is less than anything;
 return (signbit(a) ? a : b); // +inf is greater than anything.

 if (bclass == FP_INFINITE)
 return (signbit(b) ? b : a);

 return (a < b ? a : b);
}

See Also

isfinite(), isinf(), isnan(), isnormal(), signbit()

fprintf, fprintf_sfprintf, fprintf_s

Writes formatted output to an open file.

#include <stdio.h>
int fprintf(FILE * restrict fp, const char * restrict format, ...);
int fprintf_s(FILE * restrict fp,
 const char * restrict format, ...); (C11)

The functions fprintf() and fprintf_s() are similar to printf() and printf_s()
except that they write their output to the stream specified by fp instead of stdout.
Example

FILE *fp_log;
time_t sec;

fp_log = fopen("example.log", "a");
if (fp != NULL)
{
 time(&sec);
 fprintf(fp_log, "%.24s Opened log file.\n", ctime(&sec));
}

This code appends a line like the following to the file example.log:

438 | Chapter 18: Standard Library Functions

Wed Dec 9 21:10:43 2015 Opened log file.

See Also

printf(), sprintf(), snprintf(), declared in stdio.h; vprintf(), vfprintf(),
vsprintf(), vsnprintf(), declared in stdio.h and stdarg.h; the wide-character func‐
tions wprintf(), fwprintf(), swprintf(), declared in stdio.h and wchar.h;
vwprint(), vfwprint(), and vswprint(), declared in stdio.h, wchar.h, and stdarg.h;
the scanf() input functions. Argument conversion in the printf() family of func‐
tions is described under printf() in this chapter.

For each of these functions there is also a corresponding “secure” function, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined)

fputcfputc

Writes a character to a file.

#include <stdio.h>
int fputc(int c, FILE *fp);

The fputc() function writes one character to the current file position of the speci‐
fied FILE pointer. The return value is the character written, or EOF if an error occur‐
red.
Example

#define CYCLES 10000
#define DOTS 4

printf("Performing %d modulo operations ", CYCLES);
for (int count = 0; count < CYCLES; ++count)
{
 if (count % (CYCLES / DOTS) != 0) continue;
 fputc('.', stdout); // Mark every nth cycle
}
printf(" done.\n");

This code produces the following output:

Performing 10000 modulo operations done.

See Also

putc(), fgetc(), fputwc()

fputsfputs

Writes a string to a file.

#include <stdio.h>
int fputs(const char * restrict string, FILE * restrict fp);

Lib
rary

Functio
ns

Standard Library Functions | 439

The fputs() function writes a string to the file specified by the FILE pointer argu‐
ment. The string is written without the terminator character ('\0'). If successful,
fputs() returns a value greater than or equal to zero. A return value of EOF indi‐
cates that an error occurred.
Example

See the examples for fclose() and fflush() in this chapter.
See Also

fgets(), fputws()

fputwcfputwc

Writes a wide character to a file.

#include <wchar.h>
wint_t fputwc(wchar_t wc, FILE *fp);

The fputwc() function writes a wide character to the current file position of the
specified FILE pointer. The return value is the character written, or WEOF if an error
occurred. Because the external file associated with a wide-oriented stream is consid‐
ered to be a sequence of multibyte characters, fputwc() implicitly performs a wide-
to-multibyte character conversion. If an encoding error occurs in the process,
fputwc() sets the errno variable to the value of EILSEQ (“illegal byte sequence”).
Example

See the example for fgetwc() in this chapter.
See Also

fputc(), fgetwc(), putwc(), putwchar()

fputwsfputws

Writes a string of wide characters to a file.

#include <wchar.h>
int fputws(const wchar_t * restrict ws, FILE * restrict fp);

The fputws() function writes a string of wide characters to the file specified by the
FILE pointer argument. The string is written without the terminator character
(L'\0'). If successful, fputws() returns a value greater than or equal to zero. A
return value of EOF indicates that an error occurred.
Example

FILE *fpw;
char fname_wide[] = "widetest.txt";
int widemodeflag = 1;
int result;

wchar_t widestring[] =
 L"How many umlauts are there in Fahrvergnügen?\n";

440 | Chapter 18: Standard Library Functions

if ((fpw = fopen(fname_wide, "a")) == NULL)
 { perror("Opening output file"); return -1; }

// Set file to wide-character orientation:
widemodeflag = fwide(fpw, widemodeflag);
if (widemodeflag <= 0)
{
 fprintf(stderr, "Unable to set output file %s to wide characters\n",
 fname_wide);
 (void)fclose(fpw);
 return -1;
}

// Write wide-character string to the file:
result = fputws(widestring, fpw);

See Also

fgets(), fputs(), fgetws(), fwprintf()

freadfread

Reads a number of objects from a file.

#include <stdio.h>
size_t fread(void * restrict buffer, size_t size, size_t n,
 FILE * restrict fp);

The fread() function reads up to n data objects of size size from the specified file,
and stores them in the memory block pointed to by the buffer argument. You must
make sure that the available size of the memory block in bytes is at least n times
size. Furthermore, on systems that distinguish between text and binary file access
modes, the file should be opened in binary mode.

The fread() function returns the number of data objects read. If this number is less
than the requested number, then either the end of the file was reached or an error
occurred.
Example

typedef struct {
 char name[64];
 /* ... more members ... */
} item;

#define CACHESIZE 32 // Size as a number of array elements.

FILE *fp;
int readcount = 0;
item itemcache[CACHESIZE]; // An array of "items".

if ((fp = fopen("items.dat", "r+")) == NULL)
 { perror("Opening data file"); return -1; }

Lib
rary

Functio
ns

Standard Library Functions | 441

/* Read up to CACHESIZE "item" records from the file.*/

readcount = fread(itemcache, sizeof (item), CACHESIZE, fp);

See Also

fwrite(), feof(), ferror()

freefree

Releases allocated memory.

#include <stdlib.h>
void free(void *ptr);

After you have finished using a memory block that you allocated by calling mal
loc(), calloc() or realloc(), the free() function releases it to the system for
recycling. The pointer argument must be the exact address furnished by the allocat‐
ing function; otherwise, the behavior is undefined. If the argument is a null pointer,
free() does nothing. In any case, free() has no return value.
Example

char *ptr;

/* Obtain a block of 4096 bytes ... */
ptr = calloc(4096, sizeof(char));

if (ptr == NULL)
 fprintf(stderr, "Insufficient memory.\n"), abort();
else
{
/* ... use the memory block ... */
 strncpy(ptr, "Imagine this is a long string.\n", 4095);
 fputs(stdout, ptr);
/* ... and release it. */
 free(ptr);
}

See Also

malloc(), calloc(), realloc()

freopenfreopen

Changes the file associated with an existing file pointer.

#include <stdio.h>
FILE *freopen(const char * restrict name, const char * restrict mode,
 FILE * restrict fp);

The freopen() function closes the file associated with the FILE pointer argument
and opens the file with the specified name, associating it with the same FILE pointer
as the file just closed. That FILE pointer is the function’s return value. If an error

442 | Chapter 18: Standard Library Functions

occurs, freopen() returns a null pointer, and the FILE pointer passed to the func‐
tion is closed.

The new access mode is specified by the second character string argument, in the
same way described under fopen(). The filename name can be a null pointer. In that
case, the stream remains associated with the original file, and only the access mode
is changed as specified by mode.

The most common use of freopen() is to redirect the standard I/O streams stdin,
stdout, and stderr.
Example

time_t sec;
char fname[] = "test.dat";
if (freopen(fname, "w", stdout) == NULL)
 fprintf(stderr, "Unable to redirect stdout.\n");
else
{
 time(&sec);
 printf("%.24s: This file opened as stdout.\n", ctime(&sec));
}

See Also

freopen_s(), fopen(), fopen_s(), fclose(), fflush(), setbuf()

freopen_s C11freopen_s C11

Changes the file associated with an existing file pointer.

#include <stdio.h>
errno_t freopen_s(FILE * restrict * restrict fpPtr,
 const char * restrict name,
 const char * restrict mode,
 FILE * restrict fp);

The function freopen_s(), like freopen(), closes the file associated with the FILE
pointer argument fp and opens the file with the specified name and access mode,
associating it with the same FILE pointer as the file just closed. If name is a null
pointer, freopen_s() opens the original file again with the specified new access
mode.

Unlike freopen(), the freopen_s() function opens the file subject to the rules
described in the section on fopen_s() in this chapter. Furthermore, instead of
returning the FILE pointer fp, freopen_s() copies it to the variable addressed by its
first argument, fpPtr. Before doing anything, freopen_s() tests the following run‐
time constraints: the pointer arguments fpPtr, mode, and fp must not be null point‐
ers.

If it succeeds in opening the file, freopen_s() returns zero and places the value of
fp in the variable addressed by fpPtr. If unsuccessful, the function returns a non‐

Lib
rary

Functio
ns

Standard Library Functions | 443

zero value and places a null pointer in the variable addressed by fpPtr, provided
fpPtr is not a null pointer itself.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
// ...

 char filename[] = "redirect.txt";
 FILE *fp;
 // Redirect standard output to the file redirect.txt:
 errno_t err = freopen_s(&fp, filename, "w", stdout);
 if(err != 0)
 { fprintf(stderr, "Unable to redirect stdout to %s\n",
 filename);
 exit(err);
 }
 printf("This text is being written to the file %s.\n", filename);
 fclose(stdout);

See Also

freopen(), fopen_s(), fopen(), fclose()

frexpfrexp

Splits a real number into a mantissa and exponent.

#include <math.h>
double frexp(double x, int *exp);
float frexpf(float x, int *exp); (C99)
long double frexpl(long double x, int *exp); (C99)

The frexp() function expresses a floating-point number x as a normalized fraction
f and an integer exponent e to base 2. In other words, if the mantissa f is the return
value of the function call frexp(x, &e), then x = f × 2e and 0.5 ≤ |f| < 1, where |f| is
the absolute value of f.

The normalized fraction is the return value of the frexp() function. The function
places the other part of its “answer,” the exponent, in the location addressed by the
pointer argument. If the floating-point argument x is equal to 0, then the function
stores the value 0 at the exponent location and returns 0.
Example

double fourthrt(double x)
{
 int exponent, exp_mod_4;
 double mantissa = frexp(x, &exponent);

 exp_mod_4 = exponent % 4;
 exponent -= (exp_mod_4); // Get an exponent that's
 // divisible by four ...
 for (int i = abs(exp_mod_4); i > 0; i--)

444 | Chapter 18: Standard Library Functions

 {
 if (exp_mod_4 > 0) // ... and compensate in the mantissa.
 mantissa *= 2.0;
 else
 mantissa /= 2.0;
 }
 return ldexp(sqrt(sqrt(mantissa)), exponent / 4);
}

See Also

The ldexp() function, which performs the reverse calculation.

fscanf, fscanf_sfscanf, fscanf_s

Reads formatted data from an open file.

#include <stdio.h>
int fscanf(FILE * restrict fp, const char * restrict format, ...);
int fscanf_s(FILE * restrict fp,
 const char * restrict format, ...); (C11)

The functions fscanf() and fscanf_s() are like the functions scanf() and
scanf_s(), except that they read from the stream specified by their argument fp
instead of stdin.

Like scanf(), the fscanf() functions return the number of data items converted
and stored in variables. If an input error occurs or the function reads to the end of
the file before any data can be converted, the return value is EOF. The fscanf_s()
function also returns EOF if a violation of its runtime constraints occurs.
Example
The example code reads information about a user from a file, which we will suppose
contains a line of colon-separated strings like this:

tony:x:1002:31:Tony Crawford,,:/home/tony:/bin/bash

Here is the code:

struct pwrecord { // Structure for contents of passwd fields.
 unsigned int uid;
 unsigned int gid;
 char user[32];
 char pw [32];
 char realname[128];
 char home [128];
 char shell [128];
};

/* ... */

FILE *fp;
int results = 0;
struct pwrecord record;

Lib
rary

Functio
ns

Standard Library Functions | 445

struct pwrecord *recptr = &record;
char gecos[256] = "";

/* ... Open the password file to read ... */

record = (struct pwrecord) { UINT_MAX, UINT_MAX, "", "", "", "", "" };

/* 1. Read login name, password, UID and GID. */
results = fscanf(fp, "%31[^:]:%31[^:]:%u:%u:",
 recptr->user, recptr->pw,
 &recptr->uid, &recptr->gid);

This function call reads the first part of the input string, tony:x:1002:31:, and
copies the two strings "tony" and "x" and assigns two unsigned int values, 1002
and 31, to the corresponding structure members. The return value is 4. The remain‐
der of the code is then as follows:

if (results < 4)
{
 fprintf(stderr, "Unable to parse line.\n");
 fscanf(fp, "%*[^\n]\n"); // Read and discard rest of line.
}

/* 2. Read the "gecos" field, which may contain nothing, or just the
 * real name, or comma-separated sub-fields.
 */
results = fscanf(fp, "%255[^:]:", gecos);
if (results < 1)
 strcpy(recptr->realname, "[No real name available]");
else
 sscanf(gecos, "%127[^,]", recptr->realname); // Truncate at
 // first comma.

/* 3. Read two more fields before the end of the line. */

results = fscanf(fp, "%127[^:]:%127[^:\n]\n",
 recptr->home, recptr->shell);
if (results < 2)
{
 fprintf(stderr, "Unable to parse line.\n");
 fscanf(fp, "%*[^\n]\n"); // Read and discard rest of line.
}
printf("The user account %s with UID %u belongs to %s.\n",
 recptr->user, recptr->uid, recptr->realname);

For our sample input line, the printf() call produces the following output:

The user account tony with UID 1002 belongs to Tony Crawford.

If the implementation supports the secure functions, the function fscanf_s() can
also be used as an alternative to fscanf(). The first fscanf_s() call in the preced‐
ing example would then be as follows:

446 | Chapter 18: Standard Library Functions

/* 1. Read login name, password, UID and GID. */
results = fscanf_s(fp, "%31[^:]:%31[^:]:%u:%u:",
 recptr->user, sizeof(recptr->user),
 recptr->pw, sizeof(recptr->pw),
 &recptr->uid, &recptr->gid);

See Also

scanf(), sscanf(), vscanf(), vfscanf(), and vsscanf(); wscanf(), fwscanf(),
swscanf(), vwscanf(), vfwscanf(), and vswscanf()

For each of these functions, there is also a corresponding “secure” function, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined)

fseekfseek

Moves the access position in a file.

#include <stdio.h>
int fseek(FILE *fp, long offset, int origin);

The fseek() function moves the file position indicator for the file specified by the
FILE pointer argument. The new position is offset bytes from the position selected
by the value of the origin argument, which may indicate the beginning of the file,
the previous position, or the end of the file. Table 18-3 lists the permitted values for
origin.

Table 18-3. Values for fseek()’s origin argument

Value of origin Macro name Offset is relative to

0 SEEK_SET The beginning of the file

1 SEEK_CUR The current position

2 SEEK_END The end of the file

You can use a negative offset value to move the file access position backward, but
the position indicator cannot be moved backward past the beginning of the file.
However, it is possible to move the position indicator forward past the end of the
file. If you then perform a write operation at the new position, the file’s contents
between its previous end and the new data are undefined.

The fseek() function returns 0 if successful, or -1 if an error occurs.
Example

typedef struct { long id;
 double value;
 } record;
FILE *fp;
record cur_rec = (record) { 0, 0.0 };
int reclength_file = sizeof(record);

Lib
rary

Functio
ns

Standard Library Functions | 447

long seek_id = 123L;

if ((fp = fopen("records", "r")) == NULL)
 perror("Unable to open records file");
else do
{
 if (1 > fread(&cur_rec.id, sizeof (long), 1, fp))
 fprintf(stderr, "Record with ID %ld not found\n", seek_id);
 else // Skip rest of record
 if (fseek(fp, reclength_file − sizeof(long), 1))
 perror("fseek failed");
} while (cur_rec.id != seek_id);

See Also

fgetpos(), fsetpos(), ftell(), rewind()

fsetposfsetpos

Sets a file position indicator to a previously recorded position.

#include <stdio.h>
int fsetpos(FILE *fp, const fpos_t *ppos);

The fsetpos() function sets the file position indicator for the file specified by the
FILE pointer argument. The ppos argument, a pointer to the value of the new posi‐
tion, typically points to a value obtained by calling the fgetpos() function.

The function returns 0 if successful. If an error occurs, fsetpos() returns a nonzero
value and sets the errno variable to an appropriate positive value.

The type fpos_t is defined in stdio.h, and may or may not be an integer type.
Example

See the example for fgetpos() in this chapter.
See Also

fgetpos(), fseek(), ftell(), rewind()

ftellftell

Obtains the current file access position.

#include <stdio.h>
long ftell(FILE *fp);

The ftell() function returns the current access position in the file controlled by
the FILE pointer argument. If the function fails to obtain the file position, it returns
the value -1 and sets the errno variable to an appropriate positive value.

448 | Chapter 18: Standard Library Functions

To save the access position in a multibyte stream, use the fget
pos() function, which also saves the stream’s multibyte pars‐
ing state.

Example
This example searches in a file, whose name is the second command-line argument,
for a string, which the user can specify in the first command-line argument.

#define MAX_LINE 256

FILE *fp;
long lOffset = 0L;
char sLine[MAX_LINE] = "";
char *result = NULL;
int lineno = 0;
/* ... */
if ((fp = fopen(argv[2], "r")) == NULL)
{
 fprintf(stderr, "Unable to open file %s\n", argv[2]);
 exit(-1);
}
do
{
 lOffset = ftell(fp); // Bookmark the beginning of
 // the line we're about to read.
 if (-1L == lOffset)
 fprintf(stderr, "Unable to obtain offset in %s\n", argv[2]);
 else
 lineno++;

 if (! fgets(sLine,MAX_LINE,fp)) // Read next line from file.
 break;
} while (strstr(sLine, argv[1]) == NULL); // Test for argument
 // in sLine.
/* Dropped out of loop: Found search keyword or EOF */
if (feof(fp) || ferror(fp))
{
 fprintf(stderr,"Unable to find \"%s\" in %s\n", argv[1], argv[2]);
 rewind(fp);
}
else
{
 printf("%s (%d): %s\n", argv[2], lineno, sLine);
 fseek(fp, lOffset, 0); // Set file pointer at beginning of
 // the line containing the keyword
}

Lib
rary

Functio
ns

Standard Library Functions | 449

The following example runs this program on its own source file, searching for a line
containing the word “the”. As you can see, the first occurrence of “the” is in line 22.
The program finds that line and displays it:

tony@luna:~/ch18$./ftell the ftell.c
ftell.c (22): lOffset = ftell(fp); // Bookmark the beginning of

See Also

fgetpos(), fsetpos(), fseek(), rewind()

fwidefwide

Determines whether a stream is byte-character- or wide-character-oriented.

#include <stdio.h>
#include <wchar.h>
int fwide(FILE *fp, int mode);

The fwide() function either gets or sets the character type orientation of a file,
depending on the value of the mode argument:

mode > 0
The fwide() function attempts to change the file to wide-character orientation.

mode < 0
The function attempts to change the file to byte-character orientation.

mode = 0
The function does not alter the orientation of the stream.

In all three cases, the return value of fwide() indicates the stream’s orientation after
the function call in the same way:

Greater than 0
After the fwide() function call, the file has wide-character orientation.

Less than 0
The file now has byte-character orientation.

Equal to 0
The file has no orientation.

The normal usage of fwide() is to call it once immediately after opening a file to set
it to wide-character orientation. Once you have determined the file’s orientation,
fwide() does not change it on subsequent calls. If you do not call fwide() for a
given file, its orientation is determined by whether the first read or write operation
is byte-oriented or wide-oriented. You can remove a file’s byte or wide-character ori‐
entation by calling freopen(). For more information, see “Byte-Oriented and Wide-
Oriented Streams” on page 216.

450 | Chapter 18: Standard Library Functions

Example

See the example for fputws() in this chapter.
See Also
The many functions for working with streams of wide characters, listed in
Table 17-2.

fwprintf, fwprintf_sfwprintf, fwprintf_s

Writes formatted output in a wide-character string to a file.

#include <stdio.h>
#include <wchar.h>
int fwprintf(FILE * restrict fp, const wchar_t * restrict format, ...);
int fwprintf_s(FILE * restrict fp,
 const wchar_t * restrict format, ...); (C11)

The functions fwprintf() and fwprintf_s() are like fprintf() and fprintf_s(),
except that their format string argument and their output are strings of wide charac‐
ters.
Example

wchar_t name_local[] = L"Ka\u0142u\u017Cny";
char name_portable[]= "Kaluzny";
char locale[] = "pl_PL.UTF-8";
char * newlocale;

newlocale = setlocale(LC_ALL, locale);
if (newlocale == NULL)
 fprintf(stderr, "Sorry, couldn't change the locale to %s.\n"
 "The current locale is %s.\n",
 locale, setlocale(LC_ALL, NULL));

fwprintf(stdout,
 L"Customer's name: %ls (Single-byte transliteration: %s)\n",
 name_local, name_portable);

If the specified Polish locale is available, this example produces the output:

Customer's name: Kałużny (Single-byte transliteration: Kaluzny)

See Also

The byte-character output functions in the printf() family; the wide-character
output functions fputwc(), fputwc(), putwc(), putwchar(), wprintf(),
vfwprintf() and vwprintf(); the wide-character input functions fgetwc(),
fgetws(), getwc(), getwchar(), fwscanf(), wscanf(), vfwscanf() and vwscanf()

For each of these functions, there is also a corresponding “secure” function, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined) Lib

rary
Functio

ns

Standard Library Functions | 451

fwscanf, fwscanf_sfwscanf, fwscanf_s

Reads a formatted data string of wide characters from a file.

#include <stdio.h>
#include <wchar.h>
int fwscanf(FILE * restrict fp, const wchar_t * restrict format, ...);
int fwscanf_s(FILE * restrict fp,
 const wchar_t * restrict format, ...); (C11)

The functions fwscanf() and fwscanf_s() are like the functions wscanf() and
wscanf_s(), except that they read from the stream specified by their argument fp
instead of stdin.

Like wscanf(), the fwscanf() functions return the number of data items converted
and stored in variables. If an input error occurs or the function reads to the end of
the file before any data can be converted, the return value is EOF. The fwscanf_s()
function also returns EOF if a violation of its runtime constraints occurs.
Example

See the example for wscanf() in this chapter.
See Also

wscanf(), swscanf(), wcstod(), wcstol(), wcstoul(), scanf(), fscanf(); the
wide-character output functions fwprintf(), wprintf(), vfwprint(), and
vwprint()

For each of these functions, there is also a corresponding “secure” function, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined)

fwritefwrite

Writes a number of objects of a given size to a file.

#include <stdio.h>
size_t fwrite(const void * restrict buffer, size_t size, size_t n,
 FILE * restrict fp);

The fwrite() function writes up to n data objects of the specified size from the
buffer addressed by the pointer argument buffer to the file referenced by the FILE
pointer fp. Furthermore, on systems that distinguish between text and binary file
access modes, the file should be opened in binary mode.

The function returns the number of data objects that were actually written to the
file. This value is 0 if either the object size size or the number of objects n was 0,
and may be less than the argument n if a write error occurred.
Example

typedef struct {
 char name[64];

452 | Chapter 18: Standard Library Functions

 /* ... more structure members ... */
} item;

#define CACHESIZE 32 // Size as a number of array elements.

FILE *fp;
int writecount = 0;
item itemcache[CACHESIZE]; // An array of "items".

/* ... Edit the items in the array ... */

if ((fp = fopen("items.dat", "w")) == NULL)
 { perror ("Opening data file"); return -1; }

/* Write up to CACHESIZE "item" records to the file.*/

writecount = fwrite(itemcache, sizeof (item), CACHESIZE, fp);

See Also

The corresponding input function fread(); the string output functions fputs()
and fprintf()

getcgetc

Reads a character from a file.

#include <stdio.h>
int getc(FILE *fp);

The getc() function is the same as fgetc(), except that it may be implemented as a
macro and may evaluate its argument more than once. If the argument is an expres‐
sion with side effects, use fgetc() instead.

getc() returns the character read. A return value of EOF indicates an error or an
attempt to read past the end of the file. In these cases, the function sets the file’s
error or end-of-file flag as appropriate.
Example

FILE *inputs[16];
int nextchar, i = 0;

/* ... open 16 input streams ... */

do {
 nextchar = getc(inputs[i++]); // Warning: getc() is a macro!
 /* ... process the character ... */
} while (i < 16);

The do...while statement in this example skips over some files in the array if getc()
evaluates its argument more than once. Here is a safer version, without side effects
in the argument to getc():

Lib
rary

Functio
ns

Standard Library Functions | 453

for (i = 0; i < 16; i++) {
 nextchar = getc(inputs[i]);
 /* ... process the character ... */
}

See Also

fgetc(), getchar(), fputc(), putc(), putchar(), ungetc(); the functions to read
and write wide characters, getwc(), fgetwc(), getwchar(), putwc(), fputwc(),
putwchar(), and ungetwc()

getchargetchar

Reads a character from the standard input stream.

#include <stdio.h>
int getchar(void);

The function call getchar() is equivalent to getc(stdin). Like getc(), getchar()
may be implemented as a macro. As it has no arguments, however, unforeseen side
effects are unlikely.

getchar() returns the character read. A return value of EOF indicates an error or an
attempt to read past the end of the input stream. In these cases, the function sets the
error or end-of-file flag for stdin as appropriate.
Example

char file_name[256};
int answer;

/* ... */

fprintf(stderr, "Are you sure you want to replace the file \"%s\"?\n",
 file_name);
answer = tolower(getchar());
if (answer != 'y')
 exit(-1);

See Also

fgetc(), fputc(), getchar(), putc(), putchar(), ungetc(); the functions to read
and write wide characters, getwc(), fgetwc(), getwchar(), putwc(), fputwc(),
putwchar(), and ungetwc()

getenvgetenv

Obtains the string value of a specified environment variable.

#include <stdlib.h>
char *getenv(const char *name);

454 | Chapter 18: Standard Library Functions

The getenv() function searches the environment variables at runtime for an entry
with the specified name, and returns a pointer to the variable’s value. If there is no
environment variable with the specified name, getenv() returns a null pointer.

Your program must not modify the string addressed by the pointer returned, and
the string at that address may be replaced by subsequent calls to getenv(). The
function getenv() is not guaranteed to be thread-safe.

Furthermore, C itself does not define a function to set or modify environment vari‐
ables, or any list of variable names that you can expect to exist; these features, if
available at all, are system-specific.
Example

#define MAXPATH 1024;
char sPath[MAXPATH] = "";
char *pTmp;

if ((pTmp = getenv("PATH")) != NULL)
 strncpy(sPath, pTmp, MAXPATH − 1); // Save a copy for our use.
else
 fprintf(stderr, "No PATH variable set.\n") ;

See Also

getenv_s(), system()

getenv_s C11getenv_s C11

Obtains the string value and the length of a specified environment variable.

#include <stdlib.h>
errno_t getenv_s(size_t * restrict len,
 char * restrict value, rsize_t maxsize,
 const char * restrict name););

The function getenv_s(), like getenv(), searches the environment variables at run‐
time for an entry with the specified name. If the variable exists, getenv_s() per‐
forms the following operations:

• Writes the length of the environment variable’s value string to the variable
addressed by the pointer argument len, provided len is not a null pointer

• Copies the value of the environment variable to the char array addressed by the
value argument, provided the length of the environment variable’s value is less
than maxsize

If the environment variable name is not defined, then zero is written to the variable
that len points to, and the string terminator '\0' is written to value[0], provided
that len is not a null pointer and maxsize is greater than zero. Lib

rary
Functio

ns

Standard Library Functions | 455

The function getenv_s() tests the following runtime constraints: the pointer argu‐
ment name must not be a null pointer, and maxsize must be less than or equal to
RSIZE_MAX. If maxsize is greater than zero, value must not be a null pointer. If a
runtime constraint is violated, getenv_s() does not search the list of environment
variables but stores the value zero in the object that len points to, provided len is
not a null pointer.

The function getenv_s() returns zero if the environment variable name exists and
its value string was copied to the address in value. Otherwise, the function returns
a nonzero value. The function is not guaranteed to be thread-safe.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
// ...
 char envStr[512];
 size_t len;
 if(getenv_s(&len, envStr, sizeof(envStr),"PATH") == 0)
 printf("PATH variable (%u characters): \n%s\n", len, envStr);
 else if(len > 0)
 printf("The PATH variable (%u characters) is more than "
 "%u bytes long.\n", len, sizeof(envStr));
 else
 printf("PATH variable not found.\n");

See Also

getenv(), set_constraint_handler_s(), system()

getsgets

Reads a line of text from standard input.

#include <stdio.h>
char *gets(char *buffer);

The gets() function reads characters from the standard input stream until it reads
a newline character or reaches the end of the stream. The characters read are stored
as a string in the buffer addressed by the pointer argument. A string terminator
character '\0' is appended after the last character read (not counting the newline
character, which is discarded).

If successful, the function returns the value of its argument. If an error occurs, or if
the end of the file is reached before any characters can be read in, gets() returns a
null pointer.

456 | Chapter 18: Standard Library Functions

The gets() function provides no way to limit the input
length, and if the stdin stream happens to deliver a long
input line, gets() will attempt to store characters past the
end of the available buffer. Such buffer overflows are a
potential security risk. Use fgets() instead, which has a
parameter to control the maximum input length.

The C11 standard retires the function gets(), replacing it
with the function gets_s(), which has an additional
parameter for the size of the input buffer.

Example
char buffer[1024];

/* Replaced gets() with fgets() to avoid potential buffer overflow
 * OLD: while (gets(buffer) != NULL)
 * NEW: below
 */
while (fgets(buffer, sizeof(buffer), stdin) != NULL)
{
 /* ... process the line; remember that fgets(), unlike gets(),
 retains the newline character at the end of the string ... */
}

See Also

gets_s(), fgets(), fgetws(); the corresponding string output functions, puts(),
fputs(), fputws()

gets_s C11gets_s C11

Reads a line of text from standard input.

#include <stdio.h>
char *gets_s(char *buffer, rsize_t n);

The secure function gets_s() reads characters from the standard input stream
(stdin) until it reads a newline character or reaches the end of the stream. The
characters read are stored as a string in the buffer addressed by the pointer argu‐
ment. A string terminator character '\0' is appended after the last character read
(not counting the newline character, which is discarded). The second argument
specifies the size of the available buffer. Hence the line to be read may contain at
most n - 1 characters.

The function has the following runtime constraints: the pointer argument buffer
must not be a null pointer, and n must be greater than zero and less than or equal to
RSIZE_MAX. Furthermore, the line to be read must not be more than n – 1 characters
long. In other words, a newline character or the end of the stream must occur
before the nth character read.

Lib
rary

Functio
ns

Standard Library Functions | 457

If a read error or a violation of the runtime constraints occurs, the function writes a
string terminator character to buffer[0], provided buffer is not a null pointer and
RSIZE_MAX is greater than zero. In case of such an error, the entire line read is dis‐
carded: gets_s() reads and discards all characters until it reads a newline character
or reaches the end of the stream, or a read error occurs.

If successful, the gets_s() function returns the value of its pointer argument
buffer. If an error occurs, or if the end of the stream is reached before any charac‐
ters can be read in, gets_s() returns a null pointer.

An alternative to gets_s() to process lines of any length
correctly is the function fgets(), which does not discard
any characters read. fgets() also stores newline characters
('\n') that it reads.

Example
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
// ...

 char text[100];
 puts("Enter a line of text:");
 if(gets_s(text, sizeof(text)) == NULL)
 fputs("Unable to read the text.\n", stderr);
 else
 printf("Your text:\n%s\n", text);

See Also

gets(), fgets(), fgetws(); the corresponding string output functions, puts(),
fputs(), fputws()

getwcgetwc

Reads a wide character from a file.

#include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *fp);

The getwc() function is the wide-character counterpart to getc(): it may be imple‐
mented as a macro, and may evaluate its argument more than once, causing unfore‐
seen side effects. Use fgetwc() instead.

getwc() returns the character read. A return value of WEOF indicates an error or an
attempt to read past the end of the input stream. In these cases, the function sets the
error or end-of-file flag for stdin as appropriate.

458 | Chapter 18: Standard Library Functions

Example
wint_t wc;

if (setlocale(LC_CTYPE, "") == NULL)
{
 fwprintf(stderr,
 L"Sorry, couldn't change to the system's native locale.\n");
 return 1;
}
while ((wc = getwc(stdin)) != WEOF)
{
 wc = towupper(wc);
 putwc((wchar_t)wc, stdout);
}

See Also

The function fgetwc(); the corresponding output functions putwc() and fputwc();
the byte-character functions getc() and getchar(); the byte-character output func‐
tions putc(), putchar(), and fputc()

getwchargetwchar

Reads a wide character from the standard input stream.

#include <wchar.h>
wint_t getwchar(void);

The getwchar() function is the wide-character counterpart to getchar(); it is
equivalent to getwc(stdin) and returns the wide character read. Like getwc(),
getwchar() may be implemented as a macro, but because it has no arguments,
unforeseen side effects are not likely. A return value of WEOF indicates an error or an
attempt to read past the end of the stream. In these cases, the function sets the
stdin stream’s error or end-of-file flag as appropriate.
Example

wint_t wc;

if (setlocale(LC_CTYPE, "") == NULL)
{
 fwprintf(stderr,
 L"Sorry, couldn't change to the system's native locale.\n");
 return 1;
}
while ((wc = getwchar()) != WEOF) // or: (wc = getwc(stdin))
{
 wc = towupper(wc);
 putwchar((wchar_t)wc); // or: putwc((wchar_t)wc, stdout);
} Lib

rary
Functio

ns

Standard Library Functions | 459

See Also

fgetwc(); the byte-character functions getc() and getchar(); the output functions
fputwc() and putwchar()

gmtimegmtime

Converts a time value into a year, month, day, hour, minute, second, etc.

#include <time.h>
struct tm *gmtime(const time_t *timer);

The gmtime() function converts a numeric time value (usually a number of seconds
since January 1, 1970, but not necessarily) into the equivalent date-and-time struc‐
ture in Coordinated Universal Time (UTC, formerly called Greenwich Mean Time;
hence the function’s name). To obtain similar values for the local time, use the func‐
tion localtime().

The function’s argument is not the number of seconds itself but a pointer to that
value. The function returns a pointer to a static struct tm object that contains the
results. If an error occurs, the function returns a null pointer.

Both in the structure type struct tm and the arithmetic type time_t are defined in
the header time.h. The tm structure is defined as follows:

struct tm {
 int tm_sec; /* Seconds since the full minute: 0 to 60 */
 int tm_min; /* Minutes since the full hour: 0 to 59 */
 int tm_hour; /* Hours since midnight: 0 to 23 */
 int tm_mday; /* Day of the month: 1 to 31 */
 int tm_mon; /* Months since January: 0 to 11 */
 int tm_year; /* Years since 1900 */
 int tm_wday; /* Days since Sunday: 0 to 6 */
 int tm_yday; /* Days since Jan. 1: 0 to 365 */
 int tm_isdst; /* Flag for daylight saving time:
 greater than 0 if time is DST;
 equal to 0 if time is not DST;
 less than 0 if unknown. */
};

The argument most often passed to gmtime() is the current time, obtained as a
number with type time_t by calling the function time(). The type time_t is usually
defined as long, long long, or unsigned long.
Example
The following program prints a string showing the offset of the local time zone
from UTC:

time_t rawtime;
struct tm utc_tm, local_tm, *ptr_tm;
char buffer[1024] = "";

time(&rawtime); // Get current time as an integer.

460 | Chapter 18: Standard Library Functions

ptr_tm = gmtime(&rawtime); // Convert to UTC in a struct tm.
memcpy(&utc_tm, ptr_tm, sizeof(struct tm)); // Save a local copy.
ptr_tm = localtime(&rawtime); // Do the same for local time zone.
memcpy(&local_tm, ptr_tm, sizeof(struct tm));

if (strftime(buffer, sizeof(buffer),
 "It's %A, %B %d, %Y, %R o'clock, UTC.", &utc_tm))
 puts(buffer);
if (strftime(buffer, sizeof(buffer),
 "Here it's %A, %B %d, %Y, %R o'clock, UTC %z.",
 &local_tm))
 puts(buffer);

This code produces output like the following:

It's Tuesday, March 24, 2015, 22:26 o'clock, UTC.
Here it's Wednesday, March 25, 2015, 00:26 o'clock, UTC +0200.

See Also

gmtime_s(), localtime(), localtime_s(), strftime(), time()

gmtime_s C11gmtime_s C11

Converts an integer time value into a year, month, day, hour, minute, second, etc.

#include <time.h>
struct tm *gmtime_s(const time_t * restrict timer ,
 struct tm * restrict result);

The function gmtime_s(), like gmtime(), converts a numeric time value (usually a
number of seconds since January 1, 1970, but not necessarily) into the equivalent
date-and-time structure in Coordinated Universal Time (UTC; also called Green‐
wich Mean Time). The results are stored in an object of the type struct tm. This
structure is described in the section on gmtime() in this chapter.

Unlike gmtime(), gmtime_s() does not use an internal, static struct tm object, but
places the results in the struct tm addressed by its second argument. As a result,
the gmtime_s() function is thread-safe.

The function first tests its runtime constraints: the pointer arguments timer and
result must not be null pointers. If a runtime constraint is violated or if the value
of timer cannot be converted into a UTC calendar time, gmtime_s() returns a null
pointer. If no error occurs, the return value is the pointer result.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
// ...

 time_t now; struct tm tmStruct; char timeStr[26];

 time(&now); // Current time as an integer.

Lib
rary

Functio
ns

Standard Library Functions | 461

 if(gmtime_s(&now, &tmStruct) != NULL // Convert to UTC.
 && asctime_s(timeStr, sizeof(timeStr), &tmStruct) == 0)
 printf("The current universal time (UTC): %s\n", timeStr);

Typical output:

The current universal time (UTC): Sun May 17 14:58:09 2015

See Also

gmtime(), localtime(), localtime_s(), strftime(), time()

hypot C99hypot C99

Calculates a hypotenuse by the Pythagorean formula.

#include <math.h>
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

The hypot() functions compute the square root of the sum of the squares of their
arguments, while avoiding intermediate overflows. If the result exceeds the func‐
tion’s return type, a range error may occur.
Example

double x, y, h; // Three sides of a triangle

printf("How many kilometers do you want to go westward? ");
scanf("%lf", &x);

printf("And how many southward? ");
scanf("%lf", &y);

errno = 0;
h = hypot(x, y);

if (errno)
 perror(__FILE__);
else
 printf("Then you'll be %4.2lf km from where you started.\n", h);

If the user answers the prompts with 3.33 and 4.44, the program prints this output:

Then you'll be 5.55 km from where you started.

See Also

sqrt(), cbrt(), csqrt()

462 | Chapter 18: Standard Library Functions

ignore_handler_s C11ignore_handler_s C11

Does nothing in response to runtime errors in secure functions.

#include <stdlib.h>
void ignore_handler_s(const char * restrict msg, void * restrict ptr,
 errno_t error);

If the function ignore_handler_s() is passed as an argument to the function
set_constraint_handler_s(), it is installed as a runtime error handler so that
ignore_handler_s() is called if one of the secure functions (with names ending in
_s) violates its runtime constraints.

The function ignore_handler_s() takes no action on such errors, but simply
returns control to the secure function in which the error occurred. That function
then returns a value to its caller to indicate that an error occurred. Such return val‐
ues are described in the section on each secure function in this chapter. The secure
functions usually indicate errors by returning a null pointer or a nonzero value of
the type errno_t.

To install a runtime error handler other than ignore_handler_s(), you can also
pass the standard function abort_handler_s() or your own handler function to
set_constraint_handler_s().
Example

// Handle runtime constraint violations using only
// the return value of secure functions.
#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
// ...

 char message[20] = "Hello, ",
 name[20];
 set_constraint_handler_s(ignore_handler_s);

 printf("Please enter your name: ");
 if(gets_s(name, sizeof(name)) == NULL)
 { /* Error: user entered more than 19 characters.*/ }
 else if(strcat_s(message, sizeof(message), name) != 0)
 { /* Error: message array is too small.*/ }
 else
 puts(message);

See Also

abort_handler_s(), set_constraint_handler_s()

Lib
rary

Functio
ns

Standard Library Functions | 463

ilogb C99ilogb C99

Returns the exponent of a floating-point number as an integer.

#include <math.h>
int ilogb(double x)
int ilogbf(float x)
int ilogbl(long double x)

The ilogb() functions return the exponent of their floating-point argument as a
signed integer. If the argument is not normalized, ilogb() returns the exponent of
its normalized value.

If the argument is 0, ilogb() returns the value of the macro FP_ILOGB0 (defined in
math.h), and may incur a range error. If the argument is infinite, the return value is
equal to INT_MAX. If the floating-point argument is NaN (“not a number”), ilogb()
returns the value of the macro FP_ILOGBNAN.
Example

int exponent = 0;
double x = -1.509812734e200;

while (exponent < INT_MAX)
{
 exponent = ilogb(x);
 printf("The exponent of %g is %d.\n", x, exponent);

 if (x < 0.0 && x * x > 1.0)
 x /= 1e34;
 else
 x += 1.1, x *= 2.2e34 ;
}

This code produces some 15 output lines, including these samples:

The exponent of -1.50981e+200 is 664.
The exponent of -1.50981e+30 is 100.
The exponent of -0.000150981 is -13.
The exponent of 2.41967e+34 is 114.
The exponent of inf is 2147483647.

See Also

logb(), log(), log10(), log1p(), exp(), pow()

imaxabs C99imaxabs C99

Gives the absolute value of a number of the longest available integer type.

#include <inttypes.h>
intmax_t imaxabs(intmax_t n)

464 | Chapter 18: Standard Library Functions

The imaxabs() function is the same as either labs() or llabs(), depending on how
many bits wide the system’s largest integer type is. Accordingly, the type intmax_t is
the same as either long or long long.
Example

intmax_t quantity1 = 9182734;
intmax_t quantity2 = 1438756;

printf("The difference between the two quantities is %ji.\n",
 imaxabs(quantity2 − quantity1));

See Also

abs(), labs(), llabs(), fabs()

imaxdiv C99imaxdiv C99

Performs integer division, returning quotient and remainder.

#include <inttypes.h>
imaxdiv_t imaxdiv(intmax_t dividend, intmax_t divisor);

The imaxdiv() function is the same as either ldiv() or lldiv(), depending on how
many bits wide the system’s largest integer type is. Accordingly, the structure type of
the return value, imaxdiv_t, is the same as either ldiv_t or lldiv_t.
Example

intmax_t people = 110284, apples = 9043291;
imaxdiv_t share;

if (people == 0) // Avoid dividing by zero.
 { printf("There's no one here to take the apples.\n"); return -1; }
else
 share = imaxdiv(apples, people);

printf("If there are %ji of us and %ji apples,\n"
 "each of us gets %ji, with %ji left over.\n",
 people, apples, share.quot, share.rem);

This example prints the following output:

If there are 110284 of us and 9091817 apples,
each of us gets 82, with 3 left over.

See Also

The description under div() in this chapter; the floating-point functions remain
der() and remquo()

isalnumisalnum

Ascertains whether a given character is alphanumeric.

Lib
rary

Functio
ns

Standard Library Functions | 465

#include <ctype.h>
int isalnum(int c);

The function isalnum() tests whether its character argument is alphanumeric; that
is, whether the character is either a letter of the alphabet or a digit. In other words,
isalnum() is true for all characters for which either isalpha() or isdigit() is true.

Which characters are considered alphabetic or numeric depends on the current
locale setting for the localization category LC_CTYPE, which you can query or change
using the setlocale() function. (See the note on character classes and locales in
the section on isalpha().)

If the character is alphanumeric, isalnum() returns a nonzero value (that is, true);
if not, the function returns 0 (false).
Example

See the example for isprint() in this chapter.
See Also

isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(); the corresponding C99 function for
wide characters, iswalnum(); setlocale()

isalphaisalpha

Ascertains whether a given character is a letter of the alphabet.

#include <ctype.h>
int isalpha(int c);

The function isalpha() tests whether its character argument is a letter of the alpha‐
bet. If the character is alphabetic, isalpha() returns a nonzero value (that is, true);
if not, the function returns 0 (false).

Which characters are considered alphabetic depends on the
current locale setting for the localization category LC_CTYPE,
which you can query or change using the setlocale() func‐
tion.

In the C locale, which is the default locale setting, the alpha‐
betic characters are those for which isupper() or islower()
returns true. These are the 26 lowercase and 26 uppercase let‐
ters of the Latin alphabet, which are the letters in the basic
source and execution character sets (see “Character Sets” on
page 8).
Accented characters, umlauts, and the like are considered
alphabetic only in certain locales. Moreover, other locales may
have characters that are alphabetic but neither uppercase nor
lowercase, or both uppercase and lowercase.

466 | Chapter 18: Standard Library Functions

In all locales, the isalpha() classification is mutually exclusive with iscntrl(),
isdigit(), ispunct(), and isspace().
Example

See the example for isprint() in this chapter.
See Also

The corresponding C99 function for wide characters, iswalpha(); isalnum(),
isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale()

isblank C99isblank C99

Ascertains whether a given character is a space or tab character.

#include <ctype.h>
int isblank(int c);

The function isblank() is a recent addition to the C character type functions. It
returns a nonzero value (that is, true) if its character argument is either a space or a
tab character. If not, the function returns 0 (false).
Example
This program trims trailing blank characters from the user’s input:

#define MAX_STRING 80

char raw_name[MAX_STRING];
int i;

printf("Enter your name, please: ");
fgets(raw_name, sizeof(raw_name), stdin);

/* Trim trailing blanks: */

i = (strlen(raw_name) − 1); // Index the last character.
while (i >= 0) // Index must not go
{ // below first character.
 if (raw_name[i] == '\n')
 raw_name[i] = '\0'; // Chomp off the newline character.
 else if (isblank(raw_name[i]))
 raw_name[i] = '\0'; // Lop off trailing spaces and tabs.
 else
 break; // Real data found; stop truncating.
 --i; // Count down.
}

See also the example for isprint() in this chapter.

Lib
rary

Functio
ns

Standard Library Functions | 467

See Also

The corresponding C99 function for wide characters, iswblank(); isalnum(), isal
pha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit()

iscntrliscntrl

Ascertains whether a given character is a control character.

#include <ctype.h>
int iscntrl(int c);

The function iscntrl() tests whether its character argument is a control character.
For the ASCII character set, these are the character codes from 0 through 31 and
127. The function may yield different results depending on the current locale setting
for the localization category LC_CTYPE, which you can query or change using the
setlocale() function.

If the argument is a control character, iscntrl() returns a nonzero value (that is,
true); if not, the function returns 0 (false).
Example

See the example for isprint() in this chapter.
See Also

The corresponding C99 function for wide characters, iswcntrl(); isalnum(), isal
pha(), isblank(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale()

isdigitisdigit

Ascertains whether a given character is a decimal digit.

#include <ctype.h>
int isdigit(int c);

The function isdigit() tests whether its character argument is a digit. isdigit()
returns a nonzero value (that is, true) for the 10 characters between '0' (not to be
confused with the null character, '\0') and '9' inclusive. Otherwise, the function
returns 0 (false).
Example

See the example for isprint() in this chapter.
See Also

The corresponding C99 function for wide characters, iswdigit(); isalnum(), isal
pha(), isblank(), iscntrl(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale()

468 | Chapter 18: Standard Library Functions

isfinite C99isfinite C99

Tests whether a given floating-point value is a finite number.

#include <math.h>
int isfinite(float x);
int isfinite(double x);
int isfinite(long double x);

The macro isfinite() yields a nonzero value (that is, true) if its argument is not
an infinite number and not a NaN. Otherwise, isfinite() yields 0. The argument
must be a real floating-point type. The rule that floating-point types are promoted
to at least double precision for mathematical calculations does not apply here; the
argument’s properties are determined based on its representation in its actual
semantic type.
Example

double vsum(int n, ...)
// n is the number of arguments in the list
{
 va_list argptr;
 double sum = 0.0, next = 0.0;
 va_start(argptr, n);
 while (n--)
 {
 next = va_arg(argptr, double);
 sum += next;
 if (isfinite(sum) == 0)
 break; // If sum reaches infinity, stop adding.
 }
 va_end(argptr);
 return sum;
}

See Also

fpclassify(), isinf(), isnan(), isnormal(), signbit()

isgraphisgraph

Ascertains whether a given character is graphic.

#include <ctype.h>
int isgraph(int c);

The function isgraph() tests whether its character argument is a graphic character;
that is, whether the value represents a printing character other than the space char‐
acter. (In other words, the space character is considered printable but not graphic.)
If the character is graphic, isgraph() returns a nonzero value (that is, true); if not,
the function returns 0 (false).

Lib
rary

Functio
ns

Standard Library Functions | 469

Whether a given character code represents a graphic character depends on the cur‐
rent locale setting for the category LC_CTYPE, which you can query or change using
the setlocale() function.
Example

See the example for isprint() in this chapter.
See Also

The corresponding C99 function for wide characters, iswgraph(); isalnum(), isal
pha(), isblank(), iscntrl(), isdigit(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), setlocale()

isgreater, isgreaterequal C99isgreater, isgreaterequal C99

Compares two floating-point values without risking an exception.

#include <math.h>
int isgreater(x, y);
int isgreaterequal(x, y);

The macro isgreater() tests whether the argument x is greater than the argument
y, but without risking an exception. Both operands must have real floating-point
types. The result of isgreater() is the same as the result of the operation
(x) > (y), but that operation could raise an “invalid operand” exception if either
operand is NaN (“not a number”), in which case neither is greater than, equal to, or
less than the other.

The macro isgreater() returns a nonzero value (that is, true) if the first argument
is greater than the second; otherwise, it returns 0. The macro isgreaterequal()
functions similarly, but corresponds to the relation (x) >= (y), returning true if
the first argument is greater than or equal to the second; otherwise, 0.
Example

/* Can a, b, and c be three sides of a triangle? */
double a, b, c, temp;
/* First get the longest "side" in a. */
if (isgreater(a, b))
 temp = a; a = b; b = temp;
if (isgreater(a, c))
 temp = a; a = c; c = temp;
/* Then see if a is longer than the sum of the other two sides: */
if (isgreaterequal(a, b + c))
 printf("The three numbers %.2lf, %.2lf, and %.2lf "
 "are not sides of a triangle.\n", a, b, c);

See Also

isless(), islessequal(), islessgreater(), isunordered()

470 | Chapter 18: Standard Library Functions

isinf C99isinf C99

Tests whether a given floating-point value is an infinity.

#include <math.h>
int isinf(float x);
int isinf(double x);
int isinf(long double x);

The macro isinf() yields a nonzero value (that is, true) if its argument is a positive
or negative infinity. Otherwise, isinf() yields 0. The argument must be a real
floating-point type. The rule that floating-point types are promoted to at least
double precision for mathematical calculations does not apply here; the argument’s
properties are determined based on its representation in its actual semantic type.
Example
This function takes a shortcut if it encounters an infinite addend:

double vsum(int n, va_list argptr)
{
 double sum = 0.0, next = 0.0;
 va_start(argptr, n);

 for (int i = 0; i < n; i ++)
 {
 next = va_arg(argptr, double);
 if (isinf(next))
 return next;
 sum += next;
 }
 va_end(argptr);
 return sum;
}

See Also

fpclassify(), isfinite(), isnan(), isnormal(), signbit()

isless, islessequal, islessgreater C99isless, islessequal, islessgreater C99

Compares two floating-point values without risking an exception.

#include <math.h>
int isless(x, y);
int islessequal(x, y);
int islessgreater(x, y);

The macro isless() tests whether the argument x is less than the argument y, but
without risking an exception. Both operands must have real floating-point types.
The result of isless() is the same as the result of the operation (x) < (y), but
that operation could raise an “invalid operand” exception if either operand is NaN

Lib
rary

Functio
ns

Standard Library Functions | 471

(“not a number”), in which case neither is greater than, equal to, or less than the
other.

The macro isless() returns a nonzero value (that is, true) if the first argument is
less than the second; otherwise, it returns 0. The macro islessequal() functions
similarly but corresponds to the relation (x) <= (y), returning true if the first
argument is less than or equal to the second; otherwise, 0.

The macro islessgreater() is also similar but corresponds to the expression
(x) < (y) || (x) > (y), returning true if the first argument is less than or
greater than the second; otherwise, 0.
Example

double minimum(double a, double b)
{
 if (islessgreater(a, b))
 return (isless(a, b) ? a : b);
 if (a == b)
 return a;
 feraiseexcept(FE_INVALID);
 return NAN;
}

See Also

isgreater(), isgreaterequal(), isunordered()

islowerislower

Ascertains whether a given character is a lowercase letter.

#include <ctype.h>
int islower(int c);

The function islower() tests whether its character argument is a lowercase letter.
Which characters are letters and which letters are lowercase both depend on the
current locale setting for the category LC_CTYPE, which you can query or change
using the setlocale(). (See the note on character classes and locales in the section
on isalpha().)

If the character is a lowercase letter, islower() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

In the default locale C, the truth values of isupper() and islower() are mutually
exclusive for the alphabetic characters. However, other locales may have alphabetic
characters for which both isupper() and islower() return true, or characters that
are alphabetic but neither uppercase nor lowercase.
Example

See the example for isprint() in this chapter.

472 | Chapter 18: Standard Library Functions

See Also

isupper(), tolower(), toupper(); the corresponding C99 function for wide char‐
acters, iswlower(); isalnum(), isalpha(), isblank(), iscntrl(), isdigit(),
isgraph(), isprint(), ispunct(), isspace(), isxdigit(), setlocale()

isnan C99isnan C99

Tests whether a given floating-point value is “not a number.”

#include <math.h>
int isnan(float x);
int isnan(double x);
int isnan(long double x);

The macro isnan() yields a nonzero value (that is, true) if its argument is a NaN,
or “not a number” (see “float.h” on page 293). Otherwise, isnan() yields 0. The
argument must be a real floating-point type. The rule that floating-point types are
promoted to at least double precision for mathematical calculations does not apply
here; the argument’s properties are determined based on its representation in its
actual semantic type.
Example

double dMax(double a, double b)
{
 // NaN overrides all comparison:
 if (isnan(a)) return a;
 if (isnan(b)) return b;
 // Anything is greater than -inf:
 if (isinf(a) && signbit(a)) return b;
 if (isinf(b) && signbit(b)) return a;

 return (a > b ? a : b);
}

See Also

fpclassify(), isfinite(), isinf(), isnormal(), signbit()

isnormal C99isnormal C99

Tests whether a given floating-point value is normalized.

#include <math.h>
int isnormal(float x);
int isnormal(double x);
int isnormal(long double x);

The macro isnormal() yields a nonzero value (that is, true) if its argument’s value
is a normalized floating-point number. Otherwise, isnormal() yields 0. The argu‐
ment must be a real floating-point type. The rule that floating-point types are pro‐

Lib
rary

Functio
ns

Standard Library Functions | 473

moted to at least double precision for mathematical calculations does not apply
here; the argument’s properties are determined based on its representation in its
actual semantic type.
Example

double maximum(double a, double b)
{
 if (isnormal(a) && isnormal(b)) // Handle normal case first.
 return (a >= b) ? a : b ;

 else if (isnan(a) || isnan(b))
 {
 /* ... */

See Also

fpclassify(), isfinite(), isinf(), isnan(), signbit()

isprintisprint

Ascertains whether a given character is printable.

#include <ctype.h>
int isprint(int c);

The isprint() function tests whether its argument is a printing character. If the
argument is a printing character, isprint() returns a nonzero value (that is, true);
if not, the function returns 0 (false).

“Printing” means only that the character occupies printing space on the output
medium, not that it fills the space with a glyph. Thus, the space is a printing
character (isprint(' ') returns true), even though it does not leave a mark
(isgraph(' ') returns false).

Which character codes represent printable characters depends on the current locale
setting for the category LC_CTYPE, which you can query or change using the setlo
cale() function. In the default locale C, the printable characters are the alphanu‐
meric characters, the punctuation characters, and the space character; the corre‐
sponding character codes are those from 32 through 126.
Example

unsigned int c;

printf("\nThe current locale for the 'is ...' functions is '%s'.\n",
 setlocale(LC_CTYPE, NULL));

printf("Here is a table of the 'is ...' values for the characters"
 " from 0 to 127 in this locale:\n\n");

for (c = 0; c < 128; c++) // Loop iteration for each table row.
{
 if (c % 24 == 0) // Repeat table header every 24 rows.

474 | Chapter 18: Standard Library Functions

 {
 printf("Code char alnum alpha blank cntrl digit graph lower"
 " print punct space\n");
 printf("---"
 "------------------\n");
 }
 printf("%4u %4c %3c %5c %5c %5c %5c %5c %5c %5c %5c %5c\n",
 c, // Print numeric character code.
 (isprint(c) ? c : ' '), // Print the glyph, or a space
 // if it's not printable.
 (isalnum(c) ? 'X' : '-'), // In a column for each category,
 (isalpha(c) ? 'X' : '-'), // print X for yes or - for no.
 (isblank(c) ? 'X' : '-'),
 (iscntrl(c) ? 'X' : '-'),
 (isdigit(c) ? 'X' : '-'),
 (isgraph(c) ? 'X' : '-'),
 (islower(c) ? 'X' : '-'),
 (isprint(c) ? 'X' : '-'),
 (ispunct(c) ? 'X' : '-'),
 (isspace(c) ? 'X' : '-'));
} // end of loop for each character value

The following selected lines from the table produced by this program include at
least one member and one nonmember of each category:

Code char alnum alpha blank cntrl digit graph lower print punct space

 31 - - - X - - - - - -
 32 - - X - - - - X - X
 33 ! - - - - - X - X X -

 48 0 X - - - X X - X - -

 65 A X X - - - X - X - -

 122 z X X - - - X X X - -

See Also

isgraph(); the corresponding C99 function for wide characters, iswprint(); isal
num(), isalpha(), isblank(), iscntrl(), isdigit(), islower(), ispunct(),
isspace(), isupper(), isxdigit()

ispunctispunct

Ascertains whether a given character is a punctuation mark.

#include <ctype.h>
int ispunct(int c);

The function ispunct() tests whether its character argument is a punctuation
mark. If the character is a punctuation mark, ispunct() returns a nonzero value
(that is, true); if not, the function returns 0 (false).

Lib
rary

Functio
ns

Standard Library Functions | 475

The punctuation characters are dependent on the current locale setting for the cate‐
gory LC_CTYPE, which you can query or change using the setlocale() function. In
the default locale C, the punctuation characters are all of the graphic characters
(those for which isgraph() is true), except the alphanumeric characters (those for
which isalnum() is true).
Example

See the example for isprint() in this chapter.
See Also

The corresponding C99 function for wide characters, iswpunct(); isalnum(), isal
pha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
isspace(), isupper(), isxdigit()

isspaceisspace

Ascertains whether a given character produces space.

#include <ctype.h>
int isspace(int c);

The function isspace() tests whether its character argument produces whitespace
rather than a glyph when printed—such as a space, tabulator, newline, or the like. If
the argument is a whitespace character, isspace() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

Which characters fall into the whitespace class depends on the current locale setting
for the category LC_CTYPE, which you can query or change using the setlocale()
function. In the default locale C, the isspace() function returns true for the char‐
acters in Table 18-4.

Table 18-4. Whitespace characters in the default locale, C

Character ASCII name Decimal value

'\t' Horizontal tabulator 9

'\n' Line feed 10

'\v' Vertical tabulator 11

'\f' Form feed 12

'\r' Carriage return 13

' ' Space 32

Example
char buffer[1024];
char *ptr = buffer;

while (fgets(buffer, sizeof(buffer), stdin) != NULL)
{

476 | Chapter 18: Standard Library Functions

 ptr = buffer;
 while (isspace(*ptr)) // Skip over leading whitespace.
 ptr++;
 printf("The line read: %s\n", ptr);
}

See also the example for isprint() in this chapter.
See Also

The C99 function isblank(), which returns true for the space and horizontal tab
characters; the corresponding C99 functions for wide characters, iswspace() and
iswblank(); isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(),
isprint(), ispunct(), isxdigit()

isunordered C99isunordered C99

Tests whether two floating-point values can be numerically ordered.

#include <math.h>
int isunordered(x, y)

The macro isunordered() tests whether any ordered relation exists between two
floating-point values, without risking an “invalid operand” exception in case either
of them is NaN (“not a number”). Both operands must have real floating-point
types. Two floating-point values are be said to be ordered if one is either less than,
equal to, or greater than the other. If either or both of them are NaN, then they are
unordered. isunordered() returns a nonzero value (that is, true) if there is no
ordered relation between the two arguments.
Example

double maximum(double a, double b)
{
 if (isinf(a)) // +Inf > anything; -Inf < anything
 return (signbit(a) ? b : a);

 if (isinf(b))
 return (signbit(b) ? a : b);

 if (isunordered(a, b))
 {
 feraiseexcept(FE_INVALID);
 return NAN;
 }
 return (a > b ? a : b);
}

See Also

isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater()

Lib
rary

Functio
ns

Standard Library Functions | 477

isupperisupper

Ascertains whether a given character is an uppercase letter.

#include <ctype.h>
int isupper(int c);

The function isupper() tests whether its character argument is a capital letter. If
the character is an uppercase letter, isupper() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

Which characters are letters and which letters are uppercase both depend on the
current locale setting for the category LC_CTYPE, which you can query or change
using the setlocale() function.(See the note on character classes and locales in the
section on isalpha().)

In the default locale C, the truth values of isupper() and islower() are mutually
exclusive for the alphabetic characters. However, other locales may have alphabetic
characters for which both isupper() and islower() return true, or characters that
are alphabetic but neither uppercase nor lowercase.
Example

See the examples for setlocale() and isprint() in this chapter.
See Also

islower(), tolower(), toupper(); the corresponding C99 function for wide char‐
acters, iswupper(); isalnum(), isalpha(), isblank(), iscntrl(), isdigit(),
isgraph(), isprint(), ispunct(), isspace(), isxdigit(), setlocale()

iswalnumiswalnum

Ascertains whether a given wide character is alphanumeric.

#include <wctype.h>
int iswalnum(wint_t wc);

The iswalnum() function is the wide-character version of the isalnum() character
classification function. It tests whether its character argument is alphanumeric; that
is, whether the character is either a letter of the alphabet or a digit. If the character is
alphanumeric, iswalnum() returns a nonzero value (that is, true); if not, the func‐
tion returns 0 (false).

Which characters are considered alphabetic or numeric depends on the current
locale setting for the localization category LC_CTYPE, which you can query or change
using the setlocale() function. (See the note on character classes and locales in
the section on isalpha().)

In general, iswalnum() is true for all characters for which either iswalpha() or isw
digit() is true.

478 | Chapter 18: Standard Library Functions

Example
wint_t wc;
int i, dummy;

setlocale(LC_CTYPE, "");

wprintf(L"\nThe current locale for the 'is ...' functions is '%s'.\n",
 setlocale(LC_CTYPE, NULL));
wprintf(L"These are the alphanumeric wide characters"
 " in this locale:\n\n");

for (wc = 0, i = 0; wc < 1024; wc++)
 if (iswalnum(wc))
 {
 if (i % 25 == 0)
 {
 wprintf(L"... more ...\n");
 dummy = getchar(); // Wait before printing more
 wprintf(L"Wide character Code\n");
 wprintf(L"-----------------------\n");
 }
 wprintf(L"%5lc %4lu\n", wc, wc);
 i++;
 }
wprintf(L"-----------------------\n");
return 0;

Here are samples from the output of this code. Which characters can be displayed
correctly on the screen depends on the font used:

The current locale for the 'is ...' functions is 'de_DE.UTF-8'.
These are the alphanumeric wide characters in this locale:

Wide character Code

 0 48
 1 49
 2 50
...
 þ 254
 ÿ 255
 Ā 256
 ā 257
 Ă 258
 ă 259
 Ą 260
 ą 261

See Also

iswalpha() and iswdigit(); the corresponding function for byte characters,
isalnum(); iswblank(), iswcntrl(), iswgraph(), iswlower(), iswprint(),

Lib
rary

Functio
ns

Standard Library Functions | 479

iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(); the extensible
wide-character classification function iswctype()

iswalphaiswalpha

Ascertains whether a given wide character is a letter of the alphabet.

#include <wctype.h>
int iswalpha(wint_t wc);

The iswalpha() function is the wide-character version of the isalpha() character
classification function. It tests whether its character argument is a letter of the
alphabet. If the character is alphabetic, iswalpha() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

Which characters are considered alphabetic depends on the
current locale setting for the localization category LC_CTYPE,
which you can query or change using the setlocale() func‐
tion. In all locales, the iswalpha() classification is mutually
exclusive with iswcntrl(), iswdigit(), iswpunct() and isw
space().
Accented characters, umlauts, and the like are considered
alphabetic only in certain locales. Moreover, other locales may
have wide characters that are alphabetic but neither uppercase
nor lowercase, or both uppercase and lowercase.

Example
wint_t wc;

if (setlocale(LC_CTYPE, "") == NULL)
{
 fwprintf(stderr,
 L"Sorry, couldn't change to the system's native locale.\n");
 return 1;
}
wprintf(L"The current locale for the 'isw ...' functions is '%s'.\n",
 setlocale(LC_CTYPE, NULL));

wprintf(L"Here is a table of the 'isw ...' values for the characters "
 L"from 128 to 255 in this locale:\n\n");

for (wc = 128; wc < 255; ++wc) // Loop iteration for each table row.
{
 if ((wc-128) % 24 == 0) // Repeat table header every 24 rows.
 {
 wprintf(L"Code char alnum alpha blank cntrl digit graph lower"
 L" print punct space\n");
 wprintf(L"---"
 L"------------------\n");

480 | Chapter 18: Standard Library Functions

 }
 wprintf(L"%4u %4lc %3c %5c %5c %5c %5c %5c %5c %5c %5c %5c %5c %5c\n",
 wc, // Print numeric character code.
 (iswprint(wc) ? wc : ' '), // Print the glyph, or a space
 // if it's not printable.
 (iswalnum(wc) ? 'X' : '-'), // In a column for each
 (iswalpha(wc) ? 'X' : '-'), // category, print X for
 (iswblank(wc) ? 'X' : '-'), // yes or - for no.
 (iswcntrl(wc) ? 'X' : '-'),
 (iswdigit(wc) ? 'X' : '-'),
 (iswgraph(wc) ? 'X' : '-'),
 (iswlower(wc) ? 'X' : '-'),
 (iswprint(wc) ? 'X' : '-'),
 (iswpunct(wc) ? 'X' : '-'),
 (iswspace(wc) ? 'X' : '-'));
} // end of loop for each character value

The following selected lines from the table produced by this program illustrate
members of various categories:

Code char alnum alpha blank cntrl digit graph lower print punct space

 128 - - - X - - - - - -
 162 ¢ - - - - - X - X X -
 163 £ - - - - - X - X X -
 169 © - - - - - X - X X -
 170 ª X X - - - X - X - -
 171 « - - - - - X - X X -
 180 ´ - - - - - X - X X -
 181 μ X X - - - X X X - -
 182 ¶ - - - - - X - X X -

 185 1 - - - - - X - X X -
 186 º X X - - - X - X - -
 191 ¿ - - - - - X - X X -
 192 À X X - - - X - X - -

See Also

The corresponding function for byte characters, isalpha(); iswalnum(),
iswblank(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(); the extensible
wide-character classification function iswctype()

iswblank C99iswblank C99

Ascertains whether a given wide character is a space or tab character.

#include <wctype.h>
int iswblank(wint_t wc);

The iswblank() function is the wide-character version of the isblank() character
classification function. It tests whether its wide-character argument is either a space

Lib
rary

Functio
ns

Standard Library Functions | 481

or a tab character. In the default locale C, iswblank() returns a nonzero value (that
is, true) only for the argument values L' ' (space) and L'\t' (horizontal tab); these
are called the standard blank wide characters. In other locales, iswblank() may also
be true for other wide characters for which iswspace() also returns true.
Example

See the example for iswalpha() in this chapter.
See Also

The corresponding function for byte characters, isblank(); iswalnum(),
iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(); the extensible
wide-character classification function iswctype()

iswcntrliswcntrl

Ascertains whether a given wide character is a control character.

#include <wctype.h>
int iswcntrl(wint_t wc);

The iswcntrl() function is the wide-character version of the iscntrl() character
classification function. It tests whether its wide-character argument is a control
character. If the argument is a control character, iswcntrl() returns a nonzero
value (that is, true); if not, the function returns 0 (false).

The function may yield different results depending on the current locale setting for
the localization category LC_CTYPE, which you can query or change using the
setlocale() function.
Example

See the example for iswalpha() in this chapter.
See Also

The corresponding function for byte characters, iscntrl(); iswalnum(),
iswalpha(), iswblank(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(); the extensible
wide-character classification function iswctype()

iswctypeiswctype

Ascertains whether a given wide character fits a given description.

#include <wctype.h>
int iswctype(wint_t wc, wctype_t description);

The iswctype() function tests whether the wide character passed as its first argu‐
ment falls in the category indicated by the second argument. The value of the sec‐
ond argument, with the special-purpose type wctype_t, is obtained by calling the
function wctype() with a string argument that names a property of characters in

482 | Chapter 18: Standard Library Functions

the current locale. In the default locale, C, characters can have the properties listed
in Table 18-5.

Table 18-5. Wide-character properties

Character property iswctype() call Equivalent single function call

"alnum" iswctype(wc, wctype("alnum")) iswalnum(wc)

"alpha" iswctype(wc, wctype("alpha")) iswalpha(wc)

"blank" iswctype(wc, wctype("blank")) iswblank(wc)

"cntrl" iswctype(wc, wctype("cntrl")) iswcntrl(wc)

"digit" iswctype(wc, wctype("digit")) iswdigit(wc)

"graph" iswctype(wc, wctype("graph")) iswgraph(wc)

"lower" iswctype(wc, wctype("lower")) iswlower(wc)

"print" iswctype(wc, wctype("print")) iswprint(wc)

"punct" iswctype(wc, wctype("punct")) iswpunct(wc)

"space" iswctype(wc, wctype("space")) iswspace(wc)

"upper" iswctype(wc, wctype("upper")) iswupper(wc)

"xdigit" iswctype(wc, wctype("xdigit")) iswxdigit(wc)

If the wide-character argument has the property indicated, iswctype() returns a
nonzero value (that is, true); if not, the function returns 0 (false). Thus, the call
iswctype(wc, wctype("upper")) is equivalent to iswupper(wc).

The result of an iswctype() function call depends on the current locale setting for
the localization category LC_CTYPE, which you can query or change using the
setlocale() function. Furthermore, additional property strings are defined in
other locales. For example, in a Japanese locale, the call iswctype(wc,

wctype("jkanji")) can be used to distinguish kanji from katakana or hiragana
characters. You must not change the LC_CTYPE setting between the calls to wctype()
and iswctype().
Example

wint_t wc = L'ß';

setlocale(LC_CTYPE, "de_DE.UTF-8");
if (iswctype(wc, wctype("alpha")))
{
 if (iswctype(wc, wctype("lower")))
 wprintf(L"The character %lc is lowercase.\n", wc);
 if (iswctype(wc, wctype("upper")))
 wprintf(L"The character %lc is uppercase.\n", wc);
} Lib

rary
Functio

ns

Standard Library Functions | 483

See Also

wctype(), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(),
iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(),
iswxdigit()

iswdigitiswdigit

Ascertains whether a given wide character is a decimal digit.

#include <wctype.h>
int iswdigit(wint_t wc);

The iswdigit() function is the wide-character version of the isdigit() character
classification function. It tests whether its wide-character argument corresponds to
a digit character.

The digit wide characters are L'0' (not to be confused with the null character
L'\0') through L'9'. The iswdigit() function returns a nonzero value (that is,
true) if the wide character represents a digit; if not, it returns 0 (false).
Example

See the example for iswalpha() in this chapter.
See Also

The corresponding function for byte characters, isdigit(); iswalnum(),
iswalpha(), iswblank(), iswcntrl(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(); the extensible
wide-character classification function iswctype()

iswgraphiswgraph

Ascertains whether a given wide character is graphic.

#include <wctype.h>
int iswgraph(wint_t wc);

The iswgraph() function is the wide-character version of the isgraph() character
classification function. It tests whether its character argument is a graphic character;
that is, whether the value represents a printable character that is not a whitespace
character. In other words, iswgraph(wc) is true if and only if iswprint(wc) is true
and iswspace(wc) is false.

The function call iswgraph(wc) can yield a different value than the corresponding
byte-character function call isgraph(wctob(wc)) if wc is both a printing character
and a whitespace character in the execution character set. In other words,
isgraph(wctob(wc)) can be true while iswgraph(wc) is false, if both iswprint(wc)
and iswspace(wc) are true. Or, to put it yet another way, while the space character
(' ') is the only printable character for which isgraph() returns false,

484 | Chapter 18: Standard Library Functions

iswgraph() may return false for other printable, whitespace characters in addition
to L' '.
Example

See the example for iswalpha() in this chapter.
See Also

The corresponding function for byte characters, isgraph(); iswalnum(),
iswalpha(), iswblank(), iswcntrl(), iswdigit(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), iswxdigit(), setlocale(); the extensible
wide-character classification function iswctype()

iswloweriswlower

Ascertains whether a given wide character is a lowercase letter.

#include <wctype.h>
int iswlower(wint_t wc);

The iswlower() function is the wide-character version of the islower() character
classification function. It tests whether its character argument is a lowercase letter. If
the character is a lowercase letter, iswlower() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

Which characters are letters and which letters are lowercase both depend on the
current locale setting for the category LC_CTYPE, which you can query or change
using the setlocale() function. (See the note on character classes and locales in
the section on isalpha().)

For some locale-specific characters, both iswupper() and iswlower() may return
true, or both may return false even though iswalpha() returns true. However,
iswlower() is mutually exclusive with iswcntrl(), iswdigit(), iswpunct(), and
iswspace() in all locales.
Example

See the example for iswalpha() in this chapter.
See Also

iswupper(), iswalpha(); the corresponding function for byte characters,
islower(); the extensible wide-character classification function iswctype();
iswalnum(), iswblank(), iswcntrl(), iswdigit(), iswgraph(), iswprint(),
iswpunct(), iswspace(), iswxdigit(), setlocale()

iswprintiswprint

Ascertains whether a given wide character is printable.

#include <wctype.h>
int iswprint(wint_t wc);

Lib
rary

Functio
ns

Standard Library Functions | 485

The iswprint() function is the wide-character version of the isprint() character
classification function. It tests whether its argument is a printing character. If the
argument is a printing wide character, iswprint() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

“Printing” means only that the character occupies printing space on the output
medium, not that it fills the space with a glyph. In other words, iswprint() may
return true for locale-specific whitespace characters, as well as for the space charac‐
ter, L' '.

Which character codes represent printable characters depends on the current locale
setting for the category LC_CTYPE, which you can query or change using the
setlocale() function.
Example

See the example for iswalpha() in this chapter.
See Also

iswspace(); the corresponding function for byte characters, isprint();
iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(), iswlower(),
iswpunct(), iswupper(), iswxdigit(), setlocale(); the extensible wide-character
classification function iswctype()

iswpunctiswpunct

Ascertains whether a given wide character is a punctuation mark.

#include <wctype.h>
int iswpunct(wint_t wc);

The iswpunct() function is the wide-character version of the ispunct() character
classification function. It tests whether its wide-character argument is a punctuation
mark. If the argument represents a punctuation mark, iswpunct() returns a non‐
zero value (that is, true); if not, the function returns 0 (false).

Which characters represent punctuation marks depends on the current locale set‐
ting for the category LC_CTYPE, which you can query or change using the setlo
cale() function. For all locale-specific punctuation characters, both iswspace()
and iswalnum() return false.

If the wide character is not the space character L' ', but is both a printing and a
whitespace character—that is, both iswprint(wc) and iswspace(wc) return true—
then the function call iswpunct(wc) may yield a different value than the corre‐
sponding byte-character function call ispunct(wctob(wc)).
Example

See the example for iswalpha() in this chapter.

486 | Chapter 18: Standard Library Functions

See Also

The corresponding function for byte characters, ispunct(); iswalnum(),
iswalpha(), iswblank(), iswcntrl(), iswdigit(), iswgraph(), iswlower(),
iswprint(), iswspace(), iswupper(), iswxdigit(), setlocale(); the extensible
wide-character classification function iswctype()

iswspaceiswspace

Ascertains whether a given wide character produces space.

#include <wctype.h>
int iswspace(wint_t wc);

The iswspace() function is the wide-character version of the isspace() character
classification function. It tests whether its wide-character argument produces white‐
space rather than a glyph when printed—that is, a space, tabulator, newline, or the
like. If the argument is a whitespace wide character, iswspace() returns a nonzero
value (that is, true); if not, the function returns 0 (false).

Which wide characters fall into the whitespace class depends on the current locale
setting for the category LC_CTYPE, which you can query or change using the
setlocale() function. In all locales, however, if iswspace() is true for a given wide
character, then iswalnum(), iswgraph(), and iswpunct() are false.
Example

See the example for iswalpha() in this chapter.
See Also

iswblank(), iswprint(); the corresponding function for byte characters,
isspace(); iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswupper(), iswxdigit(), setlocale(); the
extensible wide-character classification function iswctype()

iswupperiswupper

Ascertains whether a given wide character is an uppercase letter.

#include <wctype.h>
int iswupper(wint_t wc);

The iswupper() function is the wide-character version of the isupper() character
classification function. It tests whether its character argument is an uppercase letter.
If the character is an uppercase letter, isupper() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

Which characters are letters and which letters are uppercase both depend on the
current locale setting for the category LC_CTYPE, which you can query or change
using the setlocale() function. (See the note on character classes and locales in
the section on isalpha().)

Lib
rary

Functio
ns

Standard Library Functions | 487

For some locale-specific characters, both iswupper() and iswlower() may return
true, or both may return false even though iswalpha() returns true. However,
iswupper() is mutually exclusive with iswcntrl(), iswdigit(), iswpunct(), and
iswspace() in all locales.
Example

See the example for iswalpha() in this chapter.
See Also

iswlower(), iswalpha(); the corresponding function for byte characters,
isupper(); the extensible wide-character classification function iswctype();
iswalnum(), iswblank(), iswcntrl(), iswdigit(), iswgraph(), iswprint(), isw
punct(), iswspace(), iswxdigit(), setlocale()

iswxdigitiswxdigit

Ascertains whether a given wide character is a hexadecimal digit.

#include <wctype.h>
int iswxdigit(wint_t wc);

The iswxdigit() function is the wide-character version of the isxdigit() charac‐
ter classification function. It tests whether its character argument is a hexadecimal
digit, and returns a nonzero value (that is, true) if the character is one of the digits
between L'0' and L'9' inclusive, or a letter from L'A' through L'F' or from L'a'
through L'f' inclusive. If not, the function returns 0 (false).
Example

See the example for iswalpha() in this chapter.
See Also

iswdigit(); the corresponding functions for byte characters, isdigit() and
isxdigit(); iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), setlocale(); the
extensible wide-character classification function iswctype()

isxdigitisxdigit

Ascertains whether a given character is a hexadecimal digit.

#include <ctype.h>
int isxdigit(int c);

The function isxdigit() tests whether its character argument is a hexadecimal
digit. The results depend on the current locale setting for the localization category
LC_CTYPE, which you can query or change using the setlocale() function. In the C
locale, isxdigit() returns a nonzero value (that is, true) if the character is between
'0' and '9' inclusive, or between 'A' and 'F' inclusive, or between 'a' and 'f'
inclusive. If not, the function returns 0 (false).

488 | Chapter 18: Standard Library Functions

Example

See the example for isprint() in this chapter.
See Also

The corresponding C99 function for wide characters, iswxdigit(); isalnum(),
isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(); the extensible wide-character clas‐
sification function iswctype()

labslabs

Gives the absolute value of a long integer.

#include <stdlib.h>
long labs(long n);

The parameter and the return value of labs() are long integers. Otherwise, labs()
works the same as the int function abs().
Example

See the example for abs() in this chapter.
See Also

abs(), llabs(), imaxabs()

ldexpldexp

Multiplies a floating-point number by a power of two.

#include <math.h>
double ldexp(double mantissa, int exponent);
float ldexpf(float mantissa, int exponent); (C99)
long double ldexpl(long double mantissa, int exponent); (C99)

The ldexp() functions calculate a floating-point number from separate mantissa
and exponent values. The exponent parameter is an integer exponent to base 2.

The function returns the value mantissa × 2exponent. If the result is not representable
in the function’s type, a range error may occur.
Example

See the example for frexp() in this chapter.
See Also

The function frexp(), which performs the reverse operation, analyzing a floating-
point number into a mantissa and an exponent to base 2.

Lib
rary

Functio
ns

Standard Library Functions | 489

ldivldiv

Performs integer division, returning quotient and remainder.

#include <stdlib.h>
ldiv_t ldiv(long dividend, long divisor);

The parameters of ldiv() are long integers, and its return value is a structure of
type ldiv_t containing two long integers. Otherwise, ldiv() works the same as the
int function div().
Example

See the example for div() in this chapter.
See Also

div(), lldiv(), imaxdiv()

llabs C99llabs C99

Gives the absolute value of a long long integer.

#include <stdlib.h>
long long llabs(long long n);

The parameter and the return value of llabs() are long long integers. Otherwise,
llabs() works the same as the int function abs().
Example

See the example for abs() in this chapter.
See Also

abs(), labs(), imaxabs()

lldiv C99lldiv C99

Performs integer division, returning quotient and remainder.

#include <stdlib.h>
lldiv_t lldiv(long long dividend, long long divisor);

The parameters of lldiv() are long long integers, and its return value is a struc‐
ture of type lldiv_t containing two long long integers. Otherwise, lldiv() works
the same as the int function div().
Example

See the example for div() in this chapter.
See Also

div(), ldiv(), imaxdiv()

490 | Chapter 18: Standard Library Functions

llrintllrint

Rounds a floating-point number to a long long integer.

#include <math.h>
long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

The llrint() functions round a floating-point number to the next integer value in
the current rounding direction. If the result is outside the range of long long, a
range error may occur (this is implementation-dependent), and the return value is
unspecified.
Example

See the example for the analogous function lrint().
See Also

rint(), lrint(), round(), lround(), llround(), nearbyint(), fegetround(),
fesetround()

llroundllround

Rounds a floating-point number to a long long integer.

#include <math.h>
long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

The llround() functions are like lround() except that they return an integer of
type long long. llround() rounds a floating-point number to the nearest integer
value. A value halfway between two integers is rounded away from zero. If the result
is outside the range of long long, a range error may occur (this is implementation-
dependent), and the return value is unspecified.
Example

See the example for lround() in this chapter.
See Also

rint(), lrint(), llrint(), round(), lround(), nearbyint()

localeconvlocaleconv

Obtains the conventions of the current locale.

#include <locale.h>
struct lconv *localeconv(void);

The localeconv() function returns a pointer to a structure containing complete
information on the locale-specific conventions for formatting numeric and mone‐

Lib
rary

Functio
ns

Standard Library Functions | 491

tary information. The values returned reflect the conventions of the current locale,
which you can query or set using the setlocale() function.

The structure that localeconv() fills in has the type struct lconv, which is
defined in the header file locale.h. The members of this structure describe how to
format monetary as well as non-monetary numeric values in the locale. In C99,
moreover, two sets of information describing monetary formatting are present: one
describing local usage and one describing international usage, which calls for stan‐
dard alphabetic currency symbols and may also use a different number of decimal
places.

The full set of members and their order in the structure may vary from one imple‐
mentation to another, but they must include at least the members described here:

char *decimal_point;
The decimal point character, except when referring to money. In the default
locale C, this pointer refers to the value ".".

char *thousands_sep;

The digit-grouping character: for example, the comma in "65,536". In spite of
the name, not all locales group digits by thousands; for example, see the next
member, grouping.

char *grouping;

This pointer refers not to a text string but to an array of numeric char values
with the following meaning: the first element in the array is the number of dig‐
its in the rightmost digit group. Each successive element is the number of digits
in the next group to the left. The value CHAR_MAX means that the remaining dig‐
its are not grouped at all; the value 0 means that the last group size indicated is
used for all remaining digits. For example, the char array {'\3','\0'} indi‐
cates that all digits are grouped in threes.

char *mon_decimal_point;
Decimal point character for monetary values.

char *mon_thousands_sep;
The digit-grouping character for monetary values.

char *mon_grouping;

Like the grouping element, but for monetary values.

char *positive_sign;
The sign used to indicate positive monetary values.

char *negative_sign;
The sign used to indicate negative monetary values.

492 | Chapter 18: Standard Library Functions

char *currency_symbol;
The currency symbol in the current locale: in the United States, this would be
"$", whereas the abbreviation used in international finance, "USD", would be
indicated by another structure member, int_currency_symbol.

char frac_digits;
The number of digits after the decimal point in monetary values, in local usage.

char p_cs_precedes;

The value 1 means the local currency_symbol is placed before positive num‐
bers (as in U.S. dollars: "$10.99"); 0 means the symbol comes after the number
(as in the Canadian French locale, "fr_CA": "10,99 $").

char n_cs_precedes;

The value 1 means the local currency_symbol is placed before negative num‐
bers; 0 means the symbol comes after the number.

char p_sep_by_space;

The value 1 means a space is inserted between currency_symbol and a positive
number.

char n_sep_by_space;

The value 1 means a space is inserted between currency_symbol and a negative
number.

char p_sign_posn;
See next item.

char n_sign_posn;
These values indicate the positions of the positive and negative signs, as fol‐
lows:

0
The number and currency_symbol are enclosed together in parentheses.

1
The sign string is placed before the number and currency_symbol.

2
The sign string is placed after the number and currency_symbol.

3
The sign string is placed immediately before the currency_symbol.

4
The sign string is placed immediately after the currency_symbol.

Lib
rary

Functio
ns

Standard Library Functions | 493

char *int_curr_symbol;
This pointer indicates a null-terminated string containing the three-letter inter‐
national symbol for the local currency (as specified in ISO 4217), and a separa‐
tor character in the fourth position.

char int_frac_digits;
The number of digits after the decimal point in monetary values, in interna‐
tional usage.

char int_p_cs_precedes; (C99)
The value 1 means that int_curr_symbol is placed before positive numbers; 0
means the symbol comes after the number.

char int_n_cs_precedes; (C99)
The value 1 means int_curr_symbol is placed before negative numbers; 0
means the symbol comes after the number.

char int_p_sep_by_space; (C99)
The value 1 means a space is inserted between int_curr_symbol and a positive
number.

char int_n_sep_by_space; (C99)
The value 1 means a space is inserted between int_curr_symbol and a negative
number.

char int_p_sign_posn; (C99)
See next item.

char int_n_sign_posn; (C99)
These values indicate the positions of the positive and negative signs with
respect to int_curr_symbol in the same way that p_sign_posn and
n_sign_posn indicate the sign positions with respect to currency_symbol.

In the default locale, C, all of the char members have the value CHAR_MAX, and all of
the char * members point to an empty string (""), except decimal_point, which
points to the string ".".
Example

long long cents; // Amount in cents or customary fraction of
 // currency unit.
struct lconv *locinfo;
wchar_t number[128] = { L'\0' }, prefix[32] = { L'\0' },
 suffix[32] = { L'\0' };

// Use system's current locale.
char *localename = setlocale(LC_MONETARY, "");

locinfo = localeconv();

/* ... */

494 | Chapter 18: Standard Library Functions

if (cents >= 0) // For positive amounts,
 // use 'p_...' members of lconv structure.
{
 if (locinfo->p_cs_precedes) // If currency symbol before number
 { // ... prepare prefix
 mbstowcs(prefix, locinfo->currency_symbol, 32);
 if (locinfo->p_sep_by_space)
 wcscat(prefix, L" "); // ... maybe with a space.
 }
/* ... else etc. ... */

See Also

setlocale()

localtimelocaltime

Converts a time value into a year, month, day, hour, minute, second, and so on.

#include <time.h>
struct tm *localtime(const time_t *timer);

The localtime() function converts a numeric time value (usually a number of sec‐
onds since January 1, 1970, but not necessarily) into the equivalent date-and-time
structure for the local time zone. To obtain similar values for Coordinated Universal
Time (UTC, formerly called Greenwich Mean Time), use the function gmtime().

The function’s argument is not the number of seconds itself but a pointer to that
value. Both the structure type struct tm and the arithmetic type time_t are defined
in the header file time.h. The tm structure is described at gmtime() in this chapter.

The argument most often passed to localtime() is the current time, obtained as a
number with type time_t by calling the function time(). The type time_t is usually
defined in time.h as equivalent to long or unsigned long.
Example

See the example for gmtime() in this chapter.
See Also

asctime(), difftime(), gmtime(), localtime_s(), mktime(), strftime(), time()

localtime_s C11localtime_s C11

Converts a time value into a year, month, day, hour, minute, second, etc.

#include <time.h>
struct tm *localtime_s(const time_t * restrict timer ,
 struct tm * restrict result);

The function localtime_s(), like localtime(), converts a numeric time value into
the equivalent date-and-time structure for the local time zone. The results are

Lib
rary

Functio
ns

Standard Library Functions | 495

stored in an object of the type struct tm. This structure is described in the section
on gmtime() in this chapter.

Unlike localtime(), localtime_s() does not use an internal, static struct tm
object, but places the results in the struct tm object addressed by its second argu‐
ment. The localtime_s() function is thread-safe.

The function first tests its runtime constraints: the pointer arguments timer and
result must not be null pointers. If a runtime constraint is violated or if the value
of timer cannot be converted into a local calendar time, localtime_s() returns a
null pointer. If no error occurs, the return value is the pointer result.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <time.h>
// ...

 time_t now; struct tm timeStruct; char timeStr[26];

 time(&now); // Current time as an integer.
 // Convert to local time as a struct tm:
 if(localtime_s(&now, &timeStruct) != NULL)
 {
 timeStruct.tm_year += 1; // One year later.
 if(asctime_s(timeStr, sizeof(timeStr), &timeStruct) == 0)
 printf("A year from today: %s", timeStr);
 }

See Also

localtime(), gmtime(), gmtime_s(), strftime(), time()

loglog

Calculates the natural logarithm of a number.

#include <math.h>
double log(double x);
float logf(float x); (C99)
long double logl(long double x); (C99)

The log() functions calculate the natural logarithm of their argument. The natural
logarithm—called “log” for short in English as well as in C—is the logarithm to base
e, where e is Euler’s number, 2.718281....

The natural log of a number x is defined only for positive values of x. If x is negative,
a domain error occurs; if x is zero, a range error may occur (or not, depending on
the implementation).
Example
The following code prints some sample values for base 2, base e, and base 10
logarithms:

496 | Chapter 18: Standard Library Functions

double x[] = { 1E-100, 0.5, 2, exp(1), 10, 1E+100 };

puts(" x log2(x) log(x) log10(x)\n"
 " ---");
for (int i = 0; i < sizeof(x) / sizeof(x[0]); ++i)
{
 printf("%#10.3G %+17.10G %+17.10G %+17.10G\n",
 x[i], log2(x[i]), log(x[i]), log10(x[i]));
}

This code produces the following output:

 x log2(x) log(x) log10(x)

 1.00E-100 -332.1928095 -230.2585093 -100
 0.500 -1 -0.6931471806 -0.3010299957
 2.00 +1 +0.6931471806 +0.3010299957
 2.72 +1.442695041 +1 +0.4342944819
 10.0 +3.321928095 +2.302585093 +1
 1.00E+100 +332.1928095 +230.2585093 +100

See Also

log10(), log1p(), log2(), exp(), pow()

log10log10

Calculates the base-10 logarithm of a number.

#include <math.h>
double log10(double x);
float log10f(float x); (C99)
long double log10l(long double x); (C99)

The log10() functions calculate the common logarithm of their argument. The
common logarithm is the logarithm to base 10. The common logarithm of a num‐
ber x is defined only for positive values of x. If x is negative, a domain error occurs;
if x is zero, a range error may occur.
Example

See the example for log() in this chapter.
See Also

log(), log1p(), log2(), exp(), pow()

log1p C99log1p C99

Calculates the logarithm of one plus a number.

#include <math.h>
double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

Lib
rary

Functio
ns

Standard Library Functions | 497

The log1p() functions calculate the natural logarithm of the sum of 1 plus the argu‐
ment x, or loge(1 + x). The function is designed to yield a more accurate result than
the expression log(x + 1), especially when the value of the argument is close to
zero.

The natural logarithm is defined only for positive numbers. If x is less than -1, a
domain error occurs; if x is equal to -1, a range error may occur (or not, depending
on the implementation).
Example

// atanh(x) is defined as 0.5 * (log(x+1) − log(−x+1).
// Rounding errors can result in different results
// for different methods.

puts(" x atanh(x) atanh(x) − 0.5*(log1p(x) − log1p(−x))\n"
 "--");
for (double x = -0.8; x < 1.0; x += 0.4)
{
 double y = atanh(x);
 printf("%6.2f %14f %20E\n", x, y, y − 0.5*(log1p(x) − log1p(-x)));
}

This code produces the following output:

 x atanh(x) atanh(x) − 0.5*(log1p(x) − log1p(−x))

 -0.80 -1.098612 -1.376937E-17
 -0.40 -0.423649 -1.843144E-18
 0.00 0.000000 0.000000E+00
 0.40 0.423649 7.589415E-19
 0.80 1.098612 -4.640385E-17

See Also

log(), log10(), log2(), exp(), pow()

log2 C99log2 C99

Calculates the logarithm to base 2 of a number.

#include <math.h>
double log2(double x);
float log2f(float x);
long double log2l(long double x);

The base-2 logarithm of a number x is defined only for positive values of x. If x is
negative, a domain error occurs; if x is zero, and depending on the implementation,
a range error may occur.
Example

double x[] = { 0, 0.7, 1.8, 1234, INFINITY };

for (int i = 0; i < sizeof(x) / sizeof(double); i++)

498 | Chapter 18: Standard Library Functions

{
 errno = 0;
 printf("The base 2 log of %.1f is %.3f.\n", x[i], log2(x[i]));
 if (errno == EDOM || errno == ERANGE)
 perror(__FILE__);
}

This code produces the following output:

The base 2 log of 0.0 is -inf.
log2.c: Numerical result out of range
The base 2 log of 0.7 is -0.515.
The base 2 log of 1.8 is 0.848.
The base 2 log of 1234.0 is 10.269.
The base 2 log of inf is inf.

See Also

log(), log10(), log1p(), exp(), pow()

logb C99logb C99

Obtains the exponent of a floating-point number.

#include <math.h>
double logb(double x);
float logbf(float x);
long double logbl(long double x);

The logb() functions return the exponent of their floating-point argument. If the
argument is not normalized, logb() returns the exponent of its normalized value. If
the argument is zero, logb() may incur a domain error, depending on the imple‐
mentation. (In the example shown here, which uses the GNU C library, no domain
error occurs.)
Example

double x[] = { 0, 0, 0.7, 1.8, 1234, INFINITY };

x[1] = nexttoward(0.0, 1.0);

for (int i = 0; i < sizeof(x) / sizeof(double); i++)
{
 printf("The exponent in the binary representation of %g is %g.\n",
 x[i], logb(x[i]));
 if (errno == EDOM || errno == ERANGE)
 perror(__FILE__);
}

This code produces the following output:

The exponent in the binary representation of 0 is -inf.
The exponent in the binary representation of 4.94066e-324 is -1074.
The exponent in the binary representation of 0.7 is -1.
The exponent in the binary representation of 1.8 is 0.

Lib
rary

Functio
ns

Standard Library Functions | 499

The exponent in the binary representation of 1234 is 10.
The exponent in the binary representation of inf is inf.

See Also

ilogb(), log(), log10(), log1p(), log2(), exp(), pow()

longjmplongjmp

Jump to a previously defined point in the program.

#include <setjmp.h>
void longjmp(jmp_buf environment, int returnval);

The longjmp() function allows the program to jump to a point that was previously
defined by calling the macro setjmp(). Unlike the goto statement, the longjmp()
call does not need to be within the same function as its destination. The use of
setjmp() and longjmp() can make a program harder to read and maintain, but
they are useful as a way to escape from function calls in case of errors.

The environment argument contains the processor and stack environment corre‐
sponding to the destination, and must be obtained from a prior setjmp() call. Its
type, jmp_buf, is defined in setjmp.h.

The longjmp() function does not return. Instead, the program continues as if
returning from the setjmp() call except that the returnval argument passed to
longjmp() appears as the return value of setjmp(). This value allows the setjmp()
caller to determine whether the initial setjmp() call has just returned, or whether a
longjmp() call has occurred. setjmp() itself returns 0. If setjmp() appears to
return any other value, then that point in the program was reached by calling
longjmp(). If the returnval argument in the longjmp() call is 0, it is replaced with
1 as the apparent return value after the corresponding setjmp() call. The
longjmp() call must not occur after the function that called setjmp() returns. Fur‐
thermore, if any variables with automatic storage duration in the function that
called setjmp() were modified after the setjmp() call (and were not declared as
volatile), then their values after the longjmp() call are indeterminate.
Example

See the example for setjmp().
See Also

setjmp()

lrint C99lrint C99

Rounds a floating-point number to an integer.

#include <math.h>
long lrint(double x);

500 | Chapter 18: Standard Library Functions

long lrintf(float x);
long lrintl(long double x);

The lrint() functions round a floating-point number to the next integer value in
the current rounding direction. If the result is outside the range of long, a range
error may occur, depending on the implementation, and the return value is unspeci‐
fied.
Example

double t_ambient; // Ambient temperature in Celsius.
int t_display; // Display permits integer values.
char tempstring[128];
int saverounding = fegetround();

/* ... Read t_ambient from some thermometer somewhere ... */

fesetround(FE_TONEAREST); // Round toward nearest integer, up or down.

t_display = (int)lrint(t_ambient);
snprintf(tempstring, 128, "Current temperature: %d° C\n", t_display);

fesetround(saverounding); // Restore rounding direction.

See Also

rint(), llrint(), round(), lround(), llround(), nearbyint()

lround C99lround C99

Rounds a floating-point number to an integer.

#include <math.h>
long lround(double x);
long lroundf(float x);
long lroundl(long double x);

The lround() functions are like round() except that they return an integer of type
long. lround() rounds a floating-point number to the nearest integer value. A
number halfway between two integers is rounded away from 0. If the result is out‐
side the range of long, a range error may occur (depending on the implementation),
and the return value is unspecified.
Example

long costnow; // Total cost in cents.
long realcost;
double rate; // Annual interest rate.
int period; // Time to defray cost.

/* ... obtain the interest rate to use for calculation ... */

realcost = lround((double)costnow * exp(rate * (double)period));

Lib
rary

Functio
ns

Standard Library Functions | 501

printf("Financed over %d years, the real cost will be $%ld.%2ld.\n",
 period, realcost/100, realcost % 100);

See Also

rint(), lrint(), llrint(), round(), llround(), nearbyint()

mallocmalloc

Allocates a block of memory.

#include <stdlib.h>
void *malloc(size_t size);

The malloc() function obtains a block of memory for the program to use. The
argument specifies the size of the block requested in bytes. The type size_t is
defined in stdlib.h, usually as unsigned int.

If successful, malloc() returns a void pointer to the beginning of the memory block
obtained. Void pointers are converted automatically to another pointer on assign‐
ment, so you do not need to use an explicit cast, although you may want do so for
the sake of clarity. Also, in older C dialects, malloc() returned a pointer to char,
which did necessitate explicit casts. If no memory block of the requested size is
available, the function returns a null pointer.
Example

struct linelink { char *line;
 struct linelink *next;
 };
struct linelink *head = NULL, *tail = NULL;

char buffer[2048];
FILE *fp_in;
/* ... 0pen input file ... */
while (NULL != fgets(buffer, sizeof(buffer), fp_in))
{
 if (head == NULL) /* Chain not yet started; add first link */
 {
 head = tail = malloc(sizeof(struct linelink));
 if (head != NULL)
 {
 head->line = malloc(strlen(buffer) + 1);
 if (head->line != NULL)
 { strcpy(head->line, buffer); head->next = NULL; }
 else
 { fprintf(stderr, "Out of memory\n"); return -1; }
 }
 else
 { fprintf(stderr, "Out of memory\n"); return -1; }
 }
 else /* Chain already started; add another link ... */

502 | Chapter 18: Standard Library Functions

See Also

free(), calloc(), realloc()

mblenmblen

Determines the length of a multibyte character, or whether the multibyte encoding
is stateful.

#include <stdlib.h>
int mblen(const char *s, size_t maxsize);

The mblen() function determines the length in bytes of a multibyte character refer‐
enced by its pointer argument. If the argument points to a valid multibyte character,
then mblen() returns a value greater than zero. If the argument points to a null
character ('\0'), then mblen() returns 0. A return value of -1 indicates that the
argument does not point to a valid multibyte character, or that the multibyte charac‐
ter is longer than the maximum size specified by the second argument. The LC_TYPE
category in the current locale settings determines which byte sequences are valid
multibyte characters.

The second argument specifies a maximum byte length for the multibyte character,
and should not be greater than the value of the symbolic constant MB_CUR_MAX,
defined in stdlib.h.

If you pass mblen() a null pointer as the first argument, then the return value indi‐
cates whether the current multibyte encoding is stateful. This behavior is the same
as that of mbtowc(). If mblen() returns 0, then the encoding is stateless. If it returns
any other value, the encoding is stateful; that is, the interpretation of a given byte
sequence may depend on the shift state.
Example

size_t mbsrcat(char * restrict s1, char * restrict s2,
 mbstate_t * restrict p_s1state, size_t n)
/* mbsrcat: multibyte string restartable concatenation.
 * Appends s2 to s1, respecting final shift state of destination string,
 * indicated by *p_s1state. String s2 must start in the initial shift
 * state.
 * Returns: number of bytes written, or (size_t)-1 on encoding error.
 * Max. total length (incl. terminating null byte) is <= n;
 * stores ending state of concatenated string in *s1state.
 */
{
 int result;
 size_t i = strlen(s1);
 size_t j = 0;

 if (i >= n − (MB_CUR_MAX+1)) // Sanity check: room for 1 multibyte
 // char + string terminator.
 return 0; // Report 0 bytes written.

Lib
rary

Functio
ns

Standard Library Functions | 503

 // Shift s1 down to initial state:

 if (!mbsinit(p_s1state)) // If not initial state, then append
 { // shift sequence to get initial state.
 if ((result = wcrtomb (s1+i, L'\0', p_s1state)) == -1)
 { // Encoding error:
 s1[i] = '\0'; // Try restoring termination.
 return (size_t)-1; // Report error to caller.
 }
 else
 i += result;
 }
 // Copy only whole multibyte characters at a time.
 // Get length of next char w/o changing state:
 while ((result = mblen(s2+j, MB_CUR_MAX)) <= (n − (1 + i)))
 {
 if (result == 0) break;
 if (result == -1)
 { // Encoding error:
 s1[i] = '\0'; // Terminate now.
 return (size_t)-1; // Report error to caller.
 }
 // Next character fits; copy it and update state:
 strncpy(s1+i, s2+j, mbrlen(s2+j, MB_CUR_MAX, p_s1state));
 i += result;
 j += result;
 }
 s1[i] = '\0';
 return j;
}

See Also

mbrlen(), mbtowc()

mbrlenmbrlen

Determines the length of a multibyte character and saves the parse state.

#include <stdlib.h>
size_t mbrlen(const char * restrict s, size_t maxsize,
 mbstate_t * restrict state);

The mbrlen() function, like mblen(), determines the length in bytes of a multibyte
character referenced by its first argument. Its additional parameter, a pointer to an
mbstate_t object, describes the parse state (also called the shift state) of a multibyte
character sequence in the given encoding. mbrlen() updates this parse-state object
after analyzing the multibyte character in the string, so that you can use it in a sub‐
sequent function call to interpret the next character correctly (hence the additional
“r” in the function name, which stands for “restartable”). If the final argument is a
null pointer, mbrlen() uses an internal, static mbstate_t object.

504 | Chapter 18: Standard Library Functions

The possible return values are as follows:

Positive values
The return value is the length of the multibyte character.

0
The first multibyte character in the string is a null character. In this case,
mbrlen() sets the parse state object to the initial state.

(size_t)(-1)

The first argument does not point to a valid multibyte character. The mbrlen()
function sets the errno variable to EILSEQ and leaves the mbstate_t object in
an undefined state.

(size_t)(-2)
The first argument does not point to a valid multibyte character within the
specified maximum number of bytes. The sequence may be the beginning of a
valid but longer multibyte character.

The LC_TYPE category in the current locale settings determines which byte sequen‐
ces are valid multibyte characters.
Example

See the example for mblen() in this chapter.
See Also

mblen(), mbrtowc()

mbrtoc16 C11mbrtoc16 C11

Converts a multibyte character to a wide character of the type char16_t.

#include <uchar.h>
size_t mbrtoc16(char16_t * restrict pc16, const char * restrict s,
 size_t n, mbstate_t * restrict state);

If s is not a null pointer, the function mbrtoc16() reads a maximum of n bytes start‐
ing at the address s to determine the next multibyte character. If it reads a valid
multibyte character, the function converts it to the corresponding wide character of
the type char16_t and stores that value in the object addressed by pc16, provided
pc16 is not a null pointer. The function also updates the shift state addressed by
state. If more than one char16_t object is required to represent the character, sub‐
sequent calls to the function store the subsequent 16-bit character codes without
reading more of the multibyte string.

If the wide character produced by the conversion is the null character, the function
sets the shift state stored at the address static to the initial shift state.

If s is a null pointer, the values of n and pc16 are ignored and the function call is
equivalent to the following:

Lib
rary

Functio
ns

Standard Library Functions | 505

mbrtoc16(NULL, "", 1, ps)

Ordinarily, the mbrtoc16() function is thread-safe. However, if the last argument,
state, is a null pointer, mbrtoc16() uses an internal, static mbstate_t object, and in
that case, the function is not guaranteed to be thread-safe.

Implementations that define the macro __STDC_UTF_16__ use UTF-16 encoding for
characters of the type char16_t. The macro is not defined if a different encoding is
used.

The function mbrtoc16() returns one of the following values:

Positive value [1 ... n]
The number of bytes read; i.e., the length of the multibyte character.

0
The wide character produced is the null character.

(size_t)(–1)

No valid multibyte character was found. The function mbrtoc16() sets the
error variable errno to the value of EILSEQ and leaves the mbstate_t object in
an undefined state.

(size_t)(–2)

The first n bytes did not contain a complete multibyte character, but may be the
beginning of a valid multibyte character.

(size_t)(–3)

The function stored the next char16_t code of a character without reading
additional bytes. (The representation of the character requires more than one
char16_t object.)

Example
// The function mbsToC16s() uses mbrtoc16() to convert a string of
// multibyte characters into a string of 16-bit characters
// (typically in UTF-16 encoding).
// Return value: the number of char16_t characters produced, or
// -1 if an error occurred.

int mbsToC16s(const char *mbStr, char16_t *c16Str, size_t len)
{
 if(mbStr == NULL || c16Str == NULL || len == 0) // Sanity checks.
 return -1;

 mbstate_t mbstate = {0};
 char16_t c16;
 int count = 0, i = 0, rv = 0,
 nBytes = (int)strlen(mbStr)+1;

 do {
 rv = (int)mbrtoc16(&c16, mbStr+i, nBytes-i, &mbstate);

506 | Chapter 18: Standard Library Functions

 switch(rv)
 {
 case 0: c16Str[count] = 0; i = nBytes; // End of string.
 break;
 case -1: // Encoding error.
 case -2: count = -1;
 break;
 default:
 if(count < (int)len-1)
 {
 c16Str[count++] = c16;
 if(rv > 0) i += rv; // rv != -3
 }
 else count = -1;
 }
 } while(count > 0 && i < nBytes);

 return count;
}

A sample function call:

int main(void)
{
 if(setlocale(LC_ALL, "en_US.utf8") == NULL)
 fputs("Unable to set the locale.\n", stderr);

 char *u8Str = u8"Grüße";
 char16_t c16Str[100];
 int nChars = 0;

 nChars = mbsToC16s(u8Str, c16Str, 100);
 if(nChars < 0)
 fputs("Error ...", stderr);
 else
 {
 printf("%d UTF-16 characters.\n", nChars);
// ...
}

See Also

c16rtomb(), mbrtoc32(), c32rtomb(), mbtowc(), mbrtowc(), wcrtomb(), mbrlen()

mbrtoc32 C11mbrtoc32 C11

Converts a multibyte character to a wide character of the type char32_t.

#include <uchar.h>
size_t mbrtoc32(char32_t * restrict pc32, const char * restrict s>,
 size_t n, mbstate_t * restrict state>);

Lib
rary

Functio
ns

Standard Library Functions | 507

The function mbrtoc32(), like mbrtoc16(), converts a multibyte character to the
corresponding wide character, except that the wide-character output has the type
char32_t.
Example

See the example for mbrtoc16() in this chapter.
See Also

c32rtomb(), mbrtoc16(), c16rtomb(), mbtowc(), mbrtowc(), wcrtomb(), mbrlen()

mbrtowc C99mbrtowc C99

Converts a multibyte character to a wide character, and saves the parse state.

#include <wchar.h>
size_t mbrtowc(wchar_t * restrict widebuffer,
 const char * restrict string,
 size_t maxsize, mbstate_t * restrict state);

The mbrtowc() function, like mbtowc(), determines the wide character that corre‐
sponds to the multibyte character referenced by the second pointer argument, and
stores the result in the location referenced by the first pointer argument. Its addi‐
tional parameter, a pointer to an mbstate_t object, describes the shift state of a mul‐
tibyte character sequence in the given encoding. mbrtowc() updates this shift-state
object after analyzing the multibyte character in the string, so you can use it in a
subsequent function call to interpret the next character correctly (hence the addi‐
tional “r” in the function name, which stands for “restartable”). If the last argument
is a null pointer, mbrtowc() uses an internal, static mbstate_t object.

The third argument is the maximum number of bytes to read for the multibyte
character, and the return value is the number of bytes that the function actually read
to obtain a valid multibyte character. If the string pointer in the second parameter
points to a null character, mbrtowc() returns 0 and sets the parse state object to the
initial state. If the string pointer does not point to a valid multibyte character,
mbrtowc() returns (size_t)(-1), sets the errno variable to EILSEQ, and leaves the
mbstate_t object in an undefined state. If the first maxsize bytes do not yield a
complete multibyte character but could be the beginning of a valid multibyte char‐
acter, the function returns (size_t)(-2).
Example

size_t mbstoupper(char *s1, char *s2, size_t n)
/* Copies the multibyte string from s2 to s1, converting all the
 characters to uppercase on the way.
 Because there are no standard functions for case-mapping in multibyte
 encodings, converts to and from the wide-character encoding (using the
 current locale setting for the LC_CTYPE category). The source string
 must begin in the initial shift state.
 Returns: the number of bytes written;
 or (size_t)-1 on an encoding error.
 */

508 | Chapter 18: Standard Library Functions

{
 char *inptr = s2, *outptr = s1;
 wchar_t thiswc[1];
 size_t inresult, outresult;

 mbstate_t states[2], *instate = &states[0], *outstate = &states[1];

 memset(states, '\0', sizeof states);

 do
 {
 inresult = mbrtowc(thiswc, inptr, MB_CUR_MAX, instate);
 switch (inresult)
 {
 case (size_t)-2: // The (MB_CUR_MAX) bytes at inptr do not make
 // a complete mb character. Maybe there is a
 // redundant sequence of shift codes. Treat the
 // same as an encoding error.
 *outptr = '\0';
 return (size_t)-1;

 case (size_t)-1: // Found an invalid mb sequence at inptr:
 return inresult; // pass the error to the caller.

 case 0: // Got a null character. Make a last null wc.
 // The default action, with wcrtomb, does this
 // nicely, so *no break statement* necessary here.

 default: // Read <result> mb characters to get one wide
 // character.
 /* Check for length limit before writing anything but a null.
 Note: Using inresult as an approximation for the output
 length.
 The actual output length could conceivably be different
 due to a different succession of state-shift sequences.
 */
 if ((outptr − s1) + inresult + MB_CUR_MAX > n)
 { // i.e., if bytes written + bytes to write + termination > n,
 // then terminate now by simulating a null-character input.
 thiswc[0] = L'\0';
 inresult = 0;
 }
 inptr += inresult;
 if ((outresult = wcrtomb(outptr,
 (wchar_t)towupper(thiswc[0]),
 outstate)) == -1)
 { // Encoding error on output:
 *outptr = '\0'; // Terminate and return error.
 return outresult;
 }
 else
 outptr += outresult;

Lib
rary

Functio
ns

Standard Library Functions | 509

 }
 } while (inresult); // Drop out after handling '\0'.
 return outptr - s1;
}

See Also

mbtowc(), mbrlen(), wcrtomb()

mbsinitmbsinit

Determines whether a multibyte parse state variable represents the initial state.

#include <wchar.h>
int mbsinit(const mbstate_t *state);

The mbsinit() function tests whether the multibyte parse state variable represents
the initial state. The type mbstate_t is defined in wchar.h. An object of this type
holds the parse state of a multibyte string or stream. If the parse state is the initial
state, mbsinit() returns a nonzero value; otherwise, mbsinit() returns 0.
mbsinit() also returns a nonzero value if the argument is a null pointer.
Example

See the example for mblen() in this chapter.
See Also

wcrtomb(), wcsrtombs(), mbsrtowcs(), mbrtowc()

mbsrtowcsmbsrtowcs

Converts a multibyte string to a wide-character string.

#include <wchar.h>
size_t mbsrtowcs(wchar_t * restrict dest, const char ** restrict src,
 size_t n, mbstate_t * restrict state);

The function mbsrtowcs() is the “restartable” verion of mbstowcs(). It begins con‐
verting the input string, not in the initial shift state, but in the shift state specified by
the additional paramter state. Furthermore, before returning, mbsrtowcs() sets the
pointer addressed by src to point to the next character to be converted, so that the
conversion can be continued by a subsequent function call. If it reaches the end of
the string, mbsrtowcs() sets the pointer addressed by src to NULL and lets the object
addressed by state specify the initial shift state.

The conversion performed is equivalent to an mbrtowc() call for each multibyte
character in the source string, beginning with the shift state specified by *state. If
mbsrtowcs() encounters an invalid multibyte character, it returns the value
(size_t)(-1) and sets the variable errno to the value EILSEQ (“illegal sequence”). If
no error occurs, the function returns the number of wide characters written, not
counting the terminating null character if present.

510 | Chapter 18: Standard Library Functions

If the return value is equal to the specified maximum n, the
wide-character string is not terminated with a null charac‐
ter!

Example
size_t result;

char mbstring[] = "This is originally a multibyte string.\n";
const char *mbsptr = mbstring;

wchar_t widestring[256] = { L'\0' };

mbstate_t state;
memset(&state, '\0', sizeof state);

printf("The current locale is %s.\n", setlocale(LC_CTYPE, ""));

result = mbsrtowcs(widestring, &mbsptr, 256, &state);
if (result == (size_t)-1)
{
 fputs("Encoding error in multibyte string", stderr);
 return -1;
}
else
{
 printf("Converted %u multibyte characters. The result:\n", result);
 printf("%ls", widestring);
}

See Also

mbstowcs(), mbrtowc(); wcsrtombs(), wcrtomb(), wcstombs(), wctomb(), and the
corresponding secure functions

mbsrtowcs_s C11mbsrtowcs_s C11

Converts a multibyte string to a wide-character string.

#include <wchar.h>
errno_t mbsrtowcs_s(size_t * restrict retval,
 wchar_t * restrict dst, size_t dstmax,
 const char ** restrict src, size_t n,
 mbstate_t * restrict state);

The function mbsrtowcs_s() is the “restartable” version of mbstowcs_s(). It begins
the conversion not in the initial shift state but in the shift state specified by the
parameter state. The parameter src is a pointer to a char pointer. Before it returns,
the function stores a pointer to the next byte to be read in *src, and the appropriate
shift state in *state, so that subsequent function calls can continue the string con‐

Lib
rary

Functio
ns

Standard Library Functions | 511

version with that byte. If the function reaches the end of the input string, it stores a
null pointer in the variable addressed by src.

The pointer arguments retval, src, *src, and state must not be null pointers.
Except for the differences described here, the function mbsrtowcs_s() is similar to
mbsrtowcs(). It returns zero on success, or a nonzero value if an error occurs.
Example

 const char *mbptr = "Any multibyte string";
 wchar_t wcstr[10]; // A buffer for wide characters
 size_t len; // and its capacity.
 mbstate_t state = {0};

 if(mbsrtowcs_s(&len, wcstr, 10, &mbptr, 9, &state) != 0)
 printf("The array contains an invalid multibyte character.\n");
 else
 {
 printf("Length: %u; text: %ls\n", len, wcstr);
 printf("The remaining characters: %s\n", mbptr);
 }

The output from this code is:

Length: 9; text: Any multi
The remaining characters: byte string

See Also

mbsrtowcs(), mbstowcs(), mbstowcs_s(), mbtowc(), mbrtowc(), mbrtoc16(),
mbrtoc32(), wcstombs(), wcsrtombs()

mbstowcsmbstowcs

Converts a multibyte string to a wide-character string.

#include <stdlib.h>
size_t mbstowcs(wchar_t * restrict dest, const char * restrict src,
 size_t n);

The mbstowcs() function converts a multibyte string to a wide-character string, and
returns the number of wide characters in the result, not counting the wide-string
terminator. The first argument is a pointer to a buffer for the result; the second
argument is a pointer to the string of multibyte characters to be converted; the third
argument is the maximum number of wide characters to be written to the buffer.

The conversion performed is equivalent to calling mbtowc() for each multibyte
character in the original string, beginning in the initial shift state.

512 | Chapter 18: Standard Library Functions

The mbstowcs() function terminates the resulting wide-
character string with a null wide character (L'\0') only if it
has not yet written the maximum number of wide characters
specified by the third argument! If the return value is the same
as the specified limit, then the resulting wide string has not
been terminated.

If mbstowcs() encounters an invalid multibyte character, it returns (size_t)(-1).
Example

See the example for localeconv() in this chapter.
See Also

mbsrtowcs(), mbtowc(), wcstombs(), wcsrtombs(), and the corresponding secure
functions

mbstowcs_s C11mbstowcs_s C11

Converts a multibyte string to a wide-character string.

#include <stdlib.h>
errno_t mbstowcs_s(size_t * restrict retval,
 wchar_t * restrict dst, size_t dstmax,
 const char * restrict src, size_t n);

The function mbstowcs_s() is the “secure” version of the function mbstowcs(). It
converts the multibyte string addressed by src to a string of wide characters of the
type wchar_t. The conversion begins in the initial shift state, and the function’s
operation is equivalent to calling mbrtowc() for each multibyte character in the
source string. The number of characters converted, not counting the string-
terminating null character, is stored in the variable addressed by retval.

If dst is not a null pointer, then the function only converts the first n multibyte
characters (or up to the end of the multibyte string, whichever comes first), and
stores the result in the array addressed by dst, up to the maximum length specified
by dstmax. In any case, the output string is terminated with L'\0'. Thus, if no ter‐
minator character was copied from the source string, and dstmax is at least equal to
n+1, dst[n] contains the string terminator L'\0'. The value of any elements of the
array dst after the terminator character is undefined.

If dst is a null pointer, the function ignores the argument n and only counts the
number of multibyte characters in the string, storing the result in the variable
addressed by retval.

The function tests the following runtime constraints: the pointer arguments retval
and src must not be null pointers. If dst is a null pointer, the output length argu‐
ment dstmax must also be zero. If dst is not a null pointer, the values of n and
dstmax must not be greater than RSIZE_MAX. Furthermore, dstmax must be greater
than the number of wide characters that actually need to be stored—that is, either

Lib
rary

Functio
ns

Standard Library Functions | 513

greater than n or greater than the number of characters in the string, whichever is
less.

If a runtime constraint violation occurs and retval is not a null pointer,
mbstowcs_s() stores the value -1 in the size_t object addressed by retval, and
also writes the string terminator character L'\0' to dst[0], provided dst is not a
null pointer and dstmax is greater than zero.

The mbstowcs_s() also places the value -1 in the object addressed by retval to
indicate an encoding error if the source string contains a byte sequence that does
not represent a valid multibyte character.

The mbstowcs_s() function returns zero on success, or a nonzero value if an error
occurs.
Example

 char mbstr[] = "Any multibyte string";
 wchar_t wcstr[10]; // A buffer for wide characters
 size_t len; // and the number of characters.

 if(mbstowcs_s(&len, wcstr, 10, mbstr, 9) != 0)
 printf("The array contains an invalid multibyte character.\n");
 else
 printf("Length: %u; text: %ls\n", len, wcstr);

Output:

Length: 9; text: Any multi

See Also

mbstowcs(), mbsrtowcs(), mbsrtowcs_s(), mbtowc(), mbrtowc(), mbrtoc16(),
mbrtoc32(), wcstombs(), wcsrtombs()

mbtowcmbtowc

Converts a multibyte character to a wide character.

#include <stdlib.h>
int mbtowc(wchar_t * restrict wc, const char * restrict s,
 size_t maxsize);

The mbtowc() function determines the wide character corresponding to the multi‐
byte character referenced by the second pointer argument, and stores the result in
the location referenced by the first pointer argument. The third argument is the
maximum number of bytes to read for the multibyte character, and the return value
is the number of bytes that the function actually read to obtain a valid multibyte
character. If the second argument points to a null character, mbtowc() returns 0. If it
does not point to a valid multibyte character, mbtowc() returns -1.

If you pass mbtowc() a null pointer as the second argument, s, then the return value
indicates whether the current multibyte encoding is stateful. This behavior is the
same as that of mblen(). If mbtowc() returns 0, then the encoding is stateless. If it

514 | Chapter 18: Standard Library Functions

returns any other value, the encoding is stateful; that is, the interpretation of a given
byte sequence may depend on the shift state.
Example
The following example converts an array of multibyte characters into wide charac‐
ters one at a time, and prints each one:

int i = 0, n = 0;
wchar_t wc;
char mbstring[256] = "This is originally a multibyte string.\n";

printf("The current locale is %s.\n", setlocale(LC_CTYPE, ""));

while ((n = mbtowc(&wc, &mbstring[i], MB_CUR_MAX)) != 0)
{
 if (n == -1)
 {
 fputs("Encoding error in multibyte string", stderr);
 break;
 }
 printf("%lc", (wint_t)wc);
 i += n;
}

See Also

mbrtowc(), mblen(), mbsinit()

memchrmemchr

Searches a memory block for a given byte value.

#include <string.h>
void *memchr(const void *buffer, int c, size_t n);

The memchr() function searches for a byte with the value of c in a buffer of n bytes
beginning at the address in the pointer argument buffer. The function’s return
value is a pointer to the first occurrence of the specified character in the buffer, or a
null pointer if the character does not occur within the specified number of bytes.
The type size_t is defined in string.h (and other header files), usually as unsigned
int.
Example

char *found, buffer[4096] = "";
int ch = ' ';

fgets(buffer, sizeof(buffer), stdin);

/* Replace any spaces in the string read with underscores: */
while ((found = memchr(buffer, ch, strlen(buffer))) != NULL)
 *found = '_';

Lib
rary

Functio
ns

Standard Library Functions | 515

See Also

strchr(), wmemchr()

memcmpmemcmp

Compares two memory blocks.

#include <string.h>
int memcmp(const void *b1, const void *b2, size_t n);

The memcmp() function compares the contents two memory blocks of n bytes, begin‐
ning at the addresses in b1 and b2, until it finds a byte that doesn’t match. The func‐
tion returns a value greater than zero if the first mismatched byte (evaluated as
unsigned char) is greater in b1, or less than zero if the first mismatched byte is
greater in b2, or zero if the two buffers are identical over n bytes.
Example

long setone[5] = { 1, 3, 5, 7, 9 };
long settwo[5] = { 0, 2, 4, 6, 8 };

for (int i = 0; i < 5; i++)
 settwo[i] += 1;

if (memcmp(&setone, &settwo, sizeof(settwo)) == 0)
 printf("The two arrays are identical, byte for byte.\n");

See Also

strcmp(), strncmp(), wmemcmp()

memcpy, memcpy_smemcpy, memcpy_s

Copies the contents of a memory block.

#include <string.h>
void *memcpy(void * restrict dest,
 const void * restrict src, size_t n);
errno_t memcpy_s(void * restrict dest, size_t destmax,
 const void * restrict , rsize_t n); (C11)

The memcpy() function copies n successive bytes beginning at the address in src to
the location beginning at the address in dest. The return value is the same as the
first argument, dest. The two pointer values must be at least n bytes apart, so that
the source and destination blocks do not overlap; otherwise, the function’s behavior
is undefined. For overlapping blocks, use memmove() or memmove_s().

The function memcpy_s(), like memcpy(), copies a block of n successive bytes begin‐
ning at the address in src to the location beginning at the address in dest. Unlike
memcpy(), memcpy_s() has the additional parameter destmax, which specifies the
size of the destination block. The function tests the following runtime constraints:
the pointer arguments dest and src must not be null pointers. The values of

516 | Chapter 18: Standard Library Functions

destmax and n must not be greater than RSIZE_MAX, and n must not be greater than
destmax. The two memory blocks addressed by src and dest must not overlap.

If any of the runtime constraints is violated, memcpy_s() fills the destination block
with null bytes, provided dest is not a null pointer and destmax is not greater than
RSIZE_MAX.

The function memcpy_s() returns zero on success, or a nonzero value if a violation
of the runtime constraints occurs.
Example

typedef struct record {
 char name[32];
 double data;
 struct record *next, *prev;
} Rec_t;

Rec_t template = { "Another fine product", -0.0, NULL, NULL };
Rec_t *tmp_new;

if ((tmp_new = malloc(sizeof(Rec_t))) != NULL)
 memcpy(tmp_new, &template, sizeof(Rec_t));
 // Equivalent to
 // memcpy_s(tmp_new, sizeof(Rec_t), &template, sizeof(Rec_t));
 // or *tmp_new = template;
else
 fprintf(stderr, "Out of memory!\n");

See Also

strcpy(), strncpy(), memmove(), wmemcpy(), wmemmove()

For each of these functions, there is also a corresponding “secure” function, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined)

memmove, memmove_smemmove, memmove_s

Copies the contents of a memory block.

#include <string.h>
void *memmove(void *dest, const void *src, size_t int n);
errno_t memmove_s(void * restrict dest, size_t destmax,
 const void * restrict src, rsize_t n); (C11)

The memmove() function copies n successive bytes beginning at the address in src to
the location beginning at the address in dest. The return value is the same as the
first argument, dest. If the source and destination blocks overlap, copying takes
place as if through a temporary buffer, so that after the function call, each original
value from the src block appears in dest. Lib

rary
Functio

ns

Standard Library Functions | 517

The function memmove_s(), like memmove(), copies a block of n bytes beginning at
the location addressed by src to the location beginning at the address in dest.
Unlike memmove(), memmove_s() has the additional parameter destmax, which speci‐
fies the size of the destination block. The function tests the following runtime con‐
straints: the pointer arguments dest and src must not be null pointers; the values of
destmax and n must not be greater than RSIZE_MAX; and n must not be greater than
destmax.

If a runtime constraint is violated, memmove_s() fills the destination block with null
bytes, provided dest is not a null pointer and destmax is not greater than
RSIZE_MAX.

The function memmove_s() returns zero on success, or a nonzero value if a violation
of the runtime constraints occurs.
Example

char a[30] = "That's not what I said." ;
 memmove(a+7, a+11, 13); // Move 13 bytes, 'w' through '\0'
// Or with memmove_s():
// memmove_s(a+7, 13, a+11, 13);
puts(a);

These lines produce the following output:

That's what I said.

See Also

memcpy(), wmemmove()

memset, memset_smemset, memset_s

Set all bytes of a memory block to a given value.

#include <string.h>
void *memset(void *dest, int c, size_t n);
errno_t memset_s(void *dest, rsize_t destmax, int c, rsize_t n); (C11)

The function memset() stores the value of c (converted to the type unsigned char)
in each byte of the memory block of n bytes beginning at the address in dest. The
return value is the same as the pointer argument dest.

The function memset_s(), like memset(), sets each byte in a block of n bytes in
memory to the value c. Unlike memset(), however, memset_s() has the additional
parameter destmax, which specifies the size of the destination block. The function
also tests the following runtime constraints: the pointer argument dest must not be
a null pointer; the values of destmax and n must not be greater than RSIZE_MAX; and
n must not be greater than destmax.

If any of the runtime constraints is violated, memset_s() nonetheless fills the desti‐
nation block with the value of c (converted to the type unsigned char), provided
dest is not a null pointer and destmax is not greater than RSIZE_MAX.

518 | Chapter 18: Standard Library Functions

The function memset_s() returns zero on success, or a nonzero value if a violation
of the runtime constraints occurs.
Example

char str[] = "Account number: 1234567890";
char digits[] = "0123456789";

size_t pos = strcspn(str, digits); // Position of the first digit.
// puts(memset(str+pos, 'x', 7));
// or
if(memset_s(str+pos, strlen(str)-pos, 'x', 7) == 0)
 puts(str)

These statements produce the following output:

Account number: xxxxxxx890

See Also

wmemset(), calloc()

mktimemktime

Determines the time represented by a struct tm value.

#include <time.h>
time_t mktime(struct tm *timeptr);

The mktime() function calculates the local calendar time represented by the mem‐
ber values in the object referenced by the pointer argument.

The type struct tm is defined in time.h as follows:

struct tm {
 int tm_sec; /* Seconds (0-60; 1 leap second) */
 int tm_min; /* Minutes (0-59) */
 int tm_hour; /* Hours (0-23) */
 int tm_mday; /* Day (1-31) */
 int tm_mon; /* Month (0-11) */
 int tm_year; /* Year (difference from 1900) */
 int tm_wday; /* Day of week (0-6) */
 int tm_yday; /* Day of year (0-365) */
 int tm_isdst; /* Daylight saving time (-1, 0, 1) */
};

The member tm_isdst is equal to 0 if daylight saving time is not in effect, or 1 if it
is. A negative value indicates that the information is not available, in which case
mktime() attempts to calculate whether daylight saving time is applicable at the time
represented by the other members.

The mktime() function ignores the tm_wday and tm_yday members in determining
the time, but does use tm_isdst. The other members may contain values outside
their normal ranges. Once it has calculated the time represented, mktime() adjusts
the struct tm members so that each one is within its normal range, and also sets

Lib
rary

Functio
ns

Standard Library Functions | 519

tm_wday and tm_yday accordingly. The return value is the number of seconds from
the epoch (usually midnight on January 1, 1970, UTC) to the time represented in
the structure, or -1 to indicate an error.
Example

 time_t seconds;
 struct tm sometime;

 sometime.tm_sec = 10;
 sometime.tm_min = 80;
 sometime.tm_hour = 40;
 sometime.tm_mday = 23;
 sometime.tm_mon = 1;
 sometime.tm_year = 105;
 sometime.tm_wday = 11;
 sometime.tm_yday = 111;
 sometime.tm_isdst = -1;

 seconds = mktime(&sometime);

 if (seconds == -1)
 {
 printf("mktime() couldn't make sense of its input.\n");
 return -1;
 }

 printf("The return value, %ld, represents %s",
 (long)seconds, ctime(&seconds));

 printf("The structure has been adjusted as follows:\n"
 "tm_sec == %d\n"
 "tm_min == %d\n"
 "tm_hour == %d\n"
 "tm_mday == %d\n"
 "tm_mon == %d\n"
 "tm_year == %d\n"
 "tm_wday == %d\n"
 "tm_yday == %d\n"
 "tm_isdst == %d\n",

 sometime.tm_sec,
 sometime.tm_min,
 sometime.tm_hour,
 sometime.tm_mday,
 sometime.tm_mon,
 sometime.tm_year,
 sometime.tm_wday,
 sometime.tm_yday,
 sometime.tm_isdst);

 printf("The structure now represents %s", asctime(&sometime));
}

520 | Chapter 18: Standard Library Functions

This program produces the following output:

The return value, 1109262010, represents Thu Feb 24 17:20:10 2005
The structure has been adjusted as follows:
tm_sec == 10
tm_min == 20
tm_hour == 17
tm_mday == 24
tm_mon == 1
tm_year == 105
tm_wday == 4
tm_yday == 54
tm_isdst == 0
The structure now represents Thu Feb 24 17:20:10 2005

See Also

asctime(), ctime(), localtime(), gmtime(), strftime()

modfmodf

Separates a floating-point number into integer and fraction parts.

#include <math.h>
double modf(double x, double *intpart);
float modff(float x, float *intpart); (C99)
long double modfl(long double x, long double *intpart); (C99)

The modf() functions analyze a floating-point number into an integer and a fraction
whose magnitude is less than one. The integer part is stored in the location
addressed by the second argument, and the fractional part is the return value.

There is no type-generic macro for the modf() functions.

Example
double x, integer = 0.0, fraction = 0.0;
x = 1.23;
fraction = modf(x, &integer);
printf("%10f = %f + %f\n", x , integer, fraction);

x = -1.23;
fraction = modf(x, &integer);
printf("%10f = %f + %f\n", x , integer, fraction);

The example produces the following output:

 1.230000 = 1.000000 + 0.230000
 -1.230000 = -1.000000 + -0.230000

Lib
rary

Functio
ns

Standard Library Functions | 521

See Also

frexp()

mtx_destroy C11mtx_destroy C11

Destroys the specified mutex.

#include <threads.h>
void mtx_destroy(mtx_t *mtx);

The function mtx_destroy() frees all the resources used by the mutex object refer‐
enced by its pointer argument mtx. There must not be any threads blocked on the
mutex when mtx_destroy() is called.
Example

See the examples for mtx_init() and cnd_broadcast() in this chapter.
See Also

mtx_init(), mtx_lock(), mtx_unlock(), cnd_wait()

mtx_init C11mtx_init C11

Creates a mutex object.

#include <threads.h>
int mtx_init(mtx_t *mtx, int mutextype);

The function mtx_init() creates a mutex with the properties specified by mutex
type, where the value of mutextype is one of the following:

Table 18-6. Mutex types

mutextype Properties of the mutex

mtx_plain A plain, non-recursive mutex

mtx_timed A non-recursive mutex that supports timeouts

mtx_plain | mtx_recursive A recursive mutex

mtx_timed | mtx_recursive A recursive mutex that supports timeouts

If it succeeds in creating a new mutex, the function mtx_init() writes the ID of the
new mutex in the object addressed by the argument mtx, and returns the value of
the macro thrd_success. If an error occurs, mtx_init() returns thrd_error.
Example

mtx_t mtx; // A mutex.

int main()
{
 if(mtx_init(&mtx, mtx_plain) != thrd_success)

522 | Chapter 18: Standard Library Functions

 {
 fputs("Error initializing the mutex.\n", stderr);
 return -1;
 }
// Here on success.
// ... Threads use the mutex ...
// ... Wait for threads to end ...

 mtx_destroy(&mtx);
 return 0;
}

See Also

mtx_destroy(), mtx_lock(), mtx-timedlock(), mtx-trylock(), mtx_unlock(),
cnd_wait(), cnd_timedwait()

mtx_lock C11mtx_lock C11

Locks the specified mutex.

#include <threads.h>
int mtx_lock(mtx_t *mtx);

The function mtx_lock() blocks the calling thread until it obtains the mutex with
the ID addressed by mtx. The calling thread must not already hold the mutex, unless
it is a recursive one. The return value is thrd_success if no error occurs, or
thrd_error if an error occurred.
Example

See the example for mtx_timedlock() in this chapter.
See Also

mtx_timedlock(), mtx_trylock(), mtx_unlock(), mtx_init()

mtx_timedlock C11mtx_timedlock C11

Tries for a limited time to lock the specified mutex.

#include <threads.h>
int mtx_timedlock(mtx_t *restrict mtx,
 const struct timespec *restrict ts);

The function mtx_timedlock() blocks the calling thread until it obtains the mutex
with the ID addressed by mtx, or until the time specified by ts has elapsed. The
mutex must support timeouts and the calling thread must not already hold the
mutex, unless it is a recursive one. The parameter ts specifies a point in Coordina‐
ted Universal Time, or UTC (also called Greenwich Mean Time). The current time
in UTC can be obtained using the function timespec_get(). Lib

rary
Functio

ns

Standard Library Functions | 523

The return value is thrd_success if no error occurs, thrd_timedout if the time
limit elapsed, or thrd_error if an error occurred.
Example

mtx_t mtx;
int func(void * thrd); // Thread function.

int main()
{
 thrd_t th;
 if(mtx_init(&mtx, mtx_timed) != thrd_success)
 { fputs("Initialization error.\n", stderr); return 1; }

 mtx_lock(&mtx); // Lock the mutex.
 if(thrd_create(&th, func, "Thread A") != thrd_success)
 { fputs("Thread error.\n", stderr); return 2; }

 thrd_join(th, NULL);
 mtx_destroy(&mtx);
 return 0;
}

int func(void * thrd)
{
 struct timespec ts;
 timespec_get(&ts, TIME_UTC); // The current time;
 ts.tv_sec += 3; // 3 seconds from now.

 printf("%s waiting ...\n", (char*)thrd);
 int res = mtx_timedlock(&mtx, &ts);
 switch(res)
 {
 case thrd_success:
 puts("Obtained mutex\n... releasing ...");
 mtx_unlock(&mtx); break;
 case thrd_timedout:
 puts("Timed out."); break;
 default:
 puts("mtx_timedlock: error.");
 };
 return res;
}

This code produces the following output:

Thread A waiting ...
Timed out.

See Also

mtx_lock(), mtx_trylock(), mtx_unlock(), mtx_init()

524 | Chapter 18: Standard Library Functions

mtx_trylock C11mtx_trylock C11

Tries to lock the specified mutex, but without blocking.

#include <threads.h>
int mtx_trylock(mtx_t *mtx);

The function mtx_trylock() tries to acquire the mutex with the ID addressed by
mtx but does not block the calling thread if the mutex is busy. The calling thread
must not already hold the mutex, unless the mutex supports recursion.

The return value is thrd_success if the function succeeds in locking the mutex,
thrd_busy if the mutex could not be acquired, and thrd_error if an error occurred.
Example

#define NUM_THREADS 3

mtx_t mtx;
struct timespec duration = { .tv_nsec = 1 }; // One nanosecond.

int func(void * thrd_num) // Thread function.
{
 int num = *(int*)thrd_num;
 int res, count = 1;

 while((res = mtx_trylock(&mtx)) == thrd_busy)
 { ++count; thrd_sleep(&duration, NULL); }

 if(res == thrd_success)
 {
 printf("Thread %d succeeded after %d attempts.\n", num, count);
 thrd_sleep(&duration, NULL);
 mtx_unlock(&mtx);
 return 0;
 }
 else return -1;
}

int main(void)
{
 struct { thrd_t th; int id; } th_arr[NUM_THREADS];

 if(mtx_init(&mtx, mtx_plain) != thrd_success)
 return 1;

 // Create threads:
 for(int i = 0; i < NUM_THREADS; ++i)
 {
 th_arr[i].id = i;
 if(thrd_create(&th_arr[i].th, func, &th_arr[i].id) !=
 thrd_success)

Lib
rary

Functio
ns

Standard Library Functions | 525

 return -2;
 }
 // Wait for threads to finish:
 for(int i = 0; i < NUM_THREADS; ++i)
 thrd_join(th_arr[i].th, NULL);

 mtx_destroy(&mtx);
 return 0;
}

Possible output of this program:

Thread 0 succeeded after 1 attempts.
Thread 2 succeeded after 2 attempts.
Thread 1 succeeded after 4 attempts.

See Also

mtx_lock(), mtx_timedlock(), mtx_unlock()

mtx_unlock C11mtx_unlock C11

Unlocks the specified mutex.

#include <threads.h>
int mtx_unlock(mtx_t *mtx);

The function mtx_unlock() unlocks the mutex with the ID addressed by mtx. The
calling thread must hold the mutex. The return value is thrd_success if no error
occurs; otherwise, thrd_error.
Example

See the example for mtx_trylock() in this chapter.
See Also

mtx_lock(), mtx_timedlock(), mtx_trylock(), mtx_init()

nearbyint C99nearbyint C99

Rounds a floating-point number to an integer value.

#include <math.h>
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

The nearbyint() functions round the value of the argument to the next integer
value in the current rounding direction. The current rounding direction is an
attribute of the floating-point environment that you can read and modify using the
fegetround() and fesetround() functions. They are similar to the rint() func‐
tions, except that the nearbyint() functions do not raise the FE_INEXACT exception
when the result of the rounding is different from the argument.

526 | Chapter 18: Standard Library Functions

Example
if (fesetround(FE_TOWARDZERO) == 0)
 printf("The current rounding mode is \"round toward 0.\"\n");
else
 printf("The rounding mode is unchanged.\n");

printf("nearbyint(1.9) = %4.1f nearbyint(-1.9) = %4.1f\n",
 nearbyint(1.9), nearbyint(-1.9));

printf("round(1.9) = %4.1f round(-1.9) = %4.1f\n",
 round(1.9), round(-1.9));

This code produces the following output:

The current rounding mode is "round toward 0."
nearbyint(1.9) = 1.0 nearbyint(-1.9) = -1.0
round(1.9) = 2.0 round(-1.9) = -2.0

See Also

rint(), lrint(), llrint(); round(), lround(), llround(); nextafter(), ceil(),
floor(), fegetround(), fesetround()

nextafter C99nextafter C99

Obtains the next representable value.

#include <math.h>
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

The nextafter() function returns the next value to the first argument x, removed
from it in the direction toward the value of y, that is representable in the function’s
type. If the values of the two arguments are equal, nextafter() returns the value of
the second argument y.

If the argument x has the magnitude of the largest finite value that can be repre‐
sented in the function’s type, and the result is not a finite, representable value, then a
range error may occur.
Example

double x = nextafter(0.0, 1.0);
printf("The smallest positive number "
 "with the type double: %E\n", x);

This code produces output like the following:

The smallest positive number with the type double: 4.940656E-324

See Also

nexttoward(), nearbyint(), rint(), lrint(), llrint(), round(), lround(),
llround(), ceil(), floor()

Lib
rary

Functio
ns

Standard Library Functions | 527

nexttoward C99nexttoward C99

Obtains the next representable value in the direction of a given long double value.

#include <math.h>
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

The nexttoward() functions are similar to nextafter(), except that the second
parameter in all three variants has the type long double.
Example

float x = nexttowardf(0.0F, -1E-100L);
printf("The greatest negative floating-point number \n"
 "(i.e., the closest to zero) with type float: %E\n", x);

This code produces output like the following:

The greatest negative floating-point number
(i.e., the closest to zero) with type float: -1.401298E-45

See Also

nextafter(), nearbyint(), rint(), lrint(), llrint(), round(), lround(),
llround(), ceil(), floor()

perrorperror

Print an error message corresponding to the value of errno.

#include <stdio.h>
void perror(const char *string);

The perror() function prints a message to the standard error stream. The output
includes first the string referenced by the pointer argument, if any; then a colon and
a space, then the error message that corresponds to the current value of the errno
variable, ending with a newline character.
Example

#define MSGLEN_MAX 256
FILE *fp;
char msgbuf[MSGLEN_MAX] = "";

if ((fp = fopen("nonexistentfile", "r")) == NULL)
{
 snprintf(msgbuf, MSGLEN_MAX, "%s, function %s, file %s, line %d",
 argv[0], __func__, __FILE__, __LINE__);
 perror(msgbuf);
 return errno;
}

528 | Chapter 18: Standard Library Functions

Assuming that there is no file available named nonexistentfile, this code results in
output like the following on stderr:

./perror, function main, file perror.c, line 18: No such file
or directory

See Also

strerror()

powpow

Raises a number to a power.

#include <math.h>
double pow(double x, double y);
float powf(float x, float y); (C99)
long double powl(long double x, long double y); (C99)

The pow() function calculates x to the power of y. In other words, the return value
is xy. The arguments are subject to the following rules:

• If x is negative, y must have an integer value.

• If x is zero, then y must not be negative. (00 = 1.0, but for all other positive val‐
ues of y, 0y = 0.0.)

If the arguments violate these conditions, pow() may return NaN (“not a number”)
or infinity, and may indicate a domain error. If an overflow or underflow occurs,
pow() returns positive or negative HUGE_VAL and may indicate a range error.
Example

See the example for cosh() in this chapter.
See Also

exp(), sqrt(), cpow()

printfprintf

Writes formatted output to the standard output stream.

#include <stdio.h>
int printf(const char * restrict format, ...);

The printf() function converts various kinds of data into string representations for
output, and substitutes them for placeholders in the string referenced by the
mandatory pointer argument, format. The resulting output string is then written to
the standard output stream. The return value of printf() is the number of charac‐
ters printed, or EOF to indicate that an error occurred.

Lib
rary

Functio
ns

Standard Library Functions | 529

The placeholders in the string argument are called conversion specifications because
they also specify how each replacement data item is to be converted, according to a
protocol described shortly.

The optional arguments, represented by the ellipsis in the function prototype, are
the data items to be converted for insertion in the output string. The arguments are
in the same order as the conversion specifications in the format string.
Conversion specification syntax

For a general overview of data output with printf(), see “Formatted Output” on
page 223. This section describes the syntax of conversion specifications in the
printf() format string in detail. The conversion specifications have the following
syntax:

%[flags][field width][.precision][length modifier]specifier

The flags consist of one or more of the characters +, ' ' (space), -, 0, or #. Their
meanings are as follows:

+
Add a plus sign before positive numbers.

' '

Add a space before positive numbers (not applicable in conjunction with +).

-
Align the output with the left end of the field.

0
Pad the field with leading zeros to the left of the numeric output (not applicable
in conjunction with -). Ignored for integer types if precision is specified.

#
Use alternative conversion rules for the following conversion specifiers:

A, a, E, e, F, f, G, g
Format floating-point numbers with a decimal point, even if no digits
follow.

G, g
Do not truncate trailing zeros.

X, x, o
Format nonzero hexadecimal integers with the 0X or 0x prefix; format
octal integers with the 0 prefix.

The optional field width is a positive integer that specifies the minimum number
of characters that the given data item occupies in the output string. If the flags
include a minus sign, then the converted argument value is aligned left in the field;
otherwise, it is aligned right. The remaining field width is padded with spaces (or

530 | Chapter 18: Standard Library Functions

zeros, if the flags include 0). If the converted data item is longer than the specified
field width, it is inserted in the output string in its entirety.

If an asterisk (*) appears in place of the field width, then the argument to be con‐
verted for output must be preceded by an additional argument with the type int,
which indicates the field width for the converted output.

For the conversion specifiers f, F, e, E, a, and A, precision specifies the number of
decimal places to present. For the conversion specifier g, precision indicates the
number of significant digits. The result is rounded. The default value for precision
is 6.

For integers—that is, the conversion specifiers u, d, i, x, and o—precision specifies
a minimum number of digits to present. The converted value is padded with leading
zeros if necessary. The default value for precision in this case is 1. If you convert a
zero integer value with zero precision, the result is no characters.

For the conversion specifier s, indicating a string argument, precision specifies the
maximum length of the string to be inserted in the output.

If an asterisk (*) appears in place of a precision value, then the argument to be
converted for output must be preceded by an additional argument with the type
int, which indicates the precision for the converted output. If asterisks appear both
for field width and for precision, then the argument to be converted must be
preceded by two additional int arguments, the first for field width and the sec‐
ond for precision.

The length modifier qualifies the conversion specifier to indicate the correspond‐
ing argument’s type more specifically. Each length modifier value is applicable only
to certain conversion specifier values. If they are mismatched, the function’s behav‐
ior is undefined. The permissible length modifier values and their meaning for
the appropriate conversion specifiers are listed in Table 18-7.

Table 18-7. printf() conversion specifier modifiers

Modifier With conversion specifier Corresponding argument’s type

hh d, i, o, u, x, or X signed char or unsigned char

hh n signed char *

h d, i, o, u, x, or X short int or unsigned short int

h n short int *

l (ell) d, i, o, u, x, or X long int or unsigned long int

l (ell) c wint_t

l (ell) n long int *

l (ell) s wchar_t *

l (ell) a, A, e, E, f, F, g, or G (The modifier is permitted, but has no effect)

Lib
rary

Functio
ns

Standard Library Functions | 531

Modifier With conversion specifier Corresponding argument’s type

ll (two ells) d, i, o, u, x, or X long long or unsigned long long

ll (two ells) n long long *

j d, i, o, u, x, or X intmax_t or uintmax_t

j n intmax_t *

z d, i, o, u, x, or X size_t or the corresponding signed integer type

z n size_t * or a pointer to the corresponding signed integer type

t d, i, o, u, x, or X ptrdiff_t or the corresponding unsigned integer type

t n ptrdiff_t * or a pointer to the corresponding unsigned
integer type

L a, A, e, E, f, F, g, or G long double

The conversion specifier indicates the type of the argument and how it is to be
converted. The corresponding function argument must have a compatible type;
otherwise, the behavior of printf() is undefined. The conversion specifier values
are listed in Table 18-8.

Table 18-8. printf() conversion specifiers

Conversion specifier Argument type Output notation

d, i int Decimal

u unsigned int Decimal

o unsigned int Octal

x, X unsigned int Hexadecimal

f, F float or double Floating decimal point

e, E float or double Exponential notation

g, G float or double Floating decimal point or exponential notation, whichever is
shorter

a, A float or double Hexadecimal exponential notation

c char or int Single character

s char * The string addressed by the pointer argument

n int * No output; instead, printf() stores the number of characters
in the output string so far in the variable addressed by the
argument

p Any pointer type The pointer value, in hexadecimal notation

% None A percent sign (%)

The exact meaning of the a and A conversion specifiers, introduced in C99, is some‐
what complicated. They convert a floating-point argument into an exponential
notation in which the significant digits are hexadecimal, preceded by the 0x (or 0X)

532 | Chapter 18: Standard Library Functions

prefix, and with one digit to the left of the decimal point character. The exponential
multiplier, separated from the significant digits by a p (or P), is represented as a dec‐
imal exponent to base FLT_RADIX. The symbolic constant FLT_RADIX, defined in
float.h, indicates the base of the floating-point environment’s exponent representa‐
tion; this is usually 2, for binary exponent representation. Here is an example using
the a conversion specifier:

double pi = 3.1415926;
double bignumber = 8 * 8 * 8 * pi * pi * pi;
printf("512 times pi cubed equals %.2e, or %.2a.\n",
 bignumber, bignumber);

This printf() call produces the following output:

512 times pi cubed equals 1.59e+04, or 0x1.f0p+13.

The first representation shown here, produced by the e conversion specifier, reads
“one point five nine times ten to the fourth power,” and the second, produced by a,
as “hexadecimal one point F zero times two to the (decimal) thirteenth power.”

For floating-point arguments, and for the x or X conversion specifiers, the case of
the conversion specifier determines the case of any letters in the resulting output:
the x (or X) in the hexadecimal prefix; the hexadecimal digits greater than 9; the e
(or E) in exponential notation; infinity (or INFINITY) and nan (or NAN); and p (or
P) in hexadecimal exponential notation.

In Chapter 2, we described the types with specific characteristics defined in stdint.h,
such as intmax_t for the given implementation’s largest integer type, int_fast32_t
for its fastest integer type of at least 32 bits, and the like (see Table 2-5). The header
file stdint.h also defines macros for the corresponding conversion specifiers for use
in the printf() functions. These conversion specifier macros are listed in
Table 18-9.

Table 18-9. Conversion specifier macros for integer types defined in stdint.h

Type Meaning printf() conversion specifiers

intN_t

uintN_t

An integer type whose width is exactly N bits PRIdN, PRIiN
PRIoN, PRIuN, PRIxN, PRIXN

int_leastN_t

uint_leastN_t

An integer type whose width is at least N bits PRIdLEASTN, PRIiLEASTN
PRIoLEASTN, PRIuLEASTN,
PRIxLEASTN, PRIXLEASTN

int_fastN_t

uint_fastN_t

The fastest type to process whose width is at
least N bits

PRIdFASTN, PRIiFASTN
PRIoFASTN, PRIuFASTN,
PRIxFASTN, PRIXFASTN

intmax_t

uintmax_t

The widest integer type implemented PRIdMAX, PRIiMAX
PRIoMAX, PRIuMAX, PRIxMAX,
PRIXMAX

Lib
rary

Functio
ns

Standard Library Functions | 533

Type Meaning printf() conversion specifiers

intptr_t

uintptr_t

An integer type wide enough to store the
value of a pointer

PRIdPTR, PRIiPTR
PRIoPTR, PRIuPTR, PRIxPTR,
PRIXPTR

The macros in Table 18-9 expand to string literals. Therefore, when you use one in a
printf() format string, you must close the quotation marks surrounding the for‐
mat string on either side of the macro. Here is an example:

int_fast16_t counter = 1001;
while (--counter)
 printf("Only %" PRIiFAST16 " nights to go.\n", counter);

The preprocessor expands the macro and concatenates the resulting string literal
with the adjacent ones on either side of it.
Example

The following example illustrates the use of the %n conversion specification to count
the characters in the output string:

void print_line(double x)
{
 int n1, n2;
 printf("x = %5.2f exp(x) = %n%10.5f%n\n", x, &n1, exp(x), &n2);
 assert(n2-n1 <= 10); // Did printf() stretch the field width?
}

int main()
{
 print_line(11.22);
 return 0;
}

The code produces the following output:

x = 11.22 exp(x) = 74607.77476
printf_ex: printf_ex.c:20: print_line: Assertion `n2-n1 <= 10' failed.
Aborted

See Also

The other functions in the “printf() family,” fprintf(), sprintf(), and
snprintf(); the printf() functions for wide characters (declared in wchar.h):
wprintf(), fwprintf(), and swprintf(); the printf() functions that use the type
va_list for the variable arguments (declared in stdarg.h): vprintf(), vfprintf(),
vsprintf(), and vsnprintf(); the printf() functions for wide characters that use
the type va_list for the variable arguments, vwprint(), vfwprint(), and
vswprint(); the formatted input functions scanf(), sscanf(), and fscanf()

For each of these functions there is also a corresponding “secure” function, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined)

534 | Chapter 18: Standard Library Functions

printf_s C11printf_s C11

Writes formatted data to the standard output stream.

#include <stdio.h>
int printf_s(const char * restrict format>, ...);

The secure function printf_s(), introduced in C11, is available if the macro
__STDC_LIB_EXT1__ is defined. It differs from printf() only in its runtime con‐
straints: the format string must not contain the conversion specifier %n, and the
format argument and all arguments corresponding to %s specifiers must not be null
pointers.

Like printf(), printf_s() returns the number of characters written, or a negative
value if an error occurred, such as a violation of the runtime constraints.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
char *res = NULL;

// ...
 printf_s("Result: %s\n", res); // The current constraint handler
 // will be called if res == NULL.

See Also

printf(), scanf(), scanf_s()

putcputc

Writes a character to a file.

#include <stdio.h>
int putc(int c, FILE *fp);

The macro putc() is similar to the function fputc(). It writes one character to the
current file position of the specified FILE pointer. The return value is the character
written, or EOF if an error occurred.

Because putc() is a macro, it may evaluate its argument more than once. Make sure
the argument is not an expression with side effects—or else use fputc().
Example
This is a simple search-and-replace filter to eliminate backtick characters in text
files:

int c;
FILE *fp;

if ((fp = fopen("textfile", "r+")) == NULL)
{

Lib
rary

Functio
ns

Standard Library Functions | 535

 fprintf(stderr, "Couldn't open input file.\n");
 exit(-1);
}

while ((c = getc(fp)) != EOF) // Read a character until EOF
{
 if (c == '`') // If it's a backtick ...
 {
 fseek(fp, -1, SEEK_CUR); // back up to the place it was read from,
 putc('\'', fp); // and replace it with a single-quote
 fflush(fp); // character.
 }
}
fclose(fp);

See Also

fgetc(), fputc(), getc(), getchar(), putchar(); the functions to read and write
wide characters, putwc(), fputwc(), putwchar(); getwc(), fgetwc(), getwchar()

putcharputchar

Writes a character to standard output.

#include <stdio.h>
int putchar(int c);

The macro putchar() is similar to putc(), but rather than writing a character to a
specified file, it writes to stdout, and hence has no FILE pointer argument.
Example
The following example code reads the beginning of a file repetitively, and reports its
progress on stdout.

long count; const long CYCLES = 5000;
FILE *fp = fopen("infile.txt", "r");
char readback[1024];

for (count = 0; count <= CYCLES; ++count)
{
/* Start output with '\r' to reuse same screen line. */
 printf("\rPerformed %li file reads. ", count);

 rewind(fp);
 fgets(readback, 1024, fp);

/* Scroll a new screen line every hundred cycles. */
 if (count % 100 != 0) continue;
 putchar('\n');
}
puts("Done.");

536 | Chapter 18: Standard Library Functions

See Also

putc(), getc(), getchar(), fgetc(), fputc(); the functions to read and write wide
characters, putwc(), fputwc(), putwchar(); getwc(), fgetwc(), getwchar()

putsputs

Writes a text line to standard output.

#include <stdio.h>
int puts(const char *string);

The puts() function writes the string referenced by its pointer argument to the
standard output stream, followed by a newline character ('\n'). The return value is
non-negative, or EOF if an error occurs.
Example

See the examples for qsort(), setjmp(), and signal() in this chapter.
See Also

fputs(), gets(), fputws()

putwcputwc

Writes a wide character to a file.

#include <stdio.h>
#include <wchar.h>
wint_t putwc(wchar_t c, FILE *fp);

The function or macro putwc() is similar to the function fputwc(). It writes one
character to the current file position of the specified FILE pointer. The return value
is the character written, or WEOF if an error occurred.

Because putwc() may be implemented as a macro, it might evaluate its argument
more than once. Make sure the argument is not an expression with side effects—or
else use fputwc().
Example

See the examples for getwc() and fgetwc() in this chapter.
See Also

fputwc(), putwchar(), getwc(), fgetwc(), getwchar()

putwcharputwchar

Writes a wide character to standard output.

#include <wchar.h>
wint_t putwchar(wchar_t c);

Lib
rary

Functio
ns

Standard Library Functions | 537

The macro putwchar() is similar to putwc(), but writes a wide character to stdout,
and has no FILE pointer argument.
Example

See the example for getwchar() in this chapter.
See Also

putwc(), fputwc(), getwc(), fgetwc(), getwchar()

qsortqsort

Sorts an array using the quick-sort algorithm.

#include <stdlib.h>
void qsort(void *array, size_t n, size_t size,
 int (*compare)(const void *, const void *));

The qsort() function sorts the array referenced by its first argument according to a
user-definable sorting criterion using the quick-sort algorithm. You determine the
sorting criterion by defining a callback function that compares two array elements
in some way and indicates which is greater. The qsort() function calls this function
by the pointer passed in the last argument to qsort() each time it needs to compare
two elements of the array.

The comparison function takes as its arguments two pointers to elements of the
array being sorted. The corresponding parameters are declared as void pointers so
that qsort() can be used with any type of array element. The comparison must
return a negative value if its first argument is “less than” the second, a positive value
if the first argument is “greater than” the second, or zero if they are “equal.” It is up
to you to define the criteria that constitute these relations for the given type of array
element. The qsort() function sorts the array in ascending order. The same com‐
parison function can be used by the bsearch() function.
Example

int strptrcmp(const void *sp1, const void *sp2);

int main()
{
 char *words[] = { "Then", "he", "shouted", "What", "I",
 "didn't", "hear", "what", "you", "said" };

 int n = sizeof(words) / sizeof(char *);

 qsort(words, n, sizeof(char *), strptrcmp);

 for (int j = 0 ; j < n ; j++)
 puts(words[j]);
}

int strptrcmp(const void *sp1, const void *sp2)
// Compare two strings by reference.

538 | Chapter 18: Standard Library Functions

{
 // qsort() passes a pointer to the pointer:
 // dereference it to pass a char * to strcmp.
 const char * s1 = *(char **)sp1;
 const char * s2 = *(char **)sp2;
 return strcmp(s1, s2);
}

This program sorts the words in the array in alphabetical order. As the output
shows, any capital letter is less than any lowercase letter, and "he" is less than
"hear":

I
Then
What
didn't
he
hear
said
shouted
what
you

See also the example for bsearch() in this chapter, as well as Example 4-1.
See Also

qsort_s(), bsearch(), bsearch_s()

qsort_s C11qsort_s C11

Sorts an array.

#include <stdlib.h>
errno_t qsort_s(const void *array, rsize_t n, rsize_t size,
 int (*compare)(const void *el1, const void *el2, void *context),
 void *context);

The function qsort_s(), like qsort(), sorts the array addressed by its pointer argu‐
ment array. The array consists of n elements, and the size of each element is size.
The qsort_s() function calls the function specified by the compare() argument to
compare pairs of array elements.

Unlike qsort(), the function has an additional parameter, context. The qsort_s()
function merely passes the context argument, which may be a null pointer, to the
comparison function compare with each call. The function qsort_s() also tests the
following runtime constraints: the values of n and size must not be greater than
RSIZE_MAX, and if n is not zero, then the pointer arguments key, array, and compare
must not be null pointers.

The qsort_s() function compares pairs of array elements by passing pointers to the
elements to the comparison function specified by the compare argument. That func‐

Lib
rary

Functio
ns

Standard Library Functions | 539

tion must return a value that is less than, equal to, or greater than zero to indicate
whether the first array element is less than, equal to, or greater than the second.

If a violation of the runtime constraints occurs, qsort_s() returns a nonzero value.
Otherwise, qsort_s() returns zero and leaves the array sorted in ascending order. If
two array members compare equal, their order in the sorted array is undetermined.
Example

See the example for bsearch_s() in this chapter.
See Also

qsort(), bsearch(), bsearch_s()

quick_exit C99quick_exit C99

Ends program execution.

#include <stdlib.h>
_Noreturn void quick_exit(int status);

The function quick_exit() first calls any functions that have been registered by
calls to at_quick_exit(), in the reverse order of registration. However,
quick_exit() does not run any cleanup functions registered by atexit(), nor sig‐
nal handlers registered by the function signal(). Then quick_exit() ends the pro‐
gram by calling _Exit(status).
Example

See the example for at_quick_exit().
See Also

quick_exit(), exit(), atexit(), _Exit(), abort()

raiseraise

Raises a signal.

#include <signal.h>
int raise(int sig);

The raise() function sends the signal identified by sig to the program. If the pro‐
gram has installed a handler for the given signal by means of a call to the signal()
function, then that handler routine runs when the signal is raised, and raise() does
not return until the handler function has returned. If the signal handler doesn’t end
the program, the return value of raise() is 0 if it succeeds in raising the signal;
otherwise, it is a nonzero value.

540 | Chapter 18: Standard Library Functions

Macros for values of the argument sig are defined in the stan‐
dard header signal.h, and are described under signal() in this
chapter.

Example

See the example for signal() in this chapter.
See Also

abort(), signal(), feraiseexcept()

randrand

Obtains a random integer value.

#include <stdlib.h>
int rand(void);

The rand() function returns a pseudo-random number between 0 and RAND_MAX.
The symbolic constant RAND_MAX is defined in stdlib.h, and is equal to at least 32,767
(or 215 -1).

To initialize the pseudo-random number generator, call the srand() function with a
new seed value before the first call to rand(). This step ensures that rand() provides
a different sequence of random numbers each time the program runs. If you call
rand() without having called srand(), the result is the same as if you had called
srand() with the argument value 1.
Example

printf("Think of a number between one and twenty.\n"
 "Press Enter when you're ready.");
getchar();

srand((unsigned)time(NULL));

for (int i = 0; i < 3; i++) // We get three guesses.
{
 printf("Is it %u? (y or n) ", 1 + rand() % 20);
 if (tolower(getchar()) == 'y')
 {
 printf("Ha! I knew it!\n");
 exit(0);
 }
 getchar(); // Discard newline character.
}
printf("I give up.\n");

See Also

srand()

Lib
rary

Functio
ns

Standard Library Functions | 541

reallocrealloc

Resizes an allocated memory block.

#include <stdlib.h>
void *realloc(void *ptr, size_t n);

The realloc() function replaces a memory block dynamically allocated by
malloc(), calloc(), or realloc() with a new one of size n, and copies the contents
of the previous block to the new block, to the extent that the two blocks’ sizes per‐
mit. If the new block is larger, the values of the remaining bytes are undetermined.
The pointer argument passed to realloc() is the address of the block previously
allocated, and the function’s return value is the address of the new block. The new
block may or may not begin at the same address as the old block. realloc() returns
a null pointer if the new block could not be allocated as requested; in this case, it
does not release the old block, and your program can continue using it.

If the first argument is a null pointer, realloc() allocates a new memory block,
behaving similarly to malloc(). Otherwise, if the pointer argument does not point
to a memory block allocated by malloc(), calloc(), or realloc(), or if it points to
such a block that has since been released by a call to free() or realloc(), then the
behavior is undefined.
Example

typedef struct { int len;
 float array[];
 } DynArray_t;

DynArray_t *daPtr = malloc(sizeof(DynArray_t) + 10*sizeof(float));
if (daPtr == NULL) return -1;

daPtr->len = 10;

for (int i = 0; i < daPtr->len; ++i)
 daPtr->array[i] = 1.0F/(i+1);
/* daPtr->array[10] = 0.1F // Invalid array index! */

DynArray_t *daResizePtr = realloc(daPtr,
 sizeof(DynArray_t) + 11*sizeof(float));
if (daResizePtr != NULL)
{
 daPtr = daResizePtr ;
 daPtr->len = 11;
 daPtr->array[10] = 0.1F / 12; // OK now.
}
else
 /* We'll just have to get along with the array of 10 floats. */

See Also

malloc(), calloc(), free()

542 | Chapter 18: Standard Library Functions

remainder C99remainder C99

Calculates the remainder of a floating-point division.

#include <math.h>
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

The remainder() functions return the remainder r of x / y, such that r = x − ny,
where n is the nearest integer to the exact value of x / y (regardless of the current
rounding direction). If the exact quotient is exactly halfway between two integers,
then the quotient n is the nearest even integer. By this definition, the remainder can
be positive or negative. If the remainder is zero, then remainder() returns zero with
the same sign as the argument x.
Example

double apples, people, share, left;
printf("\nHow many people? ");
scanf("%lf", &people);
printf("\nHow many apples? ");
scanf("%lf", &apples);

left = remainder(apples, people); // left may be negative!
share = (apples − left) / people;

printf("If there are %.1lf of us and %.1lf apples, "
 "each of us gets %.1lf of %s, with %.1lf left over.\n",
 people, apples, share, (share < 1) ? "one" : "them", left);

See Also

remquo(), fmod()

removeremove

Unlinks a file.

#include <stdio.h>
int remove(const char *filename);

The remove() function deletes the file (or directory) referred to by its string argu‐
ment. To be exact, it “unlinks” the file, or deletes its filename from the filesystem, so
that the file’s contents may still exist if the file was linked to more than one name.

The remove() function may or may not be able to unlink a file while it is open,
depending on the given implementation. The function returns 0 on success. If
remove() fails to unlink the file, it returns a nonzero value.
Example

char fname_tmp[L_tmpnam] = "";
FILE *fp;

Lib
rary

Functio
ns

Standard Library Functions | 543

int result;

tmpnam(fname_tmp);
fp = fopen(fname_tmp, "w+");

/* ... write something in the file, edit it ... */

fclose(fp);

result = rename(fname_tmp, "finished.txt");
if (result) // Delete previous "finished.txt" and try again.
{
 remove("finished.txt");
 result = rename(fname_tmp, "finished.txt");
 if (result) // Give up and log the error.
 fprintf(stderr, "Error %d on trying to rename output file\n",
 errno);
}

See Also

fopen(), tmpfile()

remquo C99remquo C99

Calculates the integer quotient and the remainder of a floating-point division.

#include <math.h>
double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

The remquo() functions are similar to the remainder() functions, except that they
also store part of the integer quotient of the division in the object referenced by the
pointer argument. The entire quotient may not fit in the int object referenced by
the pointer, and the ISO C standard requires only that the quotient as stored has the
same sign as the actual quotient x/y, and that its absolute value matches the actual
quotient in at least the lowest three bits, or modulo 8.
Example

double apples = 0.0, people = 0.0, left = 0.0, share = 0.0;
int quotient = 0;

printf("\nHow many people? ");
scanf("%lf", &people);

printf("\nHow many apples? ");
scanf("%lf", &apples);

share = nearbyint(apples / people);
left = remquo(apples, people, "ient);

544 | Chapter 18: Standard Library Functions

printf("If there are %.2lf of us and %.2lf apples, "
 "each of us gets %.2lf apple%s, with %.2lf left over.\n",
 people, apples, share, (share == 1) ? "" : "s", left);
printf("remquo() stored %d as the quotient "
 " of the division (modulo 8).\n", quotient);

printf("Test: share modulo 8 − quotient = %d\n",
 (int) share % 8 − quotient);

See Also

remainder(), modf()

renamerename

Renames or moves a file.

#include <stdio.h>
int rename(const char *oldname, const char *newname);

The rename() function changes the name of the file specified by oldname to the
string referenced by newname. The pointer argument oldname must refer to the
name of an existing file.

The function returns 0 on success. If rename() fails to rename the file, it returns a
nonzero value.
Example

See the example for remove() in this chapter.
See Also

freopen(), remove(), tmpnam()

rewindrewind

Resets a file’s access position to the beginning of the file.

#include <stdio.h>
void rewind(FILE *fp);

The rewind() function sets the access position of the file associated with the FILE
pointer fp to the beginning of the file, and clears the EOF and error flags.
Example
This example prints the contents of a file twice, converting each character to lower‐
case the first time through, and to uppercase the second time:

FILE *fp; int c;

if ((fp = fopen(argv[1], "r")) == NULL)
 fprintf(stderr, "Failed to open file %s\n", argv[1]);
else
{

Lib
rary

Functio
ns

Standard Library Functions | 545

 puts("Contents of the file in lowercase:");
 while ((c = fgetc(fp)) != EOF)
 putchar(tolower(c));

 rewind(fp);

 puts("Same again in uppercase:");
 while ((c = fgetc(fp)) != EOF)
 putchar(toupper(c));

 fclose(fp);
}

See Also

fseek(), ftell(), fgetpos(), fsetpos(), clearerr()

rint C99rint C99

Rounds a floating-point number to an integer value.

#include <math.h>
double rint(double x);
float rintf(float x);
long double rintl(long double x);

The rint() functions round a floating-point number to the next integer value in the
current rounding direction. The current rounding direction is an attribute of the
floating-point environment that you can read and modify using the fegetround()
and fesetround() functions. The rint() functions are similar to the nearbyint()
functions, except that the rint() functions may raise the FE_INEXACT exception
(depending on the implementation) when the result of the rounding is different
from the argument.
Example

struct round_modes { int id; char *str; } arrModes[] =
{
 #ifdef FE_TONEAREST
 { FE_TONEAREST,
 "FE_TONEAREST: round to nearest representable value" },
 #endif
 #ifdef FE_DOWNWARD
 { FE_DOWNWARD, "FE_DOWNWARD: round toward -Inf" },
 #endif
 #ifdef FE_UPWARD
 { FE_UPWARD, "FE_UPWARD: round toward +Inf" },
 #endif
 #ifdef FE_TOWARDZERO
 { FE_TOWARDZERO, "FE_TOWARDZERO: round toward 0" }
 #endif
};

546 | Chapter 18: Standard Library Functions

int nModes = sizeof(arrModes) / sizeof(*arrModes);

#pragma STDC FENV_ACCESS ON

for (int i = 0; i < nModes; ++i)
{
 if (fesetround(arrModes[i].id) != 0)
 break;
 printf("Rounding mode: %s\n", arrModes[i].str);

 printf("rint(1.4) = %4.1f rint(1.5) = %4.1f\n",
 rint(1.4), rint(1.5));
 printf("rint(-1.4) = %4.1f rint(-1.5) = %4.1f\n",
 rint(-1.4), rint(-1.5));
}

If the implementation supports all four rounding modes, this code produces the fol‐
lowing output:

Rounding mode: FE_TONEAREST: round to nearest representable value
rint(1.4) = 1.0 rint(1.5) = 2.0
rint(-1.4) = -1.0 rint(-1.5) = -2.0
Rounding mode: FE_DOWNWARD: round toward -Inf
rint(1.4) = 1.0 rint(1.5) = 1.0
rint(-1.4) = -2.0 rint(-1.5) = -2.0
Rounding mode: FE_UPWARD: round toward +Inf
rint(1.4) = 2.0 rint(1.5) = 2.0
rint(-1.4) = -1.0 rint(-1.5) = -1.0
Rounding mode: FE_TOWARDZERO: round toward 0
rint(1.4) = 1.0 rint(1.5) = 1.0
rint(-1.4) = -1.0 rint(-1.5) = -1.0

See Also

lrint(), llrint(); nearbyint(), nexttoward(), nextafter(); round(), lround(),
llround(), ceil(), floor(), fegetround(), fesetround()

round C99round C99

Rounds a floating-point number to an integer value.

#include <math.h>
double round(double x);
float roundf(float x);
long double roundl(long double x);

The round() functions round a floating-point number to the nearest integer value,
regardless of the current rounding direction setting in the floating-point environ‐
ment. If the argument is exactly halfway between two integers, round() rounds it
away from 0. The return value is the rounded integer value.
Example

See the example for nearbyint() in this chapter.

Lib
rary

Functio
ns

Standard Library Functions | 547

See Also

lround(), llround(), rint(), lrint(), llrint(), nearbyint(), nexttoward(),
nextafter(); ceil(), trunc()

scalbln, scalbn C99scalbln, scalbn C99

Multiplies a floating-point number by a power of the floating-point radix.

#include <math.h>
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);

double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);

The scalbn() and scalbln() functions multiply a floating-point number x by an
integer power of FLT_RADIX, providing a more efficient calculation than the arith‐
metic operators. The symbolic constant FLT_RADIX, defined in float.h, indicates the
base of the floating-point environment’s exponent representation; this is usually 2,
for binary exponent representation. In this case, the return value of the scalbn()
and scalbln() functions is x × 2n.
Example

See the example for feholdexcept() in this chapter.
See Also

frexp(), ldexp()

scanfscanf

Reads formatted data from standard input.

#include <stdio.h>
int scanf(const char * restrict format, ...);

The scanf() function reads a sequence of characters from the standard input
stream and parses it for the data items specified by the format string. The function
then stores the data in the locations addressed by the subsequent pointer arguments.

The ellipsis (...) in the function prototype indicates that scanf() takes a variable
number of optional arguments. All parameters after those explicitly declared can be
considered to be of the type void *, which means that you can pass any type of
object pointer to scanf() in that position. Each of these pointer arguments must
point to a variable whose type agrees with the corresponding conversion specifica‐
tion in the format string. If there are more such arguments than conversion specifi‐
ers, the excess arguments are ignored. However, if there are not enough arguments
to store the data converted, the function’s behavior is undefined.

548 | Chapter 18: Standard Library Functions

Conversion specification syntax

For a general overview of data conversion with scanf(), see “Formatted Input” on
page 230. This section describes the syntax of conversion specifications in the
scanf() format string in detail. The conversion specifications have the following
syntax:

%[*][field width][length modifier]specifier

Before processing each conversion specification in the format string, scanf() skips
over any whitespace characters in the input stream (except with the conversion
specifiers c and [], which we will describe in a moment). For each conversion speci‐
fication, scanf() reads one or more characters from the input stream. As soon as
scanf() reads a character that cannot be interpreted under the current conversion
specification, reading is interrupted, as if the first character after the data to be con‐
verted had not been read. Then scanf() converts the characters that belong to the
field, and assigns the result to the variable addressed by the corresponding pointer
argument.

If a conversion specification contains an asterisk after the percent sign (%*...), then
the result of the conversion is not assigned to a variable but simply discarded.

The optional field width is a positive integer that specifies the maximum number
of characters to read and convert for the given conversion specification.

The length modifier qualifies the conversion specifier to indicate the correspond‐
ing argument’s type more specifically. Each length modifier value is applicable only
to certain conversion specifier values. If they are mismatched, the function’s behav‐
ior is undefined. The permissible length modifier values and their meaning for
the appropriate conversion specifiers are listed in Table 18-10.

Table 18-10. scanf() conversion specifier modifiers

Modifier With conversion specifier Corresponding argument’s type

hh d, i, o, u, x, X, or n signed char * or unsigned char *

h d, i, o, u, x, X, or n short int * or unsigned short int *

l (ell) d, i, o, u, x, X, or n long int * or unsigned long int *

l (ell) c, s, or [...] wchar_t *; conversion as by mbrtowc()

l (ell) a, A, e, E, f, F, g, or G double *

ll (two ells) d, i, o, u, x, X, or n long long * or unsigned long long *

j d, i, o, u, x, X, or n intmax_t * or uintmax_t *

z d, i, o, u, x, X, or n size_t * or a pointer to the corresponding signed integer type

t d, i, o, u, x, X, or n ptrdiff_t * or a pointer to the corresponding unsigned
integer type

L a, A, e, E, f, F, g, or G long double *

Lib
rary

Functio
ns

Standard Library Functions | 549

The conversion specifier indicates the type of the argument and how the input
characters are to be interpreted. The corresponding function argument must have a
compatible type; otherwise, the behavior of scanf() is undefined. The conversion
specifier values are listed in Table 18-11.

Table 18-11. scanf() conversion specifiers

Conversion
specifier

Argument type Input notation

d signed int * Decimal with optional sign

i signed int * Decimal, octal, or hexadecimal, with optional sign

u unsigned int * Decimal with optional sign

o unsigned int * Octal with optional sign

x unsigned int * Hexadecimal with optional sign and/or 0x (or 0X) prefix

a, e, f, or g float * Floating-point

c char * or int * One character, or several if a field width greater than one is
specified

s char * Consecutive non-whitespace characters

[scanset] char * Consecutive characters from the specified set

n int * No input read; instead, scanf() stores the number of characters
read from input so far in the variable addressed by the argument

p void * The system’s notation for a pointer value; converts inversely as
printf()

% None A single percent sign (%); no value stored

For a description of the character sequences that are interpreted as floating-point
numbers, including decimal and hexadecimal exponential notation, see “Floating-
Point Constants” on page 40.

If you use the conversion specifier c without a field width, it matches one character.
If you specify a field width, as in the conversion specification %7c, then scanf()
reads the specified number of characters, including whitespace characters, and
assigns them to successive elements of an array of char addressed by the corre‐
sponding pointer argument, but does not append a terminating null character. It is
up to you to make sure that the argument points to the first element of an array of
sufficient size to accommodate the number of characters indicated by the field
width.

If you use the conversion specifier c together with the length modifier l, then
scanf() reads one or more bytes (according to the specified field width, if any),
converting them as it goes from multibyte characters to wide characters in the same
way as successive calls to the mbrtowc() function would, starting with an mbstate_t
object corresponding to the initial parsing state. If you specify a field width,

550 | Chapter 18: Standard Library Functions

scanf() reads the specified number of bytes, and assigns the corresponding wide
characters to successive elements of an array of wchar_t addressed by the corre‐
sponding pointer argument, but does not append a terminating null wide character
((L'\0')). It is up to you to make sure that the argument points to the first element
of an array of sufficient size to accommodate the number of wide characters stored.

The conversion specifier s is similar to c, with these exceptions:

• scanf() with an s specifier stops reading at the first whitespace character, or
when it has read the number of bytes indicated by the field length, if specified.

• scanf() with an s specifier appends a null character (or wide character, if the l
modifier is present) to the sequence of characters (or wide characters) stored.
The pointer argument must point to the first element of an array that is large
enough to accommodate the characters read plus the null character.

The conversion specifier [...] is similar to s, with the following exceptions: rather
than matching any sequence of non-whitespace characters, it matches any sequence
of the characters in the set that appear between the square brackets, called the scan‐
set. (The scanset may or may not include whitespace characters.) If the first charac‐
ter after the opening bracket is a caret (^), then it is not a member of the scanset but
inverts the meaning of the set of characters that follows; the conversion specifier
matches any sequence of the characters that do not appear in the list that follows the
caret.

If the first character after the opening bracket (or after the opening bracket and an
initial caret) of a [...] specifier is a right bracket (]), then that right bracket is inter‐
preted as a member of the character list that defines the scanset, not as the closing
delimiter. If the characters between the brackets (or between the initial caret and the
closing bracket) include a hyphen (-) that is neither in the first nor the last position,
then it is left up to the given implementation to define whether scanf() interprets
the hyphen in a special way—for example, as indicating a range of characters. For
example, the conversion specifier %[0-9] may match any sequence of digits, or any
sequence of the characters 0, -, and 9—or the implementation may define the
hyphen in some other way.

The scanf() function stops reading the input stream in whichever of the following
events occurs first:

• The entire format string has been processed.

• A matching failure: the first non-whitespace character in an input field did
not match the conversion specification, or a character in the input did not
match the corresponding position in the format string.

• An input failure: no input could be read from the input stream, or an encod‐
ing error occurred. Lib

rary
Functio

ns

Standard Library Functions | 551

Any non-whitespace character in the format string that is not part of a conversion
specification is processed by reading a character from the input stream, and testing
for a literal match. If the characters do not match, scanf() returns, leaving the
input stream as if the mismatched character had not been read. A whitespace char‐
acter in the format string matches any sequence of whitespace characters in the
input stream, including an empty string.

The scanf() function returns the number of data items assigned to variables, not
counting assignments due to %n conversion specifications. If an input failure occurs
before any input item can be converted, scanf() returns EOF.
Example

double x, y;
char operation[16] = "";
scanf("%15s%lf%*[^0123456789]%lf", operation, &x, &y);

The format string in this scanf() call contains four conversion specifications. Let us
assume that a user enters the following sequence of characters when this call occurs:

Divide 1.5e3 by 52.25\n

For the first conversion specification, %15s, scanf() reads each character up to the
first space, and hence stores the string "Divide", terminated by a null character, in
the array operation. After the space, the sequence 1.5e3 matches the conversion
specification %lf, and scanf() assigns the value 1500.0 to the double variable x.
After the next space, each of the characters 'b', 'y', and ' ' (the space) is in the
very large scanset of the conversion specification %*[^01234567890]; the first char‐
acter that does not match is the digit character '5'. Because the conversion specifi‐
cation contains the asterisk, scanf() discards the characters read, then reads to the
next whitespace character, '\n', for the conversion specification %lf, and assigns
the value 52.25 to the variable y.

For another example, see fscanf() in this chapter (fscanf() reads a specified file
rather than stdin, but is otherwise similar to scanf()).
See Also

fscanf(), sscanf(), wscanf(), fwscanf(), swscanf(), vscanf(), vfscanf(),
vsscanf(), vwscanf(), vfwscanf(), vswscanf()

For each of these functions, there is also a corresponding “secure” function, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined)

scanf_sscanf_s

Reads formatted data from the standard input stream.

#include <stdio.h>
int scanf_s(const char * restrict format, ...);

552 | Chapter 18: Standard Library Functions

The secure function scanf_s(), introduced in C11, is available if the macro
__STDC_LIB_EXT1__ is defined. Like scanf(), it reads formatted data from standard
input. Unlike scanf(), however, it takes two arguments for each of the conversion
specifiers %c, %s, and %[]: in addition to an array pointer, you must provide the
length of the given array in an argument with the type rsize_t. The input at run‐
time must fit in the array, including a string terminator character. For the conver‐
sion specifier %c, a length of 1 is sufficient, because scanf_s() reads only one char‐
acter for %c and does not append a string terminator character.

The function scanf_s() tests the following runtime constraints: the pointer argu‐
ment format and the pointer arguments for format elements must not be null point‐
ers. Implementations may optionally test for additional conditions, such as the cor‐
rectness of the format elements.

The scanf_s() function returns the number of data items converted and stored in
variables. If an input error occurs before any data can be converted, or if a runtime
constraint violation occurs, the function returns EOF.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>
// ...

 char article[64] = "";
 int quantity = 0;
 printf("Enter article name and quantity: ");
 if(scanf_s("%s %d", article, sizeof(article), &quantity) < 2)
 fputs("Invalid entry.\n", stderr);
 else
 { /* Process input. */

See Also

scanf(), fscanf(), sscanf(), wscanf(), fwscanf(), swscanf(), vscanf(),
vfscanf(), vsscanf(), vwscanf(), vfwscanf(), vswscanf(), and the correspond‐
ing secure functions

set_constraint_handler_s C11set_constraint_handler_s C11

Installs a call-back function to handle violations of runtime constraints.

#include <stdlib.h>
constraint_handler_t set_constraint_handler_s(
 constraint_handler_t handler);

The function set_constraint_handler_s() installs the function specified by its
argument as an error handler for violations of the secure functions’ runtime con‐
straints. After a successful set_constraint_handler_s() call, the handler function
installed is called when any of the secure standard library functions (those with
names ending in _s) detects a violation of its runtime constraints.

Lib
rary

Functio
ns

Standard Library Functions | 553

The function pointer argument handler must have the type constraint_han
dler_t, which is defined in stdlib.h as follows:

typedef void (*constraint_handler_t)(const char * restrict msg,
 void * restrict ptr,
 errno_t error);

When the installed handler function is called, it receives the following arguments:

• A string describing the error.
• A null pointer or a pointer to an object defined by the given implementation.
• The return value of the function in which the error occurred, if the function’s

return type is error_t, or an undetermined positive value if the function’s type
is different.

There is a default error handler that is called on runtime constraint violations if no
handler has been installed by a set_constraint_handler_s() call. That default
handler may be the standard function abort_handler_s() or ignore_handler_s(),
or another implementation-specific handler function. The default handler is also
reinstalled if you call the function set_constraint_handler_s() with a null pointer
as its argument. The set_constraint_handler_s() function returns a pointer to
the previously registered handler.
Example

// Use a custom handler:
void myConstraintHandler(const char* msg, void * ptr, errno_t error)
{
 printf("A runtime constraint violation "
 "occurred: \n%s; ", msg);
 printf("error code: %d\n", error); fflush(stdout);
 exit(error);
}

void func(const char *str)
{
 constraint_handler_t prevHandler =
 set_constraint_handler_s(myConstraintHandler);
 printf_s("The argument: %s\n", str); // Error if str
 // is a null pointer.
 int len = strlen(str);
 char str2[len];
 strcpy_s(str2, len, str); // Error: str2 is one byte too short.
 // . . .
 set_constraint_handler_s(prevHandler);
}

For example, the function call func("Hi!"); produces the following output:

The argument: Hi!
A runtime constraint violation occurred:
Range error; error code: 34

554 | Chapter 18: Standard Library Functions

See Also

abort_handler_s(), ignore_handler_s()

setbufsetbuf

Sets up I/O buffering for an open file.

#include <stdio.h>
void setbuf(FILE * restrict fp, char * restrict buffer);

The setbuf() function is similar to setvbuf(), except that it has no return value,
and no parameters to specify a buffering mode or a buffer size. The size of the
buffer established by setbuf() is given by the value of the macro BUFSIZ. If the
buffer argument is not a null pointer, the setbuf() call initiates fully buffered
input and output for the specified file so that the buffer is filled completely before
data appears from the source or at the destination; this behavior corresponds to the
buffering mode specified by the macro _IOFBF as the mode argument to setvbuf().
If the buffer argument is a null pointer, setbuf() disables all I/O buffering for the
file, so that data is written and read directly.

You may call the setbuf() function only after the file has been successfully opened,
and before any file I/O operations have taken place.
Example

FILE *fp = tmpfile();
unsigned char *iobuffer = malloc(BUFSIZ);
if (iobuffer != NULL)
{
 setbuf(fp, iobuffer); // Make sure temporary file is buffered.
}
/* ... now write and read the temporary file as needed ... */

See Also

setvbuf(), fflush()

setjmpsetjmp

Saves the calling environment as a long jump destination.

#include <setjmp.h>
int setjmp(jmp_buf env);

The setjmp() macro saves the current environment at the time of the call in a
buffer specified by its argument. The environment includes the stack, and with it all
variables that have automatic storage duration. Like the setjmp() macro itself, the
argument’s type, jmp_buf, is defined in the header file setjmp.h.

A later call to the longjmp() function restores the saved environment. As a result,
the longjmp() function does not return but instead causes execution to continue as
if control had returned from the setjmp(). However, while the original setjmp()

Lib
rary

Functio
ns

Standard Library Functions | 555

call always returns 0, the apparent return value after longjmp() is never equal to
zero.

Because the execution environment saved may not include other partial expres‐
sions, the return value of setjmp() must not be used except in simple conditional
expressions, or in comparison to an integer constant value. Furthermore, if any
variables with automatic storage duration in the function that called setjmp() were
modified after the setjmp() call (and were not declared as volatile), then their
values after the longjmp() call are indeterminate.
Example
This example shows the complete contents of two source files to illustrate how
setjmp() and longjmp() allow you to escape from a function call.

#include <stdlib.h>
#include <stdio.h>
#include <setjmp.h>
#include <errno.h>

double calculate1(double x); // Functions defined
double calculate2(double x); // in calculate.c.

jmp_buf jmp_dest; // Destination for longjmp()

int main()
{
 double x = 0, y1, y2;
 int n = 0;

 puts("--- Demonstrating non-local jumps ---\n");

 switch(setjmp(jmp_dest)) // Jump to here for error handling
 {
 case 0: // The original setjmp() call
 break;
 case EDOM: // Arrived via longjmp() call with EDOM
 puts("Domain error. "
 "Negative numbers are not permitted.");
 break;
 case ERANGE: // Arrived via longjmp() call with ERANGE
 puts("Range error. "
 "The number you entered is too big.");
 break;
 default: // We should never arrive here.
 puts("Unknown error.");
 exit(EXIT_FAILURE);
 }

 printf("Enter a number: ");
 do
 {

556 | Chapter 18: Standard Library Functions

 if ((n = scanf("%lf", &x)) < 0) // Read in a number.
 exit(EXIT_FAILURE); // Read end of file.
 while (getchar() != '\n') // Clear the input buffer.
 ;
 if (n == 0)
 printf("Invalid entry. Try again: ");
 }while (n == 0);

 y1 = calculate1(x);
 y2 = calculate2(x);

 printf("\nResult of Calculation 1: %G\n", y1);
 printf("Result of Calculation 2: %G\n", y2);

 return 0;
}

// calculate.c: Perform some calculations.
// Functions: calculate1(), calculate2().
#include <math.h>
#include <setjmp.h>
#include <errno.h>

extern jmp_buf jmp_dest; // Destination for longjmp()

double calculate1(double x)
{
 if (x < 0)
 longjmp(jmp_dest, EDOM); // Domain error
 else
 return sqrt(x);
}

double calculate2(double x)
{
 double y = exp(x);
 if (y == HUGE_VAL)
 longjmp(jmp_dest, ERANGE); // Range error
 else
 return y;
}

See Also

longjmp()

setlocalesetlocale

Gets or sets locale information.

#include <locale.h>
char *setlocale(int category, const char *locale_name);

Lib
rary

Functio
ns

Standard Library Functions | 557

The setlocale() function allows you to adapt the program to the local conditions
of a given regional and cultural environment—called a locale—such as clocks and
calendars, decimal point and currency symbol characters, and other conventions.
The setlocale() function returns a pointer to a string that identifies the new
locale, or the current locale if you pass the function a null pointer as its second argu‐
ment.

The locale conventions are classed in categories. You can set the individual cate‐
gories of the program’s locale individually. The header file locale.h defines the fol‐
lowing macros to identify each category in the first argument to setlocale():

LC_ALL
Includes all the other categories.

LC_COLLATE

Affects the functions strcoll(), strxfrm(), wcscoll(), and wcsxfrm().

LC_CTYPE

Affects the character-handling functions (such as isalpha(), tolower(), etc.),
and the multibyte and wide-character functions.

LC_MONETARY

Affects the monetary format information provided by the localeconv() func‐
tion.

LC_NUMERIC

Affects the nonmonetary numeral format information provided by the locale
conv() function, and the decimal point used by the printf() and scanf()
functions, and by string conversion functions such as strtod().

LC_TIME

Affects the time-and-date string format produced by the strftime() and
wcsftime() functions.

The second argument to setlocale(), locale_name, is a pointer to a string that
indicates the desired locale. The permissible locale_name strings are system-
dependent, except for two standard values, which are the default locale, "C", and the
empty string, "". All locale categories are set to the default locale "C" on program
start-up; the "C" locale corresponds to the minimum environment for compiling C
programs. If you use the empty string as the locale name, setlocale() sets the
specified category to the system’s native locale. If setlocale() is unable to set the
desired locale, it returns a null pointer.

If you pass setlocale() a null pointer as the locale_name argument, it returns the
name of the current locale. You can use this string as the locale_name argument to
restore that locale later.

558 | Chapter 18: Standard Library Functions

Example
#define MAX_STRING 80

char name[MAX_STRING];
char locale[MAX_STRING];
char *newlocale;
int i;

printf("Who are you? ");
fgets(name, sizeof(name), stdin);

printf("What is your locale? ");
fgets(locale, sizeof(locale), stdin);

name[strlen(name) − 1] = '\0'; // Chomp off the newlines.
locale[strlen(locale) − 1] = '\0';

newlocale = setlocale(LC_CTYPE, locale);
if (newlocale == NULL)
 printf("Sorry, couldn't change the locale to %s.\n"
 "The current locale is %s. ",
 locale, setlocale(LC_CTYPE, NULL));
else
 printf("The new locale is %s. ", newlocale);

name[0] = toupper(name[0]); // Force the first letter to uppercase.

i = 1;
if (isupper(name[i])) // Is the second letter also uppercase?
 {
 while (name[i] != '\0') // If so, force all the rest to lowercase.
 {
 name[i] = tolower(name[i]);
 ++i;
 }
 }
printf("Hello there, %s!\n", name);

This program produces output like the following, if the first setlocale() call is
successful:

Who are you? sÖrEn
What is your locale? de_DE
The new locale is de_DE. Hello there, Sören!

In the locale "de_DE", the isupper() function recognized the second letter of sÖrEn
as uppercase, and so the Ö and E were changed to lowercase.

If the first setlocale() call fails, the output may look like this:

Who are you? FRÉDÉRIQUE
What is your locale? fr_CA

Lib
rary

Functio
ns

Standard Library Functions | 559

Sorry, couldn't change the locale to fr_CA.
The current locale is C. Hello there, FrÉdÉrique!

In the locale "C", the isupper() function recognized the R as uppercase, but the
tolower() function was unable to convert the accented uppercase É.
See Also

The character classification functions, whose names begin with is and isw; the
character conversion functions, whose names begin with to and tow; the numeral
string conversion functions, whose names begin with strto and wcsto; the locale-
sensitive string functions strcoll(), strxfrm(), wcscoll(), and wcsxfrm();
strftime() and wcsftime()

setvbufsetvbuf

Sets up I/O buffering for an open file.

#include <stdio.h>
int setvbuf(FILE * restrict fp, char * restrict buffer, int mode,
 size_t size);

The setvbuf() function specifies the buffering conditions for input and/or output
using the stream associated with the FILE pointer fp. You may call the setvbuf()
function only after the file has been successfully opened, and before any file I/O
operations have taken place.

The mode parameter determines the type of buffering requested. Symbolic constants
for the permissible values are defined in stdio.h as follows:

_IOFBF
Fully buffered: On read and write operations, the buffer is filled completely
before data appears from the source or at the destination.

_IOLBF
Line buffered: On read and write operations, characters are placed in the buffer
until one of them is a newline character, or until the buffer is full. Then the
contents of the buffer are written to the stream. The buffer is also written to the
stream whenever the program requests, from an unbuffered stream or a line-
buffered stream, input which requires characters to be read from the execution
environment.

_IONBF

Not buffered: Data is read from or written to the file directly. The buffer and
size parameters are ignored.

You can provide a buffer for the file by passing its address and size in the arguments
buffer and size. The setvbuf() function is not required to use the buffer you pro‐
vide, however. If buffer is a null pointer, setvbuf() dynamically allocates a buffer
of the specified size. Otherwise, you must make sure that the buffer remains avail‐

560 | Chapter 18: Standard Library Functions

able until you close the file. The function returns 0 on success; any other value indi‐
cates failure or an invalid mode argument.
Example

#define MAX_LINE 4096
FILE *fp_linewise = fopen("output.txt", "a+");
unsigned char *iobuffer = malloc(MAX_LINE);
if (iobuffer != NULL)
{ // Buffer output up to each '\n'.
 if (setvbuf(fp_linewise, iobuffer, _IOLBF, MAX_LINE))
 fprintf(stderr, "setvbuf() failed; "
 "unable to set line-buffering.\n"),
 exit(-2);
}
else
 fprintf(stderr,"malloc() failed; no point in calling setvbuf().\n"),
 exit(-1);

See Also

setbuf(), fopen(), malloc()

signalsignal

Installs a signal handler.

#include <signal.h>
void (*signal(int sig, void (*handler)(int)))(int);

The signal() function specifies a function to be executed when the program
receives a given signal. The parameter handler is a pointer to a function that takes
one argument of type int and has no return value. This pointer may be the address
of a function defined in your program, or one of two macros defined in the header
file signal.h.

The handler argument works in the following ways (assuming that the call to
signal() is successful):

• If the handler argument is a function pointer, then signal() installs this func‐
tion as the routine to be called the next time the program receives the signal
designated by the integer parameter sig.

• If the handler argument is equal to the macro SIG_DFL, then the next time the
program receives the specified signal, the default signal handler routine is
called. The default handler’s action for most signals is to terminate the
program.

• If the handler argument is equal to the macro SIG_IGN, then the specified sig‐
nal will be ignored.

If the handler argument points to a function in the program, then that function is
generally installed as a handler for only one occurrence of the signal, as if the

Lib
rary

Functio
ns

Standard Library Functions | 561

program called signal() with the argument SIG_DFL before calling the handler. To
make a handler persistent, you can have your handler function reinstall itself by
calling signal() again. Alternatively, the C standard allows implementations to
mask the signal sig while the handler is running, rather than uninstalling the han‐
dler before calling it: BSD Unix does this, for example. Refer to the documentation
for your system.

The return value of signal() is also a function pointer: it has the same type as the
handler parameter. If the signal() function succeeds in installing the new handler,
it returns a pointer to the previous handler (which may be SIG_IGN or SIG_DEF, if
the program has not installed any other handler for the given signal). If unsuccess‐
ful, signal() returns the value of SIG_ERR and sets the errno variable to an appro‐
priate value.

Signals are sent through the operating system by other programs, or are raised by
system interrupts, or by the program itself using the raise() function. According to
the C standard, the following signals are defined in all implementations. The mac‐
ros listed here represent the permissible values of the signal() function’s integer
argument sig, as well as the argument value passed to the signal handler installed
when the signal occurs:

SIGFPE
Floating-point exception: The program attempted an illegal arithmetic opera‐
tion, such as division by zero, or caused an error such as an overflow.

SIGILL
Illegal instruction: The program flow contained an invalid machine code.

SIGSEGV
Segmentation violation: The program tried to perform an illegal memory access
operation.

SIGABRT

Abort: End the program abruptly. (See also abort() in this chapter.)

SIGINT
Interrupt: The program has been interrupted interactively, by the user pressing
Ctrl+C or by some similar event.

SIGTERM
Termination: The program is being ordered to exit.

Specific systems may also define other signal types, as well as macros for other spe‐
cial values of handler. Furthermore, many systems do not allow programs to install
signal handlers for, or to ignore, certain signals. For example, Unix systems do not
allow programs to handle or ignore a SIGKILL or SIGSTOP signal. The first three sig‐
nals in the previous list—SIGFPE, SIGILL, and SIGSEGV—are non-recoverable. In
other words, if you use signal() to install a handler for one of these signals, your
handler function should never return. If it does, the program’s behavior is unde‐

562 | Chapter 18: Standard Library Functions

fined. For other signal types, when a signal handler returns, the program resumes
execution wherever it was when the signal occurred.

Signal handler functions are also subject to other constraints, as the state of the sys‐
tem and the program is undefined at the time of their execution. They must not
access objects with static storage class, except objects declared with the type
sig_atomic_t and the qualifier volatile. Signal handlers must also avoid calling
any other functions except abort(), _Exit(), or signal(), and may call signal()
only to set a handler for the signal type that caused the present function call. Other‐
wise the program’s behavior is undefined. These restrictions do not apply to han‐
dlers invoked through calls to abort() or raise(), however. Handlers invoked
through abort() or raise() must not call raise(). Certain systems specify other
functions besides abort(), _Exit(), and signal() that a signal handler may call
safely. In particular, the POSIX standards define such “safe functions,” as well as
functions for finer control of signal handling.
Example

include <stdio.h>
include <stdlib.h>
include <stdint.h> // Defines SIG_ATOMIC_MAX
include <signal.h>

void sigint_handler(int sig);
volatile sig_atomic_t i; // A counter accessed by main and the
 // handler.

int main()
{
 if (signal(SIGINT, sigint_handler) == SIG_ERR)
 {
 perror("Failed to install SIGINT handler");
 exit(3);
 }

 while (1)
 {
 puts("Press Ctrl+C to interrupt me.");
 for (i = 0 ; i < SIG_ATOMIC_MAX ; i++)
 if (i % 100000 == 0)
 {
 printf("\r%d ", i / 100000);
 fflush(stdout);
 }
 raise(SIGINT); // Simulate a Ctrl+C in case the user didn't
 // type it.
 }
 return 0;
}

void sigint_handler(int sig)
{

Lib
rary

Functio
ns

Standard Library Functions | 563

 int c = 0;

 if (sig != SIGINT) exit(1);

 signal(SIGINT, SIG_IGN); // Ignore a second Ctrl+C

 puts("\nThis is the function sigint_handler()."
 "\nDo you want to exit the program now? [y/n]");
 while ((c = tolower(getchar())) != 'y' && c != 'n' && c != EOF)
 ;

 if (c != 'n')
 exit(0);
 else
 i = 0; // Reset timer
 signal(SIGINT, sigint_handler); // Reinstall this handler.

 /* No return value; just fall off the end of the function. */
}

See Also

raise(), abort()

signbit C99signbit C99

Ascertains whether a floating-point number is negative.

#include <math.h>
int signbit(x);

The argument of the signbit() macro can have any real floating-point type—
float, double, or long double—and can have any numeric or other value, includ‐
ing INFINITY, NaN, or 0. The macro ascertains whether the argument’s value is nega‐
tive (whether its sign bit is set, to put it more precisely), and returns a nonzero
value, or true, if it is. Otherwise, signbit() returns 0.
Example

double x[] = { -0.0, 187.234, sqrt(-1.0), 1.0 / -0.0 };

for (int i = 0 ; i < (sizeof(x) / sizeof(double)) ; i++)
 printf("x[%d] equals %lF, and is%s negative.\n",
 i, x[i], signbit(x[i]) ? "" : " not");

The behavior of this example depends on whether the compiler supports negative
zero values in floating-point constants, and whether the undefined arithmetic oper‐
ations in the array initialization cause fatal exceptions. Compiled with GCC 4.9.2
and the GNU C library, this code produces the following output:

x[0] equals -0.000000, and is negative.
x[1] equals 187.234000, and is not negative.
x[2] equals NAN, and is negative.
x[3] equals -INF, and is negative.

564 | Chapter 18: Standard Library Functions

See also the example for isunordered() in this chapter.
See Also

fpclassify(), isfinite(), isinf(), isnan(), isnormal()

sinsin

Calculates the sine of an angle.

#include <math.h>
double sin(double x);
float sinf(float x); (C99)
long double sinl(long double x); (C99)

The sin() function calculates the sine of the angle represented by its argument x as
a number of radians. The return value is in the range -1 ≤ sin(x) ≤ 1.
Example

#define DEG_PER_RAD (180.0 / PI)

const double PI = 4.0 * atan(1.0);
double a[4];

printf("\nEnter an acute angle measure, in degrees: ");

if (scanf("%lf", a) < 1 || (a[0] <= 0 || a[0] >= 90))
 printf("\nThat's not an acute angle.\n"), exit(1);
else
{
 a[1] = a[0] + 90 ;
 a[2] = 180 − a[0] ;
 a[3] = 225 + a[0] ;
 for (int i = 0 ; i < 4 ; i ++)
 printf("The sine of %4.2lf degrees is %6.4lf.\n",
 a[i], sin(a[i] / DEG_PER_RAD));
}

See Also

cos(), tan(), asin(), csin()

sinhsinh

Calculates the hyperbolic sine of a number.

#include <math.h>
double sinh(double x>);
float sinhf(float x); (C99)
long double sinhl(long double x); (C99)

The sinh() function returns the hyperbolic sine of its argument x. If the result of
sinh() is too great for the double type, a range error occurs.

Lib
rary

Functio
ns

Standard Library Functions | 565

Example
// A chain hanging from two points forms a curve called a catenary.
// A catenary is a segment of the graph of the function
// cosh(k*x)/k, for some constant k.
// The length along the catenary over a certain span, bounded by the
// two vertical lines at x=a and x=b, is equal to
// sinh(k*b)/k − sinh(k*a)/k.

double x, k;
puts("Catenary f(x) = cosh(k*x)/k\n"
 "Length along the catenary from a to b: "
 "sinh(k*b)/k − sinh(k*a)/k)\n");

puts(
" f(-1.0) f(0.0) f(1.0) f(2.0) Length(-1.0 to 2.0)\n"
"---");
for (k = 0.5; k < 5; k *= 2)
{
 printf("k = %.1f: ", k);
 for (x = -1.0; x < 2.1; x += 1.0)
 printf("%8.2f ", cosh(k*x)/k);

 printf(" %12.2f\n", (sinh(2*k) − sinh(−1*k))/ k);
}

This code produces the following output:

Catenary f(x) = cosh(k*x)/k
Length along the catenary from a to b: sinh(k*b)/k − sinh(k*a)/k)

 f(-1.0) f(0.0) f(1.0) f(2.0) Length(-1.0 to 2.0)

k = 0.5: 2.26 2.00 2.26 3.09 3.39
k = 1.0: 1.54 1.00 1.54 3.76 4.80
k = 2.0: 1.88 0.50 1.88 13.65 15.46
k = 4.0: 6.83 0.25 6.83 372.62 379.44

See Also

cosh(), tanh(), asinh(), csinh(), casinh()

snprintf, snprintf_ssnprintf, snprintf_s

Stores formatted output in a string buffer.

#include <stdio.h>
int snprintf(char * restrict dest, size_t n,
 const char * restrict format, ...);
int snprintf_s(char * restrict dest, rsize_t n,
 const char * restrict format, ...); (C11)

The snprintf() function is similar to printf() but writes its output as a string in
the buffer referenced by the first pointer argument, dest, rather than to stdout.

566 | Chapter 18: Standard Library Functions

Furthermore, the second argument, n, specifies the maximum number of characters
that snprintf() may write to the buffer, including the terminating null character. If
n is too small to accommodate the complete output string, then snprintf() writes
only the first n – 1 characters of the output, followed by a null character, and dis‐
cards the rest. The return value is the number of characters (not counting the termi‐
nating null character) that would have been written if n had been large enough.
Consequently, the output string has been written completely if and only if the func‐
tion returns a non-negative value less than n. To obtain the length of the output
string without storing it, you can set n equal to zero; in this case, sprintf() writes
nothing to dest, which may be a null pointer.

The secure function snprintf_s() is equivalent to snprintf() except for the fol‐
lowing runtime constraints: the pointer arguments dest, format, and any argu‐
ments corresponding to %s conversion specifiers must not be null pointers; the
number n must be greater than zero, but not greater than RSIZE_MAX; and the format
string must not contain the conversion specifier %n. If a runtime constraint is viola‐
ted, snprintf_s() writes the string terminator character '\0' to dest[0], provided
dest is not a null pointer and n is greater than zero and less than RSIZE_MAX.

The return value of snprintf_s() is like that of snprintf(), if the runtime con‐
straints are fulfilled. If a violation occurs, snprintf_s() returns a negative value.

If the output overlaps with any argument that snprintf() or
snprintf_s() copies data from, the behavior is undefined.

Example
char buffer[80];
double x = 1234.5, y = 678.9, z = -753.1, a = x * y + z;
int output_len = 0;

output_len = snprintf(buffer, 80, "For the input values %lf, %lf,"
 " and %lf,\nthe result was %lf.\n",
 x, y, z, a);
puts(buffer);
if (output_len >= 80)
 fprintf(stderr, "Output string truncated! Lost %d characters.\n",
 output_len − 79);

This code produces the following output:

For the input values 1234.500000, 678.900000, and -753.100000,
the result was 8
Output string truncated! Lost 14 characters.

The first two lines are printed by puts() and the third by fprintf().

Lib
rary

Functio
ns

Standard Library Functions | 567

See Also

printf(), fprintf(), sprintf(), vprintf(), vfprintf(), vsprintf(),
vsnprintf(); the wide-character functions wprintf(), fwprintf(), swprintf(),
vwprint(), vfwprint(), vswprint(); the corresponding secure functions, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined)

Argument conversion in the printf() family of functions is described in detail
under printf() in this chapter.

snwprintf_s C11snwprintf_s C11

Stores formatted output in a wide-character string buffer.

#include <wchar.h>
int snwprintf(wchar_t * restrict dest, size_t n,
 const wchar_t * restrict format, ...);

The function snwprintf_s() is equivalent to snprintf_s() except that its format
string and output string are wide-character strings of the type wchar_t.
Example

See the example for swprintf() in this chapter.
See Also

snprintf_s(), swprintf()

sprintf, sprintf_ssprintf, sprintf_s

Stores formatted output in a string buffer.

#include <stdio.h>
int sprintf(char * restrict dest, const char * restrict format, ...);
int sprintf_s(char * restrict dest, rsize_t n,
 const char * restrict format, ...); (C11)

The sprintf() function is similar to snprintf(), except that it has no parameter to
limit the number of characters written to the destination buffer. As a result, using it
means risking buffer overflows, especially because the length of the output depends
on the current locale as well as input variables. Use snprintf() instead.

The secure function sprintf_s() is equivalent to snprintf_s(), except that the
buffer dest must be large enough to store the complete result string. If the number
of characters required by the result string is greater than the argument n, a violation
of the runtime constraints occurs.

A successful sprintf_s() call returns the number of characters written (not count‐
ing the terminating null character). The function returns a negative value if a con‐
version error occurs, and zero if another violation of the runtime constraints occurs.

568 | Chapter 18: Standard Library Functions

Example
double x = 1234.5, y = 678.9, z = -753.1, a = x * y + z;
char buffer[80];
int output_len = 0;

output_len = sprintf(buffer, "For the input values %lf, %lf, and %lf,"
 "\nthe result was %lf.\n",
 x, y, z, a);
puts(buffer);
if (output_len >= 80)
 fprintf(stderr, "Output string overflowed by %d characters.\n"
 "The variables x, y, z and a may have been corrupted:\n"
 "x now contains %lf, y %lf, z %lf, and a %lf.\n",
 output_len - 79, x, y, z, a);

This code produces the following output:

For the input values 1234.500000, 678.900000, and -753.100000,
the result was 837348.950000.

Output string overflowed by 14 characters.
The variables x, y, z and a may have been corrupted:
x now contains 1234.500000, y 678.900000, z -736.004971, and a 0.000000.

See Also

printf(), fprintf(), snprintf(), declared in stdio.h; vprintf(), vfprintf(),
vsprintf(), vsnprintf(), declared in stdarg.h; the wide-character functions
wprintf(), fwprintf(), swprintf(), declared in stdio.h and wchar.h; and
vwprint(), vfwprint(), and vswprint(), declared in stdarg.h; the scanf() input
functions. Argument conversion in the printf() family of functions is described in
detail under printf() in this chapter.

sqrtsqrt

Calculates the square root of a floating-point number.

#include <math.h>
double sqrt(double x);
float sqrtf(float x); (C99)
long double sqrtl(long double x); (C99)

The sqrt() functions return the square root of the argument x. If the argument is
less than zero, a domain error occurs.
Example

double x[] = { 0.5, 0.0, -0.0, -0.5 };

for (int i = 0; i < (sizeof(x) / sizeof(double)); i++)
{
 printf("The square root of %.2F equals %.4F\n", x[i], sqrt(x[i]));
 if (errno)

Lib
rary

Functio
ns

Standard Library Functions | 569

 perror(__FILE__);
}

This code produces the following output:

The square root of 0.50 equals 0.7071
The square root of 0.00 equals 0.0000
The square root of -0.00 equals -0.0000
The square root of -0.50 equals NAN
sqrt.c: Numerical argument out of domain

sqrt() is also used in the examples shown at erf(), feholdexcept(), frexp(), and
signbit() in this chapter.
See Also

The complex arithmetic function csqrt(); the cube root function cbrt() and the
hypotenuse function, hypot()

srandsrand

Initializes the random number generator.

#include <stdlib.h>
void srand(unsigned n);

The srand() function initializes the random number generator using its argument n
as the “seed.” For each value of the seed passed to srand(), subsequent calls to
rand() yield the same sequence of “random” numbers. For this reason, a common
technique to avoid repetition is to seed srand() with the current time. If you call
rand() without having called srand(), the result is the same as if you had called
srand() with the argument value 1.
Example

See the example for rand() in this chapter.
See Also

rand()

sscanf, sscanf_ssscanf, sscanf_s

Reads formatted data from a string.

#include <stdio.h>
int sscanf(const char * restrict src,
 const char * restrict format, ...);
int sscanf_s(const char * restrict src,
 const char * restrict format, ...); (C11)

The functions sscanf() and sscanf_s() are similar to the functions scanf() and
scanf_s(), except that they read from the string specified by their argument src
instead of stdin.

570 | Chapter 18: Standard Library Functions

Like scanf(), the sscanf() functions return the number of data items converted
and stored in variables. If an input error occurs or the function reads to the end of
the string before any data can be converted, the return value is EOF. The sscanf_s()
function also returns EOF if a violation of its runtime constraints occurs.
Example

See the examples for fscanf() and strspn() in this chapter.
See Also

scanf(), fscanf(), vscanf(), vsscanf(), vfscanf(), wscanf(), fwscanf(),
swscanf(), vwscanf(), vfwscanf(), vswscanf(); the corresponding secure func‐
tions, if the implementation supports the C11 bounds-checking functions (i.e., if the
macro __STDC_LIB_EXT1__ is defined)

Argument conversion in the scanf() family of functions is described in detail
under scanf() in this chapter.

strcat, strcat_sstrcat, strcat_s

Appends one string to another.

#include <string.h>
char *strcat(char * restrict s1, const char * restrict s2);
errno_t strcat_s(char * restrict s1, rsize_t s1max,
 const char * restrict s2); (C11)

The strcat() function copies the string addressed by the second pointer argument,
s2, to the location following the string addressed by the first pointer, s1. The first
character of s2 is copied over the terminating null character of the string addressed
by s1. It is up to you, the programmer, to make sure that the char array addressed
by the argument s1 is big enough to store the concatenated string. The source and
destination arrays must not overlap. The function strcat() returns the value of its
first argument s1, which points to the concatenated string.

Like strcat(), the secure function strcat_s() appends the second string, s2, to the
end of the first string, s1, but it avoids the danger of a buffer overflow. It has the
additional parameter s1max to specify the size of the destination array, and tests the
following runtime constraints:

• The pointers s1 and s2 must not be null pointers, and the value of s1max must
be greater than zero and less than or equal to RSIZE_MAX.

• The sum of the string lengths of s1 and s2 must be less than s1max.
• The source and destination arrays must not overlap.

If a violation of the runtime constraints occurs, strcat_s() writes the string termi‐
nator character to s1[0], provided s1 is not a null pointer and s1max is greater than
zero but not greater than RSIZE_MAX.

Lib
rary

Functio
ns

Standard Library Functions | 571

strcat_s() returns zero, or a nonzero value if a violation of the runtime constraints
occurs.
Example

typedef struct {
 char lastname[32];
 char firstname[32];
 _Bool ismale;
} Name;

char displayname[80];
Name *newName = calloc(1, sizeof(Name));

/* ... check for calloc failure; read in the name parts ... */

strcpy(displayname, (newName->ismale ? "Mr. " : "Ms. "));
// strcat(displayname, newName->firstname);
// strcat(displayname, " ");
// strcat(displayname, newName->lastname);

// Better to use strcat_s() in case the fields in the Name
// structure are ever enlarged:
strcat_s(displayname, sizeof(displayname), newName->firstname);
strcat_s(displayname, sizeof(displayname), " ");
strcat_s(displayname, sizeof(displayname), newName->lastname);

puts(displayname);

See Also

strncat(), strncat_s(), wcscat(), wcscat_s()

strchrstrchr

Search for a given character in a string.

#include <string.h>
char *strchr(const char *s, int c);

The strchr() function returns a pointer to the first occurrence of the character
value c in the string addressed by s. If there is no such character in the string,
strchr() returns a null pointer. If c is a null character ('\0'), then the return value
points to the terminator character of the string addressed by s.
Example

typedef struct { char street[32];
 char city[32];
 char stateprovince[32];
 char zip[16];
 } Address;

char printaddr[128] = "720 S. Michigan Ave.\nChicago, IL 60605\n";
int sublength;

572 | Chapter 18: Standard Library Functions

Address *newAddr = calloc(1, sizeof(Address));

if (newAddr != NULL)
{
 sublength = strchr(printaddr, '\n') − printaddr;
 strncpy(newAddr->street, printaddr,
 (sublength < 31 ? sublength : 31));
 /* ... */
}

See Also

strrchr(), strpbrk(), strstr(); the wide-string functions wcschr() and
wcsrchr()

strcmpstrcmp

Compares two strings.

#include <string.h>
int strcmp(const char *s1, const char *s2);

The strcmp() function compares the strings addressed by its two pointer argu‐
ments, and returns a value indicating the result as follows:

Zero
The two strings are equal.

Greater than zero
The string addressed by s1 is greater than the string addressed by s2.

Less than zero
The string addressed by s1 is less than the string addressed by s2.

The strcmp() function compares the strings, one character at a time. As soon as it
finds unmatched characters in corresponding positions in the two strings, the string
containing the greater unsigned character value at that position is the greater string.
Example

int result = 0;
char word1[256], word2[256], *greaterlessequal;

while (result < 2)
{
 puts("Type two words, please.");
 result = scanf("%s%s", word1, word2);
}
result = strcmp(word1, word2);

if (result < 0)
 greaterlessequal = "less than";
else if (result > 0)
 greaterlessequal = "greater than";

Lib
rary

Functio
ns

Standard Library Functions | 573

else
 greaterlessequal = "the same as";

printf("The word \"%s\" is %s the word \"%s\".\n",
 word1, greaterlessequal, word2);

See also the example for qsort() in this chapter.
See Also

strncmp(), memcmp(), wcscmp()

strcollstrcoll

Compares two strings by locale-specific sorting criteria.

#include <string.h>
int strcoll(const char *s1, const char *s2);

Like strcmp(), the strcoll() function performs a character-by-character compari‐
son of the two strings, s1 and s2. However, where strcmp() just compares unsigned
character values, strcoll() can apply a locale-specific set of rules in comparing
strings. The value of the locale information category LC_COLLATE determines the
applicable rule set, and can be changed by the setlocale() function.

The return value of strcoll() indicates the result of the comparison as follows:

Zero
The two strings are equal.

Greater than zero
The string addressed by s1 is greater than the string addressed by s2.

Less than zero
The string addressed by s1 is less than the string addressed by s2.

Example
char *samples[] = { "curso", "churro" };

setlocale(LC_COLLATE, "es_US.UTF-8");

int result = strcoll(samples[0], samples[1]);

if (result == 0)
 printf("The strings \"%s\" and \"%s\" are alphabetically "
 "equivalent.\n", samples[0], samples[1]);
else if (result < 0)
 printf("The string \"%s\" comes before \"%s\" alphabetically.\n",
 samples[0], samples[1]);
else if (result > 0)
 printf("The string \"%s\" comes after \"%s\" alphabetically.\n",
 samples[0], samples[1]);

574 | Chapter 18: Standard Library Functions

Because the letter ch comes after the letter c in the Spanish alphabet, the preceding
code prints this line in the es_US locale:

The string "curso" comes before "churro" alphabetically.

See Also

strcmp(), strncmp(), setlocale(), wcscoll(), strxfrm()

strcpy, strcpy_sstrcpy, strcpy_s

Copies a string to another location.

#include <string.h>
char *strcpy(char * restrict dest, const char * restrict src);
errno_t strcpy_s(char * restrict dest, rsize_t destmax,
 const char * restrict src);

The strcpy() function copies the string addressed by src to the char array
addressed by dest. It is up to you, the programmer, to make sure that the char array
addressed by the argument dest is big enough to store the string, including its ter‐
minating null character. The source and destination arrays must not overlap. The
function strcpy() returns the pointer dest.

Like strcpy(), the secure function strcpy_s() copies the string src to the charac‐
ter array addressed by dest, but it avoids the danger of a buffer overflow. It has the
additional parameter destmax to specify the size of the destination array, and tests
the following runtime constraints:

• The pointers dest and src must not be null pointers, and the value of destmax
must be greater than zero and less than or equal to RSIZE_MAX.

• The string length of src must be less than destmax.
• The source and destination arrays must not overlap.

If a violation of the runtime constraints occurs, strcat_s() writes the string termi‐
nator character to dest[0], provided dest is not a null pointer and destmax is
greater than zero but not greater than RSIZE_MAX.

strcpy_s() returns zero if no violation of the runtime constraints occurs—that is, if
it succeeds in copying the string src, including the string terminator character. A
nonzero return value indicates an error. The contents of the char array dest after
the string terminator character are undetermined.
Example

struct guest {
 char name[64]; int age; _Bool male, smoking, discount; } this;
int result;

printf("Last name: ");
result = scanf("%[^\n]", this.name);

Lib
rary

Functio
ns

Standard Library Functions | 575

if (result < 1)
 strcpy(this.name, "[not available]");
// or
// strcpy_s(this.name, sizeof(this.name), "[not available]");
printf("Name: %s\n", this.name);

See Also

strncpy(), memcpy(), memmove(), wcscpy(), wcsncpy(), wmemcpy(), and
wmemmove() and the corresponding secure functions, if the implementation sup‐
ports the C11 bounds-checking functions (i.e., if the macro __STDC_LIB_EXT1__ is
defined)

strcspnstrcspn

Searches for any element of one string in another.

#include <string.h>
int strcspn(const char *s1, const char *s2);

The strcspn() function returns the number of characters at the beginning of the
string addressed by s1 that do not match any of the characters in the string
addressed by s2. In other words, strcspn() returns the index of the first character
in s1 that matches any character in s2. If the two strings have no characters in com‐
mon, then the return value is the length of the string addressed by s1.
Example

char *path = "/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games";
int separator;
char *basename = "aprogram";
char fullname[1024] = "";

separator = strcspn(path, ":"); // Obtain the index of the first
 // colon.

strncpy(fullname, path, separator);
fullname[separator] = '\0'; // Terminate the copied string
 // fragment.
strncat(fullname, "/", sizeof(fullname) − strlen(fullname) −1);
strncat(fullname, basename, sizeof(fullname) − strlen(fullname) −1);

puts(fullname);

The last statement prints the following string:

/usr/local/bin/aprogram

See Also

strspn(), strpbrk(), strchr(), wcscspn()

576 | Chapter 18: Standard Library Functions

strerrorstrerror

Obtains a string that describes a given error.

#include <string.h>
char *strerror(int errornumber);

The strerror() function returns a pointer to an error message string that corre‐
sponds to the specified error number. The argument value is usually that of the
errno variable but can be any integer value. The string pointed to by the return
value of strerror() may change on successive strerror() calls.

The function strerror(), unlike strerror_s(), is not necessarily thread-safe.
Example

FILE *fp;
char msgbuf[1024] = { '\0' };

/* Open input file: */
if ((fp = fopen("nonexistent", "r")) == NULL)
{
 int retval = errno;
 snprintf(msgbuf, sizeof(msgbuf),
 "%s: file %s, function %s, line %d: error %d,\n%s.\n",
 argv[0], __FILE__, __func__, __LINE__, retval,
 strerror(retval));
 fputs(msgbuf, stderr);
 return retval;
}

This error-handling block prints the following message:

./strerror: file strerror.c, function main, line 17: error 2,
No such file or directory.

See Also

strerror_s(), perror()

strerror_s, strerrorlen_s C11strerror_s, strerrorlen_s C11

Obtains a string that describes a given error, or the length of such a string.

#include <string.h>
errno_t strerror_s(char *s, rsize_t maxsize, errno_t errnum);
size_t strerrorlen_s(errno_t errnum);

The function strerror_s() copies the locale-specific error message string that cor‐
responds to the specified error number errnum to the char array addressed by s. If
the array length specified by maxsize is too small to accommodate the whole string,
the error message is truncated to fit. In this case, the message ends with three dots,

Lib
rary

Functio
ns

Standard Library Functions | 577

provided maxsize is greater than three. The error number is usually the value of the
error variable errno, but can be any int value desired.

The function strerror_s() tests the following runtime constraints: the pointer s
must not be a null pointer, and the value of maxsize must be greater than zero and
less than or equal to RSIZE_MAX. If the runtime constraints are not fulfilled, the
function returns immediately.

Unlike strerror(), the strerror_s() function is thread-safe. It returns zero if the
complete error message string was copied, and a nonzero value otherwise.

The function strerrorlen_s() returns the length of the complete error message
that corresponds to the error number errnum (not counting the string terminator
character) .
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
// ...
 double x = -1.0, y = 0;
// ...
 errno = 0;
 y = sqrt(x);
 if(errno == EDOM)
 {
 char msg[30] = "";
 strerror_s(msg, sizeof(msg), errno);
 fprintf(stderr, "sqrt: %s\n", msg);
 }

Possible output of the preceding statements is:

sqrt: Mathematics argument out o...

See Also

strerror(), perror()

strftimestrftime

Generates a formatted time-and-date string.

#include <time.h>
size_t strftime(char * restrict s, size_t n,
 const char * restrict format,
 const struct tm * restrict timeptr);

The strftime() function converts date-and-time information from a struct tm
object addressed by the last pointer argument into a character string, following a
format specified by the string addressed by the pointer argument format. The
strftime() function stores the resulting string in the buffer addressed by the first
pointer argument, without exceeding the buffer length specified by the second argu‐

578 | Chapter 18: Standard Library Functions

ment, n. The locations that strftime() reads from and writes to using its restricted
pointer parameters must not overlap.

Typically, the struct tm object is obtained by calling localtime() or gmtime(). For
a description of this structure type, see mktime() in this chapter.

The generation of the output string is governed by the format string. In this way,
strftime() is similar to the functions in the printf() family. The format string
consists of ordinary characters, which are copied to the output buffer unchanged,
and conversion specifications, which direct strftime() to convert a data item from
the struct tm object and include it in the output string.
Conversion specification syntax
The conversion specifications have the following syntax:

%[modifier]specifier

The modifier, if present, instructs strftime() to use an alternative, locale-specific
conversion for the specified data item, and is either E, for locale-specific calendars
and clocks, or O, for locale-specific numeric symbols. The E modifier can be prefixed
to the specifiers c, C, x, X, y, and Y. The O modifier can be prefixed to the specifiers d,
e, H, I, m, M, S, u, U, V, w, W, and Y. All of the conversion specifiers are listed, with the
struct tm members they refer to, in Table 18-12. The replacement value for the
conversion specifiers depend on the LC_TIME category of the current locale, which
can be changed by the setlocale() function.

Table 18-12. The strftime() conversion specifiers

Conversion
specifier

Structure member(s) Output notation

a tm_wday The name of the day of the week, abbreviated

A tm_wday The name of the day of the week, in full

b or h tm_mon The name of the month, abbreviated

B tm_mon The name of the month, in full

c (all) The date and time

C tm_year The year, divided by 100, as a decimal integer (00 to 99)

d tm_mday The day of the month, in decimal, with a leading zero on
values less than 10 (01 to 31)

D tm_mon,
tm_mday,
tm_year

Shorthand for %m/%d/%y

F tm_mon,
tm_mday,
tm_year

Shorthand for %Y-%m-%d

Lib
rary

Functio
ns

Standard Library Functions | 579

Conversion
specifier

Structure member(s) Output notation

g tm_year,
tm_wday,
tm_yday

The last two digits of the year in the ISO 8601 week-based
calendar (00 to 99)a

G tm_year,
tm_wday,
tm_yday

The four-digit year in the ISO 8601 week-based calendar

H tm_hour The hour of the 24-hour clock as a two-digit decimal number
(00 to 23)

I tm_hour The hour of the 12-hour clock as a two-digit decimal number
(01 to 12)

j tm_yday The day of the year as a three-digit decimal number (001 to
366)

m tm_mon The month as a two-digit decimal number (01 to 12)

M tm_min The minutes after the hour as a two-digit decimal number
(00 to 59)

n (none) A newline character ('\n')

p tm_hour The AM or PM indication used with a 12-hour clock

r tm_hour,
tm_min,
tm_sec

The time of day on the 12-hour clock

R tm_hour, tm_min Shorthand for %H:%M

S tm_sec The seconds after the minute as a two-digit decimal number
(00 to 60)

t (none) A tab character ('\t')

T tm_hour,
tm_min,
tm_sec

Shorthand for %H:%M:%S

u tm_wday The day of the week as a one-digit decimal number (1 to 7,
where 1 is Monday)

U tm_year,
tm_wday,
tm_yday

The week of the year as a two-digit decimal number (00 to
53), where week 1 begins on the first Sunday in January

V tm_year,
tm_wday,
tm_yday

The week of the year in the ISO 8601 week-based calendar, as
a two-digit decimal number (01 to 53), where week 1 begins
on the last Monday that falls on or before January 4

w tm_wday The day of the week as a one-digit decimal number (0 to 6,
where 0 is Sunday)

580 | Chapter 18: Standard Library Functions

Conversion
specifier

Structure member(s) Output notation

W tm_year,
tm_wday,
tm_yday

The week of the year as a two-digit decimal number (00 to
53), where week 1 begins on the first Monday in January

x (all) The date

X (all) The time

y tm_year The last two digits of the year, as a decimal number (00 to
99)

Y tm_year The year as a decimal number (example: 2005)

z tm_isdst The offset from Greenwich Mean Time if available; otherwise
nothing (example: +0200 for two hours and no minutes east
of GMT)

Z tm_isdst The name or abbreviation of the time zone if available;
otherwise nothing

% (none) A percent sign (%)

a In this calendar, the week begins on Monday, and the first week of the year is the week that contains January
4. Up to the first three days of January may belong to week 53 of the old year, or up to the last three days of
December may belong to week one of the new year.

The strftime() function returns the length of the string written to the output
buffer, not counting the terminating null character. If the output is longer than the
argument n allows, strftime() returns 0, and the contents of the output buffer are
undetermined.
Example

time_t now;
struct tm *localnow;
char hdr_date[999] = "";

time(&now);
localnow = localtime(&now);

if (strftime(hdr_date, 78, "Date: %a, %d %b %Y %T %z", localnow))
 puts(hdr_date);
else
 return -1;

This code prints a date field in RFC 2822 style, such as this one:

Date: Thu, 10 Mar 2005 13:44:18 +0100

See Also

asctime(), ctime(), mktime(), localtime(), gmtime(), wcsftime(), snprintf(),
setlocale()

Lib
rary

Functio
ns

Standard Library Functions | 581

strlenstrlen

Obtains the length of a string.

#include <string.h>
size_t strlen(const char *s);

The strlen() function calculates the length of the string addressed by its argument
s. The length of a string is the number of characters in it, not counting the terminat‐
ing null character ('\0').
Example

char line[1024] =
 "This string could easily be hundreds of characters long.";
char *readptr = line;
int columns = 80;

// While the text is longer than a row:
while (strlen(readptr) > columns)
{ // print a row with a backslash at the end:
 printf("%.*s\\", columns-1, readptr);
 readptr += columns -1;
}
// Then print the rest with a newline at the end:
printf("%s\n", readptr);

See Also

strnlen_s(), wcslen()

strncat, strncat_sstrncat, strncat_s

Appends a number of characters from one string to another.

#include <string.h>
char *strncat(char * restrict s1,
 const char * restrict s2, size_t n);
errno_t strncat_s(char * restrict s1, rsize_t s1max,
 const char * restrict s2, rsize_t n);

The strncat() function copies up to n characters of the string addressed by its sec‐
ond argument, s2, to the end of the string addressed by its first argument, s1. The
first character copied from s2 replaces the string terminator character of s1. The
function copies fewer than n characters if it first encounters a terminating null char‐
acter in the string s2. In any case, strncat() appends a null character to the con‐
catenated string. The string addressed by s1 is thus lengthened by at most n charac‐
ters.

It is up to you, the programmer, to make sure that the char array addressed by the
argument s1 is big enough to store the concatenated string. The source and destina‐
tion arrays must not overlap. The function strcat() returns the pointer s.

582 | Chapter 18: Standard Library Functions

Like strncat(), the secure function strncat_s() appends up to n characters of the
second string, s2, to the end of the first string, s1, but it avoids the danger of a
buffer overflow. It has the additional parameter s1max to specify the size of the des‐
tination array, and tests the following runtime constraints:

• The pointers s1 and s2 must not be null pointers. The values of s1max and n
must not be greater than RSIZE_MAX, and s1max must be greater than zero.

• The length of the concatenated string must be less than s1max. In other words,
either strlen(s1) + n or strlen(s1) + strlen(s2) must be less than s1max.

• The source and destination arrays must not overlap.

If a violation of the runtime constraints occurs, strcat_s() writes the string termi‐
nator character to s1[0], provided s1 is not a null pointer and s1max is greater than
zero, but not greater than RSIZE_MAX.

strcat_s() returns zero on success, or a nonzero value if a violation of the runtime
constraints occurs.
Example

#define __STDC_WANT_LIB_EXT1__ 1 // For the secure functions.
#include <string.h>
#include <stdlib.h>
// ...
 char str1[] = "hello ", // 7 bytes
 str2[10] = "hello ", // 7 + 3 bytes
 str3[10] = "hello "; // 7 + 3 bytes

// strncat(str1, "Jimi", 1); // Severe error: buffer overflow!
// strncat(str2, "Jimi", 3); // OK: "hello Jim"
// strncat(str3, "Jim", 100); // OK.

// Or, using strncat_s(), with the variables defined above:
 int ret1, ret2, ret3;

 set_constraint_handler_s(ignore_handler_s);
 ret1 = strncat_s(str1, sizeof(str1), "Jimi", 1); // ret1 != 0 and
 // str1[0] == '\0'
 ret2 = strncat_s(str2, sizeof(str2), "Jimi", 3); // OK: ret2 == 0
 ret3 = strncat_s(str3, sizeof(str3), "Jim", 100); // OK: ret3 == 0

See Also

strcat(), strcat_s(), wcsncat(), wcsncat_s()

strncmpstrncmp

Compares the first n characters of two strings.

#include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

Lib
rary

Functio
ns

Standard Library Functions | 583

The strncmp() function compares at most the first n characters in the two strings
addressed by its pointer arguments. Characters that follow a null character are
ignored. strncmp() returns a value indicating the result as follows:

Zero
The two strings, or arrays of n characters, are equal.

Greater than zero
The string or array of n characters addressed by s1 is greater than that
addressed by s2.

Less than zero
The string or array of n characters addressed by s1 is less than that addressed
by s2.

Example
char *weekdays[] = { "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday" };
char date[] = "Thu, 10 Mar 2005 13:44:18 +0100";
int dow;
for (dow = 0; dow < 7; dow++)
 if (strncmp(date, weekdays[dow], 3) == 0)
 break;

See Also

strcmp(), wcsncmp(), wcscmp()

strncpy, strncpy_sstrncpy, strncpy_s

Copies the first n characters of a string to another location.

#include <string.h>
char *strncpy(char * restrict dest,
 const char * restrict src, size_t n);
errno_t strncpy_s(char * restrict dest, rsize_t destmax,
 const char * restrict src, rsize_t n);

The strncpy() function copies at most n characters from the string addressed by
src to the char array addressed by dest, which must be large enough to accommo‐
date n characters. The strncpy() function returns the value of its first argument,
dest. The locations that strncpy() reads from and writes to using its restricted
pointer parameters must not overlap.

If strncpy() reads a null character from src before it has copied n characters, it
writes null characters to dest until it has written a total of n characters.

584 | Chapter 18: Standard Library Functions

If the first n characters of src do not contain a null character,
the function does not terminate the copied string fragment
with a null character!

The secure function strncpy_s() also copies up to n characters from the source
string src to the char array addressed by dest, but it always appends a null charac‐
ter. If strncpy_s() reads a null character from the source string before copying n
characters, then the number of characters it copies is less than n. Otherwise, it
writes a terminating null character to dest[n]. The contents of the char array dest
after the string terminator character are undetermined.

The function strncpy_s() has the additional parameter destmax to specify the size
of the destination array, and tests the following runtime constraints:

• The pointers dest and src must not be null pointers. The values of destmax
and n must not be greater than RSIZE_MAX, and destmax must be greater than
zero.

• Either n or the string length of src (or both) must be less than destmax.
• The source and destination arrays must not overlap.

If a violation of the runtime constraints occurs, strncpy_s() writes the string ter‐
minator character to dest[0], provided dest is not a null pointer and destmax is
greater than zero, but not greater than RSIZE_MAX.

The strncpy_s() function returns zero, or a nonzero value if a violation of the run‐
time constraints occurs.
Example

For strncpy(), see the examples for strcspn() and strpbrk() in this chapter.

The example here shows three strncpy_s() calls:

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
// ...
 char dest[5], src[] = "okay";
 int r;
 r = strncpy_s(dest, 2, src, 2); // r != 0, dest[0] == '\0'
 r = strncpy_s(dest, 3, src, 2); // r == 0, dest == "ok"
 r = strncpy_s(dest, 5, src, 10); // r == 0, dest == "okay"

See Also

strcpy(), memcpy(), memmove(), wcsncpy(), wmemcpy(), wmemmove() and the corre‐
sponding secure functions, if the implementation supports the C11 bounds-
checking functions (i.e., if the macro __STDC_LIB_EXT1__ is defined) Lib

rary
Functio

ns

Standard Library Functions | 585

strnlen_s C11strnlen_s C11

Obtains the length of a string.

#include <string.h>
size_t strnlen_s(const char *s, size_t maxsize);

If the pointer s is a null pointer, the function strnlen_s() returns zero. Otherwise,
strnlen_s() returns the length of the string addressed by the pointer s; that is, the
number of characters that precede the terminating null character ('\0'). The func‐
tion only examines at most the first maxsize characters in the string, however. If
there is no null character within the first maxsize characters, strnlen_s() returns
the value of maxsize.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
// ...
char str[] = "hello";
size_t len = strnlen_s(str, 1000); // len = 5
if(strnlen_s(str, 4) == 4)
{ /* str is more than 4 characters long. */ }

See Also

strlen(), wcslen(), wcsnlen_s()

strpbrkstrpbrk

Finds the first character in a string that matches any character in another string.

#include <string.h>
char *strpbrk(const char *s1, const char *s2);

The strpbrk() function returns a pointer to the first character in the string
addressed by s1 that matches any character contained in the string addressed by s2,
or a null pointer if the two strings have no characters in common.
Example

char *story = "He shouted: \"What? I can't hear you!\"\n";
char separators[] = " \t\n.:?!\"";
char *start = story, *end = NULL;
char words[16][16]; // An array of char arrays to collect words in.
int i = 0;

while (i < 16 && (end = strpbrk(start, separators)) != NULL)
{
 if (end != start) // If the separator wasn't the first character,
 { // then save a word in an array.
 strncpy(words[i], start, end - start);
 words[i][end - start] = '\0'; // And terminate it.
 i++;

586 | Chapter 18: Standard Library Functions

 }
 start = end + 1; // Next strpbrk call starts with
} // the character after this separator.
puts(story);
for (int j = 0 ; j < i ; j++)
 puts(words[j]);

This program prints each of the words it has collected on a new line:

He
shouted
What
I
can't
hear
you

See Also

strchr(), strrchr(), strstr(), strcspn(), strtok(), wcspbrk()

strrchrstrrchr

Searches for the rightmost occurrence of a given character in a string.

#include <string.h>
char *strrchr(const char *s, int c);

The strrchr() function returns a pointer to the last occurrence of the character
value c in the string addressed by s. If there is no such character in the string,
strrchr() returns a null pointer. If c is a null character ('\0'), then the return
value points to the terminator character of the string addressed by s.
Example

char *mybasename = strrchr(argv[0], '/'); // Find end of path.
if (mybasename != NULL)
 mybasename++; // Point to the first character after the slash.
else
 mybasename = argv[0];
printf("This program was invoked as %s.\n", mybasename);

See Also

strchr(), strpbrk(), strstr(); the wide-string functions wcschr() and wcsrchr()

strspnstrspn

Searches a string for a character that is not in a given set.

#include <string.h>
int strspn(const char *s1, const char *s2);

The strspn() function returns the index of the first character in the string
addressed by s1 that does not match any character in the string addressed by s2, or

Lib
rary

Functio
ns

Standard Library Functions | 587

in other words, the length of the string segment addressed by s1 that contains only
characters that are present in the string addressed by s2. If all characters in s1 are
also contained in s2, then strspn() returns the index of s1’s string terminator char‐
acter, which is the same as strlen(s1).
Example

char wordin[256];
double val;

puts("Enter a floating-point number, please:");
scanf("%s", wordin);

int index = strspn(wordin, "+-0123456789eE.");
if (index < strlen(wordin))
 printf("Sorry, but the character %c is not permitted.\n",
 wordin[index]);
else
{
 sscanf(wordin, "%lg", &val);
 printf("You entered the value %g\n", val);
}

See Also

strcspn(), wcsspn()

strstrstrstr

Searches a string for a replica of another string.

#include <string.h>
char *strstr(const char *s1, const char *s2);

The strstr() function searches the string s1 for the first occurrence of the string
s2 (not counting s2’s terminating null character). The return value is a pointer to
the first character in the first occurrence in s1 of the sequence contained in s2, or a
null pointer if there is no such occurrence. If s2 points to an empty string, then
strstr() returns the value of its first argument, s1.
Example

FILE *fpTx, *fpRx, *fpLog;
char rxbuffer[1024], *found;
/* ... */
fgets(rxbuffer, 1024, fpRx);
found = strstr(rxbuffer, "assword:");
if (found != NULL)
{
 fputs("Got password prompt. Sending password", fpLog);
 fputs("topsecret", fpTx);
}

588 | Chapter 18: Standard Library Functions

See Also

strchr(), strpbrk(), wcsstr()

strtod, strtof, strtoldstrtod, strtof, strtold

Converts a string into a floating-point number.

#include <stdlib.h>
double strtod(const char * restrict s, char ** restrict endptr);
float strtof(const char * restrict s,
 char ** restrict endptr); (C99)
long double strtold(const char * restrict s,
 char ** restrict endptr); (C99)

The strtod() function attempts to interpret the string addressed by its first pointer
argument, s, as a floating-point numeric value, and returns the result with the type
double. strtof() and strold() are similar, but return float and long double,
respectively. Leading whitespace characters are ignored, and the converted string
ends with the last character that can be interpreted as part of a floating-point
numeral. The second parameter, endptr, is a pointer to a pointer. If its argument
value is not a null pointer, then the function stores a pointer to the first character
that is not part of the numeral converted in the location addressed by the endptr
argument. (The locations that the function reads from and writes to using its
restricted pointer parameters must not overlap.) If no conversion is possible, the
function returns 0.

If the resulting value exceeds the range of the function’s type, then the return value
is positive or negative HUGE_VAL (or HUGE_VALF or HUGE_VALL, for the float and
long double variants). On an overflow, the errno variable is set to the value of
ERANGE (“range error”). If the conversion produces an underflow, the magnitude of
the return value is at most the smallest value greater than zero that is representable
in the function’s return type, and the function may set the errno variable to the
value of ERANGE (“range error”).

The character sequences that can be interpreted as floating-point numerals depend
on the current locale. In all locales, they include those described in “Floating-Point
Constants” on page 40, and the sequences "infinity" and "nan", without regard to
upper- or lowercase.
Example

char in[1024], *this = in, *next = in;
double val;
puts("Enter some floating-point numbers, please:");
scanf("%[^\n]", in);

puts("Here are the values you entered:");
while (1)
{
 val = strtod(this, &next);

Lib
rary

Functio
ns

Standard Library Functions | 589

 if (next == this) // Means no conversion was possible.
 break ;
 printf("\t%g\n", val);
 this = next; // Try again with the rest of the input string.
}
puts("Done.");

See Also

atof(); wcstof(), wcstod() and wcstold(); strtol(), strtoul(), and strtoi
max()

strtoimax C99strtoimax C99

Converts a string into an integer value with type intmax_t.

#include <inttypes.h>
intmax_t strtoimax(const char * restrict s, char ** restrict endptr,
 int base);

The strtoimax() function is similar to strtol() except that it converts a string to
an integer value of type intmax_t. If the conversion fails, strtoimax() returns 0. If
the result of the conversion exceeds the range of the type intmax_t, then strtoi
max() returns the value of INTMAX_MAX or INTMAX_MIN, and sets the errno variable to
the value of ERANGE (“range error”).
Example

See the example for the analogous function strtol() in this chapter.
See Also

strtoumax(), wcstoimax(), and wcstoumax(); strtol() and strtoul(); strtod(),
strtof(), and strtold(); wcstol() and wcstoul()

strtokstrtok

Divides a string into tokens.

#include <string.h>
char *strtok(char * restrict s1, const char * restrict s2);

The strtok() function isolates tokens in the string addressed by s1 that are delimi‐
ted by any of the characters contained in the string addressed by s2. The tokens are
identified one at a time by successive calls to strtok(). On calls after the first, the
s1 argument is a null pointer.

On the first call, strtok() searches in s1 for the first character that does not match
any character in s2, behavior that is similar to the strspn() function. The first such
character found is considered to be the beginning of a token. Then strtok()
searches further for the first character that does match any of the characters in s2—
or the null character that terminates the string, whichever comes first—similarly to
the strcspn() function. This is considered to be the delimiter that ends the token.

590 | Chapter 18: Standard Library Functions

strtok() then replaces this ending delimiter with '\0', and returns a pointer to the
beginning of the token (or a null pointer if no token was found), while saving an
internal, static pointer to the next character after the ending delimiter for use in
subsequent strtok() calls.

On each subsequent call with a null pointer as the s1 argument, strtok() behaves
similarly, but starts the search at the character that follows the previous delimiter.
You can specify a different set of delimiters in the s2 argument on each call. The
locations that strtok() reads from using s2 and writes to using s1 on any given call
must not overlap. Unlike strtok_s(), the function strtok() is not thread-safe.
Example

char *command, *arg1, *arg2, *comment;
char line[] = " mul eax,[ebp+4] ; Multiply by y\n";

command = strtok(line," \t"); // First word, between spaces or tabs.
arg1 = strtok(NULL, ","); // From there to the comma is arg1.
 // (Trim off any spaces later.)
arg2 = strtok(NULL, ";\n"); // From there to a semicolon or line end.
comment = strtok(NULL, "\n\r\v\f"); // From there to end of line or
 // page.
printf("Command: %s\n"
 "1st argument: %s\n"
 "2nd argument: %s\n"
 "Comment: %s\n\n",
 command, arg1, arg2, comment);

This sample produces the following output:

Command: mul
1st argument: eax
2nd argument: [ebp+4]
Comment: Multiply by y

See Also

strtok_s(), strspn(), strcspn(), strstr(), wcstok()

strtok_s C11strtok_s C11

Divides a string into tokens.

#include <string.h>
char *strtok_s(char * restrict s1, rsize_t * restrict s1max,
 const char * restrict s2, char ** restrict ptr);

Like strtok(), the strtok_s() function divides the string addressed by s1 into a
sequence of tokens delimited by any of the characters contained in the string
addressed by s2. The tokens are identified one at a time by successive calls to
strtok_s(). On calls after the first, the s1 argument is a null pointer. The string s2
can contain different delimiter characters on each call.

Lib
rary

Functio
ns

Standard Library Functions | 591

Unlike strtok(), the function strtok_s() is thread-safe because it does not save its
state between two calls internally. Instead, the state is saved in objects addressed by
the two additional parameters, s1max and ptr. On the first call, the object addressed
by s1max must contain the length of the char array addressed by s1. On each subse‐
quent call, the strtok_s() function updates the objects addressed by s1max and ptr
so that the pointer addressed by ptr refers to the new starting position in the string,
and the variable addressed by s1max contains the remaining string length.

The function strtok_s() tests the following runtime constraints: the pointers
s1max, s2, and ptr must not be null pointers. If s1 is a null pointer, then ptr must
not point to a null pointer. The source string must contain the end of a token within
the number of characters specified by the value addressed by s1max, counting from
the current starting position.

The strtok_s() function writes the terminator character '\0' to the first byte after
the token found, and returns a pointer to the beginning of the token, or a null
pointer if no token was found or a violation of the runtime constraints occurred.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <string.h>
// ...
 char str[] = "Lennon, John: 10/9/1940";
 char *ptr;
 size_t size = sizeof(str);
 char *firstname, *lastname, *birthday;

 lastname = strtok_s(str, &size, ", ", &ptr);
 if(lastname != NULL)
 firstname = strtok_s(NULL, &size, ": ", &ptr);
 if(firstname != NULL)
 birthday = strtok_s(NULL, &size, "", &ptr);
 if(birthday != NULL)
 printf("%s %s was born on %s.\n",
 firstname, lastname, birthday);

This example would generate the following output:

John Lennon was born on 10/9/1940.

See Also

strtok(), strspn(), strcspn(), strstr(), wcstok()

592 | Chapter 18: Standard Library Functions

strtol, strtollstrtol, strtoll

Converts a string into a long (or long long) integer value.

#include <stdlib.h>
long strtol(const char * restrict s, char ** restrict endptr,
 int base);
long long strtoll(const char * restrict s, char ** restrict endptr,
 int base); (C99)

The strtol() function attempts to interpret the string addressed by its first pointer
argument, s, as an integer numeric value, and returns the result with the type long.
strtoll() is similar but returns long long. The character string is interpreted as a
numeral to the base specified by the third argument, base, which must be 0 or an
integer between 2 and 36. If base is 36, then the letters from a to z (and likewise
those from A to Z) are used as digits with values from 10 to 35. If base is between 10
and 35, then only those letters up to the digit value of base – 1 are permissible. In
other locales besides the default locale, C, other character sequences may also be
interpretable as numerals.

If base is 0, then the numeral string is interpreted as octal if it begins, after an
optional plus or minus sign, with the character 0, hexadecimal if it begins with 0x or
0X, or decimal if it begins with a digit from 1 to 9. Leading whitespace characters are
ignored, and the converted string ends with the last character than can be inter‐
preted as part of the numeral.

The second parameter, endptr, is a pointer to a pointer. If its argument value is not
a null pointer, then the function stores a pointer to the first character that is not part
of the numeral converted in the location addressed by the endptr argument. (The
locations that the function reads from and writes to using its restricted pointer
parameters must not overlap.) If no conversion is possible, the function returns 0.

If the resulting value exceeds the range of the function’s type, then the return value
is LONG_MAX or LONG_MIN, depending on the sign (or LLONG_MAX or LLONG_MIN, for
strtoll()), and the errno variable is set to the value of ERANGE (“range error”).
Example

char date[] = "10/3/2005, 13:44:18 +0100", *more = date;
long day, mo, yr, hr, min, sec, tzone;
day = strtol(more, &more, 10);
mo = strtol(more+1, &more, 10);
yr = strtol(more+1, &more, 10);
/* ... */

See Also

strtoul(); strtod(), strtof(), and strtold(); wcstol() and wcstoul();
strtoimax(), strtoumax(), wcstoimax(), and wcstoumax() Lib

rary
Functio

ns

Standard Library Functions | 593

strtoul, strtoullstrtoul, strtoull

Converts a string into an unsigned long (or unsigned long long) integer value.

#include <stdlib.h>
unsigned long strtoul(const char * restrict s, char ** restrict endptr,
 int base);
unsigned long long strtoull(const char * restrict s,
 char ** restrict endptr,
 int base); (C99)

The strtoul() function attempts to interpret the string addressed by its first
pointer argument, s, as an integer numeric value, and returns the result with the
type unsigned long. Otherwise, the strtoul() function works in the same way as
strtol(). strtoull() is similar but returns unsigned long long.

If the resulting value is outside the range of the function’s type, then the return value
is ULONG_MAX (or ULLONG_MAX, for strtoull()), and the errno variable is set to the
value of ERANGE (“range error”).
Example

This for loop uses stroul() to convert an IPv4 address from a dotted-decimal
string to a 32-bit integer value:

char dotted[] = "172.16.2.10", *ptr = dotted, *nextdot = NULL;
unsigned long dest = 0;
for (int i = 0; i < 4; i++)
{
 dest <<= 8;
 dest += strtoul(ptr, &nextdot, 10);
 ptr = nextdot + 1;
}

See Also

strtol(), strtod(), strtof(), and strtold(); wcstol() and wcstoul();
strtoimax(), strtoumax(), wcstoimax(), and wcstoumax()

strtoumax C99strtoumax C99

Converts a string into an integer value with type uintmax_t.

#include <inttypes.h>
uintmax_t strtoumax(const char * restrict s, char ** restrict endptr,
 int base);

The strtoumax() function is similar to strtoul() except that it converts a string to
an integer value of type uintmax_t. If the conversion fails, strtoumax() returns 0. If
the result of the conversion is outside the range of the type uintmax_t, then strtou
max() returns UINTMAX_MAX, and sets the errno variable to the value of ERANGE
(“range error”).

594 | Chapter 18: Standard Library Functions

Example

See the example for the analogous function strtoul() in this chapter.
See Also

strtoimax(), wcstoimax(), and wcstoumax(); strtol() and strtoul(); strtod(),
strtof(), and strtold(); wcstol() and wcstoul()

strxfrmstrxfrm

Transforms a string for easier locale-specific comparison.

#include <string.h>
size_t strxfrm(char * restrict dest, const char * restrict src,
 size_t n);

The strxfrm() function transforms the string addressed by src, and copies the
result to the char array addressed by dest. The third argument, n, specifies a maxi‐
mum number of characters (including the terminating null character) that the func‐
tion may write to dest. The locations that strxfrm() reads from and writes to using
its restricted pointer parameters must not overlap.

The transformation performed depends on the value of the locale category LC_COL
LATE, which you can query or set using the setlocale() function. Furthermore, the
strxfrm() transformation is related to the strcoll() function in the following
way: if you use strcmp() to compare two strings produced by strxfrm() calls, the
result is the same as if you use strcoll() to compare the original strings passed to
strxfrm(). Using strxfrm() and strcmp() may be more efficient than strcoll() if
you need to use the same string in many comparisons.

The strxfrm() function returns the length of the transformed version of the string,
not counting the terminating null character. If this length is greater than or equal to
n, then the contents of the array at dest are indeterminate. The value of n may also
be 0, in which case dest may be a null pointer.
Example

typedef struct stringpair { char * original;
 char * xformed; } Stringpair_t ;

Stringpair_t stringpairs[8] =
 { { "Chávez", NULL }, { "Carron", NULL },
 { "Canoso", NULL }, { "Cañoso", NULL },
 { "Carteño", NULL }, { "Cortillo", NULL },
 { "Cortiluz S.A.", NULL }, { "Corriando", NULL } };

char xformbuffer[1024]; // Space to catch each strxfrm() result.

int stringpaircmp(const void * p1, const void *p2);
 // Defined externally.

setlocale(LC_COLLATE, ""); // Use the host system's locale setting.

Lib
rary

Functio
ns

Standard Library Functions | 595

for (int i = 0; i < 8 ; i++)
{
 stringpairs[i].xformed
 = malloc(strxfrm(xformbuffer, stringpairs[i].original, 1024) + 1);
 if (stringpairs[i].xformed != NULL)
 strcpy(stringpairs[i].xformed, xformbuffer);
}

qsort(stringpairs, 8, sizeof(Stringpair_t), stringpaircmp);

The qsort() function invoked in the last line of this example would pass the trans‐
formed strings to a comparison function named stringpaircmp(). That function
would compare the transformed strings using strcmp(), rather than comparing the
originals using strcoll().
See Also

strcoll(), strcmp(), wcsxfrm(), setlocale()

swprintf, swprintf_sswprintf, swprintf_s

Stores formatted output in a wide-character string buffer.

#include <wchar.h>
int swprintf(wchar_t * restrict dest, size_t n,
 const wchar_t * restrict format, ...);
int swprintf_s(wchar_t * restrict dest, rsize_t n,
 const wchar_t * restrict format, ...);

The function swprintf() is similar to the function wprintf(), except that the string
generated is not written to stdout but to the array of wide characters addressed by
the pointer dest. The function writes no more than n wide characters, including the
string terminator character.

The return value of swprintf() is the number of wide characters written (not
counting the terminating null character, so that it is always less than n). If a conver‐
sion error occurs or the destination array dest is too small to store the entire string
generated, the return value is negative.

The secure function swprintf_s() is equivalent to swprintf() except for the fol‐
lowing runtime constraints: the pointers dest and format and arguments corre‐
sponding to %s conversion specifiers must not be null pointers. Furthermore, the
format string must not contain the conversion specifier %n. The number n must be
greater than zero but not greater than RSIZE_MAX. The destination array dest must
be large enough to store the entire string generated.

If a runtime constraint is violated, swprintf_s() writes the string terminator char‐
acter L'\0' to dest[0], provided dest is not a null pointer, and n is greater than zero
and less than RSIZE_MAX.

596 | Chapter 18: Standard Library Functions

The return value of swprintf_s() is negative if a conversion error occurs or the
destination array dest is too small. If a different runtime constraint violation
occurs, the function returns zero.

Unlike swprintf_s(), the snwprintf_s() function truncates
the output string if it is longer than the destination array. In
this case, the function writes the first n – 1 characters of the
output string, and then the terminating null character.

Example
const wchar_t *dollar_as_wstr(long amount)
// Converts a number of cents into a wide string
// showing dollars and cents.
// For example, converts -123456 into the wide string L"-$1234.56"
{
 static wchar_t buffer[16];
 wchar_t sign[2] = L"";
 if (amount < 0L)
 amount = -amount, sign[0] = '-';
 ldiv_t dollars_cents = ldiv(amount, 100);
 swprintf(buffer, sizeof(buffer),
 L"%ls$%ld.%2ld", sign, dollars_cents.quot, dollars_cents.rem);
 return buffer;
}

See Also

wprintf() and fwprintf(), declared in stdio.h and wchar.h; vwprint(),
vfwprint(), and vswprint(), declared in stdarg.h; printf(), fprintf(),
sprintf(), snprintf(), declared in stdio.h; vprintf(), vfprintf(), vsprintf(),
vsnprintf(), declared in stdarg.h; the wscanf() input functions; the corresponding
secure functions, if the implementation supports the C11 bounds-checking func‐
tions (i.e., if the macro __STDC_LIB_EXT1__ is defined)

Argument conversion in the printf() family of functions is described in detail
under printf() in this chapter.

swscanf, swscanf_sswscanf, swscanf_s

Reads in formatted data from a wide-character string.

#include <wchar.h>
int swscanf(const wchar_t * restrict wcs,
 const wchar_t * restrict format, ...);
int swscanf_s(const wchar_t * restrict wcs,
 const wchar_t * restrict format, ...);

Lib
rary

Functio
ns

Standard Library Functions | 597

The functions swscanf() and swscanf_s() are similar to the functions wscanf()
and wscanf_s(), except that they read from the string specified by their argument
src instead of stdin.

Like wscanf(), the swscanf() functions return the number of data items converted
and stored in variables. If an input error occurs or the function reads to the end of
the string before any data can be converted, the return value is EOF. The
swscanf_s() function also returns EOF if a violation of its runtime constraints
occurs. These constraints are described in the section on scanf_s() in this chapter.
Example

double price = 0.0;
wchar_t wstr[] = L"Current price: $199.90";
swscanf(wstr, L"%*[^$]$%lf", &price); // Read price from string.
price *= 0.8; // Apply 20% discount.
printf("New price: $%.2lf\n", price);

This code produces the following output:

New price: $159.92

See Also

wscanf(), fwscanf(); wcstod(), wcstol(), and wcstoul(); scanf(), fscanf();
fwprintf(), wprintf(), vfwprint(), and vwprint(); the corresponding secure
functions, if the implementation supports the C11 bounds-checking functions (i.e.,
if the macro __STDC_LIB_EXT1__ is defined); the example for wcsspn() in this
chapter

systemsystem

Executes a shell command.

#include <stdlib.h>
int system(const char *s);

The system() function passes a command line addressed by the pointer argument s
to an operating system shell. If s is a null pointer, the function returns true (a non‐
zero value) if a command processor is available to handle shell commands, and 0 or
false if not.

How the system executes a command, and what value the system() function
returns, is left up to the given implementation. The command may terminate the
program that calls system() or have unspecified effects on its further behavior.
Example

if (system(NULL))
 system("echo \"Shell: $SHELL; process ID: $$\"");
else
 printf("No command processor available.\n");

This example is not portable, but on certain systems it can produce output like this:

598 | Chapter 18: Standard Library Functions

Shell: /usr/local/bin/bash; process ID: 21349

See Also

getenv()

tantan

Calculates the tangent of an angle.

#include <math.h>
double tan(double x);
float tanf(float x); (C99)
long double tanl(long double x); (C99)

The tan() function calculates the tangent of the angle represented by its argument x
as a number of radians.
Example

const double pi = 4.0L * atan(1.0); // Because tan(pi/4) = 1
double shadow_length = 85.5,
 angle = 36.2; // Sun's elevation from the horizon, in
 // degrees
double height = shadow_length *tan (angle * pi/180);

printf("The tower is %.2f meters high.\n", height);

This code produces the following output:

The tower is 62.58 meters high.

See Also

sin(), cos(), atan(); the tangent functions for complex numbers, ctan(), ctanf()
and ctanl()

tanhtanh

Calculates the hyperbolic tangent of a number.

#include <math.h>
double tanh(double x);
float tanhf(float x); (C99)
long double tanhl(long double x); (C99)

The tanh() function returns the hyperbolic tangent of its argument x, which is
defined as sinh(x)/cosh(x).
Example

double x = -0.5, y1, y2;

y1 = tanh(x);
y2 = exp(2*x);
y2 = (y2 -1) / (y2 + 1);

Lib
rary

Functio
ns

Standard Library Functions | 599

printf("The tanh() function returns %.15f.\n", y1);
printf("Using the function exp() yields %.15f.\n", y2);

This code produces the following output:

The tanh() function returns -0.462117157260010.
Using the function exp() yields -0.462117157260010.

See Also

sinh(), cosh(), atanh(); the hyperbolic tangent and inverse tangent functions for
complex numbers, ctanh() and catanh()

thrd_create C11thrd_create C11

Starts a new thread.

#include <threads.h>
int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

The function thrd_create() starts a new thread which executes the function call
func(arg). If the new thread is successfully started, the function thrd_create()
writes the ID of the new thread to the object addressed by the argument thr. The
new thread starts running when the thrd_create() call ends.

thrd_create() returns the value of thrd_success if the new thread has been
started, or the value of thrd_nomem if there was insufficient memory available to
start a new thread, or the value of thrd_error if a different error occurred.

The type thrd_start_t is defined as int(*)(void*). Thus, the thread function func
must take one void-pointer argument and have the return type int. Ending the
thread function with a return statement is equivalent to ending it by calling
thrd_exit(return_value). The program can obtain its return value by calling the
function thrd_join() after thrd_create().
Example

int th_func(void * arg) // The thread function.
{
 puts("Hello from th_func ...");
 ++*(int*)arg;
 return 0;
}

int main()
{
 thrd_t th; int n = 1;

 if (thrd_create(&th, th_func, &n) != thrd_success) {
 fprintf(stderr, "Error creating thread.\n"); return -1;
 }
 puts("Main thread here ...");

600 | Chapter 18: Standard Library Functions

 thrd_join(th, NULL);
 printf("The value of n is %d\n", n); // n == 2
 return 0;
}

See Also

thrd_exit(), thrd_join(), thrd_detach(), thrd_current(), thrd_equal(),
thrd_sleep(), thrd_yield()

thrd_current C11thrd_current C11

Obtains the ID of the current thread.

#include <threads.h>
thrd_t thrd_current(void);

The function thrd_current() returns the ID of the thread in which it is called.
Example

See the example for thrd_equal() in this chapter.
See Also

thrd_equal()

thrd_detach C11thrd_detach C11

Detaches the specified thread.

#include <threads.h>
int thrd_detach(thrd_t thr);

The function thrd_detach() informs the operating system that all the resources
used by the specified thread can be released as soon as the thread ends. Once a
thread has been detached, the program cannot call thrd_join() to wait for it to
end. The program can call either thrd_join() or thrd_detach() no more than
once for each thread created. After that, the object addressed by thr can be reused
for another thread.

The function thrd_detach() returns the value of thrd_success, or thrd_error if
an error occurs.
Example

void independent_thread(void)
{
 puts("Working independently in the background ... ");
 // . . .
 thrd_exit(0);
}

int create_independent_thread(void)
{

Lib
rary

Functio
ns

Standard Library Functions | 601

 thrd_t th;
 if(thrd_create(&th, (thrd_start_t)independent_thread, "")
 != thrd_success)
 return -1;
 if(thrd_detach(th) != thrd_success)
 return -1;
 puts("Started independent thread.");
 return 0;
}

See Also

thrd_join()

thrd_equal C11thrd_equal C11

Tests whether two thread IDs are equal.

#include <threads.h>
int thrd_equal(thrd_t thr1, thrd_t thr2);

The function thrd_equal() tests whether the thread ID objects thr1 and thr2 iden‐
tify the same thread. The function returns zero if thr1 and thr2 refer to different
threads, or a nonzero value if they refer to the same thread.
Example

thrd_t mainThrd;

int func(void)
{
 if(thrd_equal(thrd_current(), mainThrd))
 { puts("Main thread here ..."); return 0; }
 else
 { puts("Other thread here ..."); return 1; }
}

int main()
{
 thrd_t th;
 mainThrd = thrd_current();
 if (thrd_create(&th, (thrd_start_t)func, NULL) != thrd_success)
 { fprintf(stderr, "Error creating thread.\n"); return -1; }
 func();
 thrd_join(th, NULL);
 return 0;
}

See Also

thrd_current()

602 | Chapter 18: Standard Library Functions

thrd_exit C11thrd_exit C11

Ends the thread.

#include <threads.h>
_Noreturn void thrd_exit(int res);

The function thrd_exit() first calls the appropriate destructor for each thread-
specific storage block that the thread uses, provided a destructor was specified in the
tss_create() call. Then thrd_exit() ends the calling thread with the result code
res. Ending a thread with the statement return res; is equivalent to the function
call thrd_exit(res);.

Exiting the last remaining thread causes the program to exit normally—that is, as if
ended by the function call exit(EXIT_SUCCESS). That means in particular that the
program calls any functions that were registered using atexit().
Example

See the example for thrd_detach() in this chapter.
See Also

thrd_create(), thrd_join(), thrd_detach()

thrd_join C11thrd_join C11

Wait for a thread to finish.

#include <threads.h>
int thrd_join(thrd_t thr, int *res);

The function thrd_join() blocks the calling thread until the thread specified by the
thr argument ends. Then thrd_join() writes the result code of the finished thread
to the int variable addressed by the pointer argument res, provided res is not a
null pointer. The program must not have already called either of the functions
thrd_join() and thrd_detach() with the given thread ID thr.

The function thrd_join() returns the value of thrd_success, or thrd_error if an
error occurs.
Example

See the example for thrd_create() in this chapter.
See Also

thrd_detach(), thrd_create(), thrd_exit()

Lib
rary

Functio
ns

Standard Library Functions | 603

thrd_sleep C11thrd_sleep C11

Suspends the calling thread for a certain time.

#include <threads.h>
int thrd_sleep(const struct timespec *duration,
 struct timespec *remaining);

The function thrd_sleep() blocks the calling thread for the specified duration.
The function can return earlier if it receives a signal that is not being ignored. In
that case, the function saves the remaining countdown time in the object addressed
by remaining, provided remaining is not a null pointer. The pointers duration and
remaining may point to the same object.

The function thrd_sleep() returns zero if the full duration has elapsed, or –1 if it
was interrupted by a signal. Other negative return values indicate errors.

The timespec structure has at least the following two members:

time_t tv_sec; // seconds >= 0
long tv_nsec; // 0 <= nanoseconds <= 999,999,999

The order of the members in the structure is not specified.
Example
Block the calling thread for a half second (500 million nanoseconds):

struct timespec d = { .tv_nsec = 500*1E6 };
while(thrd_sleep(&d, &d) == -1) // Sleep 500 ms.
 ;

See Also

thrd_yield()

thrd_yield C11thrd_yield C11

Suspends the calling thread for a certain time.

#include <threads.h>
void thrd_yield(void);

The function thrd_yield() advises the operating system’s scheduler to interrupt the
calling thread and give CPU time to another thread.
Example

See the example on atomic_fence_op() in this chapter.
See Also

thrd_sleep()

604 | Chapter 18: Standard Library Functions

timetime

Obtains the current calendar time.

#include <time.h>
time_t time(time_t *timeptr);

The time() function returns the current calendar time as a single arithmetic value.
The return type, time_t, is defined in time.h, generally as long or unsigned long. If
the argument is not a null pointer, the return value is also assigned to the location it
references.

Many operating systems specify that the type time_t represents an integer number
of seconds, and that the time() function returns the number of seconds passed
since a specified epoch, such as midnight on January 1, 1970, Greenwich Mean
Time. However, according to the C standard, neither of these conditions is required.
The type time_t is an arithmetic type whose range and precision are defined by the
implementation, as is the encoding of the time() function’s return value.
Example

time_t sec;
time(&sec);
printf("This line executed at %.24s.\n", ctime(&sec));

This code produces output like the following:

This line executed at Thu Jan 29 08:30:17 2015.

See also the examples for asctime(), ctime(), fprintf(), freopen(), gmtime(),
rand(), and strftime() in this chapter.
See Also

timespec_get(), asctime(), ctime(), gmtime(), localtime(), strftime()

timespec_get C11timespec_get C11

Obtains the current calendar time.

#include <time.h>
int timespec_get(struct timespec *ts, int base);

The function timespec_get() sets the timespec object addressed by the argument
ts to reflect the current calendar time in accordance with the time base specified by
the argument base. The timespec structure has at least two members for storing
seconds and nanoseconds:

time_t tv_sec; // seconds >= 0
long tv_nsec; // 0 <= nanoseconds <= 999,999,999

The order of the members in the structure is not defined. The positive constant
TIME_UTC is always a permissible value of the argument base, and indicates univer‐

Lib
rary

Functio
ns

Standard Library Functions | 605

sal time (also called Greenwich Mean Time). (Implementations may define other
time-base constants.) For UTC, timespec_get() stores the calendar time as follows:

ts->tv_sec
The number of seconds elapsed since an implementation-dependent epoch
(usually January 1, 1970, at 00:00:00 UTC).

ts->tv_nsec
The number of nanoseconds elapsed in addition to the whole seconds, rounded
to reflect the resolution of the system clock.

On success, the function timespec_get() returns the positive value base. The
return value zero indicates an error.
Example

struct timespec ts;
if(timespec_get(&ts, TIME_UTC) != 0)
 printf("The exact local time:\n"
 "%.24s and %09lu nanoseconds\n", ctime(&ts.tv_sec), ts.tv_nsec);

Typical output:

The exact local time:
Sun Apr 12 11:40:43 2015 and 030395137 nanoseconds

See Also

time(), ctime(), gmtime(), localtime(), mktime(), strftime()

tmpfile, tmpfile_stmpfile, tmpfile_s

Opens a temporary file with a unique name.

#include <stdio.h>
FILE *tmpfile(void);
errno_t tmpfile_s(FILE * restrict * restrict streamPtr); (C11)

The tmpfile() function opens a temporary file for reading and writing, and returns
the corresponding FILE pointer. The file is guaranteed to have a distinct name and
FILE pointer from all other files, and is automatically deleted when closed, whether
by fclose() or by normal program termination. The file is opened with the mode
string "wb+" (see fopen() in this chapter for a description of mode strings).

If tmpfile() is unable to open a temporary file, it returns a null pointer. Whether
temporary files are deleted after an abnormal program termination depends on the
given implementation. The number of temporary files a program may create is at
least equal to the value of the macro TMP_MAX. This macro is defined in stdio.h and is
greater than or equal to 25 (see tmpnam() in this chapter).

Like tmpfile(), the secure function tmpfile_s() opens a temporary file for read‐
ing and writing with the access mode "wb+”. The caller receives the corresponding
FILE pointer not as the function’s return value but in the object addressed by the

606 | Chapter 18: Standard Library Functions

parameter streamPtr. In other words, the argument is a pointer to a pointer. A run‐
time constraint of tmpfile_s() is that streamPtr must not be a null pointer.

The access mode corresponds to the mode string "wb+” as interpreted by the func‐
tion fopen_s(): the file is opened for exclusive access, if the operating system sup‐
ports that feature. The number of temporary files a program may create is at least
equal to the value of the macro TMP_MAX_S, which is at least 25 (see tmpnam_s() in
this chapter).

If the file has been opened successfully, tmpfile_s() returns zero and places the
new FILE pointer in the variable referenced by streamPtr. If unsuccessful, the func‐
tion returns a nonzero value and places a null pointer in the variable referenced by
streamPtr, provided streamPtr is not a null pointer itself.
Example

FILE *fpTmp, *fpRx;
int c;

/* ... open Rx stream ... */

// if ((fpTmp = tmpfile()) == NULL)
// or
if(tmpfile_s(&fpTmp) != 0)
 fputs("Unable to open a temporary file.", stderr);
else
{
 while ((c = fgetc(fpRx)) != EOF)
 if (fputc(c, fpTmp) == EOF)
 break;
}
fclose(fpRx);

/* ... process the data captured in fpTmp ... */

See Also

fopen(), fopen_s(), tmpnam(), tmpnam_s()

tmpnam, tmpnam_stmpnam, tmpnam_s

Generates a unique filename.

#include <stdio.h>
char *tmpnam(char *s);
errno_t tmpnam_s(char *s, rsize_t maxsize); (C11)

The tmpnam() function generates a unique filename suitable for using for temporary
files, and returns a pointer to the name string. If the pointer argument s is not a null
pointer, then tmpnam() places the name string in a buffer addressed by s. The size of
the buffer is assumed to be at least equal to the macro L_tmpnam. If s is a null
pointer, then the return value points to the filename in tmpnam()’s internal, static
buffer, where it may be modified by subsequent tmpnam() calls.

Lib
rary

Functio
ns

Standard Library Functions | 607

The tmpnam() function generates a different name each time it is called, and can
generate at least TMP_MAX distinct names (some of which may be used by
tmpfile()). The macros L_tmpnam and TMP_MAX are defined in stdio.h. TMP_MAX is
greater than or equal to 25. The tmpnam() function returns a null pointer on failure.

Like tmpnam(), the secure function tmpnam_s() generates a unique name suitable
for use as the name of a temporary file. The function is governed by the values of
the macros L_tmpnam_s and TMP_MAX_S. TMP_MAX_S, like TMP_MAX, is at least equal to
25. The function tmpnam_s() also has the additional parameter maxsize to specify
the size of the char array addressed by s. The function has the following runtime
constraints: the parameter s must not be a null pointer, and maxsize must be greater
than the length of the name generated but not greater than RSIZE_MAX.

The tmpnam_s() function returns zero if it was able to generate and store a suitable
string. If not, the function writes the string terminator character to s[0], provided s
is not a null pointer and maxsize is greater than zero but not greater than
RSIZE_MAX, and returns a nonzero value.

If you use a name supplied by tmpnam() to create a file, that
does not mean the file is a temporary file in the sense of
tmpfile(); it will not be automatically deleted on closing.

Example
// char fname[L_tmpnam];
// or
char fname[L_tmpnam_s];
FILE *fpOut;

// if(tmpnam(fname) == NULL)
// or
if(tmpnam_s(fname, sizeof(fname)) != 0)
{
 fputs("Error generating a temporary file name.", stderr);
 return -1;
}

fpOut = fopen(fname, "w+");
/* ... write and edit something in the file ... */
fclose(fpOut);
printf("The results have been saved in %s.\n", fname);

See Also

tmpfile(), tmpfile_s(), rename(), remove()

tolowertolower

Converts an uppercase alphabetic character to lowercase.

608 | Chapter 18: Standard Library Functions

#include <ctype.h>
int tolower(int c);

The tolower() function returns the lowercase letter corresponding to the character
value of its argument c. If c is not an uppercase letter, or if there is no lowercase
letter that corresponds to it, its value is returned unchanged.

Which characters are considered uppercase, and which of
those have a corresponding lowercase character, depends on
the current locale setting for the localization category
LC_CTYPE, which you can query or change using the
setlocale() function. The uppercase characters are those for
which isupper() returns true; the lowercase characters are
those for which islower() returns true.
Accented characters, umlauts, and the like are considered
alphabetic only in certain locales. Moreover, other locales may
have characters that are alphabetic but are neither uppercase
nor lowercase, or both uppercase and lowercase.

Example

See the examples for getchar() and setlocale() in this chapter.
See Also

islower(), toupper(), isupper(), towupper(), towlower(), towctrans()

touppertoupper

Converts a lowercase alphabetic character to uppercase.

#include <ctype.h>
int toupper(int c);

The toupper() function returns the uppercase letter corresponding to the character
value of its argument c. If c is not an lowercase letter, or if there is no uppercase
letter that corresponds to it, its value is returned unchanged.

The note concerning locales under tolower() in this chapter
applies to toupper() as well.

Example

See the example for setlocale() in this chapter.
See Also

isupper(), tolower(), islower(), towupper(), towlower(), towctrans()

Lib
rary

Functio
ns

Standard Library Functions | 609

towctranstowctrans

Performs a locale-specific conversion on a wide character.

#include <wctype.h>
wint_t towctrans(wint_t wc, wctrans_t desc);

The towctrans() function returns a wide character that corresponds to the wide-
character value of its first argument, wc, according to a locale-specific mapping
described by the second argument, desc. Values of desc are obtained by calling the
wctrans() function. The behavior of both wctrans() and towctrans() depends on
the locale setting of the category LC_CTYPE, which must not change between the two
function calls.
Example

wint_t before = L'\0', after = L'\0';
wctrans_t mapping;
mapping = wctrans("toupper");

while ((before = getwchar()) != WEOF)
{
 after = towctrans(before, mapping);
 putwchar(after);
 if (after == L'Q')
 break;
}

See Also

wctrans(), towlower(), towupper()

towlowertowlower

Converts an uppercase wide character to lowercase.

#include <wctype.h>
wint_t towlower(wint_t wc);

The towlower() function is like tolower() in all respects except that it operates on
wide characters. An uppercase wide character is one for which iswupper() returns
true in the current locale; a lowercase wide character is one for which iswlower()
returns true.
Example

See the example using the analogous function towupper() under mbrtowc() in this
chapter.
See Also

iswlower(), iswupper(), tolower(), toupper(), towupper(), towctrans()

610 | Chapter 18: Standard Library Functions

towuppertowupper

Converts a lowercase wide character to uppercase.

#include <wctype.h>
wint_t towupper(wint_t wc);

The towupper() function is like toupper() in all respects except that it operates on
wide characters. An uppercase wide character is one for which iswupper() returns
true in the current locale; a lowercase wide character is one for which iswlower()
returns true.
Example

See the example for mbrtowc() in this chapter.
See Also

iswlower(), iswupper(), tolower(), toupper(), towlower(), towctrans()

trunc C99trunc C99

Rounds a floating-point number toward 0 to an integer value.

#include <math.h>
double trunc(double x);
float truncf(float x);
long double truncl(long double x);

The trunc() functions round the value of their argument, x, to the nearest integer
value whose magnitude is not greater than that of x—in other words, toward 0.
Example

printf("trunc(-1.7) = %.2f trunc(1.4) = %.2f trunc(1.5) = %.2f\n",
 trunc(-1.7), trunc(1.4), trunc(1.5));

printf("round(-1.7) = %.2f round(1.4) = %.2f round(1.5) = %.2f\n",
 round(-1.7), round(1.4), round(1.5));

This code produces the following output:

trunc(-1.7) = -1.00 trunc(1.4) = 1.00 trunc(1.5) = 1.00
round(-1.7) = -2.00 round(1.4) = 1.00 round(1.5) = 2.00

See Also

rint(), lrint(), llrint(), round(), lround(), llround(), nearbyint()

tss_create C11tss_create C11

Creates a key for thread-specific storage.

#include <threads.h>
int tss_create(tss_t *key, tss_dtor_t dtor);

Lib
rary

Functio
ns

Standard Library Functions | 611

The function tss_create() creates a new key for a pointer to access thread-specific
storage (TSS) and sets the object addressed by the argument key to a value that
uniquely identifies a TSS pointer. Each thread has its own instance of the pointer
associated with that key. The pointer is initially null; each thread that needs thread-
specific storage must call the function tss_set() to make the pointer address its
thread-specific storage block.

The second parameter, dtor, is a pointer to a destructor function. It may be a null
pointer. The type tss_dtor_t is defined as void(*)(void*). If dtor is not a null
pointer, the destructor is called automatically with the TSS pointer as its argument
when the thread terminates.

The tss_create() function returns the value of thrd_success if it succeeds in cre‐
ating a TSS pointer. Otherwise, it returns thrd_error and leaves the object
addressed by key with an undefined value.
Example

The following example illustrates the use of tss_create() and tss_delete(). See
also the example for tss_set() and the more complete code example in “Using
Thread-Specific Storage” on page 257.

tss_t key; // Global key for a TSS pointer
void destructor(void *data); // Destructor function

int main()
{
 // Create the TSS key:
 if(tss_create(&key, destructor) != thrd_success)
 return -1;

 // Create threads and wait for them to finish.
 // . . .

 tss_delete(key); // Free all resources of the TSS pointer.
 return 0;
}

See Also

tss_delete(), tss_set(), tss_get()

tss_delete C11tss_delete C11

Deletes a key for thread-specific storage.

#include <threads.h>
void tss_delete(tss_t *key);

The function tss_delete() is the counterpart to tss_create() and frees all the
resources used by the TSS key that its parameter key addresses.

612 | Chapter 18: Standard Library Functions

Example

See the example for tss_create() in this chapter.
See Also

tss_create(), tss_set(), tss_get()

tss_get C11tss_get C11

Obtains a pointer to the thread-specific storage associated with a given key.

#include <threads.h>
void *tss_get(tss_t *key);

The function tss_get() returns a pointer to the calling thread’s instance of the
thread-specific storage block identified by the parameter key. The function returns
NULL if the pointer could not be set or an error occurred.
Example

See the example for tss_set() in this chapter.
See Also

tss_set(), tss_create(), tss_delete()

tss_set C11tss_set C11

Sets a pointer to the thread-specific storage associated with a given key.

#include <threads.h>
int tss_set(tss_t *key, void * ptr);

The tss_set() function sets the TSS pointer designated by key to the memory
block addressed by val.

The function tss_set() returns the value thrd_success if it succeeds in setting the
TSS pointer, or thrd_error if an error occurs.
Example

The following example illustrates the use of tss_set() and tss_get(). See also the
example for tss_create() and the more complete code example in “Using Thread-
Specific Storage” on page 257.

tss_t key; // Global key for a TSS pointer
 // tss_create(&key, ...) has been called.
// Process some data of some type Data_t:
int process_data(void) // Use thread-specific storage.
{
 Data_t *ptr = (Data_t*)tss_get(key); // Pointer to TSS
 // Process data ...
 return 0;
}

Lib
rary

Functio
ns

Standard Library Functions | 613

int thread_func(void* arg)
{
 size_t size = size_data(arg); // A helper function to find the
 // required storage size.
 // Set thread-specific storage:
 if(tss_set(key, malloc(size)) != thrd_success)
 return -1;

 // Store and process data ...
 return process_data(); // return calls the destructor, if
} // the tss_create() call set one.

See Also

tss_get(), tss_create(), tss_delete()

ungetcungetc

Pushes a character back onto a file buffer to be read next.

#include <stdio.h>
int ungetc(int c, FILE *fp);

The ungetc() function reverses the effect of a getc() call; it pushes the character c
back onto the file buffer associated with the FILE pointer fp, so that c becomes the
first character to be read in a subsequent read operation. (However, if the program
successfully calls fseek(), fsetpos(), or rewind() before reading from the file
again, then the pushed-back character is lost.) The ungetc() function does not
change the file on disk.

You can push at least one character onto the file buffer with unget(). Multiple calls
in succession are possible, but are not guaranteed to succeed without intervening
read operations. If successive unget() calls succeed, the characters pushed will be
read in last-in, first-out order.

If successful, the ungetc() function returns the character pushed back onto the file
buffer, and clears the file’s EOF flag. On failure, ungetc() returns EOF. You cannot
push an EOF value onto a file buffer.

The file associated with fp must be open for reading in either text or binary mode.
If the file is in text mode, then ungetc() leaves the file access position indicator in
an unspecified state until all pushed-back characters have been read again. If the file
is in binary mode, ungetc() reduces the file position indicator by one. In either
case, once all pushed-back characters have been read again, the file position indica‐
tor is the same as before the first ungetc() call.
Example

char file[] = "input.dat";
FILE *fp;
int c;
char numstr[64];

614 | Chapter 18: Standard Library Functions

if ((fp = fopen(file, "r")) == NULL)
 fprintf(stderr, "Can't read the file %s\n", file), exit(1);

while ((c = getc(fp)) != EOF)
{
 if (isdigit(c)) // Collect a sequence of digits.
 {
 int i = 0;
 do
 {
 numstr[i++] = (char)c;
 c = getc(fp);
 }while (isdigit(c) && i+1 < sizeof(numstr));

 numstr[i] = '\0'; // Terminate the numeral string.

 /* ... process the numeral string ... */

 if (ungetc(c, fp) == EOF) // Put back the first non-digit.
 break;
 continue;
 }
 /* ... process any non-digit characters ... */
}
if (!feof(fp))
 fprintf(stderr, "Error processing the file %s\n", file);

return 0;

See Also

getc(), ungetwc(), getwc()

ungetwcungetwc

Pushes a wide character back onto a file buffer to be read next.

#include <stdio.h>
#include <wchar.h>
wint_t ungetwc(wint_t wc, FILE *fp);

The ungetwc() function is the wide-character version of ungetc(), and works anal‐
ogously, returning WEOF on failure or the wide character pushed back onto the file
buffer if successful.
Example

See the example for the corresponding byte-character function, ungetc().
See Also

getwc(), getc()

Lib
rary

Functio
ns

Standard Library Functions | 615

va_arg, va_copy, va_end, va_startva_arg, va_copy, va_end, va_start

Manage variable-argument lists.

#include <stdarg.h>
void va_start(va_list argptr, last_fixed_arg);
type va_arg(va_list argptr, type);
void va_copy(va_list dest, va_list src); (C99)
void va_end(va_list argptr);

The macros va_arg(), va_start(), and va_end() allow you to define C functions
with variable numbers of arguments. Such functions use these macros to access the
optional arguments, which are managed as anonymous objects in a list referenced
by a pointer object of type va_list.

The prototype syntax for a function that takes a variable number of arguments is as
follows:

fn_type fn_name(
 [arg_type_1 fixed_arg_1, [arg_type_2 fixed_arg_2, [etc.]]]
 last_arg_type last_fixed_arg, ...);

The ellipsis (...) after last_fixed_arg in this syntax is a literal ellipsis, which must
appear in the function prototype to represent the optional arguments. A function
with optional arguments must also take at least one mandatory argument. The ellip‐
sis representing the optional arguments must be the last item in the parameter list,
after the last mandatory parameter. The following example shows the prototype of
the function vop(), which takes two mandatory arguments—one with the type
pointer to const char and one with the type int—and a variable number of
optional arguments:

double vop(const char * op, int argcount, ...);

In a function definition, the macros va_start(), va_arg(), va_copy(), and
va_end() allow you to access the optional arguments.
va_start

The macro va_start() initializes a va_list object so that it can be used in a
va_arg() call to access the first optional argument in the variable-arguments list.
The va_start() macro takes as its arguments the va_list object argptr, and the
identifier of the last mandatory parameter, represented in this description by
last_fixed_arg. Because va_start() makes certain assumptions about the align‐
ment of the parameters in memory, last_fixed_arg must not be declared with the
register storage class specifier, and must not have a function or array type, nor an
integer type that is narrower than int.

Once you have called va_start(), you can access the optional arguments in the list
one by one through successive va_arg() calls. You must not call va_start() again
for the same va_list object until you have passed it to the va_end() macro.

616 | Chapter 18: Standard Library Functions

va_arg

To obtain each optional argument, call the va_arg() macro. The va_arg() macro
takes as its arguments the va_list object argptr, and the type of the argument
being read. Each such call to va_arg() returns one argument from the optional
arguments list, and adjusts argptr so that the next call returns the next argument.

If there is no argument left to be read when you call va_arg(), the behavior is unde‐
fined. The behavior is likewise undefined if the type indicated in the va_arg() call
does not match the actual argument’s type, with two exceptions: a signed integer
type may match an unsigned integer type, if the value of the argument is representa‐
ble in both types; and a pointer to void can match a pointer to char, signed char,
or unsigned char.

The type argument to va_arg() must be in such a notation
that appending an asterisk to it yields the type of a pointer to
type. For example, the type argument may be char *, but not
char [8], because char ** means “pointer to a pointer to
char”; but char [8]* does not mean “pointer to an array of 8
char elements.” (That type’s name would be written char (*)
[8].)

va_copy

The macro va_copy() copies the state of the argument list referenced by the
va_list object src to the object dest. If you have already called va_arg() for the
same va_list object, then the copy produced by va_copy() is set to access the same
argument as the original at the time it was copied. Otherwise, the copy is initialized
to access the first argument in the list. You must call va_end() both for the copy and
for the original after use.
va_end
To facilitate a clean return, a function that takes a variable number of arguments
must call the macro va_end() after it has finished reading its optional arguments.
The va_end() macro may render argptr unusable until it is reinitialized by calling
va_start().
Example

#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

double vproduct(int n, va_list argptr);
double vsum(int n, va_list argptr);

double vop(const char * op, int argcount, ...);
// main() calls vop() to perform calculations. vop()'s arguments are:
// (1) the name of the operation ("sum", "product",
// "sum minus the product");

Lib
rary

Functio
ns

Standard Library Functions | 617

// (2) the number of operands;
// (3 through n) the operands themselves.
// Iterates through operations twice: once with three operands, once
// with six.

int main()
{
 double d1, d2, d3, d4, d5, d6;

 puts("Enter six floating-point numbers, please:");
 scanf("%lf%lf%lf%lf%lf%lf", &d1, &d2, &d3, &d4, &d5, &d6);

 char *operation[] = {"sum", "product", "product minus the sum",NULL};

 printf("\nUsing the three numbers %lf, %lf, and %lf.\n", d1, d2, d3);
 for (int i = 0; operation[i] != NULL; i++)
 {
 printf("The %s of these %d numbers is %lf\n",
 operation[i], 3,
 vop(operation[i], 3, d1, d2, d3));
 }

 printf("\nUsing six numbers:"
 "\n\t%lf \t%lf \t%lf \n\t%lf \t%lf \t%lf\n",
 d1, d2, d3, d4, d5, d6);
 for (int i = 0; operation[i] != NULL; i++)
 {
 printf("The %s of these %d numbers is %lf\n",
 operation[i], 6,
 vop(operation[i], 6, d1, d2, d3, d4, d5, d6));
 }
}

double vop(const char * op, int argcount, ...)
{
 va_list argptr;
 double result;

 va_start(argptr, argcount);

 if (strcmp(op, "sum") == 0)
 result = vsum(argcount, argptr);

 else if (strcmp(op, "product") == 0)
 result = vproduct(argcount, argptr);

 else if (strcmp(op, "product minus the sum") == 0)
 {
 va_list duplicate_argptr; // Clone the va_list in its present
 // state.

 va_copy(duplicate_argptr, argptr);

618 | Chapter 18: Standard Library Functions

 result = vproduct(argcount, argptr)
 - vsum(argcount, duplicate_argptr);
 va_end(duplicate_argptr); // Clean up the clone.
 }

 else result = NAN;

 va_end(argptr); // Clean up the original.
 return result;
}

double vproduct(int n, va_list argptr)
{
 double product = 1.0;

 for (int i = 0; i < n; i ++)
 product *= va_arg(argptr, double);

 return product;
}

double vsum(int n, va_list argptr)
{
 double sum = 0.0;

 for (int i = 0; i < n; i ++)
 sum += va_arg(argptr, double);

 return sum;
}

In this example, the helper functions vproduct() and vsum() take as their second
argument a va_list object that has already been initialized, and also leave the
cleaning up to the caller. In this respect, they are similar to the vprintf() and
vscanf() function families.

See also the example for vfscanf() in this chapter.
See Also

vfprintf(), vprintf(), vsnprintf(), and vsprintf(); vfscanf(), vscanf(), and
vsscanf(); vfwprint(), vswprint(), and vwprint(); vfwscanf(), vswscanf(), and
vwscanf()

vfprintf, vprintf, vsnprintf, vsprintfvfprintf, vprintf, vsnprintf, vsprintf

Writes formatted output using a variable argument list object.

#include <stdio.h>
#include <stdarg.h>
int vfprintf(FILE * restrict fp, const char * restrict format,
 va_list argptr);

Lib
rary

Functio
ns

Standard Library Functions | 619

int vprintf(const char * restrict format, va_list argptr);
int vsprintf(char * restrict buffer, const char * restrict format,
 va_list argptr);
int vsnprintf(char * restrict buffer, size_t n,
 const char * restrict format, va_list argptr); (C99)

The functions vfprintf(), vprintf(), vsprintf(), and vsnprintf() work in the
same way as fprintf(), printf(), sprintf(), and snprintf(), respectively, except
that their last argument, argptr, is a variable-argument list object with type
va_list. The program must initialize this object by calling the va_start() macro
before calling the vfprintf(), vprintf(), vsprintf(), or vsnprintf() function,
and must call the va_end() macro after the function returns. Because these func‐
tions use the va_arg() macro internally to advance argptr through the argument
list, its value is indeterminate after the vfprintf(), vprintf(), vsprintf(), or
vsnprintf() function call has returned.

The va_start(), va_arg(), and va_end() macros and the
type va_list are declared in the header file stdarg.h.

Like the fprintf() and printf() functions, vfprintf() and vprintf() return the
number of characters written to the output stream. The function vsprintf()
returns the number of characters written to the string buffer, not counting the ter‐
minator character; and vsnprintf() returns the number of characters that would
have been written to the string buffer if the parameter n had been sufficiently large,
again not counting the terminator character.
Example

// write_log appends a line to the log file associated with the
// FILE pointer fp_log.
// The format string and optional arguments are the same as for printf().

void write_log(const char *function_name, unsigned int line_num,
 const char *format_str, ...)
{
 if (fp_log == NULL)
 return;
 time_t timestamp = time(NULL);
 va_list argptr;
 // Set argptr to the first optional argument:
 va_start(argptr, format_str);

 // First print the timestamp, function name, and line number:
 fprintf(fp_log, "%.8s %s (line %u): ",
 ctime(×tamp)+11, function_name, line_num);
 // Then print the rest of the message:
 vfprintf(fp_log, format_str, argptr);

620 | Chapter 18: Standard Library Functions

 va_end(argptr);
}

void myFunc(int param)
{
 write_log(__func__, __LINE__, "param = %d\n", param);
 /* ... */
}

Calling myFunc() in this example with the argument value 777 results in the follow‐
ing log file entry:

13:32:44 myFunc (line 62): param = 777

See Also

va_start(), va_arg(), va_copy() and va_end(); fprintf(), printf(), sprintf(),
and snprintf(); vfwprint(), vwprint(), and vswprint(); the corresponding
secure functions, if the implementation supports the C11 bounds-checking func‐
tions (i.e., if the macro __STDC_LIB_EXT1__ is defined)

vfprintf_s, vprintf_s, vsnprintf_s, vsprintf_s C11vfprintf_s, vprintf_s, vsnprintf_s, vsprintf_s C11

Writes formatted output using a variable argument list object.

#include <stdio.h>
#include <stdarg.h>
int vfprintf_s(FILE * restrict fp, const char * restrict format,
 va_list argptr);
int vprintf_s(const char * restrict format, va_list argptr);
int vsprintf_s(char * restrict buffer, const char * restrict format,
 va_list argptr);
int vsnprintf_s(char * restrict buffer, rsize_t n,
 const char * restrict format, va_list argptr);

The secure functions, introduced in C11, are available if the macro
__STDC_LIB_EXT1__ is defined. They differ from the corresponding functions
vfprintf(), vprintf(), vsprintf(), and vsnprintf() only in their runtime con‐
straints: the format string must not contain the conversion specifier %n, and any
pointer arguments, including all arguments corresponding to %s specifiers, must
not be null pointers. In the vsnprintf_s() function, the value of n must be greater
than zero but not greater than RSIZE_MAX.

The functions’ return values and error handling, in particular with regard to viola‐
tions of the runtime constraints, are the same as those of the functions
fprintf_s(), printf_s(), sprintf_s(), and snprintf_s().
Example

See the example for vfprintf() in this chapter.

Lib
rary

Functio
ns

Standard Library Functions | 621

See Also

va_start(), va_arg(), va_copy() and va_end(); vfprintf(), vprintf(),
vsprintf() and vsnprintf(); fprintf_s(), printf_s(), sprintf_s() and
snprintf_s(); the corresponding wide-character functions vfwprintf_s(),
vwprintf_s(), and vswprintf_s()

vfscanf, vscanf, vsscanfvfscanf, vscanf, vsscanf

Reads formatted data using a variable argument list.

#include <stdio.h>
#include <stdarg.h>
int vfscanf(FILE * restrict fp, const char * restrict format,
 va_list argptr);
int vscanf(const char * restrict format, va_list argptr);
int vsscanf(const char * restrict src, const char * restrict format,
 va_list argptr);

The functions vfscanf(), vscanf(), and vsscanf() work in the same way as
fscanf(), scanf(), and sscanf(), respectively, except that their final argument,
argptr, is a variable-argument list object with type va_list. The program must ini‐
tialize this object by calling the va_start macro before calling the vfscanf(),
vscanf(), or vsscanf() function, and must call the va_end() macro after the func‐
tion returns. Because these functions use the va_arg() macro internally to advance
the pointer through the argument list, its value is indeterminate after the
vfscanf(), vscanf(), or vsscanf() function call has returned.

The va_start(), va_arg(), and va_end() macros and the
type va_list are declared in the header file stdarg.h.

Like the fscanf(), scanf(), and sscanf() functions, vfscanf(), vscanf(), and
vsscanf() return the number of input items that have been assigned to variables
referenced by elements of the argument list.
Example

typedef struct {
 char lastname[20];
 char firstname[20];
 int dob_month;
 int dob_day;
 int dob_year;
} person;

person employee;

int read_person(char *lname, char *fname, ...)

622 | Chapter 18: Standard Library Functions

// As variable arguments (...) use NULL
// or three int pointers (month, day, year).
{
 va_list args;
 int count;

 puts("Enter the last name and first name (Example: Smith, Sally)");
 count = scanf("%[^,], %[^\n]", lname, fname); // Read the name.

 va_start(args, fname); // Initialize args to start with the argument
 // that follows fname in the function call.
 if (count == 2 && va_arg(args, int*) != NULL)
 {
 va_end(args);
 va_start(args, fname); // Initialize args again.

 printf("Enter the date of birth. (Example: 9/21/1962)\n");
 count += vscanf("%d/%d/%d", args); // Read date of birth.
 }
#ifdef DEBUG
 fprintf(stderr, "Read %d fields.\n", count);
#endif // def DEBUG

 va_end(args);
 return count;
}

int main()
{
 person *pEmployee = &employee;
 int result;

 result = read_person(pEmployee->lastname,
 pEmployee->firstname,
 &pEmployee->dob_month,
 &pEmployee->dob_day,
 &pEmployee->dob_year);

#ifdef DEBUG
 fprintf(stderr, "Fields read: %s, %s; born %d-%d-%d\n",
 pEmployee->lastname,
 pEmployee->firstname,
 pEmployee->dob_month,
 pEmployee->dob_day,
 pEmployee->dob_year);
#endif // def DEBUG
}

Lib
rary

Functio
ns

Standard Library Functions | 623

See Also

va_start(), va_arg(), va_copy() and va_end(); fscanf(), scanf(), and
sscanf(); vfwscanf(), vwscanf(), and vswscanf(); the corresponding secure func‐
tions, if the implementation supports the C11 bounds-checking functions (i.e., if the
macro __STDC_LIB_EXT1__ is defined)

vfscanf_s, vscanf_s, vsscanf_s C11vfscanf_s, vscanf_s, vsscanf_s C11

Reads formatted input using a variable argument list object.

#include <stdio.h>
#include <stdarg.h>
int vfscanf_s(FILE * restrict fp, const char * restrict format,
 va_list argptr);
int vscanf_s(const char * restrict format, va_list argptr);
int vsscanf_s(const char * restrict src, const char * restrict format,
 va_list argptr);

These secure functions work in the same way as fscanf_s(), scanf_s(), and
sscanf_s(), except that their last argument, argptr, is a variable-argument list
object with the type va_list. The program must initialize this object by calling the
va_start() macro before calling the vfscanf_s(), vscanf_s(), or vsscanf_s()
function, and must call the va_end() macro after the function returns.

The functions test the following runtime constraints: all pointers, including the
indirectly provided pointers for format elements, must not be null pointers. The
functions return the number of data items converted and stored in variables. If an
input error occurs before any data can be converted, or if a runtime constraint vio‐
lation occurs, the functions return EOF.
Example

See the example for vfscanf() in this chapter.
See Also

va_start() and va_end(); vfscanf(), vscanf(), and vsscanf(); fscanf_s(),
scanf_s(), and sscanf_s(); vfwscanf_s(), vwscanf_s(), and vswscanf_s()

vfwprintf, vswprintf, vwprintfvfwprintf, vswprintf, vwprintf

Prints formatted wide-character output using a variable argument list object.

#include <stdarg.h>
#include <wchar.h>
int vswprintf(wchar_t * restrict s, size_t n,
 const wchar_t * restrict format, va_list argptr);
int vwprintf(const wchar_t * restrict format, va_list argptr);

#include <stdio.h> // In addition to <stdarg.h> and <wchar.h>
int vfwprintf(FILE *fp, const wchar_t * restrict format,
 va_list argptr);

624 | Chapter 18: Standard Library Functions

The functions vfwprintf(), vswprintf(), and vwprintf() are like fwprintf(),
swprintf(), and wprintf(), respectively, except that their last argument, argptr, is
a variable-argument list object with type va_list. The program must initialize this
object by calling the va_start() macro before calling the vfwprintf(),
vswprintf(), or vwprintf() function, and must call the va_end() macro after the
function returns. Because these functions use the va_arg() macro internally to
advance the pointer through the argument list, its value is indeterminate after the
vfwprintf(), vswprintf(), or vwprintf() function call has returned.

The vfwprintf() and vwprintf() functions return the number of wide characters
written to the output stream, or a negative value if an error occurred. The
vswprintf() function returns the number of wide characters written to the output
buffer, not counting the terminating null wide character, or a negative value if an
encoding error occurred or if the complete output string would have contained
more than n wide characters.
Example

See the example for the corresponding byte-character function vfprintf() in this
chapter.
See Also

va_start() and va_end(); wprintf(), fwprintf(), and swprintf(); vfwscanf(),
vswscanf(), and vwscanf(); the corresponding secure functions, if the implemen‐
tation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined)

vfwprintf_s, vswprintf_s, vsnwprintf_s, vwprintf_s C11vfwprintf_s, vswprintf_s, vsnwprintf_s, vwprintf_s C11

Writes formatted wide-string output using a variable-arguments list object.

#include <stdarg.h>
#include <wchar.h>
int vswprintf_s(wchar_t * restrict s, rsize_t n,
 const wchar_t * restrict format, va_list argptr);
int vsnwprintf_s(wchar_t * restrict s, rsize_t n,
 const wchar_t * restrict format, va_list argptr);
int vwprintf_s(const wchar_t * restrict format, va_list argptr);

#include <stdio.h> // In addition to <stdarg.h> and <wchar.h>
int vfwprintf_s(FILE * restrict fp, const wchar_t * restrict format,
 va_list argptr);

These secure functions work in the same way as fwprintf_s(), swprintf_s(),
snwprintf_s(), and wprintf_s, except that their last argument, argptr, is a
variable-argument list object with the type va_list. The program must initialize
this object by calling the va_start() macro before calling one of the variadic out‐
put functions, and must call the va_end() macro after the function returns.

Lib
rary

Functio
ns

Standard Library Functions | 625

The function vsnwprintf_s() truncates its output string if the
destination array s is too small. If the destination array is too
small for the output of vswprintf_s(), however, a runtime
constraint violation occurs.

Example

See the example for vfprintf() in this chapter.
See Also

va_start() and va_end(); fwprintf_s(), wprintf_s(), swprintf_s(), and
snwprintf_s(); the corresponding byte-character functions vfprintf_s(),
vprintf_s(), vsprintf_s(), and vsnprintf_s()

vfwscanf, vswscanf, vwscanfvfwscanf, vswscanf, vwscanf

Reads formatted wide-character input using a variable argument list object.

#include <stdarg.h>
#include <wchar.h>
int vswscanf(const wchar_t * restrict s,
 const wchar_t * restrict format, va_list argptr);
int vwscanf(const wchar_t * restrict format, va_list argptr);

#include <stdio.h> // In addition to <stdarg.h> and <wchar.h>
int vfwscanf(FILE * restrict fp, const wchar_t * restrict format,
 va_list argptr);

The functions vfwscanf(), vswscanf(), and vwscanf() are like fwscanf(),
swscanf(), and wscanf(), respectively, except that their final argument, argptr, is a
variable-argument list object with type va_list. The program must initialize this
object by calling the va_start() macro before calling the vfwscanf(), vswscanf(),
or vwscanf() function, and must call the va_end() macro after the function
returns. Because these functions use the va_arg() macro internally to advance the
pointer through the argument list, its value is indeterminate after the vfwprintf(),
vswprintf(), or vwprintf() function call has returned.

The vfwscanf(), vswscanf(), and vwscanf() functions return the number of input
items assigned to variables, which may be 0; or EOF if an input failure occurs before
any conversion takes place.
Example

See the example for the corresponding byte-character function vfscanf() in this
chapter.
See Also

va_start(), va_arg(), va_copy(), and va_end(); fwscanf(), swscanf(), and
wscanf(); vfwprint(), vswprint(), and vwprint(); the corresponding secure
functions

626 | Chapter 18: Standard Library Functions

vfwscanf_s, vswscanf_s, vwscanf_s C11vfwscanf_s, vswscanf_s, vwscanf_s C11

Reads formatted wide-character input using a variable-argument list object.

#include <stdarg.h>
#include <wchar.h>
int vswscanf_s(const wchar_t * restrict s,
 const wchar_t * restrict format, va_list argptr);
int vwscanf_s(const wchar_t * restrict format, va_list argptr);

#include <stdio.h> // In addition to <stdarg.h> and <wchar.h>
int vfwscanf_s(FILE * restrict fp, const wchar_t * restrict format,
 va_list argptr);

These secure functions work in the same way as fwscanf_s(), wscanf_s(), and
swscanf_s(), except that their last argument, argptr, is a variable-argument list
object with the type va_list. The program must initialize this object by calling the
va_start() macro before calling the vfscanf_s(), vscanf_s(), or vsscanf_s()
function, and must call the va_end() macro after the function returns.

The functions test the following runtime constraints: all pointers, including the
indirectly provided pointers for format elements, must not be null pointers. The
functions return the number of data items converted and stored in variables. If an
input error occurs before any data can be converted, or if a runtime constraint vio‐
lation occurs, the function returns EOF.
Example

See the example for vfscanf() in this chapter.
See Also

va_start() and va_end(); fwscanf_s(), swscanf_s(), and wscanf_s();
vfwprint(), vwprint(), vswprint(), vsnwprintf()_s; the corresponding byte-
character functions vfscanf_s(), vscanf_s(), and vsscanf_s()

wcrtombwcrtomb

Converts a wide character to a multibyte character.

#include <wchar.h>
size_t wcrtomb(char restrict *dest, wchar_t wc,
 mbstate_t * restrict state);

The wcrtomb() function is the restartable version of wctomb(). The third argument
is a pointer to a variable with type mbstate_t, which holds the current parse state of
a multibyte string being formed in the buffer that the first argument by successive
function calls. Each call to wcrtomb() converts a wide character into a multibyte
character, and stores the result in the buffer pointed to by its first argument. The
return value indicates the number of bytes written to the output buffer. The maxi‐
mum number of bytes that wcrtomb() writes to the buffer is the value of

Lib
rary

Functio
ns

Standard Library Functions | 627

MB_CUR_MAX. wcrtomb() also updates the state variable referenced by the third argu‐
ment to represent the new parse state of the string written. The locations that
wcrtomb() reads from and writes to using its restricted pointer parameters must not
overlap.

If the wide character is the null character (L'\0'), then wcrtomb() writes to the
buffer a shift sequence, if necessary, to restore the multibyte string to the initial
parse state, and then writes a null character. The state variable is updated to repre‐
sent the initial state. If the second argument is not a valid wide character, wcrtomb()
returns -1, sets the errno variable to EILSEQ, and leaves the parse state variable in an
undefined state. If the first argument is a null pointer, then wcrtomb() only sets the
state variable to represent the initial state. The return value is then the number of
bytes that would have been written to the output buffer.
Example

See the example for mbrtowc() in this chapter.
See Also

wctomb(), mbrtowc(), wctob(), and btowc(); wcsrtombs(), wcstombs(), and
mbstowcs(); the corresponding secure functions.

wcrtomb_s C11wcrtomb_s C11

Converts a wide character into a multibyte character.

#include <wchar.h>
errno_t wcrtomb_s(size_t * restrict retval,
 char * restrict dest, rsize_t destmax,
 wchar_t wc, mbstate_t * restrict ps);

The function wcrtomb_s() is the restartable version of wctomb_s(). Instead of stor‐
ing the parse state of its multibyte output string internally, it stores it between suc‐
cessive calls in a variable with the type mbstate_t addressed by its last argument, ps.

If dest is not a null pointer, wcrtomb_s() stores the multibyte character corre‐
sponding to the wide character wc in the char array addressed by dest, and puts the
length of the multibyte output in the variable addressed by retval. The length is
always less than or equal to the value of MB_CUR_MAX. The function also updates the
parse state variable addressed by ps.

If dest is a null pointer, wcrtomb_s(), unlike wctomb_s(), does not determine
whether the multibyte character encoding is state-dependent, but only sets the state
variable addressed by ps to the initial shift state.

The function has the following runtime constraints: the pointers retval and ps
must not be null pointers. If dest is not a null pointer, the size of the char array
specified by destmax must not be less than the length of the multibyte character to
be written, and must not be greater than RSIZE_MAX. If dest is a null pointer, the
length argument destmax must be zero.

628 | Chapter 18: Standard Library Functions

If a violation of the runtime constraints occurs, wcrtomb_s() writes the string ter‐
minator character to dest[0], provided dest is not a null pointer and destmax is
greater than zero, but not greater than RSIZE_MAX.

The wcrtomb_s() function returns zero if no error occurs. If a violation of the run‐
time constraints occurs, or if the value of wc does not correspond to any valid multi‐
byte character, the function returns a nonzero value and sets the variable addressed
by retval to the value of (size_t)(-1), provided retval is not a null pointer.
Example

 wchar_t wc = L'\u00b1'; //'±'
 char mbStr[MB_CUR_MAX];
 size_t nBytes = 0;
 mbstate_t state = {0};

 if(wcrtomb_s(&nBytes, mbStr, sizeof(mbStr), wc, &state) != 0)
 { /* Handle the error ... */ }
 printf("Character: '%lc'; multibyte code:", wc); // '±'
 for(unsigned i = 0; i < nBytes; ++i)
 printf(" %#04x", (unsigned char)mbStr[i]); // 0xc2 0xb1

See Also

wctomb_s(), wcrtomb(), wctomb() wctob(); wcstombs(), wcstombs_s(),
wcsrtombs(), wcsrtombs_s();

wcscat, wcscat_swcscat, wcscat_s

Appends one wide string to another.

#include <wchar.h>
wchar_t *wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);
errno_t wcscat_s(wchar_t * restrict s1, rsize_t s1max,
 const wchar_t * restrict s2);

The wcscat() function copies the wide-character string addressed by the second
pointer argument, s2, to the location following the string addressed by the first
pointer, s1. The first wide character of s2 is copied over the terminating null wide
character of the string addressed by s1. The function returns the value of its first
argument, which points to the concatenated string. It is up to you, the programmer,
to make sure that the array of wchar_t addressed by the argument s1 is big enough
to store the concatenated string. The source and destination arrays must not over‐
lap. The function wcscat() returns the pointer s1.

Like wcscat(), the secure function wcscat_s() appends the second wide string, s2,
to the end of the first wide string, s1, but it avoids the danger of a buffer overflow. It
has the additional parameter s1max to specify the size of the destination array—as a
number of wide characters—and tests the following runtime constraints:

• The pointers s1 and s2 must not be null pointers, and the value s1max must be
greater than zero and less than or equal to RSIZE_MAX.

Lib
rary

Functio
ns

Standard Library Functions | 629

• The sum of the string lengths of s1 and s2 must be less than s1max.
• The source and destination arrays must not overlap.

If a violation of the runtime constraints occurs, wcscat_s() writes the string termi‐
nator character to s1[0], provided s1 is not a null pointer and s1max is greater than
zero but not greater than RSIZE_MAX.

The wcscat_s() function returns zero on success, or a nonzero value if a violation
of the runtime constraints occurs.
Example

typedef struct {
 wchar_t lastname[32];
 wchar_t firstname[32];
 _Bool ismale;
} Name;

Name *newName = calloc(1, sizeof(Name));

/* ... check for calloc failure; read in the name parts ... */

// Then display the new name
wchar_t displayname[80];
wcscpy(displayname, (newName->ismale ? L"Mr. " : L"Ms. "));
wcscat(displayname, newName->firstname);
wcscat(displayname, L" ");
wcscat(displayname, newName->lastname);
wcscat(displayname, L"\n");

// Better to use wcscat_s() in case the fields in the Name
// structure are ever enlarged:
// wcscat_s(displayname, sizeof(displayname), newName->firstname);
// wcscat_s(displayname, sizeof(displayname), L" ");
// wcscat_s(displayname, sizeof(displayname), newName->lastname);
// wcscat_s(displayname, sizeof(displayname), L"\n");
fputws(displayname, stdout);

See Also

wcsncat(), wcsncat_s(), strcat(), strcat_s(), strncat(), strncat_s()

wcschrwcschr

Searches for a given character in a string.

#include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar_t c);

The wcschr() function returns a pointer to the first occurrence of the wide-
character value c in the wide string addressed by s. If there is no such character in
the string, wcschr() returns a null pointer. If c is a null wide character (L'\0'), then

630 | Chapter 18: Standard Library Functions

the return value points to the terminator character of the wide string addressed by
s.
Example

typedef struct {
 wchar_t street[32];
 wchar_t city[32];
 wchar_t stateprovince[32];
 wchar_t zip[16];
} Address;

wchar_t printaddr[128] = L"720 S. Michigan Ave.\nChicago, IL 60605\n";
int sublength;
Address *newAddr = calloc(1, sizeof(Address));

if (newAddr != NULL)
{
 sublength = wcschr(printaddr, L'\n') − printaddr;
 wcsncpy(newAddr->street, printaddr,
 (sublength < 31 ? sublength : 31));
 /* ... */
}

See Also

strchr(), wcsrchr()

wcscmpwcscmp

Compares two wide strings.

#include <wchar.h>
int wcscmp(const wchar_t *s1, const wchar_t *s2);

The wcscmp() function compares the wide strings addressed by its two pointer
arguments, and returns a value indicating the result as follows:

Zero
The two strings are equal.

Greater than zero
The string addressed by s1 is greater than the string addressed by s2.

Less than zero
The string addressed by s1 is less than the string addressed by s2.

The wcscmp() function compares the strings one wide character at a time. As soon
as it finds unmatched characters in corresponding positions in the two strings, the
string containing the greater wide-character value at that position is the greater
string. Lib

rary
Functio

ns

Standard Library Functions | 631

Example
int result = 0;
wchar_t word1[255], word2[256], *greaterlessequal;

while (result < 2)
{
 fputws(L"Type two words, please: ", stdout);
 result = wscanf(L"%255ls%255ls", word1, word2);
 if (result == EOF)
 return EOF;
}
result = wcscmp(word1, word2);

if (result < 0)
 greaterlessequal = L"less than";
else if (result > 0)
 greaterlessequal = L"greater than";
else
 greaterlessequal = L"the same as";

wprintf(L"The word \"%ls\" is %ls the word \"%ls\".\n", word1,
 greaterlessequal, word2);

See Also

wcsncmp(), strcmp()

wcscollwcscoll

Collates two wide strings.

#include <wchar.h>
int wcscoll(const wchar_t *s1, const wchar_t *s2);

Like wcscmp(), the wcscoll() function performs a wide-character-by-wide-
character comparison of the two strings, s1 and s2. However, where wcscmp() just
compares unsigned character values, wcscoll() can apply a locale-specific set of
rules in comparing strings. The value of the locale information category LC_COLLATE
determines the applicable rule set, and can be changed by the setlocale() func‐
tion. The return value of wcscoll() indicates the relation between the two wide
strings as follows. If the return value is:

Zero
The two strings are equal.

Greater than zero
The string addressed by s1 is greater than that addressed by s2.

Less than zero
The string addressed by s1 is less than that addressed by s2.

632 | Chapter 18: Standard Library Functions

Example
wchar_t *samples[] = { L"anejo", L"añeja",};

setlocale(LC_COLLATE, "es_US.UTF-8");

int result = wcscoll(samples[0], samples[1]);

wprintf(L"In the locale %s, ", setlocale(LC_COLLATE, NULL));

if (result == 0)
 wprintf(L"the wide strings \"%ls\" and \"%ls\" are alphabetically "
 "equivalent.\n", samples[0], samples[1]);
else if (result < 0)
 wprintf(L"the wide string \"%ls\" precedes \"%ls\" "
 "alphabetically.\n", samples[0], samples[1]);
else if (result > 0)
 wprintf(L"the wide string \"%ls\" comes after \"%ls\" "
 "alphabetically.\n", samples[0], samples[1]);

See Also

wcscmp(), wcsncmp(), and wcsxfrm(); strcoll(), strcmp(), strncmp(), and
strxfrm()

wcscpy, wcscpy_swcscpy, wcscpy_s

Copies a wide string to another location.

#include <wchar.h>
wchar_t *wcscpy(wchar_t * restrict dest, const wchar_t * restrict src);
errno_t wcscpy_s(wchar_t * restrict dest, rsize_t destmax,
 const wchar_t * restrict src);

The functions wcscpy() and wcscpy_s() copy the wide-character string addressed
by src to the array of wchar_t addressed by dest. These functions are equivalent to
strcpy() and strcpy_s() except that they copy wide characters instead of byte
characters.
Example

struct record {
 wchar_t name[64];
 int age;
 _Bool male, smoking, discount;
} this;
int results;

wprintf(L"Last name: ");
results = wscanf(L"%63l[^\n]", this.name);
if (results < 1)
 wcscpy(this.name, L"[Name not available]");
// or:
// wcscpy_s(this.name, sizeof(this.name)/sizeof(wchar_t),

Lib
rary

Functio
ns

Standard Library Functions | 633

// L"[Name not available]");
wprintf(L"%ls\n", this.name);

See Also

wcsncpy(), wcsncpy_s(), strcpy(), strcpy_s(), strncpy(), strncpy_s()

wcscspnwcscspn

Searches for any element of one wide string in another.

#include <wchar.h>
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

The wcscspn() function returns the number of wide characters at the beginning of
the string addressed by s1 that do not match any of the wide characters in the string
addressed by s2. In other words, wcscspn() returns the index of the first wide char‐
acter in s1 that matches any wide character in s2. If the two strings have no wide
characters in common, then the return value is the length of the string addressed by
s1.
Example

wchar_t *path
 = L"/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games";
int separator;

wchar_t *basename = L"aprogram";
wchar_t fullname[1024] = L"";

separator = wcscspn(path, L":");

wcsncpy(fullname, path, separator);
fullname[separator] = '\0';
wcsncat(fullname, L"/", sizeof(fullname) − wcslen(fullname) −1);
wcsncat(fullname, basename, sizeof(fullname) − wcslen(fullname) −1);

fputws(fullname, stdout);

See Also

wcsspn(), wcspbrk(), and wcschr(); strcspn(), strspn(), strpbrk(), and
strchr()

wcsftimewcsftime

Generates a formatted wide string of date-and-time information.

#include <time.h>
#include <wchar.h>
size_t wcsftime(wchar_t * restrict s, size_t n,
 const wchar_t * restrict format,
 const struct tm * restrict timeptr);

634 | Chapter 18: Standard Library Functions

The wcsftime() function is similar to strftime() except that its format string
argument and the output string it generates are wide-character strings. Accordingly,
the length n and the function’s return value indicate numbers of wide characters, not
byte characters. The locations that wcsftime() reads from and writes to using its
restricted pointer parameters must not overlap.
Example

#define MAX_HDR 1024

time_t now;
struct tm *localnow;
wchar_t hdr_date[MAX_HDR] = L"";

time(&now);
localnow = localtime(&now);

if(wcsftime(hdr_date, MAX_HDR, L"Date: %a, %d %b %Y %T %z", localnow))
 fputws(hdr_date, stdout);
else
 return -1;

See Also

strftime(), setlocale()

wcslenwcslen

Obtains the length of a wide-character string.

#include <wchar.h>
size_t wcslen(const wchar_t *s);

The wcslen() function calculates the length of the string addressed by its argument
s. The length of a wide string is the number of wide characters in it, not counting
the terminating null character (L'\0').
Example

wchar_t line[1024] =
 L"This string could easily be 400 or 500 characters long. "
 L"This string could easily be 400 or 500 characters long. "
 L"\n";
wchar_t *readptr = line;
int columns = 80;
while(wcslen(readptr) > columns) // While remaining text is too long,
{ // print a chunk with a final
 wprintf(L"%.*ls\\\n", columns-1, readptr); // backslash and newline.
 readptr += columns -1;
}
wprintf(L"%ls\n", readptr); // Print the rest, ending with a newline.

See Also

wcsnlen_s(), strlen(), strnlen_s(); the example for mbtowc()

Lib
rary

Functio
ns

Standard Library Functions | 635

wcsncat, wcsncat_swcsncat, wcsncat_s

Appends a number of wide characters from one string to another.

#include <wchar.h>
wchar_t *wcsncat(wchar_t * restrict s1,
 const wchar_t * restrict s2, size_t n);
errno_t wcsncat_s(wchar_t * restrict s1, rsize_t s1max,
 const wchar_t * restrict s2, rsize_t n);

The functions wcsncat() and wcsncat_s() copy up to n characters of the string
addressed by their second argument, s2, to the end of the string addressed by their
first argument s1. The first wide character copied from s2 replaces the string termi‐
nator character of s1. The functions copy less than n characters if they encounter a
terminating null character before the nth character in the source string s2. In all
cases, both functions append a null character to the concatenated string.

The functions wcsncat() and wcsncat_s() are similar to the functions strncat()
and strncat_s() except that they copy wide characters instead of byte characters.
Example

See the examples for strncat() and wcscspn() in this chapter.
See Also

wcscat(), strncat(), strcat(), and the corresponding secure functions

wcsncmpwcsncmp

Compares the first n wide characters of two strings.

#include <wchar.h>
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

The wcsncmp() function compares at most the first n wide characters in the two
strings addressed by its pointer arguments. Characters that follow a null wide char‐
acter are ignored. wcsncmp() returns a value indicating the result as follows:

Zero
The two wide strings, or arrays of n wide characters, are equal.

Greater than zero
The string or array of n wide characters addressed by s1 is greater than that
addressed by s2.

Less than zero
The string or array of n wide characters addressed by s1 is less than that
addressed by s2.

636 | Chapter 18: Standard Library Functions

Example
wchar_t *months[] = { L"January", L"February", L"March", L"April",
 L"May", L"June", L"July", L"August",
 L"September", L"October", L"November", L"December"};

wchar_t date[] = L"Thu, 10 Mar 2005 13:44:18 +0100";
int mo = 0;
while ((mo < 12) && (wcsncmp(date + 8, months[mo], 3) != 0))
 mo++;

See Also

wcscmp(), wcscoll(), strncmp(), strcmp()

wcsncpy, wcsncpy_swcsncpy, wcsncpy_s

Copies the first n wide characters of a string to another location.

#include <wchar.h>
wchar_t *wcsncpy(const wchar_t * restrict dest,
 const wchar_t * restrict src, size_t n);
errno_t wcsncpy_s(wchar_t * restrict dest, rsize_t destmax,
 const wchar_t * restrict src, rsize_t n);

The functions wcsncpy() and wcsncpy_s() copy up to n wide characters from the
string addressed by src to the array of wchar_t addressed by dest. These functions
are equivalent to strncpy() and strncpy_s() except that they copy wide characters
instead of byte characters.

If there is no null wide character in the first n wide charac‐
ters of src, then the wcsncpy() function does not append a
terminating null character to the copied string!

If wcsncpy() reads a null wide character from src before it has copied n wide char‐
acters, then the function writes null wide characters to dest until it has written a
total of n wide characters.
Example

See the examples for wcscspn() and wcspbrk() in this chapter.
See Also

strcpy(), strncpy(), memcpy(), memmove(), wcscpy(), wmemcpy(), wmemmove(); the
corresponding secure functions, if the implementation supports the C11 bounds-
checking functions (i.e., if the macro __STDC_LIB_EXT1__ is defined)

Lib
rary

Functio
ns

Standard Library Functions | 637

wcsnlen_s C11wcsnlen_s C11

Obtains the length of a wide string.

#include <wchar.h>
size_t wcsnlen_s(const wchar_t *s, size_t maxsize);

If the pointer s is a null pointer, the function wcsnlen_s() returns zero. Otherwise,
wcsnlen_s() returns the length of the wide string addressed by the pointer s; that
is, the number of wide characters that precede the terminating null character
(L'\0'). The function only examines at most the first maxsize wide characters in
the string, however. If there is no null wide character within the first maxsize wide
characters, wcsnlen_s() returns the value of maxsize.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
// ...
wchar_t ws[] = L"hello";
size_t len = wcsnlen_s(ws, 100); // len = 5
if(wcsnlen_s(ws, 4) == 4)
{ /* The string contains more than 4 wide characters. */ }

See Also

wcslen(), strlen(), strnlen_s()

wcspbrkwcspbrk

Finds the first wide character in a string that matches any wide character in another
string.

#include <wchar.h>
wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);

The wcspbrk() function returns a pointer to the first wide character in the string
addressed by s1 that matches any wide character contained in the string addressed
by s2. If the two strings have no wide characters in common, then wcspbrk()
returns a null pointer.
Example

wchar_t *story = L"He shouted: \"What? I can't hear you!\"\n";
wchar_t separators[] = L" \t\n.:?!\"";
wchar_t *start = story, *end = NULL;
wchar_t words[16][16];
int i = 0;

while (i < 16 && (end = wcspbrk(start, separators)) != NULL)
{
 if (end != start) // If the separator wasn't the first
 { // character in the substring,

638 | Chapter 18: Standard Library Functions

 wcsncpy(words[i], start, end − start); // then save a word.
 words[i][end − start] = L'\0'; // And terminate it.
 i++;
 }
 start = end + 1; // Next wcspbrk call starts with the
} // character after this separator.

fputws(story, stdout);
for (int j = 0 ; j < i ; j++)
{
 fputws(words[j], stdout);
 fputwc(L'\n', stdout);
}

See Also

wcschr(), wcsrchr(), wcsstr(), wcscspn(), strpbrk()

wcsrchrwcsrchr

Searches for the rightmost occurrence of a given wide character in a string.

#include <wchar.h>
wchar_t *wcsrchr(const wchar_t *s, wchar_t wc);

The wcsrchr() function returns a pointer to the last occurrence of the wide-
character value wc in the string addressed by s. If there is no such wide character in
the string, wcsrchr() returns a null pointer. If wc is a null wide character (L'\0'),
then the return value points to the terminator of the string addressed by s.
Example

int main(int argc, char ** argv)
{
 wchar_t wmyname[256];
 size_t result = mbstowcs(wmyname, argv[0], 256);
 if (result == -1)
 return -1;
 wchar_t *mybasename = wcsrchr(wmyname, L'/'); // End of path
 if (mybasename != NULL)
 mybasename++;
 else
 mybasename = wmyname;
 wprintf(L"This program was invoked as %ls.\n", mybasename);
}

See Also

wcschr(), wcsstr(), wcsspn(), wcscspn(), wcspbrk(); the byte character string
functions strchr(), strrchr(), strpbrk(), strstr(), strspn(), strcspn()

Lib
rary

Functio
ns

Standard Library Functions | 639

wcsrtombswcsrtombs

Converts a wide-character string into a multibyte string and saves the parse state.

#include <wchar.h>
size_t wcsrtombs(char * restrict dest, const wchar_t ** restrict src,
 size_t n, mbstate_t * restrict state);

The wcsrtombs() function converts one or more wide characters from the array
indirectly addressed by src into a string of multibyte characters, beginning in the
parse state indicated by the state argument, and stores the results in the array of
char addressed by dest. (dest may also be a null pointer, in which case
wcsrtombs() does not actually store any output characters, and does not modify the
pointer in the location addressed by src. The function therefore merely returns the
number of bytes that a multibyte representation of the wide-character string would
occupy.)

The third argument, n, specifies the maximum number of characters that can be
written to the output buffer. The conversion performed on each wide character is
the same as that which would be performed by the wcrtomb() function, updating
the mbstate_t object addressed by state.

Conversion ends on the first of three possible events:

When a terminating null character has been written to the output buffer
In this case, wcsrtombs() stores a null pointer in the location addressed by src,
and returns the number of bytes in the multibyte sequence resulting from the
conversion. The object addressed by state represents the initial parse state,
and the terminating null character stored in the output buffer is preceeded by
any shift sequence required to reach the initial parse state.

When writing another multibyte character would exceed the maximum length of
n bytes

In the location addressed by src, wcsrtombs() stores a pointer to the location
that follows the last wide character read, and the object addressed by state
represents the current parse state of the incomplete output string so that subse‐
quent function calls can continue the string conversion. The function returns
the number of bytes in the multibyte sequence resulting from the conversion.

When a wide character read cannot be converted into a valid multibyte character
In this case, wcsrtombs() sets the errno variable to the value of EILSEQ (“illegal
sequence”) and returns (size_t)(-1). The state of the object addressed by
state is unspecified.

Example
int i = 0, n = 0;
size_t result;
wchar_t wc;
char mbstring[256] = { '\0' };

640 | Chapter 18: Standard Library Functions

wchar_t widestring[]
 = L"This is originally a string of wide characters.";
const wchar_t *wcsptr = widestring;
mbstate_t state;

printf("The current locale is %s.\n", setlocale(LC_CTYPE, ""));

memset(&state, '\0', sizeof state);
result = wcsrtombs(mbstring, &wcsptr, 256, &state);

printf("The return value: %d\n", (int)result);
if(result > 0 && wcsptr == NULL)
 printf("The multibyte string: \"%s\"\n", mbstring);

See Also

wcstombs(), wcrtomb(), wctomb(), mbsrtowcs(), mbstowcs(), mbrtowc(),
mbtowc(); the corresponding secure functions, and the example for wcsrtombs_s()

wcsrtombs_s C11wcsrtombs_s C11

Converts a wide string to a multibyte string.

#include <wchar.h>
errno_t wcsrtombs_s(size_t * restrict retval,
 char * restrict dest, rsize_t destmax,
 const wchar_t ** restrict src, rsize_t n,
 mbstate_t * restrict state);

The function wcsrtombs_s() is the “restartable” version of wcstombs_s(). It begins
the conversion, not in the initial shift state, but in the shift state specified by the
parameter state. The parameter src is a pointer to a wchar_t pointer that
addresses the next wide character to be converted. Before it returns, the function
stores a pointer to the next wide character to be read in the object addressed by src,
and stores the parse state of the multibyte output string in the object addressed by
state, so that subsequent function calls can continue the string conversion. If the
function finds that the end of the input string has been reached, it puts a null
pointer in the object addressed by src and sets the object addressed by state to the
initial shift state.

The pointers retval, src, *src, and state must not be null pointers. Except for the
differences described here, the function wcsrtombs_s() is similar to wcstombs_s().
It returns zero on success, or a nonzero value if an error occurs.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <wchar.h>
// ...
 wchar_t widestr[] = L"A wide-character string ...";
 const wchar_t *wcptr = widestr; // A pointer to a wide character.
 char mbstr[100] = ""; // For the multibyte string.

Lib
rary

Functio
ns

Standard Library Functions | 641

 size_t mblen = 0;
 mbstate_t mbstate = {0}; // Conversion state.

 if(wcsrtombs_s(&mblen, mbstr, sizeof(mbstr),
 &wcptr, 3, &mbstate) == 0)
 {
 printf("Multibyte length: %zu; character codes: [", mblen);
 for(size_t i = 0; i < mblen; ++i)
 printf(" %X", (unsigned char)mbstr[i]);
 puts("]");
 if(wcptr != NULL)
 printf("Wide characters remaining: \"%ls\"\n", wcptr);
 }

This example produces the following output:

Multibyte length: 3; character codes: [41 20 77]
Wide characters remaining: "ide character string ..."

See Also

wcstombs_s(), wcstombs(), wcsrtombs(), mbstowcs(), mbstowcs_s(),
mbsrtowcs(), mbsrtowcs_s()

wcsspnwcsspn

Searches a wide string for a wide character that is not in a given set.

#include <wchar.h>
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

The wcsspn() function returns the index of the first wide character in the string
addressed by s1 that does not match any wide character in the string addressed by
s2. In other words, the return value is the length of the wide-string segment
addressed by s1 that contains only wide characters which are present in the wide
string addressed by s2. If all of the wide characters in s1 are also contained in s2,
then wcsspn() returns the index of s1’s string terminator character, which is the
same as wcslen(s1).
Example

wchar_t wordin[256];
double val;
fputws(L"Enter a floating-point number, please: ", stdout);
wscanf(L"%ls", wordin);
int index = wcsspn(wordin, L"+-0123456789eE.");
if (index < wcslen(wordin))
 wprintf (L"Sorry, but the character %lc is not permitted.\n",
 wordin[index]);
else
{
 swscanf(wordin, L"%lg", &val);
 wprintf(L"You entered the value %g\n", val);
}

642 | Chapter 18: Standard Library Functions

See Also

wcscspn(), wcschr(), wcsrchr(), wcsstr(), wcspbrk(), strspn(), strcspn(),
strchr(), strrchr(), strstr(), strpbrk()

wcsstrwcsstr

Searches a wide string for a replica of another wide string.

#include <wchar.h>
wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

The wcsstr() function searches the wide string addressed by s1 for the sequence of
wide characters contained in s2, not counting the terminating null wide character.
The return value is a pointer to the first wide character in the first occurrence in s1
of the sequence contained in s2, or a null pointer if there is no such occurrence. If
s2 points to an empty wide string, then wcsstr() returns the value of its first argu‐
ment, s1.
Example
This simple program prints each line in a file that contains a given keyword:

#define MAX_LINE 1024

int main(int argc, char **argv)
{
 FILE *fpIn = NULL;
 wchar_t keyword[MAX_LINE] = { L'\0' };
 wchar_t line[MAX_LINE] = { L'\0' };

 if (argc != 3)
 {
 wprintf(L"Syntax: %s <keyword> <filename>\n", argv[0]);
 return -1;
 }

 if ((fpIn = fopen(argv[2], "r")) == NULL)
 return -2;
 else
 fwide(fpIn, 1);

 if (mbstowcs(keyword, argv[1], MAX_LINE) == -1)
 return -3;

 int count = 0;
 while (fgetws(line, MAX_LINE, fpIn) != NULL)
 if (wcsstr(line, keyword) != NULL)
 {
 ++count;
 fputws(line, stdout);
 }

Lib
rary

Functio
ns

Standard Library Functions | 643

 if (!feof(fpIn))
 return -4;
 else
 return count;
}

See Also

wcspbrk(), wcsspn(), wcscspn(), wcschr(), wcsrchr(), strstr(), strpbrk(),
strspn(), strcspn(), strchr(), strrchr()

wcstod, wcstof, wcstoldwcstod, wcstof, wcstold

Converts a wide string into a floating-point number.

#include <wchar.h>
double wcstod(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr); (C99)
long double wcstold(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr); (C99)

The wcstod() function attempts to interpret the wide string addressed by its first
pointer argument, wcs, as a floating-point numeric value, and returns the result with
the type double. wcstof() and wcsold() are similar but return float and
long double, respectively. Leading whitespace wide characters are ignored, and the
converted string ends with the last wide character that can be interpreted as part of
a floating-point numeral. The second parameter, endptr, is a pointer to a pointer. If
its argument value is not a null pointer, then the function stores a pointer to the first
wide character that is not part of the numeral converted in the location addressed
by the endptr argument. (The locations that the function reads from and writes to
using its restricted pointer parameters must not overlap.) If no conversion is possi‐
ble, the function returns 0.

If the resulting value exceeds the range of the function’s type, then the return value
is positive or negative HUGE_VAL (or HUGE_VALF or HUGE_VALL, for the float and
long double variants). On an overflow, the errno variable is set to the value of
ERANGE (“range error”). If the conversion produces an underflow, the magnitude of
the return value is at most the smallest value greater than 0 that is representable in
the function’s return type, and the function may set the errno variable to the value
of ERANGE (“range error”).

The wide-character sequences that can be interpreted as floating-point numerals
depend on the current locale. In all locales, they include those described in
“Floating-Point Constants” on page 40, and the sequence L"infinity", without
regard to uppercase or lowercase, or any sequence of letters, digits, and underscores
that begins with L"nan" without regard to case.

644 | Chapter 18: Standard Library Functions

Example
wchar_t in[1024], *this = in, *next = in;
double val;
fputws(L"Enter some floating-point numbers, please:\n", stdout);
wscanf(L"%l[^\n]", in);

fputws(L"Here are the values you entered:\n", stdout);
while (1)
{
 val = wcstod(this, &next);
 if (next == this) // Means no conversion possible.
 break ;
 this = next;
 wprintf(L"\t%g\n", val);
}
fputws(L"Done.\n", stdout);

See Also

wcstol(), wcstoul(), and wcstoimax(); strtof(), strtod(), and strtold()

wcstoimax C99wcstoimax C99

Converts a wide string into an integer value with type intmax_t.

#include <stddef.h>
#include <inttypes.h>
intmax_t wcstoimax(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr, int base);

The wcstoimax() function is similar to wcstol() except that it converts a wide
string to an integer value of type intmax_t. If the conversion fails, wcstoimax()
returns 0. If the result of the conversion exceeds the range of the type intmax_t,
then the wcstoimax() returns INTMAX_MAX or INTMAX_MIN, and sets the errno vari‐
able to the value of ERANGE (“range error”).
Example

See the example for the analogous function wcstoumax() in this chapter.
See Also

wcstoumax(), wcstol(), and wcstoul(); wcstod(), wcstof(), and wcstold();
strtoimax() and strtoumax()

wcstokwcstok

Divides a wide string into tokens.

#include <wchar.h>
wchar_t *wcstok(wchar_t * restrict s1, const wchar_t * restrict s2,
 wchar_t ** restrict ptr);

Lib
rary

Functio
ns

Standard Library Functions | 645

The wcstok() function isolates tokens in the wide string addressed by s1 that are
delimited by any of the wide characters contained in the string addressed by s2. The
tokens are identified one at a time by successive calls to wcstok(). On calls after the
first, the s1 argument is a null pointer. The third argument is a pointer to a wchar_t
pointer; wcstok() stores caller-specific information at the location addressed by this
pointer for use on successive calls in the same sequence.

On the first call, wcstok() searches in s1 for the first character that does not match
any character in s2, similarly to the wcsspn() function. The first such wide charac‐
ter found is considered to be the beginning of a token. Then wcstok() searches fur‐
ther for the first wide character that does match any of the wide characters in s2 or
the null wide character that terminates the string—whichever comes first, similarly
to the wcscspn() function. The first such wide character found is considered to be
the delimiter that ends the token. wcstok() then replaces this ending delimiter with
L'\0', which modifies the string s1. The function returns a pointer to the beginning
of the token (or a null pointer if no token was found), after storing a value in the
location addressed by the ptr argument for use in subsequent wcstok() calls.

On each subsequent call with a null pointer as the s1 argument and the same value
as before for the ptr argument, wcstok() behaves similarly but starts the search at
the wide character that follows the previous delimiter. You can specify a different set
of delimiters in the s2 argument on each call. The locations that wcstok() reads
from and writes to using its restricted pointer arguments must not overlap on any
given call.
Example

wchar_t *mnemonic, *arg1, *arg2, *comment, *ptr;
wchar_t line[] = L" mul eax,[ebp+4] ; Multiply by y\n";
// First word between spaces or tabs
mnemonic = wcstok(line, L" \t", &ptr);
arg1 = wcstok(NULL, L",", &ptr); // From there to the comma is arg1.
 // Trim off any spaces later.
arg2 = wcstok(NULL, L";\n", &ptr); // From there to the semicolon is
 // arg2.
// To line or page end is comment:
comment = wcstok(NULL, L"\n\r\v\f", &ptr);

wprintf(L"Mnemonic: %ls\n"
 L"1st argument: %ls\n"
 L"2nd argument: %ls\n"
 L"Comment: %ls\n\n",
 mnemonic, arg1, arg2, comment);

This code produces the following output:

Mnemonic: mul
1st argument: eax
2nd argument: [ebp+4]
Comment: Multiply by y

646 | Chapter 18: Standard Library Functions

See Also

wcstok_s(), strtok(), strtok_s(), wcsspn(), wcscspn(), wcsstr(), and
wcspbrk()

wcstok_s C11wcstok_s C11

Divides a wide string into tokens.

#include <string.h>
wchar_t *wcstok_s(wchar_t * restrict s1, rsize_t * restrict s1max,
 const wchar_t * restrict s2,
 wchar_t ** restrict ptr);

Like wcstok(), the secure function wcstok_s() divides the string addressed by s1
into a sequence of tokens delimited by any of the characters contained in the string
addressed by s2. The tokens are identified one at a time by successive calls to
wcstok_s(). On calls after the first, the s1 argument is a null pointer. The function
returns a null pointer if no further token is present in the remaining string. The
function modifies the string s1 by substituting a null wide character (L'\0') for the
first delimiter character that follows the token found.

Unlike wcstok(), the secure function wcstok_s() has an additional parameter,
s1max. On the first function call, the s1max argument must point to a variable that
contains the length of the wchar_t array s1. On each subsequent call, the
wcstok_s() function updates the objects addressed by s1max and ptr so that ptr
refers to the new starting position in the string, and the variable addressed by s1max
contains the remaining string length.

The function wcstok_s() also tests the following runtime constraints: the pointers
s1max, s2, and ptr must not be null pointers. If s1 is a null pointer, then ptr must
not point to a null pointer. The string segment of *s1max characters from the cur‐
rent starting position must contain the end of a token. If a violation of the runtime
constraints occurs, the pointer addressed by ptr is not modified and the function
returns a null pointer.
Example

See the examples for the functions wcstok() and strtok_s() in this chapter.
See Also

wcstok(), strtok(), strtok_s(), wcsspn(), wcscpn(), and wcsstr()

wcstol, wcstollwcstol, wcstoll

Converts a wide string into a long (or long long) integer value.

#include <wchar.h>
long int wcstol(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr, int base);

Lib
rary

Functio
ns

Standard Library Functions | 647

long long int wcstoll(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr, int base); (C99)

The wcstol() function attempts to interpret the wide string addressed by its first
pointer argument, wcs, as an integer numeric value, and returns the result with the
type long. wcstoll() is similar, but returns long long. These functions are the
wide-string equivalents of strtol() and strtoll(), and they work in the same way,
except that they operate on strings of wchar_t rather than char. See the description
under strtol() in this chapter.
Example

wchar_t date[] = L"10/3/2005, 13:44:18 +0100", *more = date;
long day, mo, yr, hr, min, sec, tzone;
day = wcstol(more, &more, 10); // &more is the address of a
mo = wcstol(more+1, &more, 10); // pointer
yr = wcstol(more+1, &more, 10);
hr = wcstol(more+1, &more, 10);
min = wcstol(more+1, &more, 10);
sec = wcstol(more+1, &more, 10);
tzone = wcstol(more+1, &more, 10);

wprintf(L"It's now %02ld:%02ld o'clock on %02ld-%02ld-%02ld.\n",
 hr, min, mo, day, yr % 100);

This code produces the following output:

It's now 13:44 o'clock on 03-10-05.

See Also

wcstoul(), wcstoull(), wcstod(), wcstof(), and wcstold(); strtol(), strtoll(),
strtoul(), and strtoull()

wcstoldwcstold

See the description under wcstod().

wcstollwcstoll

See the description under wcstol().

wcstombswcstombs

Converts a wide-character string into a multibyte string.

#include <stdlib.h>
size_t wcstombs(char * restrict dest, const wchar_t * restrict src,
 size_t n);

The wcstombs() function converts one or more wide characters from the array
addressed by src into a string of multibyte characters, beginning in the initial parse
state, and stores the results in the array of char addressed by dest. The third argu‐

648 | Chapter 18: Standard Library Functions

ment, n, specifies the maximum number of characters that can be written to the out‐
put buffer; conversion ends either when a terminating null character has been writ‐
ten to the output buffer, or when writing another multibyte character would exceed
the buffer size of n bytes. The wcstombs() function returns the number of bytes
written, not including the terminating null character if any, or (size_t)(-1) if an
encoding error occurs. The conversion performed on each wide character is the
same as that which would be performed by the wctomb() function.

The wcstombs() function terminates the resulting multibyte
string with a null character ('\0') only if it has not yet written
the maximum number of characters specified by the third
argument! If the return value is the same as the specified limit,
then the resulting string has not been terminated.

Example
wchar_t fmt_amount[128] = { L'\0' };
wchar_t prefix[32] = L"-";
wchar_t suffix[32] = L"€";
wchar_t number[128] = L"123.456,78";
char output_amount[256];

wcscpy(fmt_amount, prefix);
wcscat(fmt_amount, number);
wcscat(fmt_amount, suffix);

if (-1 != wcstombs(output_amount, fmt_amount, 256))
 printf("Full amount: %s\n", output_amount);

See Also

wcsrtombs(), mbstowcs(), and wcrtomb(); wctomb(), mbtowc(), and mbrtowc(); the
corresponding secure functions

wcstombs_s C11wcstombs_s C11

Converts a wide string to a multibyte string.

#include <stdlib.h>
errno_t wcstombs_s(size_t * restrict retval,
 char * restrict dest, rsize_t destmax,
 const wchar_t * restrict src, rsize_t n);

The function wcstombs_s() is the “secure” version of the function wcstombs(). It
converts the wide string addressed by src to a multibyte string. The conversion
begins in the initial shift state, and the function’s operation is equivalent to calling
wcrtomb() for each wide character in the source string.

If dest is a null pointer, wcstombs_s() only writes the number of bytes in the multi‐
byte string that would otherwise result, not counting the terminating null character,
to the variable addressed by retval.

Lib
rary

Functio
ns

Standard Library Functions | 649

If dest is not a null pointer, the multibyte characters are copied to the char array
with the length destmax addressed by dest. The argument n specifies the maximum
number of bytes that the function may write to the destination. If the length of the
complete multibyte string is less than destmax and less than or equal to n, then the
function writes the whole string. Otherwise, destmax must be greater than n, and
the conversion ends when writing the next multibyte character would make the
number of output bytes exceed n. In any case, the null character '\0' is appended
after the last multibyte character, and the number of bytes written (not counting the
null character) is stored in the variable addressed by retval.

The function wcstombs_s() tests the following runtime constraints: The pointers
retval and src must not be null pointers. If dest is a null pointer, the output length
argument destmax must be zero. If dest is not a null pointer, the values of n and
destmax must not be greater than RSIZE_MAX. Furthermore, destmax must be
greater than the number of bytes that actually need to be stored—that is, either
greater than n or greater than the number of bytes in the multibyte string, as the
case may be.

If a runtime constraint violation occurs and retval is not a null pointer,
wcstombs_s() stores the value (size_t)(-1) in the object addressed by retval.
Furthermore, the function writes the string terminator character '\0' to dest[0],
provided dest is not a null pointer and destmax is greater than zero and less than
RSIZE_MAX.

The wcstombs_s() function also writes the value of (size_t)(-1) to the object
addressed by retval if an encoding error occurs. The wcstombs_s() function
returns zero on success, or a nonzero value if an error occurs.
Example

#define __STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
// ...
 wchar_t widestr[] = L "A wide-character string ...";
 char mbstr[100] = ""; // For the multibyte string.
 size_t mblen = 0;

 printf("The current locale is %s.\n",
 setlocale(LC_CTYPE, ""));

 if(wcstombs_s(&mblen, mbstr, sizeof(mbstr), widestr, 5) == 0)
 {
 printf("Multibyte length: %u; text: \"%s\"\n", mblen, mbstr);
 // ...
 }

This example produces the following output:

Multibyte length: 5; text: "A wid"

650 | Chapter 18: Standard Library Functions

See Also

wcstombs(), wcsrtombs(), wctomb(), wcrtomb(), mbstowcs(), mbsrtowcs(),
mbtowc(), mbrtowc(); the corresponding secure functions

wcstoul, wcstoullwcstoul, wcstoull

Converts a wide string into an unsigned long (or unsigned long long) integer
value.

#include <wchar.h>
unsigned long int wcstoul(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr, int base);
unsigned long long int wcstoull(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr,
 int base); (C99)

The wcstoul() function attempts to interpret the wide string addressed by its first
pointer argument, wcs, as an integer numeric value, and returns the result with the
type unsigned long. wcstoull() is similar, but returns unsigned long long. These
functions are the wide-string equivalents of strtoul() and strtoull(), and they
work in the same way except that they operate on strings of wchar_t rather than
char. See the description for strtol() in this chapter.

If the resulting value is outside the range of the function’s type, then the return value
is ULONG_MAX, depending on the sign (or ULLONG_MAX, for wcstoull()), and the
errno variable is set to the value of ERANGE (“range error”).
Example

See the example for the analogous function wcstol() in this chapter.
See Also

wcstol(), wcstod(), wcstof(), and wcstold(); strtol() and strtoul()

wcstoumax C99wcstoumax C99

Converts a wide string into an integer value with type uintmax_t.

#include <stddef.h>
#include <inttypes.h>
uintmax_t wcstoumax(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr, int base);

The wcstoumax() function is similar to wcstoul() except that it converts a wide
string to an integer value of type uintmax_t. If the conversion fails, wcstoumax()
returns 0. If the result of the conversion exceeds the range of the type uintmax_t,
then the wcstoumax() returns UINTMAX_MAX and sets the errno variable to the value
of ERANGE (“range error”). Lib

rary
Functio

ns

Standard Library Functions | 651

Example
typedef struct {
 uintmax_t packets, bytes;
 wchar_t policy[16];
 wchar_t protocol[6];
 /* ... */
} stats_t ;
stats_t iface_in;

wchar_t wcsstat[] =
 L"25183 1633438 ACCEPT tcp -- eth2 * 0.0.0.0/0 tcp dpts:80";
wchar_t *wcsptr = wcsstat;

iface_in.packets = wcstoumax(wcsptr, &wcsptr, 10);
iface_in.bytes = wcstoumax(++wcsptr, &wcsptr, 10);
/* ... */
wprintf(L"Packets: %" PRIuMAX "; bytes: %" PRIuMAX "; policy: ...\n",
 iface_in.packets, iface_in.bytes);

This code produces the following output:

Packets: 25183; bytes: 1633438; policy: ...

See Also

wcstoimax(), wcstol(), and wcstoul(); wcstod(), wcstof(), and wcstold();
strtoimax() and strtoumax()

wcsxfrmwcsxfrm

Transforms a wide string for easier locale-specific comparison.

#include <wchar.h>
size_t wcsxfrm(wchar_t * restrict dest, const wchar_t * restrict src,
 size_t n);

The wcsxfrm() function transforms the wide string addressed by src, and copies
the result to the wchar_t array addressed by dest. The third argument, n, specifies a
maximum number of wide characters (including the terminating null wide charac‐
ter) that the function may write to dest. The locations that wcsxfrm() reads from
and writes to using its restricted pointer parameters must not overlap.

The transformation performed depends on the value of the locale category
LC_COLLATE, which you can query or set using the setlocale() function. Further‐
more, the wcsxfrm() transformation is related to the wcscoll() function in the fol‐
lowing way: if you use wcscmp() to compare two strings produced by wcsxfrm()
calls, the result is the same as if you use wcscoll() to compare the original strings
passed to wcsxfrm(). Using wcsxfrm() and wcscmp() may be more efficient than
wcscoll() if you need to use the same string in many comparisons.

The wcsxfrm() function returns the length of the transformed version of the string,
not counting the terminating null character. If this length is greater than or equal to

652 | Chapter 18: Standard Library Functions

n, then the contents of the array at dest are indeterminate. The value of n may also
be 0, in which case dest may be a null pointer.
Example

typedef struct stringpair { wchar_t * original;
 wchar_t * xformed;
 } Stringpair_t ;

int stringpaircmp(const void *p1, const void *p2);

int main()
{
 wchar_t *originals[] = { L"Chávez", L"Carron", L"Canoso",
 L"Cañoso", L"Carteño", L"Corriando",
 L"Carilo", L"Carillón", };
 wchar_t xformbuffer[1024];

 /* Make an array of structures out of the strings and their
 xformations */

 const int elementcount = sizeof(originals) / sizeof(wchar_t *);
 Stringpair_t stringpairs[elementcount];

 setlocale(LC_ALL, "es_US.UTF-8"); // Set the locale to US Spanish
 wprintf(L"Sorting order in the locale %s:\n",
 setlocale(LC_COLLATE, NULL));

 for (int i = 0; i < elementcount ; i++)
 {
 stringpairs[i].original = originals[i];
 stringpairs[i].xformed
 = malloc(wcsxfrm(xformbuffer, originals[i], 1024));
 if (stringpairs[i].xformed != NULL)
 wcscpy(stringpairs[i].xformed, xformbuffer);
 }

 qsort(stringpairs, elementcount,
 sizeof(Stringpair_t), stringpaircmp);

 for (int i = 0; i < elementcount ; i++)
 {
 fputws(stringpairs[i].original, stdout);
 fputwc(L'\n', stdout);
 }
} // end of main()

/* A comparison function for use by qsort. Uses wcscmp() rather
 * that wcscoll(), assuming strings are paired with their wcsxfrm()
 * results in a Stringpair_t structure.
 */
int stringpaircmp(const void *p1, const void *p2)
{

Lib
rary

Functio
ns

Standard Library Functions | 653

 const Stringpair_t * sp1 = (Stringpair_t *)p1;
 const Stringpair_t * sp2 = (Stringpair_t *)p2;

 return wcscmp(sp1->xformed, sp2->xformed);
}

This code produces the following output:

Sorting order in the locale es_US.UTF-8:
Canoso
Cañoso
Carilo
Carillón
Carron
Carteño
Corriando
Chávez

See Also

wcscoll(), wcscmp(), strxfrm(), setlocale()

wctobwctob

Obtains the single-byte equivalent of a wide character, if any.

#include <stdio.h>
#include <wchar.h>
int wctob(wint_t wc);

The wctob() function returns the single-byte member of the extended character set,
if there is one, that corresponds to its wide-character argument, wc.

To be more exact, wctob() determines whether there is a character in the extended
character set that corresponds to the wide-character value wc, and whose multibyte
character representation is expressed in a single byte in the initial shift state of the
locale’s multibyte encoding. If this is the case, then wctob() returns that character,
converted from unsigned char to int. If not, wctob() returns EOF.
Example

FILE *fp_inwide;
wchar_t wc;
int bc;

/* ... open the files ... */

fwide(fp_inwide, 1);
while ((wc = fgetwc(fp_inwide)) != WEOF)
 if ((bc = wctob(wc)) != EOF)
 fputc(c, stdout);
 else // If no byte-character equivalent,
 fputc('?', stdout); // print a question mark instead.

654 | Chapter 18: Standard Library Functions

See Also

wctomb(), wcrtomb(), wcstombs(), and wcsrtombs(); btowc(), mbtowc(),
mbrtowc(), mbstowcs(), and mbsrtowcs()

wctombwctomb

Converts a wide character to a multibyte character, or determines whether the mul‐
tibyte encoding is stateful.

#include <stdlib.h>
int wctomb(char *s, wchar_t wc);

The wctomb() function determines the multibyte representation that corresponds to
the wide-character value wc, and stores it, including any necessary shift sequences,
in the char array addressed by the pointer argument s. The size of this array is
assumed to be at least MB_CUR_MAX to accommodate the multibyte character repre‐
sentation. If wc is a null wide character (L'\0'), wctomb() stores a null character,
preceded by any necessary shift sequences to restore the initial shift state, in the
char array addressed by s. The function returns the number of bytes in the multi‐
byte sequence written, or -1 if the value of wc does not correspond to any valid mul‐
tibyte character.

If you pass wctomb() a null pointer as the first argument, then the return value indi‐
cates whether the current multibyte encoding is stateful. This behavior is the same
as that of mblen(). If wctomb() returns 0, then the encoding is stateless. If it returns
any other value, the encoding is stateful; that is, the interpretation of a given byte
sequence may depend on the shift state.
Example

 char mbbuffer[MB_LEN_MAX] = { '\0' };
 wchar_t wcs[] = L"Wir stehen auf den Füßen von Riesen";
 int n = 0, i = 0;

 printf("The current locale is %s.\n", setlocale(LC_CTYPE, ""));
 printf("The locale's multibyte encoding is %s.\n",
 (wctomb(NULL, L'\0') ? "stateful" : "stateless"));
 do {
 n += wctomb(mbbuffer, wcs[i]);
 } while (wcs[i++] != L'\0');

 printf("The wide string \"%ls\" \nis %u wide characters long.\n"
 "Its multibyte representation requires a buffer of %u bytes.\n",
 wcs, wcslen(wcs), n);

This code produces output like this:

The current locale is en_US.UTF-8.
The locale's multibyte encoding is stateless.
The wide string "Wir stehen auf den Füßen von Riesen"
is 35 wide characters long.
Its multibyte representation requires a buffer of 38 bytes.

Lib
rary

Functio
ns

Standard Library Functions | 655

See Also

wctob(), wcrtomb(), wcstombs(), and wcsrtombs(); btowc(), mbtowc(), mbrtowc(),
mbstowcs(), and mbsrtowcs(); the corresponding secure functions

wctomb_s C11wctomb_s C11

Converts a wide character to a multibyte character, or determines whether the
multibyte encoding is stateful.

#include <stdlib.h>
errno_t wctomb_s(int * restrict status, char * restrict s,
 rsize_t smax, wchar_t wc);

Like wctomb(), the secure function wctomb_s() determines the multibyte represen‐
tation that corresponds to the wide-character value wc, and stores it—including any
necessary shift sequences—in the char array addressed by the pointer argument s.
The length of the multibyte character—that is, the number of bytes written to repre‐
sent it—is always less than or equal to the value of MB_CUR_MAX. The two functions
differ in the following respects:

• The function wctomb_s() provides information about the statefulness of the
multibyte encoding, not as the return value but in the int variable addressed
by the pointer argument status:
If s is not a null pointer, wctomb_s() stores in the object addressed by status
the length of the multibyte character, or -1 if the value of wc does not corre‐
spond to a valid multibyte character.
If s is a null pointer, wctomb_s() stores in the object addressed by status the
value zero if the multibyte character encoding is not stateful, and a nonzero
value if it is stateful.

• The function wctomb_s() tests the following runtime constraints: if s is not a
null pointer, then the value of smax, specifying the size of the char array
addressed by s, must not be less than the length of the multibyte character to
be written, and must not be greater than RSIZE_MAX. If s is a null pointer, then
the length argument smax must be zero.
The variable addressed by status is not modified if a violation of the runtime
constraints occurs.

The wctomb_s() function returns zero if no error occurs. If a violation of the run‐
time constraints occurs, or if the value of wc does not correspond to any valid multi‐
byte character, the function returns a nonzero value.
Example

#define __STDC_WANT_LIB_EXT1__ 1 // For wctomb_s()
#include <stdlib.h>
// ...
int main()

656 | Chapter 18: Standard Library Functions

{
 setlocale(LC_ALL, "en_US.utf8");

 wchar_t wc = L'\u03B1'; // Greek lowercase alpha α
 char mbStr[MB_CUR_MAX];
 int nBytes = 0;

// if((nBytes = wctomb(mbStr, wc)) < 0)
// is equivalent to
 if(wctomb_s(&nBytes, mbStr, sizeof(mbStr), wc) != 0)
 { /* error: */ return -1; }
 printf("Wide-character code: %#06x; character: '%lc'; "
 "multibyte code:", wc, wc);
 for(int i = 0; i < nBytes; ++i)
 printf(" %#04x", (unsigned char)mbStr[i]);
 putchar('\n');
 return 0;
}

This example generates the following output:

Wide-character code: 0x03b1; character: 'α'; multibyte code: 0xce 0xb1
See Also

wctob(), wctomb(), wcrtomb(), wcrtomb_s()

wctranswctrans

Provides a transformation argument for towctrans().

#include <wctype.h>
wctrans_t wctrans(const char *property);

The wctrans() function obtains a value of type wctrans_t that you can use as an
argument to the towctrans() function, and that represents a wide-character map‐
ping in the current locale. The permissible values of the string argument property
depend on the current locale setting for the LC_CTYPE category, but "tolower" and
"toupper" are permissible values in all locales. If the string addressed by property
does not identify a valid mapping, wctrans() returns 0.
Example

See the example for towctrans() in this chapter.
See Also

towctrans(), towupper(), towlower()

wctypewctype

Provides a property argument for iswctype().

#include <wctype.h>
wctype_t wctype(const char *property);

Lib
rary

Functio
ns

Standard Library Functions | 657

The wctype() function constructs a value with type wctype_t that describes a class
of wide characters identified by the string argument property.

If property identifies a valid class of wide characters according to the LC_CTYPE cat‐
egory of the current locale, the wctype() function returns a nonzero value that is
valid as the second argument to the iswctype() function; otherwise, it returns 0.

The strings listed in the description of the iswctype() func‐
tion are valid in all locales as property arguments to the
wctype() function.

Example
wctype_t wct_kanji, wct_kata, wct_hira /* , ... */ ;

setlocale(LC_CTYPE, "ja_JP.UTF-8");

if ((wct_kata = wctype("jkata")) == 0)
 { wprintf(L"The locale doesn't support the wide-character type "
 "string \"jkata\".\n"); return -1; }
/* ... */
wc = fgetwc(stdin);
if (iswctype(wc, wct_kata)) // Mainly 0xFF66 − 0xFF9F.
 wprintf(L"%lc is a katakana character.\n", wc);

See Also

iswctype()

wmemchrwmemchr

Searches a memory block for a given wide-character value.

#include <wchar.h>
wchar_t *wmemchr(const wchar_t *buffer, wchar_t wc, size_t n);

The wmemchr() function searches for a wide character with the value of wc in a
buffer of n wide characters beginning at the address in the pointer argument
buffer. The function returns a pointer to the first occurrence of the specified wide
character in the buffer, or a null pointer if the wide character does not occur within
the specified number of wide characters.
Example

See the example for wmemcpy() in this chapter.
See Also

wcschr(), wcsrchr(), wcsstr(), wcsspn(), and wcscspn(); memchr(), strchr(),
strrchr(), strstr(), strspn(), and strcspn()

658 | Chapter 18: Standard Library Functions

wmemcmpwmemcmp

Compares two blocks of wide characters.

#include <wchar.h>
int wmemcmp(const wchar_t * restrict b1, const wchar_t * restrict b2,
 size_t n);

The wmemcmp() function compares the contents of two memory blocks of n wide
characters, beginning at the addresses in b1 and b2, until it finds a pair of wide char‐
acters that don’t match. The function returns a value greater than 0 if the mis‐
matched wide character is greater in b1, or less than 0 if the first mismatched wide
character is greater in b2, or 0 if the two buffers are identical over n wide characters.
Example

#define BUFFERSIZE 4096

wchar_t first[BUFFERSIZE] = { L'\0' };
wchar_t second[BUFFERSIZE] = { L'\0' };

/* ... read some data into the two buffers ... */

if (wmemcmp(first, second, BUFFERSIZE) == 0)
 printf("The two buffers contain the same wide-character text.\n");

See Also

wcscmp(), memcmp(), strcmp()

wmemcpy, wmemcpy_swmemcpy, wmemcpy_s

Copies the contents of a block of wide characters.

#include <wchar.h>
wchar_t *wmemcpy(wchar_t * restrict dest, const wchar_t * restrict src,
 size_t n);
errno_t wmemcpy_s(wchar_t * restrict dest, rsize_t destmax,
 const wchar_t * restrict src, rsize_t n);

The wmemcpy() function copies n successive wide characters beginning at the
address in src to the location beginning at the address in dest. The return value is
the same as the first argument, dest. The two pointer values must be at least n wide
characters apart so that the source and destination blocks do not overlap; otherwise,
the function’s behavior is undefined. For overlapping blocks, use wmemmove().

Like wmemcpy(), the function wmemcpy_s() copies a block of n wide characters.
Unlike wmemcpy(), however, wmemcpy_s() has the additional parameter destmax,
which specifies the size of the destination block as a number of wide characters. The
secure version also tests the following runtime constraints: the pointers dest and
src must not be null pointers. The values of destmax and n must not be greater than

Lib
rary

Functio
ns

Standard Library Functions | 659

RSIZE_MAX, and n must not be greater than destmax. The two memory blocks
addressed by src and dest must not overlap.

If any of the runtime constraints is violated, wmemcpy_s() fills the destination block
with null wide characters, provided dest is not a null pointer and destmax is not
greater than RSIZE_MAX.

The function wmemcpy_s() returns zero on success, or a nonzero value if a violation
of the runtime constraints occurs.
Example

#define BUFFERSIZE 2048 // Size as a number of wchar_t elements.

wchar_t inputbuffer[BUFFERSIZE] = { L'\0' },
 *writeptr = inputbuffer;

struct block { wchar_t *text;
 struct block *next;
 struct block *prev;
} firstblock = { NULL }, // The first block is the list head.
 *tmp = NULL;

struct block *newblock(struct block *lastblock);
 // Creates a linked-list member.
wchar_t *storetext(struct block *listhead,
 wchar_t *buffer,
 size_t bufsize);
 // Copies input buffer to a new linked-list member.

int main()
{

 while(fgetws(writeptr, BUFFERSIZE − (writeptr−inputbuffer), stdin)
 != NULL)
 {
 // Set writeptr to end of the input string:
 writeptr = wmemchr(inputbuffer, L'\0',
 sizeof(inputbuffer) / sizeof(wchar_t));

 if (BUFFERSIZE − (writeptr − inputbuffer) < 80)
 // If block full, or nearly so:
 { // copy buffer to a data block.
 writeptr = storetext(&firstblock, inputbuffer, BUFFERSIZE);
 if (writeptr == NULL) // Out of memory!
 abort();
 }
 } // Here if fgetws() returns NULL.
 writeptr = storetext(&firstblock, inputbuffer, BUFFERSIZE);
 if (writeptr == NULL) // Out of memory!
 abort();
}
// ----------------------------

660 | Chapter 18: Standard Library Functions

wchar_t *storetext(struct block *listhead,
 wchar_t *buffer, size_t bufsize)
 // Copies input buffer to a new chained-list member;
 // returns pointer to input buffer, or NULL on failure.
{
 struct block *tmp = listhead; // create new block on end of list ...
 while (tmp->next != NULL)
 tmp = tmp->next;
 if ((tmp = newblock(tmp)) != NULL)
 wmemcpy(tmp->text, buffer, bufsize); // ... and copy the text.
 // Or:
 // wmemcpy_s(tmp->text, BUFFERSIZE, buffer, bufsize);
 else // Out of memory!
 return NULL;

#ifdef DEBUG
 fwprintf(stderr, L"\nStored a block with this text:\n%ls\n",
 tmp->text);
#endif

 return buffer; // Return pointer to buffer, now ready for reuse.
}
// ----------------------------
struct block *newblock(struct block *lastblock)
 // Allocates a new block and appends it to the chained list;
 // returns pointer to new block, or NULL on failure.
{
 if ((lastblock->next = malloc(sizeof(struct block))) != NULL
 && (lastblock->next->text
 = malloc(BUFFERSIZE * sizeof(wchar_t))) != NULL)
 {
 lastblock->next->prev = lastblock;
 lastblock->next->next = NULL;
 return lastblock->next;
 }
 else // Out of memory!
 return NULL;
}

See Also

wmemmove(), wcscpy(), wcsncpy(), memcpy(), strcpy(), strncpy(), memmove(); the
corresponding secure functions, if the implementation supports the C11 bounds-
checking functions (i.e., if the macro __STDC_LIB_EXT1__ is defined)

wmemmove, wmemmove_swmemmove, wmemmove_s

Copies the contents of a block of wide characters.

#include <wchar.h>
wchar_t *wmemmove(wchar_t *dest, const wchar_t *src, size_t n);

Lib
rary

Functio
ns

Standard Library Functions | 661

errno_t wmemmove_s(wchar_t *dest, rsize_t destmax,
 const wchar_t *src, rsize_t n);

The wmemmove() function copies n successive wide characters beginning at the
address in src to the location beginning at the address in dest. The return value is
the same as the first argument, dest. If the source and destination blocks overlap,
copying takes place as if through a temporary buffer; after the function call, each
original value from the src block appears in dest.

Like wmemmove(), the function wmemmove_s() copies a block of n wide characters.
Unlike wmemmove(), however, wmemmove_s() has the additional parameter destmax,
which specifies the size of the destination block as a number of wide characters. The
function tests the following runtime constraints: the pointers dest and src must not
be null pointers. The values of destmax and n must not be greater than RSIZE_MAX,
and n must not be greater than destmax.

If any of the runtime constraints is violated, wmemmove_s() fills the destination block
with null wide characters, provided dest is not a null pointer and destmax is not
greater than RSIZE_MAX.

The function wmemmove_s() returns zero on success, or a nonzero value if a viola‐
tion of the runtime constraints occurs.
Example

#define LINESIZE 2048 // Sizes as numbers of wchar_t elements.
FILE *fp_input, *fp_tmp;
w_char inputblock[LINESIZE*128], *writeptr;

/* ... Input some lines to the input block ... */

/* Dump most of the block to a temporary file: */
fp_tmp = tmpfile();
fwrite(inputblock, sizeof(wchar_t), LINESIZE*127, fp_tmp);

/* ... push the rest of the block to the front ... */
wmemmove(inputblock, inputblock + LINESIZE*127, LINESIZE);
// or
// wmemmove_s(inputblock, sizeof(inputblock)/sizeof(wchar_t),
// inputblock + LINESIZE*127, LINESIZE);

/* ... and continue input: */
writeptr -= LINESIZE*127;
/* ... */

See Also

wmemcpy() and wcsncpy(); memmove(), memcpy(), and strncpy(); the correspond‐
ing secure functions, if the implementation supports the C11 bounds-checking
functions (i.e., if the macro __STDC_LIB_EXT1__ is defined)

662 | Chapter 18: Standard Library Functions

wmemsetwmemset

Sets all wide characters in a memory block to a given value.

#include <wchar.h>
wchar_t *wmemset(wchar_t *buffer, wchar_t c, size_t n);

The wmemset() function sets each wide character in a block of n wide characters to
the value c, beginning at the address in dest. The return value is the same as the
pointer argument dest.
Example

#define BLOCKSIZE 2048 // Size as a number of wchar_t elements.
wchar_t *inputblock;

if ((inputblock = malloc(BLOCKSIZE * sizeof(wchar_t))) != NULL)
 wmemset(inputblock, L'~', BLOCKSIZE);
/* ... */

See Also

memset(), calloc()

wprintf, wprintf_swprintf, wprintf_s

Prints formatted wide-character string output.

#include <wchar.h>
int wprintf(const wchar_t * restrict format, ...);
int wprintf_s(const wchar_t * restrict format, ...); (C11)

The functions wprintf() and wprintf_s() are equivalent to the printf() and
printf_s() functions except that the format string is a wide-character string and
the functions write wide characters to stdout.
Example

See the examples for iswalnum() and wscanf() in this chapter.
See Also

swprintf() and fwprintf(), declared in stdio.h and wchar.h; vwprint(),
vfwprint(), and vswprint(), declared in stdarg.h; printf(), fprintf(),
sprintf(), and snprintf(), declared in stdio.h; vprintf(), vfprintf(),
vsprintf(), and vsnprintf(), declared in stdarg.h; the wscanf() input functions.
Argument conversion in the printf() family of functions is described in detail
under printf() in this chapter.

For each of these functions, there is also a corresponding “secure” function, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined) Lib

rary
Functio

ns

Standard Library Functions | 663

wscanf, wscanf_swscanf, wscanf_s

Reads in formatted wide-character data from standard input.

#include <stdio.h>
#include <wchar.h>
int wscanf(const wchar_t * restrict format, ...);
int wscanf_s(const wchar_t * restrict format, ...); (C11)

The functions wscanf() and wscanf_s() are similar to scanf() and scanf_s(),
except that the format string and the input stream consist of wide characters. The
conversion specifications are the same as for the function scanf(), except those
described in Table 18-13.

Table 18-13. wscanf() conversion specifications that differ from scanf()

Conversion specification Argument type Remarks

%c char * Conversion as by wcrtomb()

%lc wchar_t * No conversion, no string terminator

%s char * Conversion as by wcrtomb()

%ls wchar_t * No conversion

Example
wchar_t perms[12];
wchar_t name[256];
unsigned int ownerid, groupid, links;
unsigned long size;
int count;

count = wscanf(L"%11l[rwxsStTld+]%u%u%u%lu%*10s%*5s%256ls",
 perms, &links, &ownerid, &groupid, &size, name);

wprintf(L"The file %ls has a length of %lu bytes.\n", name, size);

Assume that this code is executed with the following input (produced by the Unix
command ls -ln --time-style=long-iso):

-rw-r--r-- 1 1001 1001 15 2005-03-01 17:23 überlänge.txt

The wscanf() function call in the example copies the string "-rw-r--r--" to the
array perms, and assigns the integer values 1 to the links variable, 1,001 to ownerid
and groupid, and 15 to size. Then it reads and discards the date-and-time informa‐
tion, and copies the rest of the input string, up to a maximum length of 256 wide
characters, to the name array. The resulting output is:

The file überlänge.txt has a length of 15 bytes.

664 | Chapter 18: Standard Library Functions

See Also

fwscanf(), swscanf(); wcstod(), wcstol(), wcstoul(); scanf(), fscanf(),
sscanf(); the wide-character output functions fwprintf(), wprintf(),
vfwprint(), and vwprint()

For each of these functions there is also a corresponding “secure” function, if the
implementation supports the C11 bounds-checking functions (i.e., if the macro
__STDC_LIB_EXT1__ is defined)

Lib
rary

Functio
ns

Standard Library Functions | 665

III
Basic Tools

19
Compiling with GCC

This chapter explains how to use GCC to compile executable programs from C
source code. First, we present the basic program control options in the order of the
corresponding steps in the compiling process. Then we look at how you can use
GCC’s warning options to troubleshoot your programs. Finally, we summarize the
options for optimized compiling.

This chapter should provide you with a basic working knowledge of GCC. If you
later need information on special details, such as architecture-specific or system-
specific options, this basic orientation will enable you to find what you need in the
GCC manual. The manual is included in Texinfo format in the GCC distribution,
and is also available in PostScript and HTML formats.

The GNU Compiler Collection
GCC originally stood for the “GNU C Compiler.” Since its beginnings, the program
has grown to support a number of other programming languages besides C, includ‐
ing C++, Ada, Objective-C, Fortran, and Java. The acronym GCC has therefore
been redefined to mean “GNU Compiler Collection.” The compiler incorporates a
number of frontends to translate different languages. In this book, of course, we are
concerned only with the C frontend.

GCC is also a multitarget compiler; in other words, it has interchangeable backends
to produce executable output for a number of different computer architectures. As
the modular concept would suggest, GCC can also be used as a cross-compiler; that
is, you can produce executable programs for machines and operating systems other
than the one GCC is running on. However, doing so requires special configuration
and installation, and most GCC installations are adapted to compile programs only
for the system on which they are hosted.

669

http://gcc.gnu.org/onlinedocs/

GCC not only supports many “dialects” of C, but also distinguishes between them;
that is, you can use command-line options to control which C standard the com‐
piler adheres to in translating your source code. For example, when you start GCC
with the command-line argument -std=c99, the compiler supports the C99 stan‐
dard. Support for the C11 standard in GCC is incomplete, especially in regard to the
multithreading functions declared in the header thread.h. This is because GCC’s C
library has long supported very similar multithreading capabilities under the POSIX
standard. For more details, see the page on C11 support in the GCC developers’
wiki.

Obtaining and Installing GCC
If you have a Unix-like system, there’s a fair chance that GCC is already installed. To
find out, type cc --version at the command prompt. If GCC is installed and linked
to the default C compiler name cc, you will see the compiler’s version number and
copyright information:

$ cc --version

cc (GCC) 4.9.2
Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

In the examples in this chapter, the dollar sign ($) at the
beginning of a line represents the command prompt. The text
that follows it is a command line that you would enter at a
console to invoke GCC (or whatever program is named in the
command).

It’s possible that GCC is installed but not linked to the program name cc. Just in
case, try calling the compiler by its proper name:

$ gcc --version

If GCC is not installed, consult your system vendor to see whether GCC is available
in a binary package for your system’s software installation mechanism. GCC binary
packages are also included in free software systems such as MacPorts and Home‐
brew for OS X, and Cygwin and MinGW for Windows.

Cygwin is an extensive collection of GNU and other open source tools that provide
a Unix-like environment, oriented after the POSIX standard, on Windows. The
foundation of Cygwin is the dynamically shared library cygwin1.dll, which provides
Unix-like system functions to the Cygwin programs while interacting with the
underlying Windows system. Programs compiled with GCC for Cygwin also
require the runtime library cygwin1.dll. The Cygwin setup program initially installs
the base packages, and launches a package manager in which you can select other

670 | Chapter 19: Compiling with GCC

https://gcc.gnu.org/wiki/C11Status
https://www.macports.org/
http://brew.sh/
http://brew.sh/
http://cygwin.org/
http://www.mingw.org/
https://cygwin.com

Cygwin software to install, including gcc, make, and gdb. You can run the setup pro‐
gram at any time to add, remove, and update programs.

MinGW also provides the GCC compiler for Windows, but unlike Cygwin, the
MinGW version of GCC generates native 32-bit Windows programs that require no
special runtime library. The variant MinGW-w64, also called MinGW64, can also
produce 64-bit programs. You can install the latest version of MinGW using the
setup program available at http://sourceforge.net/projects/mingw or http://source
forge.net/projects/mingw-w64.

Note that the Cygwin package manager also allows you to install MinGW-GCC
packages. GCC then functions as a cross-compiler, running on Cygwin but produc‐
ing Windows programs that do not use cygwin1.dll.

The GCC website maintains a list of GCC binary packages compiled by third parties
for a variety of systems at http://gcc.gnu.org/install/binaries.html. Otherwise, if your
system has another C compiler, you can obtain the source code of GCC from the
Free Software Foundation and compile it on your system according to the step-by-
step instructions at http://gcc.gnu.org/install/.

Compiling C Programs with GCC
When you run GCC, its default behavior is to produce an executable program file
from one or more specified source code files. To start with a simple example, we’ll
run GCC to make a finished executable program from the C source code in
Example 1-1:

$ gcc -Wall circle.c

This command line contains only the compiler’s name, the source filename, and one
option: -Wall instructs GCC to print warnings if it finds certain problems in the
program (see “Compiler Warnings” on page 683 for more information). If there are
no errors in the source code, GCC runs and exits without writing to the screen. Its
output is a program file in the current working directory with the default name
a.out (in Windows, the default name is a.exe). We can run this new program file:

$./a.out

The program then produces the screen output shown in Example 1-1.

If you do not want the executable program file to be named a.out, you can specify
an output filename on the command line using the -o option:

$ gcc -Wall -o circle circle.c

This command produces the same executable, but it is now named circle.

Step by Step
The following sections present GCC options to let you control each stage of the
compiling process: preprocessing, compiling, assembling, and linking. You can also
perform the individual steps by invoking separate tools, such as the C preprocessor

C
o

m
p

iling
w

ith G
C

C

Compiling C Programs with GCC | 671

http://sourceforge.net/projects/mingw
http://sourceforge.net/projects/mingw-w64
http://sourceforge.net/projects/mingw-w64
http://gcc.gnu.org/install/binaries.html
http://gcc.gnu.org/install/

cpp, the assembler as, and the linker ld. GCC can also be configured to use such
external programs on a given host system. For the sake of a uniform overview, how‐
ever, this chapter shows you how to perform all four steps by invoking GCC and
letting it control the process.

Preprocessing
Before submitting the source code to the compiler, the preprocessor executes direc‐
tives and expands macros in the source files (see steps 1 through 4 in “The C Com‐
piler’s Translation Phases” on page 19). GCC ordinarily leaves no intermediate out‐
put file containing the results of this preprocessing stage. However, you can save the
preprocessor output for diagnostic purposes by using the -E option, which directs
GCC to stop after preprocessing. The preprocessor output is directed to the stan‐
dard output stream, unless you indicate an output filename using the -o option:

$ gcc -E -o circle.i circle.c

Because header files can be large, the preprocessor output from source files that
include several headers is often unwieldy.

You may find it helpful to use the -C option as well, which prevents the preprocessor
from removing comments from source and header files:

$ gcc -E -C -o circle.i circle.c

The following commonly used options affect GCC’s behavior in the preprocessor
phase:

-Dname[=definition]

Defines the symbol name before preprocessing the source files. The macro name
must not be defined in the source and header files themselves. Use this option
together with #ifdef name directives in the source code for conditional compil‐
ing. If you do not specify a replacement value, the macro is defined with the
value 1.

-Uname

“Undefines” the symbol name, if defined on the command line or in GCC’s
default settings. The -D and -U options are processed in the order in which they
occur on the command line.

-Idirectory[:directory[…]]

When header files are required by #include directives in the source code,
search for them in the specified directory (or directories), in addition to the
system’s standard include directories.

-iquote directory[:directory[…]]
This option is new in recent versions of GCC, and specifies a directory to be
searched for header files named in quotation marks, not angle brackets, in an
#include directive.

672 | Chapter 19: Compiling with GCC

-isystem directory[:directory[…]]
This option specifies a directory to be searched for system header files in addi‐
tion to, and before, the standard system include directories. An equals sign at
the beginning of the directory specification is treated as a placeholder for the
system root directory, which you can modify for this purpose using the
--sysroot or -isysroot option.

-isysroot directory
This option specifies the system root directory for the purpose of searching for
header files. For example, if the compiler would ordinarily search for system
header files in /usr/include and its subdirectories, this option causes it to search
for them in directory/usr/include and its subdirectories instead. (The
--sysroot option, with a second hyphen instead of the i, does the same thing
for library searches—or for both library and header file searches if no isysroot
option is present.)

-I-
This deprecated option has been made unnecessary in newer GCC versions by
the -iquote option. It was formerly used to divide all the -Idirectory options
on the command line into two groups. All directories appended to an -I option
to the left of -I- are treated as if named in -iquote options; that is, they are
searched only for header files named in quotation marks in the #include direc‐
tive.

All directories appended to an -I option to the right of -I- are searched for
header files named in any #include directive, whether the filename is enclosed
in quotation marks or in angle brackets.

Furthermore, if -I- appears on the command line, then the directory contain‐
ing the source file itself is no longer automatically searched first for header
files.

The usual search order for include directories is:

1. The directory containing the given source file (for filenames given in quotation
marks in an #include directive).

2. Directories specified by -iquote options, in command-line order. These direc‐
tories are searched only for header files named in quotation marks in the
#include directive.

3. Directories specified by -I options, in command-line order.

4. Directories specified in the environment variable CPATH.

5. Directories specified by -isystem options, in command-line order.

6. Directories specified in the environment variable C_INCLUDE_PATH.
7. The system’s default include directories.

C
o

m
p

iling
w

ith G
C

C

Compiling C Programs with GCC | 673

1 Actually, as a retargetable compiler, GCC doesn’t translate C statements directly into the target
machine’s assembly language, but uses an intermediate language called Register Transfer Language
or RTL, between the input language and the assembly-language output. This abstraction layer
allows the compiler to choose the most economical way of coding a given operation in any con‐
text. Furthermore, an abstract description of the target machine in an interchangeable file pro‐
vides a structured way to retarget the compiler to new architectures. From the point of view of
GCC users, though, we can ignore this intermediate step.

See also the section on #include directives, “Inserting the Contents of Header Files”
on page 262.

Compiling
At the heart of the compiler’s job is the translation of C programs into the machine’s
assembly language.1 Assembly language is a human-readable programming lan‐
guage that correlates closely to the actual machine code. Consequently, there is a
different assembly language for each CPU architecture.

Assembly language is often referred to more simply as
“assembler.” Strictly speaking, however, the term “assembler”
refers to the program that translates assembly language into
machine code. In this chapter, we use “assembly language” to
refer to the human-readable code and “assembler” to refer to
the program that translates assembly language into a binary
object file.

Ordinarily, GCC stores its assembly-language output in temporary files, and deletes
them immediately after the assembler has run. But you can use the -S option to stop
the compiling process after the assembly-language output has been generated. If
you do not specify an output filename, GCC with the-S option creates an assembly-
language file with a name ending in .s for each input file compiled. Here is an
example:

$ gcc -S circle.c

The compiler preprocesses circle.c and translates it into assembly language, and
saves the results in the file circle.s. To include the names of C variables as comments
on the assembly language statements that access those variables, use the additional
option -fverbose-asm:

$ gcc -S -fverbose-asm circle.c

Assembling
Because each machine architecture has its own assembly language, GCC invokes an
assembler on the host system to translate the assembly-language program into exe‐
cutable binary code. The result is an object file, which contains the machine code to

674 | Chapter 19: Compiling with GCC

perform the functions defined in the corresponding source file, and also contains a
symbol table describing all objects in the file that have external linkage.

If you invoke GCC to compile and link a program in one command, then its object
files are only temporary, and are deleted after the linker has run. Most often, how‐
ever, compiling and linking are done separately. The -c option instructs GCC not to
link the program but to produce an object file with the filename ending .o for each
input file:

$ gcc -c circle.c

This command produces the object file circle.o.

You can use GCC’s option -Wa to pass command-line options to the assembler itself.
For example, suppose we want the assembler to run with the following options:

-as=circle.sym
Print the module’s symbol table in a separate listing, and save the specified list‐
ing output in a filenamed circle.sym.

-L
Include local symbols—that is, symbols representing C identifiers with internal
linkage—in the symbol table. (Don’t confuse this assembler option with the
GCC option -L!)

We can have GCC add these options to its invocation of the assembler by appending
them as a comma-separated list to GCC’s own-Wa option:

$ gcc -v -o circle -Wa,-as=circle.sym,-L circle.c

The list must begin with a comma after -Wa and contain no spaces. You can also use
additional -Wa options in the same command. The -v option, which makes GCC
print the options applied at each step of compiling, allows you to see the resulting
assembler command line (along with a great deal of other information).

You can append several switches to the assembler’s -a option to control the listing
output. For a full reference, see the assembler’s manual. The default listing output,
produced when you simply specify -a with no additional switches, contains the
assembly language code followed by the symbol table.

GCC’s -g option makes the compiler include debugging information in its output. If
you specify the -g option in addition to the assembler’s -a option, then the resulting
assembly language listing is interspersed with the corresponding lines of C source
code:

$ gcc -g -o circle -Wa,-a=circle.list,-L circle.c

The resulting listing file, circle.list, allows you to examine, line by line, how the com‐
piler has translated the C statements in the program circle.

C
o

m
p

iling
w

ith G
C

C

Compiling C Programs with GCC | 675

Linking
The linker joins a number of binary object files into a single executable file. In the
process, it has to complete the external references among your program’s various
modules by substituting the final locations of the objects for the symbolic refer‐
ences. The linker does this using the same information that the assembler provides
in the symbol table.

Furthermore, the linker must also add the code for any C standard library functions
you have used in your program. In the context of linking, a library is simply a set of
object files collected in a single archive file for easier handling.

When you link your program to a library, only its member
object files containing the functions you use are actually
linked into your program. To make libraries of your own out
of object files that you have compiled, use the utility ar. See its
manual page for information.

The bulk of the standard library functions are ordinarily in the file libc.a (the end‐
ing .a stands for “archive”) or in a shareable version for dynamic linking in libc.so
(the ending .so stands for “shared object”). These libraries are generally in /lib/
or /usr/lib/, or in another library directory that GCC searches by default.

Non-standard libraries. Certain functions are contained in separate library files,
and for many applications you will want to use library functions that are not part of
the C standard library. To see how to link such libraries, let’s write another version
of circle.c from Example 1-1 that uses the ncurses console output library available
on many systems.

Example 19-1. A version of circle.c with ncurses console output

// circle.c: Calculate the areas of circles and
// print them in ncurses mode

#include <curses.h> // Console control functions
double circularArea(double r); // Function for the math
void circle(); // Function for output

int main() // Starts and stops curses display mode
{

/* Set up the console behavior: */
 (void) initscr(); // Initialize the curses system
 keypad(stdscr, TRUE); // Enable keyboard mapping
 (void) nonl(); // Disable line-end translation
 (void) cbreak(); // Take single input characters

/* Run the circle routine: */

676 | Chapter 19: Compiling with GCC

 circle();
 printw("Press any key to exit.");
 refresh(); // Put the output on the screen

/* Finish: */
 getch(); // Wait for user to press a key
 endwin(); // Shut down the ncurses console
 return 0;
}

// The circle.c program from Example 1.1 but replacing the
// standard library function printf() with printw() from the
// ncurses library.
void circle()
{
 double radius = 1.0, area = 0.0;
 printw(" Areas of Circles\n\n");
 printw(" Radius Area\n"
 "-------------------------\n");
 area = circularArea(radius);
 printw("%10.1f %10.2f\n", radius, area);
 radius = 5.0;
 area = circularArea(radius);
 printw("%10.1f %10.2f\n", radius, area);
}

// Return the area of a circle with radius r
double circularArea(double r)
{
 const double pi = 3.1415926536; // Pi is a constant
 return pi * r * r;
}

Example 19-1 adds the directive #include <curses.h> at the beginning of the
source file to declare the new external functions, because the ncurses functions
initscr(), printw(), refresh(), etc. are not defined in the source code, nor in the
C standard library. To compile this circle.c, we have to use the -l option to link the
ncurses library as well:

$ gcc -o circle circle.c -lncurses

The filename of the ncurses library is libncurses.a. (On systems that support
dynamic linking, GCC automatically uses the shared library libncurses.so, or libncur‐
ses.dylib on Darwin if it is available. See “Dynamic Linking and Shared Object Files”
on page 680 for more details.) The prefix lib and the suffix .a are standard, and GCC
adds them automatically to whatever base name follows the -l on the command
line—in this case, ncurses.

Normally, GCC automatically searches for a file with the library’s name in standard
library directories, such as /usr/lib. There are three ways to link a library that is not
in a path where GCC searches for it. One is to present GCC with the full path and

C
o

m
p

iling
w

ith G
C

C

Compiling C Programs with GCC | 677

filename of the library as if it were an object file. For example, if the library were
named libncurses.a and located in /usr/local/lib, the following command would
make GCC compile circle.c, and then link the resulting circle.o with libncurses.a:

$ gcc -o circle circle.c /usr/local/lib/libncurses.a

In this case the library filename must be placed after the name of the source or
object files that use it. This is because the linker works through the files on its com‐
mand line sequentially, and does not go back to an earlier library file to resolve a
reference in a later object.

The second way to link a library that is not in GCC’s search path is to use the -L
option to add another directory for GCC to search for libraries:

$ gcc -o circle -L/usr/local/lib -lncurses circle.c

You can add more than one library directory either by using multiple -L options, or
by using one -L followed by a colon-separated path list. The third way to make sure
GCC finds the necessary libraries is to make sure that the directories containing
your libraries are listed in the environment variable LIBRARYPATH.

Passing options to the linker. You can pass options directly to the linker stage
using-Wl followed by a comma-separated list, as in this command:

$ gcc -lncurses -Wl,-Map,circle.map circle.c circulararea.c

The option -Wl,-Map,circle.map on the GCC command line passes the option
-Map,circle.map to the linker command line, instructing the linker to print a link
script and a memory map of the linked executable to the specified file, circle.map.

The list must begin with a comma after -Wl, and must contain no spaces. In case of
doubt, you can use several -Wl options in the same GCC command line. Use the -v
option to see the resulting linker command.

All of the above
There is another GCC option that offers a convenient way to obtain all the inter‐
mediate output files at once, and that is -save-temps. When you use that option,
GCC will compile and link normally, but will save all preprocessor output, assembly
language, and object files in the current directory. The intermediate files produced
with the -save-temps option have the same base filename as the corresponding
source files, with the endings .i, .s, and .o for preprocessor output, assembly lan‐
guage, and object files, respectively.

None of the above
If you invoke GCC with the option -fsyntax-only, it does not preprocess, compile,
assemble, or link. It merely tests the input files for correct syntax. See also “Com‐
piler Warnings” on page 683.

678 | Chapter 19: Compiling with GCC

Multiple Input Files
In Chapter 1, we went on to divide circle.c into two separate source files (see Exam‐
ples 1-2 and 1-3). Compiling multiple source files results in multiple object files,
each containing the machine code and symbols corresponding to the objects in one
source file. GCC uses temporary files for the object output, unless you use the
option -c to instruct it to compile only, and not link:

$ gcc -c circle.c
$ gcc -c circulararea.c

These commands produce two object files in the current working directory named
circle.o and circulararea.o. You can achieve the same result by putting both source
filenames on one GCC command line:

$ gcc -c circle.c circulararea.c

In practice, however, the compiler is usually invoked for one small task at a time.
Large programs consist of many source files, which have to be compiled, tested, edi‐
ted, and compiled again many times during development, and very few of the
changes made between builds affect all source files. To save time, a tool such as
make (see Chapter 20) controls the build process, invoking the compiler to recom‐
pile only those object files that are older than the latest version of the corresponding
source file.

Once all the object files have been compiled from current source files, you can use
GCC to link them:

$ gcc -o circle circle.o circulararea.o -lncurses

GCC assumes that files with the filename extension .o are object files to be linked.

File types
The compiler recognizes a number of file extensions that pertain to C programs,
interpreting them as follows:

.c
C source code, to be preprocessed before compiling.

.i
C preprocessor output, ready for compiling.

.h
C header file. (To save time compiling many source files that include the same
headers, GCC allows you to create “precompiled header” files, which it then
uses automatically as appropriate.)

.s
Assembly language.

C
o

m
p

iling
w

ith G
C

C

Compiling C Programs with GCC | 679

.S
Assembly language with C preprocessor directives, to be preprocessed before
assembling.

GCC also recognizes the file extensions .ii, .cc, .cp, .cxx, .cpp, .CPP,
.c++, .C, .hh, .H, .m, .mi, .f, .for, .FOR, .F, .fpp, .FPP, .r, .ads, and .adb; these file types
are involved in compiling C++, Objective-C, Fortran, or Ada programs. A file with
any other filename extension is interpreted as an object file ready for linking.

If you use other naming conventions for your input files, you can use the option
-xfile_type to specify how GCC should treat them. file_type must be one of the
following: c, c-header, cpp-output, assembler (meaning that the file contains
assembly language), assembler-with-cpp, or none. All files that you list on the
command line following an -x option will be treated as the type that you specify. To
change types, use -x again. For example:

$ gcc -o bigprg mainpart.c -x assembler trickypart.asm -x c otherpart.c

You can use the -x option several times on the same command line to indicate files
of different types. The option -x none turns off the file type indication, so that sub‐
sequent filenames are interpreted according to their endings again.

Mixed input types
You can mix any combination of input file types on the GCC command line. The
compiler ignores any files that cannot be processed as you request. Here is an exam‐
ple:

$ gcc -c circle.c circulararea.s /usr/lib/libm.a

With this command line, assuming all the specified files are present, GCC compiles
and assembles circle.c, assembles circulararea.s, and ignores the library file, because
the -c option says not to do any linking. The results are two object files: circle.o and
circulararea.o.

Dynamic Linking and Shared Object Files
Shared libraries are special object files that can be linked to a program at runtime.
The use of shared libraries has a number of advantages: a program’s executable file is
smaller, and shared modules permit modular updating, as well as more efficient use
of the available memory.

To create a shared object file, use GCC’s -shared option. The input file must be an
existing object file. Here is a simple example using our circle program:

$ gcc -c circulararea.c
$ gcc -shared -o libcirculararea.so circulararea.o

The second of these two commands creates the shared object file libcirculararea.so.
To link an executable to a shared object file, name the object file on the command
line like any other object or library file:

680 | Chapter 19: Compiling with GCC

$ gcc -c circle.c
$ gcc -o circle circle.o libcirculararea.so -lncurses

This command creates an executable that dynamically links to libcirculararea.so at
runtime. Of course, you will also have to make sure that your program can find the
shared library at runtime—either by installing your libraries in a standard directory,
such as /usr/lib, or by setting an appropriate environment variable such as
LIBRARY_PATH. The mechanisms for configuring dynamic loading vary from one
system to another.

If shared libraries are available on your system but you want to avoid using them—
to exclude a potential opening for rogue code, for example—there are two ways to
build statically linked executables with GCC. One is to use the -static option, as in
the following command:

$ gcc -static -o circle circle.o circulararea.o -lncurses

The other is to specify a statically linking version of the external library instead of
using the -l option on the command line:

$ gcc -o circle circle.o circulararea.o /usr/lib/libncurses.a

The resulting program file may be much larger than the dynamically linked one,
however.

Freestanding Programs
In addition to the object and library files you specify on the GCC command line,
the linker must also link in the system-specific startup code that the program needs
in order to load and interact smoothly with the operating system. This code is
already on hand in a standard object file named crt0.o, which contains the actual
entry point of the executable program. (The crt stands for “C runtime.”) On most
systems, GCC also links programs by default with initialization and clean-up rou‐
tines in object files named crtbegin.o and crtend.o.

However, if you are writing a freestanding program, such as an operating system or
an application for an embedded microcontroller, you can instruct GCC not to link
this code by using the -ffreestanding and -nostartfiles options. The option
-nostdlib allows you to disable automatic linking to the C standard library. If you
use this option, you must provide your own versions of any standard functions used
in your program. Finally, in a freestanding environment, a C program need not
begin with main(). You can use the linking option -ename on the GCC command
line to specify an alternative entry point for your program.

C Dialects
When writing a C program, one of your first tasks is to decide which of the various
definitions of the C language applies to your program. GCC’s default dialect is
“GNU C11,” which is largely the ISO/IEC 9899:2011 standard, with a certain num‐
ber of extensions, and without the C11 standard’s optional multithreading features.

C
o

m
p

iling
w

ith G
C

C

C Dialects | 681

These extensions include many features that have since been standardized in C99—
such as complex floating-point types and long long integers—as well as other fea‐
tures that have not been adopted, such as complex integer types and zero-length
arrays. The full list of extensions is provided in the GCC documentation. To turn off
all the GNU C extensions, use the command-line option -ansi.

GCC’s language standardization options are:

-std=iso9899:1990, -std=c90, -std=c89, -ansi
These options all mean the same thing: conform to ISO/IEC 9899:1990, includ‐
ing Technical Corrigenda of 1994 and 1996. They do not mean that no exten‐
sions are accepted: only those GNU extensions that conflict with the ISO stan‐
dard are disabled, such as the typeof operator.

-std=iso9899:199409
Conform to “AMD1,” the 1995 internationalization amendment to ISO/IEC
9899:1990.

-std=iso9899:1999, -std=c99
Conform to ISO/IEC 9899:1999, with the Technical Corrigendum of 2001.
GCC supports nearly all provisions of C99. See http://gcc.gnu.org/c99status.html
for details.

-std=iso9899:2011, -std=c11
Conform to ISO/IEC 9899:2011. Support for the mandatory features of the C11
is largely complete (although the GNU standard C library, GLIBC, does not
support the multithreading features defined in threads.h). See https://
gcc.gnu.org/wiki/C11Status for details.

-std=gnu89, -std=gnu90
These options are equivalent and mean: Support ISO/IEC 9899:1990 and the
GNU extensions. This dialect was GCC’s default before version 5.

-std=gnu99
Conform to ISO/IEC 9899:1999 with the GNU extensions.

-std=gnu11
Conform to ISO/IEC 9899:2011 with the GNU extensions. The GNU dialect of
C11 is the default beginning in GCC version 5.

With any of these options, you must also add the option -pedantic if you want
GCC to issue all the warnings that are required by the given standard version, and
to reject all extensions that are prohibited by the standard. The option -pedantic-
errors causes compiling to fail when such warnings occur.

Earlier versions of GCC also offered a -traditional option, which was intended to
provide support for pre-ANSI or “K&R-style” C. Currently, GCC supports this
option only in the preprocessing stage, and accepts it only in conjunction with the
-E option, which directs GCC to perform preprocessing and then exit.

682 | Chapter 19: Compiling with GCC

https://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/c99status.html
https://gcc.gnu.org/wiki/C11Status
https://gcc.gnu.org/wiki/C11Status

Furthermore, a number of GCC options allow you to enable or disable individual
aspects of different standards and extensions. For example, the -trigraphs option
enables trigraphs (see “Digraphs and Trigraphs” on page 12) even if you have not
used the -ansi option. For the full list of available dialect options, see the GCC
manual.

Compiler Warnings
You’ll get two types of complaints from GCC when compiling a C program. Error
messages refer to problems that make your program impossible to compile. Warn‐
ings refer to conditions in your program that you might want to know about and
change—for stricter conformance to a given standard, for example—but that do not
prevent the compiler from finishing its job. You may be able to compile and run a
program in spite of some compiler warnings—although that doesn’t mean it’s a
good idea to do so.

GCC gives you very fine control over the warning messages that it provides. For
example, if you don’t like the distinction between errors and warnings, you can use
the -Werror option to make GCC stop compiling on any warning as if it were an
error. Other options let you request warnings about archaic or nonstandard usage,
and about many kinds of C constructs in your programs that are considered hazard‐
ous, ambiguous, or sloppy.

You can enable most of GCC’s warnings individually by using options that begin
with -W. For example, the option -Wswitch-default causes GCC to produce a
warning message whenever you use a switch statement without a default label,
and -Wsequence-point provides a warning when the value of an expression
between two sequence points depends on a subexpression that is modified in the
same interval (see “Side Effects and Sequence Points” on page 70).

The easiest way to request these and many other warnings from GCC is to use the
command-line option -Wall. However, the name of this option is somewhat mis‐
leading: -Wall does not enable all of the individual -W options. Quite a few more
must be asked for specifically by name, such as -Wshadow; this option gives you a
warning whenever you define a variable with block scope that has the same name
as, and thus “shadows,” another variable with a larger scope. Such warnings are not
among those produced by -Wall.

If you use the -Wall option but want to disable a subset of the warnings it causes,
you can insert no- after the -W in the names of individual warning options. For
example, -Wno-switch-default turns off warnings about switch statements
without default. Furthermore, the -w option (that’s a lowercase w) anywhere on the
command line turns off all warnings.

The option -Wextra (formerly named simply -W, with no suffix) adds warnings
about a number of legal but questionable expressions, such as testing whether an
unsigned value is negative or non-negative:

C
o

m
p

iling
w

ith G
C

C

Compiler Warnings | 683

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/

unsigned int u;
/* ... */
if (u < 0)
 { /* ... this block is never executed ... */ }

The -Wextra option also warns about expressions that have no side effects and
whose value is discarded. The full set of conditions it checks for is described in the
GCC reference manual.

Furthermore, if you are updating older programs, you may want to use
-Wtraditional to request warnings about constructs that have different meanings
in old-style C and ISO standard C, such as a string literal in a macro body that con‐
tains the macro’s argument:

#define printerror(x) fputs("x\n", stderr)

In older, “traditional” C, this macro would work as intended, but in ISO standard C,
it would print the letter “x” and a newline character each time you use it. Hence for
this line -Wtraditional would generate a warning such as the following:

file:line:column: warning: macro argument "x" would be stringified in
traditional C

Optimization
GCC can apply many techniques to make the executable program that it generates
faster and/or smaller. These techniques all tend to reduce still further the “word-for-
word” correspondence between the C program you write and the machine code that
the computer reads. As a result, they can make debugging more difficult, and are
usually applied only after a program has been tested and debugged without optimi‐
zation.

There are two kinds of optimization options. You can apply individual optimization
techniques by means of options beginning with -f (for flag), such as -fmerge-
constants, which causes the compiler to place identical constants in a common
location, even across different source files. You can also use the -O options (-O0, -O1,
-O2, and -O3) to set an optimization level that cumulatively enables a number of
techniques at once.

The -O Levels
Each of the -O options represents a number of individual optimization techniques.
The-O optimization levels are cumulative: -O2 includes all the optimizations in-O1,
and -O3 includes -O2. For complete and detailed descriptions of the different levels,
and the many -f optimization options that they represent, see the GCC reference
manual. The following list offers a brief description of each level:

684 | Chapter 19: Compiling with GCC

https://gcc.gnu.org/onlinedocs/

-O0
Turn off all optimization options.

-O, -O1
Try to make the executable program smaller and faster, but without increasing
compiling time excessively. The techniques applied include merging identical
constants, basic loop optimization, and grouping stack operations after succes‐
sive function calls. A -O with no number is interpreted as -O1.

-O2
Apply almost all of the supported optimization techniques that do not involve a
tradeoff between program size and execution speed. This option generally
increases the time needed to compile. In addition to the optimizations enabled
by -O1, the compiler performs common subexpression elimination, or CSE,
which involves detecting mathematically equivalent expressions in the program
and rewriting the code to evaluate them only once, saving the value in an
unnamed variable for reuse. Furthermore, instructions are reordered to reduce
the time spent waiting for data moving between memory and CPU registers.
Incidentally, the data flow analysis performed at this level of optimization also
allows the compiler to provide additional warnings about the use of uninitial‐
ized variables.

-O3
Generate inline functions and enable more flexible allocation of variables to
processor registers. Includes the -O2 optimizations.

-Os

Optimize for size. This option is like -O2, but without those performance opti‐
mizations that are likely to increase the code size. Furthermore, block reorder‐
ing and the alignment of functions and other jump destinations on power-of-
two byte boundaries are disabled. If you want small executables, you should be
compiling with the GCC option -s, which instructs the linker to strip all the
symbol tables out of the executable output file after all the necessary functions
and objects have been linked. This makes the finished program file significantly
smaller, and is often used in building a production version.

The following example illustrates how -O options are used:

$ gcc -Wall -O3 -o circle circle.c circulararea.c -lncurses

This command uses -O3 to enable the majority of the supported optimization tech‐
niques.

The -f Flags
GCC’s many -f options give you even finer control over optimization. For example,
you can set a general optimization level using an -O option, and then turn off a cer‐
tain technique. Here is an example:

C
o

m
p

iling
w

ith G
C

C

Optimization | 685

$ gcc -Wall -O3 -fno-inline-functions -o circle circle.c \
circulararea.c -lncurses

The options -O3 -fno-inline-functions in this command enable all the optimiza‐
tions grouped in -O3 except inline compiling of functions.

There are also flags to enable many optimizations that are not included in any -O
level, such as -funroll-loops; this option replaces loop statements that have a
known, small number of iterations with repetitive, linear code sequences, thus sav‐
ing jumps and loop-counter operations. A full list of the hundred or so -f options
that control GCC’s individual optimization flags would be too long for this chapter,
but the examples in this section offer a hint of the capabilities available. If you need
a certain compiler feature, there’s a good chance you’ll find it in the GCC manual.

Floating-Point Optimization
Some of the optimization options that are not included in the -O groups pertain to
floating-point operations. The C99 floating-point environment supports scientific
and mathematical applications with a high degree of numeric accuracy, but for a
given application, you might be more interested in speed than in the best floating-
point math available. For such cases, the -ffast-math option defines the preproces‐
sor macro __FAST_MATH__, indicating that the compiler makes no claim to conform
to IEEE and ISO floating-point math standards. The -ffast-math flag is a group
option, which enables the following six individual options:

-fno-math-errno

Disables the use of the global variable errno for math functions that represent a
single floating-point instruction.

-funsafe-math-optimizations
The “unsafe math optimizations” are those that might violate floating-point
math standards, or that do away with verification of arguments and results.
Using such optimizations may involve linking code that modifies the floating-
point processor’s control flags.

-fno-trapping-math
Generates “nonstop” code on the assumption that no math exceptions will be
raised that can be handled by the user program.

-ffinite-math-only
Generates executable code that disregards infinities and NaN (“not a number”)
values in arguments and results.

-fno-rounding-math
This option indicates that your program does not depend on a certain round‐
ing behavior, and does not attempt to change the floating-point environment’s
default rounding mode. This setting is currently the default, and its opposite,
-frounding-math, is still experimental.

686 | Chapter 19: Compiling with GCC

https://gcc.gnu.org/onlinedocs/

-fno-signaling-nans
This option permits optimizations that limit the number of floating-point
exceptions that may be raised by signaling NaNs. This setting is currently the
default, and its opposite, -fsignaling-nans, is still experimental.

Architecture-Specific Optimization
For certain system architectures, GCC provides options to produce optimized code
for specific members of the processor family, taking into account features such as
memory alignment, model-specific CPU instructions, stack structures, increased
floating-point precision, prefetching and pipelining, and others. These machine-
specific options begin with the prefix -m. If you want to compile your code to make
the most of a specific target system, read about the available options in the GCC ref‐
erence manual.

For several processor types, such as the Sparc, ARM, and RS/6000-PowerPC series,
the option -mcpu=cpu generates machine code for the specific CPU type’s register
set, instruction set, and scheduling behavior. Programs compiled with this option
may not run at all on a different model in the same CPU family. The GCC reference
manual lists the available cpu abbreviations for each series.

The option -mtune=cpu is more tolerant. Code generated with -mtune=cpu uses
optimized scheduling parameters for the given CPU model but adheres to the fami‐
ly’s common instructions and registers, so that it should still run on a related model.

For the Intel x86 series, the -mcpu=cpu option is the same as -mtune=cpu. The
option to enable a model-specific instruction set is -march=cpu. Here’s an example:

$ gcc -Wall -O -march=athlon-4 -o circle circle.c circulararea.c \
-lncurses

This command line compiles a program for the AMD Athlon XP CPU.

Why Not Optimize?
Sometimes there are good reasons not to optimize. In general, compiling with opti‐
mization takes longer and requires more memory than without optimization. How
much more depends on the techniques that are applied. Furthermore, the perfor‐
mance gains obtained by a given optimization technique depend on both the given
program and the target architecture. If you really need optimum performance, you
need to choose the techniques that will work in your specific circumstances.

You can combine both -O and-f optimization options with GCC’s -g option to
include debugging information in the compiled program, but if you do, the results
may be hard to follow in a debugging program; optimization can change the order
of operations, and variables defined in the program may not remain associated with
one register, or may even be optimized out of existence. For these reasons, many
developers find it easier to optimize only after a program has been debugged.

C
o

m
p

iling
w

ith G
C

C

Optimization | 687

Some optimization options may also conflict with strict conformance to the ISO C
standard, such as merging variables declared with const as if they were constants. If
standards-conformance is critical, and sometimes it is, there are certain optimiza‐
tions you may not wish to pursue.

Another issue you may encounter is that some optimization techniques result in
nondeterministic code generation. For example, the compiler’s guess as to which
branch of a conditional jump will be taken most often may involve randomness. If
you are programming real-time applications, you’ll probably want to be careful to
ensure deterministic behavior.

Finally, when developing multithreaded programs, you need to be aware of how
shared memory access works and the features that the threads library offers to con‐
trol it (see Chapter 14), because optimization can involve rearranging the order of
memory access operations, and even eliminate operations that appear superfluous
to the compiler in the scope of a single thread.

In any case, if you want to be sure of getting the greatest possible runtime perfor‐
mance, or if you need to know in detail how GCC is arriving at the exact machine
code for your C program, there is no substitute for testing and comparing your spe‐
cific program’s performance with the various optimization options.

Debugging
Use the -g option to have GCC include symbol and source-line information in its
object and executable output files. This information is used by debugging programs
to display the contents of variables in registers and memory while stepping through
the program. (For more on debugging, see Chapter 21.) There are a number of for‐
mats for this symbol information, and GCC uses your system’s native format by
default.

You can also use a suffix to the -g option to store the symbol information in a dif‐
ferent format from your system’s native format. You might want to do this in order
to conform to the specific debugging program that you are using. For example, the
option -ggdb chooses the best format available on your system for debugging with
the GNU debugger, GDB.

Because the symbol information can increase and even multiply the size of your
executable file, you will probably want to recompile without the -g option and link
using the -s option when you have completed debugging and testing. However,
some software packages are distributed with debugging information in the binaries
for use in diagnosing subsequent users’ problems.

Profiling
The -p option adds special functions to your program to output profiling informa‐
tion when you run it. Profiling is useful in resolving performance problems, because
it lets you see which functions your program is spending its execution time on. The

688 | Chapter 19: Compiling with GCC

profiling output is saved in a file called mon.out. You can then use the prof utility to
analyze the profiling information in a number of ways; see the prof manual for
details.

For the GNU profiler, gprof, compile your program with the-pg option. The default
output filename for the profiling information is then gmon.out. gprof in conjunction
with the GCC option -pg can generate a call graph showing which functions in your
program call which others. If you combine the-pg option with -g, the GCC option
that provides source-line information for a debugger, then gprof can also provide
line-by-line profiling.

Option and Environment Variable Summary
This section summarizes frequently used GCC options for quick reference, and lists
the environment variables used by GCC.

Command-Line Options
-c

Preprocess, compile, and assemble only (i.e., don’t link).

-C
Leave comments in when preprocessing.

-Dname[=definition]

Defines the symbol name.

-ename

Start program execution at name.

-E

Preprocess only; output to stdout, unless used with -o.

-ffast-math
Permit faster floating-point arithmetic methods at the cost of accuracy or preci‐
sion.

-ffinite-math-only
Disregard infinities and NaN (“not a number”) values.

-ffreestanding
Compile as a freestanding (not hosted) program.

-finline-functions, -fno-inline-functions
Enable/disable inline functions.

-fno-math-errno

Disable the errno variable for simple math functions.

C
o

m
p

iling
w

ith G
C

C

Option and Environment Variable Summary | 689

-fmerge-constants
Put identical constants in a single location.

-fno-trapping-math
Generate “nonstop” floating-point code.

-frounding-math
Don’t disregard the rounding-mode features of the floating-point environment
(experimental).

-fsignaling-nans
Allow all exceptions raised by signaling NaNs (experimental).

-fsyntax-only
Don’t compile or link; just test input for syntax.

-funroll-loops, -fno-unroll-loops
Enable/disable loop optimization.

-funsafe-math-optimizations
Permit optimizations that don’t conform to standards and/or don’t verify val‐
ues.

-fverbose-asm
Include C variable names as comments in assembly language.

-g[format]
Compile for debugging.

-Idirectory[:directory[…]]
Search for header files in the specified path.

-I-

Distinguish between -Ipath for #include <filename> and -Ipath for
#include "filename" (deprecated).

-iquotedirectory[:directory[…]]
Search the specified path for header files specified in quotation marks
(#include "filename").

-isysrootdirectory
Prepend the specified directory to the system root directory to find header
files.

-lbasename

Link with library libbasename.so or libbasename.a.

-Ldirectory[:directory[…]]
Search for library files in the specified path.

690 | Chapter 19: Compiling with GCC

-march=cpu
Intel x86: Generate model-specific code.

-mcpu=cpu
Sparc, ARM, and RS/6000-PowerPC: Generate model-specific code.

Intel x86: Optimize scheduling for the specified CPU model.

-mtune=cpu
Optimize scheduling for the specified CPU model.

-nostartfiles
Don’t link startup code.

-nostdlib
Don’t link with the standard library.

-o filename
Direct output to the specified file.

-O0
Turn off all optimization options.

-O, -O1
Perform some optimization without taking much time.

-O2
Perform more optimization, including data flow analysis.

-O3
Perform still more optimization, including inline function compilation.

-Os
Optimize for size.

-p
Link in code to output profiling information.

-pedantic-errors
Fail on nonstandard usage.

-pg
Link in code to output profiling information for gprof.

-s
Strip symbol tables from executable file.

-S
Preprocess and translate into assembly language only.

C
o

m
p

iling
w

ith G
C

C

Option and Environment Variable Summary | 691

-save-temps
Save intermediate output files.

-shared
Create a shared object file for dynamic linking.

-static
Don’t link to shared object files.

-std=iso9899:1990, -std=c89, -ansi
Support ISO/IEC 9899:1990.

-std=iso9899:199409
Support ISO/IEC 9899:1989 and AMD1.

-std=c99
Support ISO/IEC 9899:1999.

-std=c11
Support ISO/IEC 9899:2011.

-std=gnu89

Like -ansi, plus GNU extensions (GCC’s default before version 5).

-std=gnu99

Like -std=c99, plus GNU extensions.

-std=gnu11
Like -std=c11, plus GNU extensions (GCC’s default beginning with version 5).

--sysrootdirectory
Prepend the specified directory to the system root directory to find header and
library files. If the -isysroot option is not used, the --sysroot option affects
both library and header file searches.

-traditional

Support old-style C. Deprecated; supported only with -E.

-trigraphs
Support ISO C trigraphs.

-Uname

“Undefine” the symbol name.

-v
Be verbose: print the options applied at each step of compiling.

--version
Output GCC version and license information.

692 | Chapter 19: Compiling with GCC

-w
Disable all warnings.

-Wa,option[,option[…]]
Pass options to assembler command line.

-Wall
Output warnings about a broad range of problems in source code.

-Wl,option[,option[…]]
Pass options to linker command line.

-Werror
Fail on all warnings.

-Wextra
Output warnings about legal but questionable usage.

-Wtraditional
Warn about differences to old-style C.

-x filetype
Treat subsequent files as being of the specified type.

Environment Variables
CPATH, C_INCLUDE_PATH

Colon-separated list of directories to search for header files, after those indica‐
ted by -Idirectory on the command line.

COMPILER_PATH
Colon-separated list of directories to search for GCC’s own subprogram files.

GCC_EXEC_PREFIX
A prefix for GCC to add to the names of its subprograms when invoking them.
May end with a slash.

LIBRARY_PATH
Colon-separated list of directories to search for linker and library files, after
directories specified by -Ldirectory on the command line.

LD_LIBRARY_PATH
Colon-separated list of directories to search for shared library files. Read not by
GCC but by executables dynamically linked against shared libraries.

TMPDIR
Directory to use for temporary files.

C
o

m
p

iling
w

ith G
C

C

Option and Environment Variable Summary | 693

20
Using make to Build C Programs

As you saw in Chapter 18, the commands involved in compiling and linking C pro‐
grams can be numerous and complex. The make utility automates and manages the
process of compiling programs of any size and complexity, so that a single make
command replaces hundreds of compiler and linker commands. Moreover, make
compares the timestamps of related files to avoid having to repeat any previous
work. And most importantly, make manages the individual rules that define how to
build various targets, and automatically analyzes the dependency relationships
between all the files involved.

There are a number of different versions of make, and their features and usage differ
to varying degrees. They feature different sets of built-in variables and targets with
special meanings. In this brief chapter, rather than trying to cover different varieties,
we concentrate on GNU make, which is widely available. (On systems that use a dif‐
ferent default make, GNU make is often available under the executable name
gmake.) Furthermore, even as far as GNU make is concerned, this chapter sticks
more or less to the basics: in this book, we want to use make only as a tool for build‐
ing programs from C source code. If you want to go on to exploit the full capabili‐
ties of make, an inevitable step is to read the program’s documentation itself. For a
well-structured course in using make’s advanced capabilities, see also Managing
Projects with GNU make by Robert Mecklenburg (O’Reilly).

Targets, Prerequisites, and Commands
Before we describe the make solution, we will briefly review the problem. To make
an executable program, we need to link compiled object files. To generate object
files, we need to compile C source files. The source files in turn need to be prepro‐
cessed to include their header files. And whenever we have edited a source or
header file, then any file that was directly or indirectly generated from it needs to be
rebuilt.

695

http://shop.oreilly.com/product/9780596006105.do
http://shop.oreilly.com/product/9780596006105.do

1 Before makefile or Makefile, GNU make without the -f option first looks for a file named
GNUmakefile.

The make utility organizes the work just described in the form of rules. For C pro‐
grams, these rules generally take the following form: the executable file is a target
that must be rebuilt whenever certain object files have changed—the object files are
its prerequisites. At the same time, the object files are intermediate targets, which
must be recompiled if the source and header files have changed. (Thus, the exe‐
cutable depends indirectly on the source files. make manages such dependency
chains elegantly, even when they become complex.) The rule for each target gener‐
ally contains one or more commands, called the command script, that make executes
to build it. For example, the rule for building the executable file says to run the
linker, while the rule for building object files says to run the preprocessor and com‐
piler. In other words, a rule’s prerequisites say when to build the target, and the
command script says how to build it.

The Makefile
The make program has a special syntax for its rules. Furthermore, the rules for all
the operations that you want make to manage in your project generally need to be
collected in a file for make to read. The command-line option -f filename tells
make which file contains the rules you want it to apply. Usually, though, this option
is omitted and make looks for a file with the default name makefile, or failing that,
Makefile.1

When you read makefiles, remember that they are not simply scripts to be executed
in sequential order. Rather, make first analyzes an entire makefile to build a depend‐
ency tree of possible targets and their prerequisites, then iterates through that
dependency tree to build the desired targets.

In addition to rules, makefiles also contain comments, variable assignments, macro
definitions, include directives, and conditional directives. These will be discussed in
later sections of this chapter, after we have taken a closer look at the meat of the
makefile: the rules.

Rules
Example 20-1 shows a makefile that might be used to build the program in
Example 1-2.

Example 20-1. A basic makefile

A basic makefile for "circle".

CC = gcc
CFLAGS = -Wall -g -std=c99

696 | Chapter 20: Using make to Build C Programs

LDFLAGS = -lm

circle : circle.o circulararea.o
 $(CC) $(LDFLAGS) -o $@ $^

circle.o : circle.c
 $(CC) $(CFLAGS) -o $@ -c $<

circulararea.o: circulararea.c
 $(CC) $(CFLAGS) -o $@ -c $<

The line that begins with the character # is a comment, which make ignores. This
makefile begins by defining some variables, which are used in the statements that
follow. The rest of the file consists of rules, with the following general form:

target [target [...]] : [prerequisite[prerequisite[...]]]
 [command
 [command
 [...]]]

The first target must be placed at the beginning of the line, with no whitespace to
the left of it. Moreover, each command line must start with a tab character. (It would
be simpler if all whitespace characters were permissible here, but that’s not the case.)

Each rule in the makefile says, in effect: if any target is older than any prerequi
site, execute the command script. More importantly, make also checks whether the
prerequisites have other prerequisites in turn before it starts executing commands.

Both the prerequisites and the command script are optional. A rule with no com‐
mand script tells only make about a dependency relationship; and a rule with no
prerequisites tells only how to build the target, not when to build it. You can also put
the prerequisites for a given target in one rule, and the command script in another.
For any target requested, whether on the make command line or as a prerequisite
for another target, make collects all the pertinent information from all rules for that
target before it acts on them.

Example 20-1 shows two different notations for variable references in the command
script. Variable names that consist of more than one character—in this case, CC,
CFLAGS, and LDFLAGS—must be prefixed with a dollar sign and enclosed in paren‐
theses when referenced. Variables that consist of just one character—in our exam‐
ple, these happen to be the automatic variables ^, <, and @—need just the dollar sign,
not the parentheses. We discuss variables in detail in a separate section later in this
chapter. The following program output shows how make expands both kinds of
variables to generate compiler commands:

$ make -n -f Makefile19-1 circle

gcc -Wall -g -std=c99 -o circle.o -c circle.c
gcc -Wall -g -std=c99 -o circulararea.o -c circulararea.c
gcc -lm -o circle circle.o circulararea.o

B
uild

 C
P

ro
g

ram
s

Rules | 697

The command-line option -n instructs make to print the commands it would other‐
wise execute to build the specified targets. This option is indispensable when testing
makefiles. (A complete reference list of make options is included at the end of this
chapter.) The final line of output corresponds to the first rule contained in
Example 20-1. It shows that make expands the variable reference $(CC) to the text
gcc and $(LDFLAGS) to -lm. The automatic variables $@ and $^ expand to the target
circle and the prerequisite list circle.o circulararea.o. In the first two output
lines, the automatic variable $< is expanded to just one prerequisite, which is the
name of the C source file to be compiled.

The Command Script
The command script for a rule can consist of several lines, each of which must begin
with a tab. Comments and blank lines are ignored, so that the command script ends
with the next target line or variable definition.

Furthermore, the first line of the command script may be placed after a semicolon
at the end of the dependency line, as in the following syntax:

target_list : [prerequisite_list] ; [command
 [command
 [...]]]

This variant is rarely used today, however.

The important thing to remember about the command part of a make rule is that it
is not a shell script. When make invokes a rule to build its target, each line in the
rule’s command section is executed individually in a separate shell instance. For that
reason, you must make sure that no command depends on the side effects of a pre‐
ceding line. For example, the following commands will not run etags in the src/ sub‐
directory:

TAGS:
 cd src/
 etags *.c

In trying to build TAGS, make runs the shell command cd src/ in the current direc‐
tory. When that command exits, make runs etags *.c in a new shell, again in the
current directory.

There are two ways to cause several commands to run in the same shell: putting
them on one line, separated by a semicolon, or adding a semicolon and a backslash
to place them virtually on one line:

TAGS:
 cd src/ ; etags *.c ;\
 cd .. ; ls src/TAGS

Another reason for running multiple commands in the same shell could be to speed
up processing, especially in large projects.

698 | Chapter 20: Using make to Build C Programs

Pattern Rules
The last two rules in Example 20-1 show a repetitive pattern. Each of the two object
files, circle.o and circulararea.o, depends on a source file with the same name and the
suffix .c, and the commands to build them are the same. make lets you describe such
cases economically using pattern rules. Here is a single rule that replaces the last two
rules in Example 20-1:

circulararea.o circle.o: %.o: %.c
 $(CC) $(CFLAGS) -o $@ -c $<

The first line of this rule has three colon-separated parts rather than two. The first
part is a list of the targets that the rule applies to. The rest of the line, %.o: %.c, is a
pattern explaining how to derive a prerequisite name from each of the targets, using
the percent sign (%) as a wildcard. When make matches each target in the list against
the pattern %.o, the part of the target that corresponds to the wildcard % is called the
stem. The stem is then substituted for the percent sign in %.c to yield the prerequi‐
site.

The general syntax of such pattern rules is:

[target_list :] target_pattern : prerequisite_pattern
 [command-script]

You must make sure that each target in the list matches the target pattern. Other‐
wise, make issues an error message.

If you include an explicit target list, the rule is a static pattern rule. If you omit the
target list, the rule is called an implicit rule, and applies to any target whose name
matches the target pattern. For example, if you expect to add more modules as the
circle program grows and evolves, you can make a rule for all present and future
object files in the project like this:

%.o: %.c
 $(CC) $(CFLAGS) -o $@ -c $<

And if a certain object needs to be handled differently for some reason, you can put
a static pattern rule for that object file in the makefile as well. make then applies the
static rule for targets explicitly named in it, and the implicit rule for all other .o files.
Also, make refrains from announcing an error if any object file’s implicit prerequi‐
site does not exist.

The percent sign is usually used only once in each pattern. To represent a literal per‐
cent sign in a pattern, you must escape it with a backslash. For example, the file‐
name app%3amodule.o matches the pattern app\%3a%.o, and the resulting stem is
module. To use a literal backslash in a pattern without escaping a percent sign that
happens to follow it, you need to escape the backslash itself. Thus, the filename app
\module.o would match the pattern app\\%.o, yielding the stem module.

B
uild

 C
P

ro
g

ram
s

Rules | 699

Suffix Rules
The kind of pattern rule in which the percent sign represents all but the filename’s
suffix is the modern way of expressing a suffix rule. In older makefiles, you might
see such a rule expressed in the following notation:

.c.o:
 $(CC) $(CFLAGS) ...

The “target” in this rule consists simply of the target and source filename suffixes—
and in the opposite order; that is, with the source suffix first, followed by the target
suffix. This example with the target .c.o: is equivalent to a pattern rule beginning
with %o: %c. If a suffix rule target contains only one suffix, then that is the suffix for
source filenames, and target filenames under that rule are assumed to have no suf‐
fix.

GNU make also supports suffix rules, but that notation is considered obsolete. Pat‐
tern rules using the % wildcard character are more readable, and more versatile.

Every suffix used in the target of a suffix rule must be a “known suffix.” make stores
its list of known suffixes in the built-in variable SUFFIXES. You can add your own
suffixes by declaring them as prerequisites of the built-in target .SUFFIXES (see
“Special Targets Used as Runtime Options” on page 728 for more about this techni‐
que).

Built-In Rules
You don’t have to tell make how to do standard operations like compiling an object
file from C source; the program has a built-in default rule for that operation, and for
many others. Example 20-2 shows a more elegant version of our sample makefile
that takes advantage of built-in rules.

Example 20-2. A makefile using built-in rules

A slightly more elegant makefile for "circle".

CC = gcc
CFLAGS = -Werror -std=c99
OBJS = circle.o circulararea.o

circle: $(OBJS) -lm

This makefile does away with the rule for compiling source code into objects,
depending instead on make’s built-in pattern rule. Furthermore, the rule that says
the executable circle depends on the two object files has no command script. This is
because make also has a built-in rule to link objects to build an executable. We will
look at those built-in rules in a moment. First, suppose we enter this command:

$ touch *.c ; make circle

This produces roughly the same output as before:

700 | Chapter 20: Using make to Build C Programs

gcc -Werror -std=c99 -c -o circle.o circle.c
gcc -Werror -std=c99 -c -o circulararea.o circulararea.c
gcc circle.o circulararea.o /usr/lib/libm.so -o circle

None of these commands is visible in the new makefile in Example 20-2, even if
individual arguments are recognizable in the variable assignments. To display
make’s built-in rules (as well as the variables at work), you can run the program with
the command-line switch -p. The output is rather long. Here are the parts of it that
are relevant to our example (including the comments that make generates to iden‐
tify where each variable or rule definition originates):

default
OUTPUT_OPTION = -o $@

default
LINK.o = $(CC) $(LDFLAGS) $(TARGET_ARCH)

default
COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c

%: %.o
commands to execute (built-in):
 $(LINK.o) $^ $(LOADLIBES) $(LDLIBS) -o $@

%.o: %.c
commands to execute (built-in):
 $(COMPILE.c) $(OUTPUT_OPTION) $<

Note that the linking step was handled by a combination of two rules: make auto‐
matically applied the command defined by the built-in rule using the information
about the prerequisites provided by the dependency rule in the makefile.

Finally, the makefile in Example 20-2, unlike Example 20-1, does not define a vari‐
able for linker options. Instead, it correctly lists the C math library as a prerequisite
of the executable circle, using the same -lm notation as the compiler’s command
line. The output shown illustrates how make expands this notation to the full library
filename.

Implicit Rule Chains
make tries to use implicit rules, whether built-in ones or pattern rules from the
makefile, for any target that doesn’t have an explicit rule with a command script.
There may be many implicit rules that match a given target. For example, make has
built-in rules to generate an object file (matching the pattern %.o) from source code
in C (%.c), C++ (%.cpp), or even assembler (%.s). Which rule does make use, then?
It selects the first one in the list for which the prerequisites are available or can be
made by applying appropriate rules. In this way, make can automatically apply a
chain of implicit rules to generate a target. If make generates any intermediate files
that are not mentioned in the makefile, it deletes them after they have served their

B
uild

 C
P

ro
g

ram
s

Rules | 701

purpose. For example, suppose that the current directory contains only the file
square.c, and the makefile contains the following:

%: %.o
 cc -o $@ $^

%.o : %.c
 cc -c -o $@ $<

To disable all the built-in rules and use only the two implicit rules we can see in the
makefile, we’ll run make with the -r option:

$ ls
Makefile square.c
$ make -r square
cc -c -o square.o square.c
cc -o square square.o
rm square.o
$ ls
Makefile square square.c

From the target, the two implicit rules in the makefile, and the available source file,
make found the indirect way to build the target, and then automatically cleaned up
the intermediate object file because it isn’t mentioned in the makefile or on the com‐
mand line.

Double-Colon Rules
Before we move away from rules, another kind of rule that you should know about
is the double-colon rule, so named because it has not one but two colons between the
targets and the prerequisites:

target :: prerequisites
 commands

Double-colon rules are the same as single-colon rules unless your makefile contains
multiple double-colon rules for the same target. In that case, make treats the rules as
alternative rather than cumulative: instead of collating all the rules’ prerequisites
into a single set of dependencies for the target, make tests the target against each
rule’s prerequisites separately to decide whether to execute that rule’s script.
Example 20-3 shows a makefile that uses double-colon rules.

Example 20-3. Double-colon rules

A makefile for "circle" to demonstrate double-colon rules.

CC = gcc
RM = rm -f
CFLAGS = -Wall -std=c99
DBGFLAGS = -ggdb -pg
DEBUGFILE = ./debug
SRC = circle.c circulararea.c

702 | Chapter 20: Using make to Build C Programs

circle :: $(SRC)
 $(CC) $(CFLAGS) -o $@ -lm $^

circle :: $(DEBUGFILE)
 $(CC) $(CFLAGS) $(DBGFLAGS) -o $@ -lm $(SRC)

.PHONY : clean
clean :
 $(RM) circle

The makefile in Example 20-3 builds the target circle in either of two ways, with or
without debugging options in the compiler command line. In the first rule for circle,
the target depends on the source files. make runs the command for this rule if the
source files are newer than the executable. In the second rule, circle depends on a
file named debug in the current directory. The command for that rule doesn’t use
the prerequisite debug at all. That file is empty; it just sits in the directory for the
sake of its timestamp, which tells make whether to build a debugging version of the
circle executable. The following sample session illustrates how make can alternate
between the two rules:

$ make clean
rm -f circle
$ make circle
gcc -Wall -std=c99 -o circle -lm circle.c circulararea.c
$ make circle
make: `circle' is up to date.
$ touch debug
$ make circle
gcc -Wall -std=c99 -ggdb -pg -o circle -lm circle.c circulararea.c
$ make circle
make: `circle' is up to date.
$ make clean
rm -f circle
$ make circle
gcc -Wall -std=c99 -o circle -lm circle.c circulararea.c

As the output shows, make applies only one rule or the other, depending on which
rule’s prerequisites are newer than the target. (If both rules’ prerequisites are newer
than the target, make applies the rule that appears first in the makefile.)

Comments
In a makefile, a hash mark (#) anywhere in a line begins a comment, unless the line
is a command. make ignores comments, as if the text from the hash mark to the end
of its line did not exist. Comments (like blank lines) between the lines of a rule do
not interrupt its continuity. Leading whitespace before a hash mark is ignored.

If a line containing a hash mark is a command—that is, if it begins with a tab char‐
acter—then it cannot contain a make comment. If the corresponding target needs to

B
uild

 C
P

ro
g

ram
s

Comments | 703

be built, make passes the entire command line, minus the leading tab character, to
the shell for execution. (Some shells, such as the Bourne shell, also interpret the
hash mark as introducing a comment, but that is beyond make’s control.)

Variables
All variables in make are of the same type: they contain sequences of characters,
never numeric values. Whenever make applies a rule, it evaluates all the variables
contained in the targets, prerequisites, and commands. Variables in GNU make
come in two “flavors,” called recursively expanded and simply expanded variables.
Which flavor a given variable has is determined by the specific assignment operator
used in its definition. In a recursively expanded variable, nested variable references
are stored verbatim until the variable is evaluated. In a simply expanded variable, on
the other hand, variable references in the value are expanded immediately on
assignment, and their expanded values are stored, not their names.

Variable names can include any character except :, =, and #. However, for robust
makefiles and compatibility with shell constraints, you should use only letters, dig‐
its, and the underscore character.

Assignment Operators
Which assignment operator you use in defining a variable determines whether it is a
simply or a recursively expanded variable. The assignment operator = in the follow‐
ing example creates a recursively expanded variable:

DEBUGFLAGS = $(CFLAGS) -ggdb -DDEBUG -O0

make stores the character sequence to the right of the equals sign verbatim; the nes‐
ted variable $(CFLAGS) is not expanded until $(DEBUGFLAGS) is used.

To create a simply expanded variable, use the assignment operator := as shown in
the following example:

OBJ = circle.o circulararea.o
TESTOBJ := $(OBJ) profile.o

In this case, make stores the character sequence circle.o circulararea.o pro
file.o as the value of $(TESTOBJ). If a subsequent assignment modifies the value of
$(OBJ), $(TESTOBJ) is not affected.

You can define both recursively expanded and simply expanded variables not only
in the makefile, but also on the make command line, as in the following example:

$ make CFLAGS=-ffinite-math-only circulararea.o

Each such assignment must be contained in a single command-line argument. If the
assignment contains spaces, you must escape them or enclose the entire assignment
in quotation marks. Any variable defined on the command line, or in the shell envi‐
ronment, can be cancelled out by an assignment in the makefile that starts with the
optional override keyword, as this one does:

704 | Chapter 20: Using make to Build C Programs

override CPPLFAGS = -DDEBUG

Use override assignments with caution, unless you want to confuse and frustrate
future users of your makefile.

make also provides two more assignment operators. Here is the complete list:

=
Defines a recursively expanded variable.

:=
Defines a simply expanded variable.

+=
Also called the append operator. Appends more characters to the existing value
of a variable. If the left operand is not yet defined, the assignment defines a
recursively expanded variable. Or, to put it another way, the result of the
append operator is a recursively expanded variable, unless its left operand
already exists as a simply expanded variable.

This operator provides the only way to append characters to the value of a
recursively expanded variable. The following assignment is wrong, as recursive
expansion would cause an infinite loop:

OBJ = $(OBJ) profile.o

Here is the right way to do it:

OBJ += profile.o

The += operator automatically inserts a space before appending the new text to
the variable’s previous value.

?=
The conditional assignment operator. Assigns a value to a variable, but only if
the variable has no value.

The conditional assignment operator can only define recursively expanded
variables. If its left operand already exists, it remains unaffected, regardless of
whether it is a simply expanded or a recursively expanded variable.

In addition to these operations, there are two more ways to define make variables.
One is the define directive, used to create variables of multiple lines; we will discuss
this later in “Macros” on page 714. Another is by setting environment variables in
the system shell before you invoke make. We will discuss make’s use of environment
variables later in the chapter as well.

Variables and Whitespace
In a variable assignment, make ignores any whitespace between the assignment
operator and the first non-whitespace character of the value. However, trailing
whitespace up to the end of the line containing the variable assignment, or up to a

B
uild

 C
P

ro
g

ram
s

Variables | 705

comment that follows on the same line, becomes part of the variable’s value. Usually
this behavior is unimportant because most references to make variables are options
in shell command lines, where additional whitespace has no effect. However, if you
use variable references to construct file or directory names, unintended whitespace
at the end of an assignment line can be fatal.

On the other hand, if you develop complex makefiles, you might sometimes need a
literal space that make does not ignore or interpret as a list separator. The easiest
way is to use a variable whose value is a single space character, but defining such a
variable is tricky. Simply enclosing a space in quotation marks does not have the
same effect as in C. Consider the following assignment:

ONESPACE := ' '
TEST = Does$(ONESPACE)this$(ONESPACE)work?

In this case, a reference to $(TEST) would expand to the following text:

Does' 'this' 'work?

Double quotation marks are no different: they also become part of the variable’s
value. To define a variable containing just the space and nothing else, you can use
the following lines:

NOTHING :=
ONESPACE := $(NOTHING) # This comment terminates the variable's value.

The variable reference $(NOTHING) expands to zero characters, but it ends the lead‐
ing whitespace that make trims off after the assignment operator. If you do not
insert a comment after the space character that follows $(NOTHING), you may find it
hard to tell when editing the makefile whether the single trailing space is present as
desired.

Target-Specific Variable Assignments
You can make any of the assignment operations apply to only a specific target (or
target pattern) by including a line in your makefile with the form:

target_list: [override]assignment

While make is building the given target—or its prerequisites—the target-specific or
pattern-specific variable supersedes any other definition of the same variable name
elsewhere in the makefile.

Example 20-4 shows a sample makefile illustrating different kinds of assignments.

Example 20-4. Variable assignments

Tools and options:
CC = gcc
CFLAGS = -c -Wall -std=c99 $(ASMFLAGS)
DEBUGCFLAGS = -ggdb -O0
RM = rm -f

706 | Chapter 20: Using make to Build C Programs

MKDIR = mkdir -p

Filenames:
OBJ = circle.o circulararea.o
SYMTABS = $(OBJ:.o=.sym)
EXEC = circle

The primary targets:
production: clean circle

testing: clean debug

symbols: $(SYMTABS)

clean:
 $(RM) $(OBJ) *.sym circle circle-dbg

Rules to build prerequisites:
circle debug: $(OBJ) -lm
 $(CC) $(LDFLAGS) -o $(EXEC) $^

$(OBJ): %.o: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -o $@ $<

$(SYMTABS): %.sym: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -o $*.o $<

Target-specific options:
debug: CPPFLAGS += -DDEBUG
debug: EXEC = circle-dbg
debug symbols: CFLAGS += $(DEBUGCFLAGS)
symbols: ASMFLAGS = -Wa,-as=$*.sym,-L

For the targets debug and symbols, this makefile uses the append operator to add
the value of DEBUGCFLAGS to the value of CFLAGS, while conserving any compiler
flags already defined.

The assignment to SYMTABS illustrates another feature of make variables: you can
perform substitutions when referencing them. As Example 20-4 illustrates, a substi‐
tution reference has this form:

$(name:ending=new_ending)

When you reference a variable in this way, make expands it, and then checks the
end of each word in the value (where a word is a sequence of non-whitespace char‐
acters followed by a whitespace character, or by the end of the value) for the string
ending. If the word ends with ending, make replaces that part with new_ending. In
Example 20-4, the resulting value of $(SYMTABS) is circle.sym circulararea.sym.

The variable CFLAGS is defined near the top of the makefile, with an unconditional
assignment. The expansion of the nested variable it contains, $(ASMFLAGS), is

B
uild

 C
P

ro
g

ram
s

Variables | 707

deferred until make expands $(CFLAGS) in order to execute the compiler command.
The value of $(ASMFLAGS), for example, may be -Wa,-as=circle.sym,-L, or it may
be nothing. When make builds the target symbols, the compiler command expands
recursively to:

gcc -c -Wall -std=c99 -Wa,-as=circle.sym,-L -ggdb -O0
-o circle.o circle.c
gcc -c -Wall -std=c99 -Wa,-as=circulararea.sym,-L -ggdb -O0
-o circulararea.o circulararea.c

(Each of these two gcc commands is generated in a single line, which is split in two
here to fit the page.) As you can see, if there is no variable defined with the name
CPPFLAGS at the time of variable expansion, make simply replaces $(CPPFLAGS) with
nothing.

Unlike C, make doesn’t balk at undefined variables. The only
difference between an undefined variable and a variable
whose value contains no characters is that a defined variable
has a determined flavor: it is either simply expanded or recur‐
sively expanded, and cannot change its behavior, even if you
assign it a new value.

Like many real-life makefiles, the one in Example 20-4 uses variables to store the
names of common utilities like mkdir and rm together with the standard options
that we want to use with them. This approach not only saves repetition in the make‐
file’s command scripts but also makes maintenance and porting easier.

The Automatic Variables
The command scripts in Example 20-4 also contain a number of single-character
variables: $@, $<, $‸, and $*. These are automatic variables, which make defines and
expands itself in carrying out each rule. Here is a complete list of the automatic vari‐
ables and their meanings in a given rule:

$@
The target filename.

$*

The stem of the target filename—that is, the part represented by % in a pattern
rule.

$<
The first prerequisite.

$‸
The list of prerequisites, excluding duplicate elements.

$?
The list of prerequisites that are newer than the target.

708 | Chapter 20: Using make to Build C Programs

$+
The full list of prerequisites, including duplicates.

$%

If the target is an archive member, the variable $% yields the member name
without the archive filename, and $@ supplies the filename of the archive.

The last of these automatic variables brings up a special target case. Because most
programs depend not only on source code but also on library modules, make also
provides a special notation for targets that are members of an archive:

archive_name(member_name): [prerequisites]
 [command_script]

The name of the archive member is enclosed in parentheses immediately after the
filename of the archive itself. Here is an example:

AR = ar -rv

libcircularmath.a(circulararea.o): circulararea.o
 $(AR) $@ $%

This rule executes the following command to add or replace the object file in the
archive:

ar -rv libcircularmath.a circulararea.o

In other make versions, these special variables also have long names that start with a
dot, such as $(.TARGET) as a synonym for $@. Also, some make programs use the
symbol $> for all prerequisites rather than GNU make’s $‸.

When an automatic variable expands to a list, such as a list of filenames, the ele‐
ments are separated by spaces.

To separate filenames from directories, there are two more versions of each auto‐
matic variable in this list whose names are formed with the suffixes D and F. Because
the resulting variable name is two characters, not one, parentheses are required. For
example, $(@D) in any rule expands to the directory part of the target, without the
actual filename, while $(@F) yields just the filename with no directory. (GNU make
supports these forms for compatibility’s sake, but provides more flexible handling of
filenames by means of functions; see “Built-In Functions” on page 715.)

Other Built-In Variables
The variables that make uses internally are described in the following list. You can
also use them in makefiles. Remember that you can find out the sources of all vari‐
ables in the output of make -p:

CURDIR
This variable holds the name of the current working directory after make has
processed its -C or --directory command-line options. You can modify this
variable, but doing so doesn’t change the working directory.

B
uild

 C
P

ro
g

ram
s

Variables | 709

.LIBPATTERNS
A list of filename patterns that determines how make searches for libraries
when a prerequisite starts with -l. The default value is lib%.so lib%.a. A pre‐
requisite called -lncurses causes make to search for libncurses.so and libncur‐
ses.a, in that order.

MAKE

This variable holds the name of the make executable. When you use $(MAKE) in
a command, make automatically expands it to the full path name of the pro‐
gram file so that all recursive instances of make are from the same executable.

MAKECMDGOALS
make stores any targets specified on the command line in this variable. You can
modify this variable, but doing so doesn’t change the targets make builds.

MAKEFILES
A list of standard makefiles that make reads every time it starts.

MAKEFILE_LIST
A list of all the makefiles that the present invocation of make is using.

MAKEFLAGS
This variable contains the command-line options with which make was
invoked, with some exceptions. Each instance of make reads this variable from
the environment on starting, and exports it to the environment before spawn‐
ing a recursive instance. You can modify this variable in the environment or in
a makefile.

MAKELEVEL
When make invokes itself recursively, this variable holds the degree of recur‐
sion of the present instance. In exporting this variable to the environment,
make increments its value. Child instances of make print this number in square
brackets after the program name in their console output.

MAKESHELL
On Windows, this variable holds the name of the command interpreter for
make to use in running command scripts. MAKESHELL overrides SHELL.

SHELL
The name of the shell that make invokes when it runs command scripts, usu‐
ally /bin/sh. Unlike most variables, make doesn’t read the value of SHELL from
the environment (except on Windows), as users’ shell preferences would make
make’s results less consistent. If you want make to run commands using a spe‐
cific shell, you must set this variable in your makefile.

SUFFIXES
make’s default list of known suffixes (see “Suffix Rules” on page 700). This vari‐
able contains the default list, which is not necessarily the list currently in effect;

710 | Chapter 20: Using make to Build C Programs

the value of this variable does not change when you clear the list or add your
own known suffixes using the built-in target .SUFFIXES.

VPATH
The directory path that make uses to search for any files not found in the cur‐
rent working directory.

Environment Variables
If you want, you can set environment variables in the shell before starting make, and
then reference them in the makefile using the same syntax as for other make vari‐
ables. Furthermore, you can use the export directive in the makefile to copy any or
all of make’s variables to the shell environment before invoking shell commands, as
in the following example:

INCLUDE=/usr/include:/usr/local/include:~/include
export INCLUDE
export LIB := $(LIBS):/usr/lib:/usr/local/lib

%.o: %.c
 $(CC) $(CFLAGS) -o $@ -c $<

When the C compiler is invoked by the pattern rule in this example, it can obtain
information defined in the makefile by reading the environment variables INCLUDE
and LIB. Similarly, make automatically passes its command-line options to child
instances by copying them to and then exporting the variable MAKEFLAGS. See
“Recursive make Commands” on page 724 for other examples.

The shell environment is more restrictive than make with regard to the characters
that are permitted in variable names and values. It might be possible to trick your
shell into propagating environment variables containing illegal characters, but the
easiest thing by far is just to avoid special characters in any variables you want to
export.

Phony Targets
The makefile in Example 20-4 also illustrates several different ways of using targets.
The targets debug, testing, production, clean, and symbols are not names of files
to be generated. Nonetheless, the rules clearly define the behavior of a command
like make production or make clean symbols debug. Targets that are not the
names of files to be generated are called phony targets.

In Example 20-4, the phony target clean has a command script but no prerequi‐
sites. Furthermore, its command script doesn’t actually build anything: on the con‐
trary, it deletes files generated by other rules. We can use this target to clear the
board before rebuilding the program from scratch. In this way, the phony targets
testing and production ensure that the executable is linked from object files made
with the desired compiler options by including clean as one of their prerequisites.

B
uild

 C
P

ro
g

ram
s

Phony Targets | 711

You can also think of a phony target as one that is never supposed to be up to date:
its command script should be executed whenever the target is called for. This is the
case with clean—as long as no file with the name clean happens to appear in the
project directory.

Often, however, a phony target’s name might really appear as a filename in the
project directory. For example, if your project’s products are built in subdirectories,
such as bin and doc, you might want to use subdirectory names as targets. But you
must make sure that make rebuilds the contents of a subdirectory when out of date,
even if the subdirectory itself already exists.

For such cases, make lets you declare a target as phony regardless of whether a
matching filename exists. The way to do so is to add a line like the following one to
your makefile, making the target a prerequisite of the special built-in target .PHONY:

.PHONY: clean

Or, to use an example with a subdirectory name, suppose we added these lines to
the makefile in Example 20-4:

.PHONY: bin
bin: circle
 $(MKDIR) $@
 $(CP) $< $@/
 $(CHMOD) 600 $@/$<

This rule for the target bin actually does create bin in the project directory. How‐
ever, because bin is explicitly phony, it is never up to date. make puts an up-to-date
copy of circle in the bin subdirectory even if bin is newer than its prerequisite, circle.

You should generally declare all phony targets explicitly, as doing so can also save
time. For targets that are declared as phony, make does not bother looking for
appropriately named source files that it could use with implicit rules to build a file
with the target’s name. An old-fashioned, slightly less intuitive way of producing the
same effect is to add another rule for the target with no prerequisites and no com‐
mands:

bin: circle
 $(MKDIR) $@
 $(CP) $< $@/
 $(CHMOD) 600 $@/$<
bin:

The .PHONY target is preferable if only because it is so explicit, but you may see the
other technique in automatically generated dependency rules, for example.

Other Target Attributes
There are also other attributes that you can assign to certain targets in a makefile by
making those targets prerequisites of other built-in targets like .PHONY. The most
important of these built-in targets are listed here (other special built-in targets that

712 | Chapter 20: Using make to Build C Programs

can be used in makefiles to alter make’s runtime behavior in general are listed at the
end of this chapter):

.IGNORE

For any target that is a prerequisite of .IGNORE, make ignores any errors that
occur in executing the commands to build that target. .IGNORE itself does not
take a command script.

You can also put .IGNORE in a makefile with no prerequisites at all, although it
is probably not a good idea. If you do, make ignores all errors in running any
command script.

.INTERMEDIATE
Ordinarily, when make needs to build a target whose prerequisites do not exist,
it searches for an appropriate rule to build them first. If the absent prerequisites
are not named anywhere in the makefile and make has to resort to implicit
rules to build them, they are called intermediate files. make deletes any inter‐
mediate files after building its intended target (see “Implicit Rule Chains” on
page 701). If you want certain files to be treated in this way even though they
are mentioned in your makefile, declare them as prerequisites of .INTERMEDI
ATE.

.LOW_RESOLUTION_TIME
On some systems, the timestamps on files have resolution of less than a second,
yet certain programs create timestamps that reflect only full seconds. If this
behavior causes make to misjudge the relative ages of files on your system, you
can declare any file with high-resolution timestamps as a prerequisite
of .LOW_RESOLUTION_TIME. Then make considers the file up to date if its time‐
stamp indicates the same whole second in which its prerequisite was stamped.
Members of library archives are automatically treated as having low-resolution
timestamps.

.PHONY

Any targets that are prerequisites of .PHONY are always treated as out of date.

.PRECIOUS
Normally, if you interrupt make while running a command script—if make
receives any fatal signal, to be more precise—make deletes the target it was
building before it exits. Any target you declare as a prerequisite of .PRECIOUS is
not deleted in such cases, however.

Furthermore, when make builds a target by concatenating implicit rules, it nor‐
mally deletes any intermediate files that it creates by one such rule as prerequi‐
sites for the next. However, if any such file is a prerequisite of .PRECIOUS (or
matches a pattern that is a prerequisite of .PRECIOUS), make does not delete it.

B
uild

 C
P

ro
g

ram
s

Other Target Attributes | 713

.SECONDARY

Like .INTERMEDIATE, except that make does not automatically delete files that
are prerequisites of .SECONDARY.

You can also put .SECONDARY in a makefile with no prerequisites at all. In this
case, make treats all targets as prerequisites of .SECONDARY.

A few other built-in targets act like general runtime options, affecting make’s overall
behavior just by appearing in a makefile. These are listed in “Running make” on
page 722.

Macros
When we talk about macros in make, you should remember that there is really no
difference between them and variables. Nonetheless, make provides a directive that
allows you to define variables with both newline characters and references to other
variables embedded in them. Programmers often use this capability to encapsulate
multiline command sequences in a variable, so that the term macro is fairly appro‐
priate. (The GNU make manual calls them “canned command sequences.”)

To define a variable containing multiple lines, you must use the define directive. Its
syntax is:

define macro_name
macro_value
endef

The line breaks shown in the syntax are significant: define and endef both need to
be placed at the beginning of a line, and nothing may follow define on its line
except the name of the macro. Within the macro_value, though, any number of
newline characters may also occur. These are included literally, along with all other
characters between the define and endef lines, in the value of the variable you are
defining. Here is a simple example:

define installtarget
 @echo Installing $@ in $(USRBINDIR) ... ;\
 $(MKDIR) -m 7700 $(USRBINDIR) ;\
 $(CP) $@ $(USRBINDIR)/ ;\
 @echo ... done.
endef

The variable references contained in the macro installtarget are stored literally as
shown here, and expanded only when make expands $(installtarget) itself, in a
rule like this, for example:

circle: $(OBJ) $(LIB)
 $(CC) $(LDFLAGS) -o $@ $^
ifdef INSTALLTOO
 $(installtarget)
endif

714 | Chapter 20: Using make to Build C Programs

Functions
GNU make goes beyond simple macro expansion to provide functions—both built-
in and user-defined functions. By using parameters, conditions, and built-in func‐
tions, you can define quite powerful functions and use them anywhere in your
makefiles.

The syntax of function invocations in makefiles, like that of macro references, uses
the dollar sign and parentheses:

$(function_name argument[,argument[,...]])

Whitespace in the argument list is significant. make ignores
any whitespace before the first argument, but if you include
any whitespace characters before or after a comma, make
treats them as part of the adjacent argument value.

The arguments themselves can contain any characters, except for embedded com‐
mas. Parentheses must occur in matched pairs; otherwise, they will keep make from
parsing the function call correctly. If necessary, you can avoid these restrictions by
defining a variable to hold a comma or parenthesis character, and using a variable
reference as the function argument.

Built-In Functions
GNU make provides more than 20 useful text-processing and flow-control func‐
tions, which are listed briefly in the following sections.

Text-processing functions
The text-processing functions listed here are useful in operating on the values of
make variables, which are always sequences of characters:

$(subst find_text,replacement_text,original_text)
Expands to the value of original_text, except that each occurrence of
find_text in it is changed to replacement_text.

$(patsubst find_pattern,replacement_pattern,original_text)
Expands to the value of original_text, except that each occurrence of
find_pattern in it is changed to replacement_pattern. The find_pattern
argument may contain a percent sign as a wildcard for any number of non-
whitespace characters. If replacement_pattern also contains a percent sign, it
is replaced with the characters represented by the wildcard in find_pattern.
The patsubst function also collapses each unquoted whitespace sequence into
a single space character.

B
uild

 C
P

ro
g

ram
s

Functions | 715

$(strip original_text)
Removes leading and trailing whitespace, and collapses each unquoted internal
whitespace sequence into a single space character.

$(findstring find_text,original_text)
Expands to the value of find_text, if it occurs in original_text; or to nothing
if it does not.

$(filter find_patterns,original_text)
find_patterns is a whitespace-separated list of patterns like that in patsubst.
The function call expands to a space-separated list of the words in origi
nal_text that match any of the words in find_patterns.

$(filter-out find_patterns,original_text)
Expands to a space-separated list of the words in original_text that do not
match any of the words in find_patterns.

$(sort original_text)
Expands to a list of the words in original_text, in alphabetical order, without
duplicates.

$(word n,original_text)
Expands to the nth word in original_text.

$(firstword original_text)
The same as $(word 1,original_text).

$(wordlist n,m,original_text)
Expands to a space-separated list of the nth through mth words in origi
nal_text.

$(words original_text)
Expands to the number of words in original_text.

Filename-manipulation functions
These functions operate on a whitespace-separated list of file or directory names,
and expand to a space-separated list containing a processed element for each name
in the argument:

$(dir filename_list)
Expands to a list of the directory parts of each filename in the argument.

$(notdir filename_list)
Expands to a list of the filenames in the argument with their directory parts
removed.

716 | Chapter 20: Using make to Build C Programs

$(suffix filename_list)
Expands to a list of the filename suffixes in the argument. Each suffix is the file‐
name ending, beginning with the last period (.) in it; or nothing, if the file‐
name contains no period.

$(basename filename_list)
Expands to a list of the filenames in the argument with their suffixes removed.
Directory parts are unchanged.

$(addsuffix suffix,filename_list)
Expands to a list of the filenames in the argument with suffix appended to
each one. (suffix is not treated as a list, even if it contains whitespace.)

$(addprefix prefix,filename_list)
Expands to a list of the filenames in the argument with prefix prefixed to each
one. (prefix is not treated as a list, even if it contains whitespace.)

$(join prefix_list,suffix_list)
Expands to a list of filenames composed by concatenating each word in pre
fix_list with the corresponding word in suffix_list. If the lists have differ‐
ent numbers of elements, the excess elements are included unchanged in the
result.

$(wildcard glob)
Expands to a list of existing filenames that match the pattern glob, which typi‐
cally contains shell wildcards.

Conditions and flow control functions
The functions listed here allow you to perform operations conditionally, process
lists iteratively, or execute the contents of a variable:

$(foreach name,list,replacement)
The argument name is a name for a temporary variable (without dollar sign and
parentheses). The replacement text typically contains a reference to $(name).
The result of the function is a list of expansions of replacement, using succes‐
sive elements of list as the value of $(name).

$(if condition,then_text[,else_text])
Expands to the value of then_text if condition, stripped of leading and trail‐
ing spaces, expands to a nonempty text. Otherwise, the function expands to the
value of else_text, if present.

$(eval text)
Treats the expansion of text as included makefile text.

B
uild

 C
P

ro
g

ram
s

Functions | 717

Operations on variables
The argument variable_name in the descriptions that follow is just the name of a
variable (without dollar sign and parentheses), not a reference to it. (Of course, you
may use a variable reference to obtain the name of another variable.)

$(value variable_name)
Expands to the “raw” value of the variable named, without further expansion of
any variable references it may contain.

$(origin variable_name)
Expands to one of the following values to indicate how the variable named was
defined:

undefined
default
environment
environment override
file
command line
override
automatic

$(call variable_name,argument[,argument[,…]])
Expands the variable named, replacing numbered parameters in its expansion
($1, $2, etc.) with the remaining arguments. In effect, this built-in function
allows you to create user-defined function-like macros. See “User-Defined
Functions” on page 718.

System functions
The functions in the following list interact with make’s environment:

$(shell text)
Passes the expansion of text to the shell. The function expands to the standard
output of the resulting shell command.

$(error text)
make prints the expansion of text as an error message and exits.

$(warning text)
Like the error command except that make doesn’t exit. The function expands
to nothing.

User-Defined Functions
You can define functions in the same way as simply expanded variables or macros,
using the define directive or the := assignment operator. Functions in make are
simply variables that contain numbered parameter references ($1, $2, $3, etc.) to

718 | Chapter 20: Using make to Build C Programs

represent arguments that you provide when you use the built-in function call to
expand the variable.

In order for these parameters to be replaced with the arguments when make
expands your user-defined function, you have to pass the function name and argu‐
ments to the built-in make function call.

Example 20-5 defines the macro getmodulename to return a filename for a program
module depending on whether the flag STATIC has been set, to indicate a statically
linked executable, or left undefined, to indicate dynamic object linking.

Example 20-5. The user-defined function getmodulename

A conditional assignment, just as a reminder that
the user may define STATIC=1 or STATIC=yes on the command line.
STATIC ?=

A function to generate the "library" module name:
Syntax: $(call getmodulename, objectname, isstatic)
define getmodulename
 $(if $2,$1,$(addsuffix .so,$(basename $1)))
endef

all: circle

circle: circle.o $(call getmodulename,circulararea.o,$(STATIC))
 $(CC) -o $@ $^

ifndef STATIC
%.so: %.o
 $(CC) -shared -o $@ $<
endif

The $(call …) function expands the macro getmodulename either to the text
circulararea.o, or, if the variable STATIC is not defined, to circulararea.so.

The rule to build the object file circulararea.o in Example 20-5 brings us to our next
topic, as it illustrates another way to query the STATIC flag: by means of the condi‐
tional directive ifndef.

Directives
We have already introduced the define directive, which produces a simply expan‐
ded variable or a function. Other make directives allow you to influence the effec‐
tive contents of your makefiles dynamically by making certain lines in a makefile
dependent on variable conditions, or by inserting additional makefiles on the fly.

B
uild

 C
P

ro
g

ram
s

Directives | 719

Conditionals
You can also make part of your makefile conditional upon the existence of a variable
by using the ifdef or ifndef directive. They work the same as the C preprocessor
directives of the same names, except that in make, an undefined variable is the same
as one whose value is empty. Here is an example:

OBJ = circle.o
LIB = -lm

ifdef SHAREDLIBS
 LIB += circulararea.so
else
 OBJ += circulararea.o
endif

circle: $(OBJ) $(LIB)
 $(CC) -o $@ $^

%.so : %.o
 $(CC) -shared -o $@ $<

As the example shows, the variable name follows ifdef or ifndef without a dollar
sign or parentheses. The makefile excerpt shown here defines a rule to link object
files into a shared library if the variable SHAREDLIBS has been defined. You might
define such a general build option in an environment variable, or on the command
line, for example.

You can also make certain lines of the makefile conditional upon whether two
expressions—usually the value of a variable and a literal string—are equal. The ifeq
and ifneq directives test this condition. The two operands whose equality is the
condition to test are either enclosed together in parentheses and separated by a
comma, or enclosed individually in quotation marks and separated by whitespace.
Here is an example:

ifeq ($(MATHLIB), /usr/lib/libm.so)
 # ... Special provisions for this particular math library ...
endif

That conditional directive, with parentheses, is equivalent to this one with quotation
marks:

ifeq "$(MATHLIB)" "/usr/lib/libm.so"
 # ... Special provisions for this particular math library ...
endif

The second version has one strong advantage: the quotation marks make it quite
clear where each of the operands begins and ends. In the first version, you must
remember that whitespace within the parentheses is significant, except immediately
before and after the comma (see also “Variables and Whitespace” on page 705).

720 | Chapter 20: Using make to Build C Programs

make’s handling of whitespace in the ifeq and ifneq direc‐
tives is not the same as in function calls!

Includes
The include directive serves the same purpose as its C preprocessor counterpart
but works slightly differently. To start with an example, you might write a makefile
named defaults.mk with a set of standard variables for your environment, contain‐
ing something like this:

BINDIR = /usr/bin
HOMEBINDIR = ~/bin
SRCDIR = project/src
BUILDDIR = project/obj

RM = rm -f
MKDIR = mkdir -p
... etc. ...

Then you could add these variables to any makefile by inserting this line:

include defaults.mk

The include keyword may be followed by more than one filename. You can also use
shell wildcards like * and ?, and reference make variables to form filenames:

include $(HOMEBINDIR)/myutils.mk $(SRCDIR)/*.mk

For included files without an absolute path, make searches in the current working
directory first, then in any directories specified with the -I option on the command
line, and then in standard directories determined when make was compiled.

If make fails to find a file named in an include directive, it continues reading the
makefile, and then checks to see whether there is a rule that will build the missing
file. If so, make rereads the whole makefile after building the included file. If not,
make exits with an error. The -include directive (or its synonym sinclude) is more
tolerant: it works the same as include except that make ignores the error and goes
on working if it can’t find or build an included file.

Other Directives
Of the other four make directives, three are used to control the interplay between
make’s internal variables and the shell environment, while the fourth instructs make
where to look for specific kinds of files. These directives are:

override variable_assignment
Ordinarily, variables defined on the command line take precedence over defini‐
tions or assignments with the same name in a makefile. Prefixing the override
keyword makes an assignment in a makefile take precedence over the com‐

B
uild

 C
P

ro
g

ram
s

Directives | 721

mand line. The variable_assignment may use the =, :=, or += operator, or the
define directive.

export [variable_name|variable_assignment]

You can prefix export to a variable assignment or to the name of a variable that
has been defined to export that variable to the environment, so that programs
invoked by command scripts (including recursive invocations of make) can
read it.

The export directive by itself on a line exports all make variables to the envi‐
ronment.

make does not export variables whose names contain any
characters other than letters, digits, and underscores. The
values of variables you export from makefiles may con‐
tain characters that are not allowed in shell environment
variables. Such values will probably not be accessible by
ordinary shell commands. Nonetheless, child instances
of make itself can inherit and use them.

The make variables SHELL and MAKEFLAGS, and also MAKEFILES if you have
assigned it a value, are exported by default. Any variables that the current
instance of make acquired from the environment are also passed on to child
processes.

unexport variable_name
Use the unexport directive to prevent a variable from being exported to the
environment. The unexport directive always overrides export.

vpath pattern directory[:directory[:…]]
The pattern in this directive is formed in the same way as in make pattern
rules, using one percent sign (%) as a wildcard character. Whenever make needs
a file that matches the pattern, it looks for it in the directories indicated, in the
order of their appearance. Here is an example:

vpath %.c $(MYPROJECTDIR)/src
vpath %.h $(MYPROJECTDIR)/include:/usr/include

On Windows, the separator character in the directory list is a semicolon, not a
colon.

Running make
This section explains how to add dependency information to the makefile automati‐
cally, and how to use make recursively. These two ways of using make are common
and basic, but they do involve multiple features of the program. Finally, the remain‐
der of this section is devoted to a reference list of GNU make’s command-line
options and the special pseudotargets that also function as runtime options.

722 | Chapter 20: Using make to Build C Programs

The command-line syntax of make is as follows:

 make [options] [variable_assignments] [target [target [...]]]

If you don’t specify any target on the command line, make behaves as though you
had specified the default target; that is, whichever target is named first in the make‐
file. make builds other targets named in the makefile only if you request them on
the command line or if they need to be built as prerequisites of any target requested.

Generating Header Dependencies
Our program executable circle depends on more files than those we have named in
the sample makefile up to now. To begin with, just think of the standard headers
included in our source code—not to mention the implementation-specific header
files they include in turn.

Most C source files include both standard and user-defined header files, and the
compiled program should be considered out of date whenever any header file has
been changed. Because you cannot reasonably be expected to know the full list of
header files involved, the standard make technique to account for these dependen‐
cies is to let the C preprocessor analyze the #include directives in your C source
and write the appropriate make rules. The makefile lines in Example 20-6 fulfill this
purpose.

Example 20-6. Generating header dependencies

CC = gcc
OBJ = circle.o circulararea.o
LIB = -lm

circle: $(OBJ) $(LIB)
 $(CC) $(LDFLAGS) -o $@ $^

%.o: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -o $@ $<

dependencies: $(OBJ:.o=.c)
 $(CC) -M $^ > $@

include dependencies

The third rule uses a special kind of make variable reference, called a substitution
reference, to declare that the target dependencies depend on files like those named
in the value of $(OBJ) but with the ending .c instead of .o. The command to build
dependencies runs the compiler with the preprocessor option -M, which instructs it
to collate dependency information from source files. (The GCC compiler permits
fine control of the dependency output by means of more preprocessor options that
start with -M, which are listed in “GCC Options for Generating Makefile Rules” on
page 729.)

B
uild

 C
P

ro
g

ram
s

Running make | 723

The first time you use this makefile, make prints an error message about the
include directive because no file named dependencies exists. When this happens,
however, make automatically treats the missing file named in the include directive
as a target, and looks for a rule to build it. The include directive itself is placed
below the target rules to prevent the included file’s contents from defining a new
default target.

Recursive make Commands
Your makefile rules can include any command that is executable on your system.
This includes the make command itself, and recursive invocation of make is in fact a
frequently used technique, especially to process source code in subdirectories. make
is designed to be aware of such recursive invocation, and incorporates certain fea‐
tures that help it work smoothly when you use it in this way. This section summari‐
zes the special features of “recursive make.”

The most typical recursive use of make is in building projects that are organized in
subdirectories with a makefile in each one. The following snippet illustrates how a
top-level makefile can invoke recursive instances of make in three subdirectories
named utils, drivers, and doc:

.PHONY: utils drivers doc

utils drivers doc:
 $(MAKE) -C $@

The variable MAKE is not defined in the makefile; it is defined internally to yield the
full pathname of the currently running program file. Your makefiles should always
invoke make in this way to ensure consistent program behavior.

The command-line option -C, or its long form, --directory, causes make to change
to the specified working directory on startup, before it even looks for a makefile.
This is how make “passes control” to the makefile in a subdirectory when used
recursively. In this example, the command does not name a target, so the child make
will build the first target named in the default makefile in the given subdirectory.

The subdirectories themselves are declared as prerequisites of the special tar‐
get .PHONY so that make never considers them up to date (see “Phony Targets” on
page 711 for more details). However, if files in one subdirectory depend on files in a
parallel subdirectory, you must account for these dependencies in the makefile of a
higher-level directory that contains both subdirectories.

There are a few things to remember about command-line options and special vari‐
ables when you use make recursively. A more complete list of make options and
environment variables appears in the following section. The following list merely
summarizes those with a special relevance to the recursive use of make:

724 | Chapter 20: Using make to Build C Programs

• Some of make’s command-line options instruct it not to execute commands
but to only print them (-n), touch the files (-t), or indicate whether the targets
are up to date (-q). In these cases, if the subordinate make command were not
executed, then these options would be incompatible with the recursive use of
make. To ensure recursion, when you run make with one of the -t, -n, or -q
options, commands containing the variable reference $(MAKE) are executed
even though other commands are not. You can also extend this special treat‐
ment to other commands individually by prefixing a plus sign (+) to the com‐
mand line as a command modifier.

• The variable MAKELEVEL automatically contains a numeral indicating the recur‐
sion depth of the current make instance, starting with 0 for a make invoked
from the console.

• The parent instance of make passes its command-line options to child instan‐
ces by copying them to the environment variable MAKEFLAGS. However, the
options -C, -f, -o, and -W are exceptions: these options, which take a file or
directory name as their argument, do not appear in MAKEFLAGS.

• The -j option, whose argument tells make how many commands it can spawn
for parallel processing, is passed on to child instances of make but with the par‐
allel job limit decreased by one.

• By default, a child instance of make inherits those of its parent’s variables that
were defined on the command line or in the environment. You can use the
export directive to pass on variables defined in a makefile.

Like any other shell command in a makefile rule, a recursive instance of make can
exit with an error status. If this happens, the parent make also exits with an error
(unless it was started with the -k or --keep-going option), so that the error cas‐
cades up the chain of recursive make instances.

When using make recursively with multiple makefiles in subdirectories, you should
use the include directive to avoid duplicating common definitions, implicit rules,
and so on. See “Includes” on page 721 for more information.

Command-Line Options
The following is a brief summary of the command-line options supported by GNU
make. Some of these options can also be enabled by including special targets in the
makefile. These targets are described in “Special Targets Used as Runtime Options”
on page 728.

-B, --always-make
Build unconditionally. In other words, make considers all targets out of date.

-C dir, --directory=dir
make changes the current working directory to dir before it does anything else.
If the command line includes multiple -C options (which is often the case when

B
uild

 C
P

ro
g

ram
s

Running make | 725

make invokes itself recursively), each directory specified builds on the previous
one. Here is an example:

$ make -C src -C common -C libs

These options would have the same effect as -C src/common/libs.

-d
Print debugging information.

-e, --environment-overrides
In the case of multiple definitions of a given variable name, variables defined
on the make command line or in makefiles normally have precedence over
environment variables. This command-line option makes environment vari‐
ables take precedence over variable assignments in makefiles (except for vari‐
ables specified in override directives).

-f filename, --file=filename, --makefile=filename
Use the makefile filename.

-h, --help
Print make’s command-line options.

-i, --ignore-errors
Ignore any errors that occur when executing command scripts.

-I dir, --include-dir=dir
If a makefile contains include directives that specify files without absolute
paths, search for such files in the directory dir (in addition to the current
directory). If the command line includes several -I options, the directories are
searched in the order of their occurrence.

-j [number], --jobs[=number]
Run multiple commands in parallel. The optional integer argument number
specifies the maximum number of simultaneous jobs. The -j argument by itself
causes make to run as many simultaneous commands as possible. (Naturally,
make is smart enough not to start building any target before its prerequisites
have been completed.) If the command line includes several -j options, the last
one overrides all others.

Parallel jobs spawned by make do not share the standard
streams elegantly. Console output from different jobs can
appear in random order, and only one job can inherit the
stdin stream from make. If you use the -j option, make
sure none of the commands in your makefiles read from
stdin.

726 | Chapter 20: Using make to Build C Programs

-k, --keep-going
This option tells make not to exit after a command has returned a nonzero exit
status. Instead, make abandons the failed target and any other targets that
depend on it but continues working on any other goals in progress.

-l [number], --load-average[=number], --max-load[=number]
In conjunction with the -j option, -l (that’s a lowercase L) prevents make from
executing more simultaneous commands whenever the system load is greater
than or equal to the floating-point value number. The -l option with no argu‐
ment cancels any load limit imposed by previous -l options.

-n, --just-print, --dry-run, --recon
make prints the commands it would otherwise run, but doesn’t actually execute
them.

-o filename, --old-file=filename, --assume-old=filename__
make treats the specified file as if it were up to date, and yet older than any file
that depends on it.

-p, --print-data-base
Before executing any commands, make prints its version information and all its
rules and variables, including built-ins and those acquired from makefiles.

-q, --question
make builds nothing and prints nothing, but returns an exit status as follows:

Exit status Meaning

0 All specified targets are up to date.

1 At least one target is out of date.

2 An error occurred.

-r, --no-builtin-rules
This option disables make’s built-in implicit rules, as well as the default list of
suffixes for old-style suffix rules. Pattern rules, user-defined suffixes, and suffix
rules that you have defined in makefiles still apply, as do built-in variables.

-R, --no-builtin-variables
Like -r, but also disables make’s built-in rule-specific variables. Variables you
define in makefiles are unaffected.

-s, --silent, --quiet
Ordinarily, make echoes each command on standard output before executing
it. This option suppresses such output.

-S, --no-keep-going, --stop
This option causes a recursive instance of make to ignore a -k or --keep-going
option inherited from its parent make.

B
uild

 C
P

ro
g

ram
s

Running make | 727

-t, --touch
make simply touches target files—that is, it updates their timestamps—instead
of rebuilding them.

-v, --version
make prints its version and copyright information.

-w, --print-directory
make prints a line indicating the working directory before and after processing
the makefile. This output can be useful in debugging recursive make applica‐
tions. This option is enabled by default for recursive instances of make, and
whenever you use the -C option.

--no-print-directory

Disable the working directory output in cases where -w is automatically activa‐
ted.

-W filename, --what-if=filename, --new-file=<filename,
--assume-new=filename

make treats the file filename as if it were brand new.

--warn-undefined-variables
Normally, make takes references to undefined variables in its stride, treating
them like references to variables with empty values. This option provides warn‐
ings about undefined variables to help you debug makefiles.

Special Targets Used as Runtime Options
The built-in targets listed in this section are ordinarily used in makefiles to alter
make’s runtime behavior in general. Other built-in targets are used primarily to
assign attributes to certain targets in a makefile, and are listed in “Other Target
Attributes” on page 712.

.DEFAULT

You can use the built-in target .DEFAULT to introduce a command script that
you want make to execute for any target that is not covered by any other
explicit or implicit rule. make also executes the .DEFAULT command script for
every prerequisite that is not a target in some rule.

.DELETE_ON_ERROR

You can include the built-in target .DELETE_ON_ERROR anywhere in a makefile
to instruct make to delete any target that has been changed by its command
script if the script returns a nonzero value on exiting.

.SILENT
Normally, make prints each command to standard output before executing it.
However, if a given target is a prerequisite of .SILENT, then make does not
print the rules when building that target.

728 | Chapter 20: Using make to Build C Programs

If you include .SILENT with no prerequisites in a makefile, it applies to all tar‐
gets, like the command-line options -s or --silent.

.EXPORT_ALL_VARIABLES
This target acts as an option telling make to export all the currently defined
variables before spawning child processes (see “Recursive make Commands”
on page 724).

.NOTPARALLEL
This built-in target is a general option; any prerequisites are ignored. The tar‐
get .NOTPARALLEL in a makefile overrides the command-line option -j for the
current instance of make, so that targets are built in sequence. If make invokes
itself, however, the new instance of make still executes commands in parallel,
unless its makefile also contains .NOTPARALLEL.

.SUFFIXES
This built-in target defines the list of suffixes that make recognizes for use in
old-style suffix rules (see “Suffix Rules” on page 700). You can add suffixes to
the built-in list by naming them as prerequisites of .SUFFIXES, or clear the list
by declaring the target .SUFFIXES with no prerequisites.

GCC Options for Generating Makefile Rules
-M

Generate a rule showing the prerequisites for the object file that would result
from compiling a given source file. The -M option implies the -E option (pre‐
process only; don’t compile), but the -MD and -MMD variants do not. By default,
the dependency rules are written to standard output.

-MD

Like -M, but allows GCC to compile source files (unless -E is also present) in
addition to running the preprocessor. The dependency output is written to a
file whose name is taken from the -o argument, if any, but with the filename
ending .d.

-MM

Like -M, but omit header files located in system header directories (and any files
they depend on in turn) from the dependency list.

-MMD

Combines the effects of -MM and -MD.

The following options are modifiers used in addition to -M, -MD, -MM, or -MMD:

-MF filename
Writes the dependency information to filename rather than to standard output
or to a preprocessor output file.

B
uild

 C
P

ro
g

ram
s

Running make | 729

-MG
Include nonexistent header files in the dependency list.

-MP
Include a phony target for each header file in the dependency output. The
effect is that make doesn’t complain about header files that have been removed
from the project but not from the dependency list.

-MT target
Substitute target for the actual target in generating dependency rules.

-MQ target
Like -MT, but quote any special characters.

730 | Chapter 20: Using make to Build C Programs

21
Debugging C Programs with GDB

An important part of software development is testing and troubleshooting. In a
large program, programming errors—or bugs—are practically inevitable. Programs
can deliver wrong results, get hung up in infinite loops, or crash due to illegal mem‐
ory operations. The task of finding and eliminating such errors is called debugging a
program.

Many bugs are not apparent by simply studying the source code. Extra output pro‐
vided by a testing version of the program is one helpful diagnostic technique. You
can add statements to display the contents of variables and other information dur‐
ing runtime. However, you can generally perform runtime diagnostics much more
efficiently by using a debugger.

A debugger is a program that runs another program in a finely controlled environ‐
ment. For example, a debugger allows you to run the program step by step, observ‐
ing the contents of variables, memory locations, and CPU registers after each state‐
ment. You can also analyze the sequence of function calls that lead to a given point
in the program.

This chapter is an introduction to one powerful and widely used debugger, the GNU
debugger (GDB). The sections that follow describe GDB’s basic options and com‐
mands. Most of the features and working principles described here are similar to
those of other debugging tools. For a complete description of GDB’s capabilities, see
the program manual “Debugging with GDB” by the Free Software Foundation,
which is available in PDF and HTML. If your system also has the GNU Texinfo sys‐
tem installed, you can browse the full manual by entering the shell command info
gdb.

731

http://www.gnu.org/software/gdb/documentation/

Installing GDB
If the GNU C compiler, GCC, is available on your system, then GDB is probably
already installed as well. You can tell by running the following command, which dis‐
plays the debugger’s version and copyright information:

$ gdb -version

As in the preceding chapters, the dollar sign character ($) followed by a space repre‐
sents the shell command prompt.

If GDB is installed, a message like the following appears:

GNU gdb (GDB) 7.8
Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-pc-cygwin".
...

If GDB is not installed, you can download the source code and compile it. This is
seldom necessary, though. Most Unix-like systems provide a convenient method to
install a binary GDB package, including the documentation. On Windows systems,
we recommend that you install the Cygwin software. Cygwin provides a standard
Unix environment on Windows platforms, including the GCC compiler, GDB
debugger, and other GNU tools (see http://www.cygwin.com or http://
www.redhat.com/software/cygwin/).

A Sample Debugging Session
This section describes a sample GDB session to illustrate the basic operation of the
debugger. Many problems in C programs can be pinpointed using just a handful of
debugger commands. The program in Example 21-1, gdb_example.c, contains a log‐
ical error. We’ll use this program in the following subsections to show how GDB can
be used to track down such errors.

Example 21-1. A program to be debugged in a GDB session

// gdb_example.c:
// Test the swap() function, which exchanges the contents
// of two int variables.
// ---
#include <stdio.h>

void swap(int *p1, int *p2); // Exchange *p1 and *p2

int main()
{

732 | Chapter 21: Debugging C Programs with GDB

http://www.gnu.org/software/gdb/download
http://www.cygwin.com
http://www.redhat.com/software/cygwin/
http://www.redhat.com/software/cygwin/

 int a = 10, b = 20;
/* ... */
 printf("The old values: a = %d; b = %d.\n", a, b);

 swap(&a, &b);

 printf("The new values: a = %d; b = %d.\n", a, b);
/* ... */
 return 0;
}

void swap(int *p1, int *p2) // Exchange *p1 and *p2
{
 int *p = p1;
 p1 = p2;
 p2 = p;
}

Symbol Information
GDB is a symbolic command-line debugger. “Symbolic” here means that you can
refer to variables and functions in the running program by the names you gave
them in your C source code. In order to display and interpret these names, the
debugger requires information about the types of the variables and functions in the
program, and about which instructions in the executable file correspond to which
lines in the source files. Such information takes the form of a symbol table, which
the compiler and linker include in the executable file when you run GCC with the
-g option:

$ gcc -g gdb_example.c

In a large program consisting of several source files, you must compile each module
with the -g option.

Finding a Bug
The following command runs the program from Example 21-1:

$./a.out

The program produces the following output:

The old values: a = 10; b = 20.
The new values: a = 10; b = 20.

Although the swap() function call is plain to see in the source code, the contents of
the variables a and b have not been swapped. We can look for the reason using
GDB. To begin the debugging session, start GDB from the shell, specifying the
name of the executable file as a command-line argument to the debugger:

$ gdb ./a.out

D
eb

ug
g

ing
C

 P
ro

g
ram

s

A Sample Debugging Session | 733

GNU gdb (GDB) 7.8
Copyright (C) 2014 Free Software Foundation, Inc.
...
(gdb)

The debugger loads the program executable but waits for your instructions before
running it. GDB prints (gdb) at the beginning of a new line to prompt you for a
debugging command. You can start by entering the command list, or just its initial
l for short, to list a few lines of source code of the program you are debugging. By
default, the listing shows 10 lines, centered on the source line that is ready to be exe‐
cuted next. In our example, the program has just been started, and the next line is
line 8, where the function main() begins:

(gdb) l
5
6 void swap(int *p1, int *p2); // Exchange *p1 and *p2
7
8 int main()
9 {
10 int a = 10, b = 20;
11 /* ... */
12
13 printf("The old values: a = %d; b = %d.\n", a, b);
14
(gdb)

If you follow one list command with another, GDB prints the next few lines of
source code.

Before you instruct GDB to run the program, you should tell it where you want it to
stop. You can do this by setting a breakpoint. When the debugger reaches the break‐
point, it interrupts the execution of your program, giving you an opportunity to
examine the program’s state at that point. Furthermore, once the program has been
interrupted at a breakpoint, you can continue execution line by line, observing the
state of program objects as you go.

To set a breakpoint, enter the command break, or b for short. Breakpoints are usu‐
ally set at a specific line of source code or at the beginning of a function. The follow‐
ing command sets a breakpoint at line 15 of the current source file, which is the line
containing the swap() function call:

(gdb) b 15
Breakpoint 1 at 0x80483aa: file gdb_example.c, line 15.

The command run, or r, starts the program:

(gdb) r
Starting program: /home/peter/src/c/gdb/a.out
Breakpoint 1, main () at gdb_example.c:15
15 swap(&a, &b);

734 | Chapter 21: Debugging C Programs with GDB

Upon reaching the breakpoint, the debugger interrupts the execution of the pro‐
gram and displays the line containing the next statement to be executed. Because we
suspect the bug in our example is in the swap() function, we want to execute that
function step by step. For this purpose, GDB provides the commands next, or n,
and step, or s. The next and step commands behave differently if the next line to
be executed contains a function call. The next command executes the next line,
including all function calls, and interrupts the program again at the following line.
The step command, on the other hand, executes a jump to the function called in
the line, provided that the debugging symbols are available for that function, and
interrupts the program again at the first statement in the function body. In our
example session, the command step takes us to the first statement in the swap()
function:

(gdb) s
swap (p1=0xbffff234, p2=0xbffff230) at gdb_example.c:24
24 int *p = p1;

The debugger displays the values of the function arguments (here, these are the
addresses of the variables a and b), and once again the next line to be executed. At
this point, we can check to see whether the values of the variables referenced by the
function’s pointer arguments are correct. We can do this using the print command
(p for short), which displays the value of a given expression:

(gdb) p *p1
$1 = 10
(gdb) p *p2
$2 = 20

The expression *p1 has the value 10, and *p2 has the value 20. The output of GDB’s
print command has the form $number = value, where $number is a GDB variable
that the debugger creates so that you can refer to this result later. (See “Displaying
Data” on page 756 for more information about GDB’s variables.)

If we now type n (for next) three times, the debugger executes lines 24, 25, and 26:

(gdb) n
25 p1 = p2;
(gdb) n
26 p2 = p;
(gdb) n
27 }
(gdb)

As long as the program flow has not yet returned from the swap() function to
main(), we can use the print command to display the contents of the local variables:

(gdb) p *p1
$3 = 20
(gdb) p *p2
$4 = 10

D
eb

ug
g

ing
C

 P
ro

g
ram

s

A Sample Debugging Session | 735

Now *p1 has the value 20, and *p2 has the value 10, which seems correct. We can
continue the examination of the program state with two more print commands:

(gdb) p p1
$5 = (int *) 0xbffff230
(gdb) p p2
$6 = (int *) 0xbffff234
(gdb)

As these print commands show, the values of the pointers p1 and p2 have been
swapped—not the contents of the memory locations referenced as *p1 and *p2.
That was the bug in swap(). The function needs to be amended so that it exchanges
the int values addressed as *p1 and *p2, rather than the pointer values stored in p1
and p2. A correct version would be the following:

void swap(int *p1, int *p2) // Exchange *p1 and *p2
{
 int tmp = *p1;
 *p1 = *p2;
 *p2 = tmp;
}

The command continue, abbreviated c, lets program execution continue until it
reaches the next breakpoint or the end of the program:

(gdb) c
Continuing.
The new values: a = 10; b = 20
Program exited normally.
(gdb)

As the (gdb) prompt indicates, the debugger is still running. To stop it, enter the
command quit or q. The quit command terminates the debugger even if the pro‐
gram you are debugging is still running. However, GDB does prompt you for con‐
firmation in this case:

(gdb) q
The program is running. Exit anyway? (y or n) y
$

Starting GDB
You can start GDB by entering gdb at the shell command prompt. GDB supports
numerous command-line options and arguments:

gdb [options] [executable_file [core_file | process_id]]

For example, the following command starts the debugger without displaying its
sign-on message:

$ gdb -silent
(gdb)

736 | Chapter 21: Debugging C Programs with GDB

In this example, the command line does not name the executable file to be
debugged. You can specify the program you want to test in GDB using the debugg‐
er’s file command, described in “Using GDB Commands” on page 741.

Command-Line Arguments
Ordinarily, the program to be debugged is named on the GDB command line. In
the following example, the GDB command loads the executable myprog for debug‐
ging:

$ gdb myprog
(gdb)

As an additional argument after the name of the program to be tested, you may
specify a process ID number or the name of a core dump file. In the following
example, the number after the program name is a process ID (or “PID”):

$ gdb myprog 1001
(gdb)

This command instructs GDB to connect to a process that is already running on the
system, and has the program name myprog and the process ID 1001. If GDB finds
such a process, you can interrupt its execution to begin debugging by pressing
Ctrl+C. If there is no running process with this ID, however, and the debugger finds
a file in the current working directory named 1001, it will interpret that argument as
the name of a core file rather than a process ID. A core file is a file containing the
memory dump representing the state of a process. For details about debugging with
core files, see “Analyzing Core Files in GDB” on page 763.

Command-Line Options
Most of the command-line options for the GDB debugger have both short and long
forms. The descriptions in the following list and subsections show both forms for
the most frequently used options. You can also truncate the long form if you type
enough of it to be unambiguous. For options that take an argument, such as -tty
device, the option and its argument can be separated by a space or by an equals
sign (=), as in -tty=/dev/tty6. Options may be introduced by one or two hyphens:
-quiet, for example, is synonymous with --quiet.

This section lists the most commonly used GDB options. For
a complete list, see the program manual.

--version, -v
GDB prints its version and copyright information to the console, and then exits
without starting a debugging session.

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Starting GDB | 737

http://www.gnu.org/software/gdb/documentation

--quiet, --silent
GDB starts an interactive session without displaying its version and copyright
information.

--help, -h
GDB displays its command-line syntax with a brief description of all the
options, and then exits without starting a debugging session.

Passing arguments to the program being debugged
GDB has one special command-line option that serves to separate the debugger’s
own command line from that of the program you want it to load for debugging:

--args

Use the --args option on starting a debugging session to pass command-line
arguments to the program that GDB loads for debugging. In the following
example, myprog is the program to be debugged:

$ gdb --args myprog -d "$HOME"
(gdb)

The --args option must be immediately followed by the command invoking
the program you wish to debug. That command should consist of the program
name and then its arguments, just as they would appear if you were starting
that program without GDB. In the previous example, -d and "$HOME" are
command-line arguments for myprog, not for gdb. If you want to specify
options for GDB at the same time, you must place them before --args on the
command line. In other words, --args must be the last GDB option.

You can also specify arguments for the program you are debugging after GDB has
started by using one of the interactive commands run or set args, described in
“Running a Program in the Debugger” on page 744.

Selecting files
The following command-line options tell GDB which input files to use:

-symbols filename, -s filename
If the table of debugging symbols is not contained in the executable file, use the
-symbols option to load a separate symbol table file. GDB reads the symbol
table from the specified file.

-exec filename, -e filename
The -exec option specifies the executable file to be debugged.

-se filename
The specified file is the executable you want to test in GDB and contains the
symbol table. This option is not usually necessary; if the GDB command line
contains a filename that is not an argument to any option, GDB treats the first
such file as if it were an argument to the -se option.

738 | Chapter 21: Debugging C Programs with GDB

-core filename, -c filename, -c number, -pid number, -p number
The -core and -pid options are actually synonymous. If the argument to either
one is a decimal number, GDB connects to a running process with that process
ID, if there is one. If there is no process with that ID, GDB attempts to open a
core file with the name number. If you want to force GDB to open a core file
whose name is a decimal number, you can prefix the directory to the filename.
For example, gdb -p ./32436 instructs GDB to open a core file named 32436
in the current directory, regardless of whether there is a running process with
that PID.

Like the -se option, the -core option is often unnecessary. If the GDB com‐
mand line contains a second filename that is not an argument to any option,
GDB treats that file as if it were an argument to the -core option.

Selecting the user interface
In GDB’s customary command-line mode, the console I/O of the program being
debugged appears interspersed with the debugger’s own commands and diagnostic
output. If this behavior is inconvenient, you can prevent it by specifying a separate
terminal for the input and output of the program you are debugging:

-tty device, -t device
The debugger uses device as the standard input and output streams of the pro‐
gram you are debugging. In the following example, the standard I/O streams of
the program myprog are attached to the terminal /dev/tty5:

$ gdb myprog -t /dev/tty5

-windows, -w
GDB may also be built with an integrated GUI. This user interface provides
separate display windows for the source code, assembler code, and CPU regis‐
ters of the program you are debugging. The -w option instructs GDB to run
with its GUI, if possible. If the GUI is not available, this option has no effect.

-nowindows, -nw
The -nw option instructs GDB to run in console mode, even if a GUI is avail‐
able. If the GUI is not available, this option has no effect.

There are a number of separate “frontend” programs that provide GUIs for GDB.
The best known of these is DDD, the Data Display Debugger. DDD’s capabilities
include displaying dynamic data structures such as linked lists and trees. But even
without a GUI, you may be able to use separate display windows with GDB:

-tui

If the help text displayed by the command gdb -h includes the option --tui,
then your GDB installation provides a text-based user interface, or TUI, to
manage a number of console windows. The TUI is a program module that uses
the curses library.

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Starting GDB | 739

http://www.gnu.org/software/ddd/

The -tui option starts GDB with the text-based full-screen user interface, or
TUI. The initial display consists of two windows: the upper window displays
the C source code, with the current line highlighted and breakpoints indicated
in the left margin. Below it is the command window, which displays the same
(gdb) command prompt and diagnostic output as a line-based GDB session.
You can also open a third window to display the program in assembly language
or the contents of CPU registers. For details about working with the TUI, see
the section “GDB Text User Interface” in the GDB manual.

If you use the Emacs editor, you can run GDB using the
Emacs buffer windows for its display. Start GDB within Emacs
using the command M-x gdb. The debugger’s command win‐
dow appears as a new Emacs buffer. When you begin running
a program in GDB, a second buffer is created displaying the
source code. The Emacs “debugger” mode also provides com‐
mands to control GDB, which are described in the section
“Using GDB under GNU Emacs” in the GDB manual, and
also documented in Emacs itself through the C-h m command.

Executing command scripts

-command command_file, -x command_file
The -command or -x option instructs GDB to carry out the commands in the
specified file on starting. A command file is a text file whose lines are GDB
commands. Blank lines and comments, which are lines beginning with the
hash character (#), are ignored. If you want the debugger to execute one or
more command files and then exit, use the -batch option in addition to the -x
or -command option.

-batch

The -batch option instructs GDB to exit after executing all command files
specified in -x commands. If no errors occur, GDB exits with the status 0. Any
other exit status indicates an error.

Initialization Files
On starting, GDB ordinarily processes an initialization file, if present, with the
name .gdbinit. On certain systems with a special debugger configuration, the initial‐
ization file may have a different name. Initialization files have the same internal syn‐
tax as command files, consisting of GDB commands, comments, and blank lines.
GDB processes the initialization files it finds in the current directory and your
home directory. The initialization files, command line, and command files are pro‐
cessed in the following order:

1. Upon starting, GDB first reads the initialization file in your home directory, if
present, and carries out the commands it contains. On Windows, GDB deter‐
mines the home directory from the value of the environment variable HOME.

740 | Chapter 21: Debugging C Programs with GDB

http://www.gnu.org/software/gdb/documentation/

The initialization file typically contains general commands to configure the
debugger, such as set listsize 5 to limit the default output of the list com‐
mand to five lines.

2. Next, GDB processes the command-line options. Any command files specified
in -x or -command options are not executed at this point, though.

3. If the current directory is not your home directory, and if the current directory
contains an initialization file, GDB executes the commands in that file. Usually,
the current directory contains the files of a program in development, and the
local initialization file .gdbinit contains commands to configure the debugger
for the program’s special requirements.

4. Finally, GDB executes the commands in files specified by the -x or -command
options on the command line.

GDB also lets you skip any .gdbinit files by specifying the following command-line
option:

-nx, -n
Instructs GDB to ignore all initialization files. The option takes no argument.

Using GDB Commands
Upon starting, the debugger prompts you to enter commands—for example, to set a
breakpoint and run the program that you specified on the command line to load for
debugging.

Each command you issue to GDB is a line of text beginning with a command key‐
word. The remainder of the line consists of the command’s arguments. You can
truncate any keyword, as long as you type enough of it to identify a command
unambiguously. For example, you can enter q (or qu or qui) to exit the debugger
with the quit command.

If you enter an empty command line—that is, if you press the Enter key immedi‐
ately at the GDB command prompt—then GDB repeats your last command, if that
action is plausible. For example, GDB automatically repeats step and next com‐
mands in this way, but not a run command.

If you enter an ambiguous or unknown abbreviation, or fail to specify required
command arguments, GDB responds with an appropriate error message, as in this
example:

(gdb) sh
Ambiguous command "sh": sharedlibrary, shell, show.

Command Completion
The GDB debugger can reduce your typing by completing the names of commands,
variables, files, and functions. Type the first few characters of the desired word, and
then press the Tab key. For example, the program circle.c in Example 1-1 contains

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 741

the function circularArea(). To display this function in a GDB session, all you
have to type is the following:

(gdb) list ci

Then press the Tab key. Automatic completion yields this command line:

(gdb) list circularArea

Press Enter to execute the command. If there are several possible completions for a
word, GDB inserts the next letters that are common to all possible completions, and
then prompts you for more input. You can type another letter or two to make your
entry more specific, and then press the Tab key again. If you press the Tab key twice
in a row, GDB displays all possible completions of the word. Here is an example of
command completion in several steps:

(gdb) break ci<tab>

GDB appends two letters, and then pauses for more input to resolve an ambiguity:

(gdb) break circ

If you press the Tab key twice, GDB displays the possible completions, and then
repeats the prompt:

(gdb) break circ<tab><tab>
circle.c circularArea
(gdb) break circ

Displaying Help for Commands
GDB has a help function, which divides its many commands into classes to help you
find the one you need. When you enter the help (or h) command with no argu‐
ment, GDB prints the list of command classes:

(gdb) h
List of classes of commands:
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the
program
user-defined -- User-defined commands
Type "help" followed by a class name for a list of commands in that
class.
Type "help" followed by command name for full documentation.

742 | Chapter 21: Debugging C Programs with GDB

Command name abbreviations are allowed if unambiguous.
(gdb)

To read about the commands in a given class, type help followed by the class name.
To read about how a given command works, type help followed by the name of the
command.

Status Information
To display information about the status of the debugger and the program being
debugged, GDB provides the commands info and show, as the help text shows:

(gdb) help status
Status inquiries.
List of commands:
info -- Generic command for showing things about the program being
debugged
show -- Generic command for showing things about the debugger

Status information on the program being debugged
The info command with no argument lists all the items that you can query about
the program you are testing:

(gdb) info
List of info subcommands:

info address -- Describe where symbol SYM is stored
info all-registers -- List of all registers and their contents
info args -- Argument variables of current stack frame
info breakpoints -- Status of user-settable breakpoints
...

When you specify one of the info arguments listed, GDB displays the correspond‐
ing information. Like commands, these arguments can be abbreviated, as in the fol‐
lowing command:

(gdb) info all-reg

This command displays the contents of all processor registers, including floating-
point and vector registers. The command info register, on the other hand, dis‐
plays only the CPU registers, without the floating-point or vector registers.

The following command displays information about the current source file; that is,
the source file containing the function that is currently being executed. If you have
not yet started the program that you want to test, then the current source file is the
one that contains the function main():

(gdb) info source
Current source file is circle.c
Compilation directory is /home/peter/C_in_a_Nutshell/tests/Ch21/
...
(gdb)

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 743

Some of the subcommands take another argument. For example, the info subcom‐
mand address in the following example takes the name of an object or function as
its argument:

(gdb) info address radius
Symbol "radius" is a local variable at frame offset -8.
(gdb)

Status information on the debugger
Like info, the show command also has numerous subcommands to display various
kinds of information about the debugger itself. The help text on show describes its
subcommands:

(gdb) help show
Generic command for showing things about the debugger.
List of show subcommands:

show annotate -- Show annotation_level
show archdebug -- Show architecture debugging
show architecture -- Show the current target architecture
show args -- Show argument list to give program being debugged when it
is started
...

The following command displays information about GDB’s current logging
behavior:

(gdb) show logging
Future logs will be written to gdb.txt.
Logs will be appended to the log file.
Output will be logged and displayed.
(gdb)

Most of the settings displayed by show can be modified by the set command. For
example, the following command turns on logging:

(gdb) set logging on
Copying output to gdb.txt.
(gdb) show logging
Currently logging to "gdb.txt".
...

The online help also describes the subcommands. For example, the following help
command displays a description of possible logging settings:

(gdb) help set logging

Running a Program in the Debugger
The following GDB commands allow you to control programs running in the
debugger:

744 | Chapter 21: Debugging C Programs with GDB

file filename
If you have not specified the program you want to debug in the GDB command
line, you can indicate it at GDB’s prompt using the file command. GDB reads
the symbol table from the executable file filename, and starts the program if
you enter a subsequent run command. If filename is not in the debugger’s
working directory, the debugger searches for it in the directories named in the
environment variable PATH.

set args [arguments]
If you have not specified the command-line arguments for the program you
want to debug in the GDB command line, you can define them at GDB’s
prompt using the set args command. For example, the following command
specifies two arguments for the program being tested:

(gdb) set args -d $HOME

To clear the argument list without setting new arguments, enter the set args
command with no further arguments.

show args
Displays the currently set command-line arguments for the program being
debugged:

(gdb) show args
Argument list to give program being debugged when it is started
is "-d $HOME".

run [arguments]

When you start a program using the run command (r for short), you can also
specify command-line arguments for it. On Unix-like systems, the arguments
may contain shell metacharacters such as * and $. You can also redirect the
program’s input and output using <, >, and >>. The debugger uses a shell to
interpret the program’s command line so that all special characters have the
same effect as they would in an ordinary shell environment. GDB uses
whichever shell is indicated by the SHELL environment variable, or the default
shell /bin/sh if SHELL is not defined.

The run command with no arguments starts the program with the arguments
currently set for it in GDB. If you have not yet set any arguments for the pro‐
gram, whether in a previous run command, on the GDB command line, or in a
set args command, then run starts the program with no arguments.

Once you start the program using the run command, it runs until it exits or
until it reaches a breakpoint that you have set in the debugger. The program
can also be interrupted by a signal, such as the SIGINT signal, which is usually
raised by the key combination Ctrl+C.

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 745

kill
If you have found one or more errors to correct and want to edit and recompile
a program outside the debugger, you should first terminate it. You can do this
using the kill command, as in the following example:

(gdb) kill
Kill the program being debugged? (y or n) y

The settings, including the command-line arguments for the program, remain
unchanged as long as you do not exit the debugger. The next time you start the
program using the run command, GDB detects the fact that the executable file
has been modified, and reloads it.

Displaying Source Code
You can display a program’s source code in the debugger using the list (or l) com‐
mand. By default, GDB displays ten lines at a time, starting five lines before the next
statement to be executed. The list command supports arguments that allow you to
specify which part of the program you want to display:

list filename:line_number
Displays source code centered around the line with the specified line number.

list line_number
If you do not specify a source filename, then the lines displayed are those in the
current source file.

list from,[to]
Displays the specified range of the source code. The from and to arguments
can be either line numbers or function names. If you do not specify a to argu‐
ment, list displays the default number of lines beginning at from. For exam‐
ple, the following command displays the first 10 lines of the main() function:

(gdb) list main,

list function_name
Displays source code centered around the line in which the specified function
begins.

list, l
The list command with no arguments displays more lines of source code fol‐
lowing those presented by the last list command. If another command exe‐
cuted since the last list command also displayed a line of source code, then
the new list command displays lines centered around the line displayed by
that command. For example, if the debugger has just interrupted execution of
the program at a breakpoint, the next list command displays lines centered
around that breakpoint.

746 | Chapter 21: Debugging C Programs with GDB

If you have not yet started the program, the first list command with no arguments
displays source code centered around the beginning of the main() function, as the
following example illustrates:

$ gdb -silent circle
(gdb) l
1 // Circle.c: Calculate and print the areas of circles
2 #include <stdio.h> // Preprocessor directive
3
4 double circularArea(double r); // Function declaration
5 // (prototype form)
6 int main() // Definition of main() begins
7 {
8 double radius = 1.0, area = 0.0;
9
10 printf(" Areas of Circles\n\n");
(gdb)

Two other commands are useful in controlling the output of your list commands:

set listsize number
Sets the default number of lines displayed by list commands to number.

show listsize

Shows the default number of lines displayed by list commands.

Working with Breakpoints
On reaching a breakpoint, the debugger interrupts the running program and dis‐
plays the line at which you have set the breakpoint. To be exact, the line displayed is
the line containing the next statement that will be executed when the program
resumes. Once the program flow has been interrupted by a breakpoint, you can use
GDB commands to execute the program line by line, and to display the contents of
variables and registers.

Breakpoints can also be made conditional, so that on reaching such a breakpoint,
the debugger interrupts the program only if a specified condition is fulfilled.

Setting and displaying breakpoints
Set breakpoints using the break command, which you can also abbreviate b. You
can specify the location of a breakpoint in several ways. Here are the most common
forms of the break command:

break [filename:]line_number
Sets a breakpoint at the specified line in the current source file, or in the source
file filename, if specified.

break function
Sets a breakpoint at the first line of the specified function.

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 747

break
Sets a breakpoint at the next statement to be executed. In other words, the pro‐
gram flow will be automatically interrupted the next time it reaches the point
where it is now. (To be more exact, the break command with no arguments sets
a breakpoint at the next statement in the currently selected stack frame; see
“Analyzing the Stack” on page 753. For now, we assume that you have not
explicitly selected any stack frame, so that the current frame corresponds to the
function in which the program flow is currently interrupted, and the break
command with no arguments sets a breakpoint at the current statement.)

Referring now to the program gdb_example.c from Example 21-1, the following
command sets a breakpoint at the beginning of the function swap():

(gdb) b swap
Breakpoint 1 at 0x4010e7: file gdb_example.c, line 27.

The output from the b command tells you that the breakpoint was set on line 27.
You can issue the list command to confirm that line 27 is, in fact, the first line of
the swap function:

(gdb) list 27
22 return 0;
23 }
24
25 void swap(int *p1, int *p2) // Exchange *p1 and *p2
26 {
27 int *p = p1;
28 p1 = p2;
29 p2 = p;
30 }
31

The following command sets a second breakpoint before the end of the function:

(gdb) b 30
Breakpoint 2 at 0x4010f9: file gdb_example.c, line 30.

You can use the info command to display all the breakpoints that are currently
defined:

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x004010e7 in swap at gdb_example.c:27
2 breakpoint keep y 0x004010f9 in swap at gdb_example.c:30

The breakpoint numbers shown at left in the info output are used to identify the
individual breakpoints in other commands, such as those used to delete or disable a
breakpoint. In the info output just shown, the letter y for “yes” in the column
labeled Enb indicates that both breakpoints are enabled. The third column, labeled
Disp for “disposition,” indicates whether each breakpoint will be retained or deleted
the next time the program flow reaches it. If a breakpoint is temporary, GDB auto‐

748 | Chapter 21: Debugging C Programs with GDB

matically deletes it as soon as it is reached. To set a temporary breakpoint, use the
tbreak command instead of break, as in the following example:

(gdb) tbreak 16
Breakpoint 3 at 0x4010c0: file gdb_example.c, line 16.

Deleting, disabling, and ignoring breakpoints
The following commands take as their argument either a single breakpoint number
or a range of breakpoints (a range consists of two breakpoint numbers separated by
a hyphen, such as 3-5):

delete [bp_number | range], d [bp_number | range]
Deletes the specified breakpoint or range of breakpoints. A delete command
with no argument deletes all the breakpoints that have been defined. GDB
prompts you for confirmation before carrying out such a sweeping command:

(gdb) d
Delete all breakpoints? (y or n)

disable [bp_number | range]
Temporarily deactivates a breakpoint or a range of breakpoints. If you don’t
specify any argument, this command affects all breakpoints. It is often more
practical to disable breakpoints temporarily than to delete them. GDB retains
the information about the positions and conditions of disabled breakpoints so
that you can easily reactivate them.

enable [bp_number | range]
Restores disabled breakpoints. If you don’t specify any argument, this com‐
mand affects all disabled breakpoints.

ignore bp_number iterations
Instructs GDB to pass over a breakpoint without stopping a certain number of
times. The ignore command takes two arguments: the number of a breakpoint,
and the number of times you want it to be passed over.

Here is an example using all of the commands listed:

(gdb) del 2
(gdb) dis 1-3
No breakpoint number 2.
(gdb) ena 1
(gdb) ign 1 5
Will ignore next 5 crossings of breakpoint 1.
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x004010e7 in swap at gdb_example.c:27
 ignore next 5 hits
3 breakpoint del n 0x004010c0 in main at gdb_example.c:16

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 749

As the info output indicates, breakpoint 2 no longer exists, the temporary break‐
point 3 is disabled, and breakpoint 1 will not stop the program until the sixth time
the program reaches it.

Conditional breakpoints
Normally, the debugger interrupts a program as soon as it reaches a breakpoint. If
the breakpoint is conditional, however, then GDB stops the program only if the
specified condition is true. You can specify a break condition when you set a break‐
point by appending the keyword if to a normal break command:

break [position] if expression

In this syntax, position can be a function name or a line number, with or without a
filename, just as for an unconditional breakpoint (see “Setting and displaying break‐
points” on page 747). The condition can be any C expression with a scalar type, and
may include function calls. Here is an example of a conditional breakpoint:

(gdb) s
27 for (i = 1; i <= limit ; ++i)
(gdb) break 28 if i == limit − 1
Breakpoint 1 at 0x4010e7: file gdb_test.c, line 28.

This command instructs the debugger to interrupt the program at line 28 if the vari‐
able i at that point has a value one less than the variable limit.

Any variables you use in a break condition must be visible at
the breakpoint’s position. In other words, the breakpoint must
be located within the variables’ scope.

If you have already set a breakpoint at the desired position, you can use the condi
tion command to add or change its break condition:

condition bp_number [expression]

The argument expression becomes the new condition of the breakpoint with the
number bp_number. The output of the info breakpoints (or info b) command
includes any break conditions, as the following example illustrates:

(gdb) condition 2 *p1 != *p2
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x004010ae in main at gdb_example.c:12
2 breakpoint keep y 0x004010e7 in swap at gdb_example.c:21
 stop only if *p1 != *p2
3 breakpoint del y 0x004010f9 in swap at gdb_example.c:24
(gdb)

750 | Chapter 21: Debugging C Programs with GDB

To delete a break condition, use the condition command without an expression
argument:

(gdb) condition 2
Breakpoint 2 now unconditional.

Resuming Execution After a Break
When you have finished analyzing the state of a stopped program, there are several
ways of resuming execution. You can step through the program line by line, let the
program run to the next breakpoint, or let it run to a specified position such as the
end of the current function. The commands you can use to proceed after a break in
execution are listed here (examples of all four commands are given after the list):

continue [passes], c [passes]
Allows the program to run until it reaches another breakpoint, or until it exits
if it doesn’t encounter any further breakpoints. The passes argument is a num‐
ber that indicates how many times you want to allow the program to run past
the present breakpoint before GDB stops it again. This is especially useful if the
program is currently stopped at a breakpoint within a loop. See also the ignore
command, described in “Working with Breakpoints” on page 747.

step [lines], s [lines]
Executes the current line of the program, and stops the program again before
executing the line that follows. The step command accepts an optional argu‐
ment, which is a positive number of source code lines to be executed before
GDB interrupts the program again. However, GDB stops the program earlier if
it encounters a breakpoint before executing the specified number of lines. If
any line executed contains a function call, step proceeds to the first line of the
function body, provided that the function has been compiled with the neces‐
sary symbol and line number information for debugging.

next [lines], n [lines]
Works the same way as step except that next executes function calls without
stopping before the function returns, even if the necessary debugging informa‐
tion is present to step through the function.

finish

To resume execution until the current function returns, use the finish com‐
mand. The finish command allows program execution to continue through
the body of the current function, and stops it again immediately after the pro‐
gram flow returns to the function’s caller. At that point, GDB displays the func‐
tion’s return value in addition to the line containing the next statement.

Remember that the lines of a program are not always executed in the order in which
they appear in the source code. For example, consider the following function to
compute a factorial:

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 751

(gdb) list factorial
21
22 // factorial() calculates n!, the factorial of a non-negative n.
23 // For n > 0, n! is the product of all integers from 1 to n.
24 // 0! equals 1.
25
26 long double factorial(register unsigned int n)
27 {
28 long double f = 1;
29 while (n > 1)
30 f *= n--;
31 return f;
32 }

The following excerpt of a GDB session demonstrates that lines of code can execute
outside of their linear order. The frame command shows that the program execu‐
tion has been stopped at line 30. The step command executes line 30, whereupon
line 29 is displayed as the next one to be executed:

(gdb) frame
#0 factorial (n=10) at factorial.c:30
30 f *= n--;
(gdb) s
29 while (n > 1)
(gdb)

In this particular example, the execution of line 31 does not follow that of line 30.
Instead, line 29 follows line 30. The reason, of course, is that the loop condition has
to be evaluated after every iteration of the loop body.

If any line executed by a step command contains a function call, and GDB has the
necessary symbol table and line number information for the function, then execu‐
tion stops again at the first line within the function called. In the following example,
the step command enters the factorial() function but not the printf() function:

(gdb) frame
#0 main () at factorial.c:14
14 printf("%u factorial is %.0Lf.\n", n, factorial(n));
(gdb) s
factorial (n=10) at factorial.c:28
28 long double f = 1;
(gdb)

In this example, the function printf(), unlike factorial(), was linked into the
program from a standard library that was compiled without debugging information.
As a result, GDB is able to display the contents of factorial() but not of printf().

You can use the next command to skip over function calls; that is, to avoid stepping
into functions. The following example is the same as the preceding one except that
it substitutes next for step to illustrate the difference in behavior between the two
commands:

752 | Chapter 21: Debugging C Programs with GDB

(gdb) frame
#0 main () at factorial.c:14
14 printf("%u factorial is %.0Lf.\n", n, factorial(n));
(gdb) n
10 factorial is 3628800.
16 return 0;
(gdb)

As you can see, the use of next prevented the debugger from stepping into either
factorial() or printf().

Finally, here is an example illustrating the finish command, again using the
factorial() function:

(gdb) s
14 printf("%u factorial is %.0Lf.\n", n, factorial(n));
(gdb) s
factorial (n=10) at factorial.c:28
28 long double f = 1;
(gdb) finish
Run till exit from #0 factorial (n=10) at factorial.c:28
0x0040112b in main () at factorial.c:14
14 printf("%u factorial is %.0Lf.\n", n, factorial(n));
Value returned is $2 = 3628800
(gdb)

In this case, finish caused execution to continue until the return from the
factorial() function call. (If there had been breakpoints within the factorial()
function block, GDB would have stopped the program there.) The call to printf()
has not yet been executed at this point, however.

Analyzing the Stack
The call stack, usually called the stack for short, is an area of memory organized on
the LIFO principle: “last in, first out.” Each time a program performs a function call,
it creates a data structure on the stack called a stack frame. The stack frame contains
not only the caller’s address and register values, which enable the program to return
control to the caller after completing the function, but also the function’s parameters
and local variables. When a function returns, the memory that its stack frame occu‐
pied is free again.

Displaying a call trace
When the debugger stops a program, it is often helpful to know what sequence of
function calls has brought the flow of execution to the current position. GDB pro‐
vides this information in the form of a call trace, which shows each function call
that is currently in progress, with its arguments. To display the call trace, use the
backtrace command (abbreviated bt). The backtrace command has two more
synonyms: where and info stack (or info s).

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 753

The following example shows the call trace when the program circle.c is stopped
within the function circularArea():

(gdb) bt
#0 circularArea (r=5) at circle.c:30
#1 0x0040114c in main () at circle.c:18

The trace shows that the circularArea() function is called from main() at line 18,
with the argument value 5. The debugger numbers the stack frames from last to first
so that the current function’s frame always has the number 0. The highest numbered
stack frame is that of the main() function.

The address that follows the frame number in the backtrace output is the return
address; that is, the address of the next instruction to be executed after the return
from the function call for which the stack frame was generated. However, this
address is omitted from the stack frame display if it corresponds to the same source
code line at which the program is stopped.

We’ll illustrate backtraces using the following recursive function named
factorial():

34 long double factorial(register unsigned int n)
35 {
36 if (n <= 1)
37 return 1.0L;
38 else
39 return n * factorial(n-1);
40 }

The following GDB output shows the call stack during the final, recursive call to
factorial(). By definition, that final call occurs when n is 1. To stop the program
in the last recursive iteration of the factorial() function, we can set a breakpoint
with the condition n == 1:

(gdb) b factorial if n == 1
Breakpoint 1 at 0x40114f: file factorial.c, line 36.
(gdb) r
...
Breakpoint 1, factorial (n=1) at factorial.c:36
36 if (n <= 1)
(gdb) bt
#0 factorial (n=1) at factorial.c:36
#1 0x0040117c in factorial (n=2) at factorial.c:39
#2 0x0040117c in factorial (n=3) at factorial.c:39
#3 0x0040117c in factorial (n=4) at factorial.c:39
#4 0x0040117c in factorial (n=5) at factorial.c:39
#5 0x0040112b in main () at factorial.c:14
(gdb)

The backtrace in this example shows that the main() function started things off by
requesting the value of 5! (the factorial of 5). The factorial() function then recur‐
sively invoked itself to compute 4!, and then 3!, followed by 2!, and finally by 1!.

754 | Chapter 21: Debugging C Programs with GDB

Displaying and changing the current stack frame
Most of the commands for examining the stack operate on the current stack frame.
For example, you can address the local variables in the current stack frame by their
names. When multiple frames are available, GDB lets you choose among them.

When the debugger stops the program at a breakpoint, the current stack frame is
the frame corresponding to the function currently being executed—that is, the
frame numbered 0 in the backtrace list. The frame command allows you to display
the current stack frame, or to select a different frame:

frame [number]

The command frame, abbreviated as f, selects and displays the frame with the
specified number. That frame is then the current stack frame. The frame command
with no argument simply displays information about the current frame.

The output of the frame command always consists of two lines of text: the first con‐
tains the name of the function called and the values of its arguments, and the sec‐
ond is the current source code line in the corresponding function.

In the following example, the program circle has been stopped in the function
circularArea():

(gdb) bt
#0 circularArea (r=5) at circle.c:27
#1 0x0040114c in main () at circle.c:18
(gdb) f 1
#1 0x0040114c in main () at circle.c:18
18 area = circularArea(radius);
(gdb) p radius
$1 = 5
(gdb)

The command f 1 selects the stack frame that contains the call to the current func‐
tion. In this example, that is the frame corresponding to the main() function. Once
that stack frame has been selected, local variables in main() can be accessed by their
names, as the command p radius demonstrates.

Displaying arguments and local variables
The info command has three subcommands that are useful in displaying the con‐
tents of the current stack frame:

info frame
Displays information about the current stack frame, including its return
address and saved register values.

info locals
Lists the local variables of the function corresponding to the stack frame, with
their current values.

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 755

info args
List the argument values of the corresponding function call.

In the following example, the program has been stopped at the beginning of the
swap() function. This swap() is the corrected version of the function in
Example 21-1:

25 void swap(int *p1, int *p2) // Exchange *p1 and *p2
26 {
27 int tmp = *p1;
28 *p1 = *p2;
29 *p2 = tmp;
30 }

On an Intel-based system with Windows XP, the info frame command displays the
following information:

(gdb) info frame
Stack level 0, frame at 0x22f010:
 eip = 0x4010e7 in swap (gdb_example.c:27); saved eip 0x4010c0
 called by frame at 0x22f030
 source language c.
 Arglist at 0x22f008, args: p1=0x22f024, p2=0x22f020
 Locals at 0x22f008, Previous frame's sp is 0x22f010
 Saved registers:
 ebp at 0x22f008, eip at 0x22f00c

The register eip (the “extended instruction pointer”) contains the address of the
next machine instruction to be executed, corresponding to line 27. The ebp register
(“extended base pointer”) points to the current stack frame. The info args com‐
mand produces the following display:

(gdb) info args
p1 = (int *) 0x22f024
p2 = (int *) 0x22f020

GDB indicates the pointers’ type, int *, as well as their values. The info locals
command displays the following information:

(gdb) info locals
tmp = 0

Displaying Data
Usually, you can use the print command to display the values of variables and other
expressions. In addition, you can use the command x to examine unnamed blocks
of memory.

Displaying values of expressions
The print or p command takes any C expression as its argument:

p [/format] [expression]

756 | Chapter 21: Debugging C Programs with GDB

This command evaluates expression and displays the resulting value. A print
command with no expression argument displays the previous value again, without
reevaluating the previous expression. If you want, you can specify a different output
format.

The optional argument /format allows you to specify an appropriate output format
for the expression (see “Output formats” on page 758). Without a format argument,
print formats the output as appropriate for the data type.

Expressions in print commands can also have side effects, as the following example
illustrates. The current stack frame is that of the circularArea() function in the
circle program:

(gdb) p r
$1 = 1
(gdb) p r=7
$2 = 7
(gdb) p r*r
$3 = 49

In this example, the expression r=7 in the second print command assigns the value
7 to the variable r. You can also change the value of a variable using the set com‐
mand:

(gdb) set variable r=1.5

The print command’s output displays an expression’s value as the value of a vari‐
able $i, where i is a positive integer. You can refer to these variables in subsequent
commands, as in the following example:

(gdb) p 2*circularArea($2)
$4 = 307.87608005280003

This command calls the function circularArea() with the value of $2 (which was 7
in our preceding example), and then multiplies the return value by 2 and saves the
result in the new variable $4.

You can also use the p and set commands to define new variables in GDB, with
names that start with a dollar sign. For example, the command set $var = *ptr
creates a new variable named $var and assigns it the value currently referenced by
the pointer ptr. The debugger’s variables are separate from those of the program
being debugged. GDB also stores the values of CPU registers in variables whose
names are the standard register names, with the dollar sign prefix.

To access variables in other stack frames without first changing the current stack
frame, prefix the function name and the double-colon operator (::) to the variable’s
name, as the following example illustrates:

(gdb) p main::radius
$8 = 1

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 757

Output formats
The optional /format argument to the print command consists of a slash followed
by a single letter that specifies an output format. The letters permitted are mostly
similar to the conversion specifiers in the format string argument of the C function
printf(). For example, the command print /x displays the previous value as an
integer in hexadecimal notation.

The print command converts the value to the appropriate type, if necessary. The fol‐
lowing list describes all of the format options for integer values:

d
Decimal notation. This is the default format for integer expressions.

u
Decimal notation. The value is interpreted as an unsigned integer type.

x
Hexadecimal notation.

o
Octal notation.

t

Binary notation. Do not confuse this with the x command’s option b for “byte,”
described in the next subsection.

c
Character, displayed together with the character code in decimal notation.

As the following example illustrates, the format option can follow the p command
immediately, without an intervening space:

(gdb) p/x 65
$10 = 0x41
(gdb) p/t
$11 = 1000001
(gdb) p/c
$12 = 65 'A'
(gdb) p/u -1
$13 = 4294967295

Each print command without an expression argument in this example displays
the same value as the previous command, but formatted as specified by the /format
argument.

The print command accepts two more format options for non-integer expressions:

a
Displays an address, such as a pointer value, in hexadecimal notation, along
with its offset from the nearest named address below it in memory, if any.

758 | Chapter 21: Debugging C Programs with GDB

f
Interprets the bit pattern of the expression’s value as a floating-point number,
and displays it.

Here are some examples using these format options:

(gdb) p/a 0x401100
$14 = 0x401100 <swap+31>
(gdb) p/f 123.0
$15 = 123
(gdb) p/f 123
$16 = 1.72359711e-43

Displaying memory blocks
The x command allows you to examine unnamed memory blocks. The command’s
arguments include the block’s beginning address and size, and an optional output
format:

x [/nfu] [address]

This command displays the contents of the memory block starting at the specified
address, with the block size and output format determined by the /nfu option. The
address argument can be any expression whose value is a valid address. If you omit
the address argument, the x command displays the next memory block following
the last memory location displayed by an x or print command.

The /nfu argument can consist of up to three parts, all of which are optional:

n
A decimal number specifying how many units of memory to display. The size
of each such unit is determined by the third part of the /nfu option, u. The
default value of n is one.

f

A format specifier, which may be one of those supported by the print com‐
mand (described in “Output formats” on page 758), or one of the following two
additional format specifiers:

s Display the data at the specified address as a null-terminated string.

i Display machine instructions in assembly language.

The default format is initially x, and later the format that you last specified in
an x or print command.

u

The third part of the /nfu argument, the u option, defines the size of each
memory unit displayed, and can have one of the following values:

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 759

b One byte

h Two bytes (a “half word”)

w Four bytes (a “word”)

g Eight bytes (a “giant word”)

The default value of u is initially w, and later whichever unit you last specified
in an x command. It makes no sense to specify a unit size with the format
option s or i. If you do so, GDB ignores the unit size option.

The following examples illustrate the use of the x command. In these examples,
assume that the following variables are defined in the current scope:

char msg[100] = "Hello world!\n";
char *cPtr = msg + 6;

Each line of the x command’s output begins with the starting address of the memory
location displayed, and the corresponding name from the symbol table, if any. The
first x command displays the string msg:

(gdb) x/s msg
0x402000 <msg>: "Hello world!\n"

The next command displays the first 15 bytes of the msg string in hexadecimal:

(gdb) x/15xb msg
0x402000 <msg>: 0x48 0x65 0x6c 0x6c 0x6f 0x20 0x77 0x6f
0x402008 <msg+8>: 0x72 0x6c 0x64 0x21 0x0a 0x00 0x00

Two 32-bit words, in hexadecimal notation, at the address msg:

(gdb) x/2xw msg
0x402000 <msg>: 0x6c6c6548 0x6f77206f

The string that begins at the pointer value of cPtr:

(gdb) x/s cPtr
0x402006 <msg+6>: "world!\n"

Beginning at the same address, eight decimal character codes, with the correspond‐
ing character values:

(gdb) x/8cb cPtr
0x402006 <msg+6>: 119 'w' 111 'o' 114 'r' 108 'l' 100 'd' 33 '!'
10 '\n' 0 '\0'

The value of the pointer cPtr itself, in hexadecimal and in binary:

(gdb) x/a &cPtr
0x22f00c: 0x402006 <msg+6>
(gdb) x/tw &cPtr
0x22f00c: 00000000010000000010000000000110

760 | Chapter 21: Debugging C Programs with GDB

Watchpoints: Observing Operations on Variables
GDB lets you take notice of read and write access to variables by setting watchpoints.
A watchpoint is like a breakpoint except that it is not bound to a specific line of
source code. If you set a watchpoint for a variable, then GDB stops the program
whenever the value of the variable changes. In fact, GDB can watch not only indi‐
vidual variables but also expressions. You can set different kinds of watchpoints
using the commands watch, rwatch, and awatch. All three commands have the
same syntax:

watch expression
The debugger stops the program when the value of expression changes.

rwatch expression
The debugger stops the program whenever the program reads the value of any
object involved in the evaluation of expression.

awatch expression
The debugger stops the program whenever the program reads or modifies the
value of any object involved in the evaluation of expression.

The most common use of watchpoints is to observe when the program modifies a
variable. When a watched variable changes, GDB displays the variable’s old and new
values, and the line containing the next statement to be executed. To illustrate the
use of watchpoints, we will provide some examples based on the following simple
program:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a = 10;
6 int b = 20;
7 int *iPtr = &a;
8
9 ++*iPtr;
10 puts("This is the statement following ++*iPtr.");
11
12 printf("a = %d; b = %d.\n", a, b);
13 return 0;
14 }

Before you can set a watchpoint for a local variable, you must begin executing the
program until the program flow enters the scope of the desired variable. For this
reason, we will start by running the program to an ordinary breakpoint at line 9:

(gdb) b 9
Breakpoint 1 at 0x4010ba: file myprog2.c, line 9.
(gdb) r
Starting program: ...

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Using GDB Commands | 761

Breakpoint 1, main () at myprog2.c:9
9 ++*iPtr;

Now we can set a watchpoint for the variable a, and continue execution:

(gdb) watch a
Hardware watchpoint 2: a
(gdb) c
Continuing.
Hardware watchpoint 2: a

Old value = 10
New value = 11
main () at myprog2.c:10
10 puts("This is the statement following ++*iPtr.");

Because iPtr points to a, the expression ++*iPtr modifies the value of a. As a
result, the debugger stops the program after that operation, and displays the next
statement about to be executed.

To continue this example, we can set a “read watchpoint” on the variable b. Watch‐
points are included in the list of breakpoints displayed by the command info break
points (or info b for short):

(gdb) rwatch b
Hardware read watchpoint 3: b
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x004010ba in main at myprog2.c:9
 breakpoint already hit 1 time
2 hw watchpoint keep y a
 breakpoint already hit 1 time
3 read watchpoint keep y b
(gdb) c
Continuing.
This is the statement following ++*iPtr.
Hardware read watchpoint 3: b

Value = 20
0x004010ce in main () at myprog2.c:12
12 printf("a = %d; b = %d.\n", a, b);
(gdb) c
Continuing.
a = 11; b = 20.
...

When the program leaves a block—that is, when the flow of program execution
passes a closing brace (})—the debugger automatically deletes all watchpoints for
expressions involving local variables that are no longer in scope.

To conclude this section, let us look at how the debugger behaves when you set a
watchpoint for an expression with several variables. GDB stops the program each
time it accesses (or modifies, depending on the type of watchpoint) any variable in

762 | Chapter 21: Debugging C Programs with GDB

the expression. For the following session, we restart the program examined in the
previous examples. When it stops at the breakpoint in line 9, we set a read watch‐
point for the expression a + b:

(gdb) b 9
Breakpoint 1 at 0x4010ba: file myprog2.c, line 9.
(gdb) r
Starting program: ...

Breakpoint 1, main () at myprog2.c:9
9 ++*iPtr;
(gdb) rwatch a+b
Hardware read watchpoint 2: a + b

If we now let the program continue, the debugger stops it at the next statement that
reads either of the variables a or b. The next such statement is the printf call in line
12. Because that statement reads both a and b, the debugger stops the program
twice, displaying the value of the watch expression a + b each time:

(gdb) c
Continuing.
This is the statement following ++*iPtr.
Hardware read watchpoint 2: a + b

Value = 31
0x004010ce in main () at myprog2.c:12
12 printf("a = %d; b = %d.\n", a, b);
(gdb) c
Continuing.
Hardware read watchpoint 2: a + b

Value = 31
0x004010d5 in main () at myprog2.c:12
12 printf("a = %d; b = %d.\n", a, b);
(gdb) c
Continuing.
a = 11; b = 20.
...

Analyzing Core Files in GDB
A core file, or core dump, is a file containing an image of the memory used by a
process. Unix systems generally write a core dump in the working directory when a
process terminates abnormally. (On Unix systems, you can read which signals trig‐
ger a core dump under man signal.) By passing the name of a core file to GDB on
the command line, you can examine the state of the process at the moment it was
terminated.

A GDB session to analyze a core file is similar to an ordinary debugging session
except that the program you are debugging has already been stopped at a certain
position, and you can’t use the run, step, next, or continue commands to make it

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Analyzing Core Files in GDB | 763

go again. We’ll walk through a sample “postmortem” session to illustrate how to
debug the program using the other GDB commands. To begin, suppose the pro‐
gram myprog, located in the current directory, has been compiled with the -g
option. The following command runs the program:

$./myprog
Segmentation fault (core dumped)

The error message indicates that myprog aborted due to an illegal memory access.
The system has generated a core file in the current directory with the name core. To
analyze the program’s error, we will start GDB, passing it the name of the core file as
well as the executable file on the command line. On starting, the debugger immedi‐
ately displays the address and the function in which the program was terminated:

$ gdb myprog core
GNU gdb (GDB) 7.8
Copyright (C) 2014 Free Software Foundation, Inc.
...
Core was generated by `./myprog'.
Program terminated with signal 11, Segmentation fault.

Reading symbols from /lib/tls/libc.so.6...done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x4008ff06 in strcpy () from /lib/tls/libc.so.6
(gdb)

The last output line indicates that the error took place in the standard library func‐
tion strcpy(). If we assume that strcpy() itself is bug-free, then myprog must have
made an error in calling it. The command backtrace, abbreviated bt, displays the
function calls that have led to the current point in the program flow (for more
details on backtraces, see “Analyzing the Stack” on page 753):

(gdb) bt
#0 0x4008ff06 in strcpy () from /lib/tls/libc.so.6
#1 0x080483f3 in main () at myprog.c:13
(gdb)

The output indicates that the strcpy() call occurs at line 13 of the source file
myprog.c, in the function main(). Each of the numbered lines in the output of the
backtrace command corresponds to a stack frame, which is a data structure created
on the stack to hold the data required for a function call. The command frame n (or
f n for short), where n is the number of a stack frame displayed in the backtrace,
selects the stack frame corresponding to the current function’s caller, and displays
the source code line containing the function call:

(gdb) f 1
#1 0x080483f3 in main () at myprog.c:13
13 strcpy(name, "Jim");

764 | Chapter 21: Debugging C Programs with GDB

Because the function call shows that the second argument to strcpy() is a string
literal, we can assume that the other argument, name, is an invalid pointer. To verify
its value, use the print command:

(gdb) p name
$1 = 0x0
(gdb)

The value of name is zero: myprog crashed by trying to write using a null pointer. To
correct this bug, you would have to make sure that name points to a char array of
sufficient size to hold the string copied to it.

D
eb

ug
g

ing
C

 P
ro

g
ram

s

Analyzing Core Files in GDB | 765

22
Using an IDE with C

An integrated development environment, or IDE, is a program that provides conve‐
nient interaction with the tools used to create programs in C under a unified graphi‐
cal interface. The integration of the various software tools used in program develop‐
ment can increase your productivity dramatically compared to separate command-
line tools. The minimum equipment of an IDE includes an editor, a compiler, a
linker, and a debugger. Other tools are often included as well, or can be added, such
as a design tool for GUI elements or a version-control system to support collabora‐
tion with other developers.

IDEs are available for all common programming languages and platforms. Many
IDEs support multiple languages and platforms. For a thorough overview of the
characteristics of different IDEs, sorted by programming language, see the Wikipe‐
dia page on “Comparison of integrated development environments”.

IDEs for C
One of the first IDEs for C was Turbo C, published by the Borland company in 1987.
Although it was a text-based program for a single-tasking operating system, it was a
complete IDE capable of producing and debugging PC applications. On Windows
systems, the dominant IDE today is Microsoft’s Visual Studio. Other important
IDEs for the Windows platform include Open Watcom and Pelles C, both of which
include a resource editor for creating graphical user interfaces. The Watcom C/C++
compiler generates native DOS and Windows applications. Pelles C is remarkable in
that it contains a C compiler for Windows applications that supports all features of
the C11 standard (since late 2012).

Software for OS X is often developed using Apple’s IDE Xcode. For Unix-like sys‐
tems, including Linux, FreeBSD, Solaris, and OS X, a number of free IDEs are avail‐
able, such as Kdevelop, for example. Unlike the other IDEs mentioned up to now,

767

https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Kdevelop does not contain its own compiler but uses an external C compiler such as
GCC or Clang. Other free IDEs that function as frontends for external compilers
include Eclipse and Code::Blocks, both of which are also available for Windows and
support the GNU Compiler Collection (GCC).

Modern IDEs for C and C++ include a source code editor that not only highlights
the various elements of C syntax but also provides intelligent text completion and
other convenient features, such as the ability to display a function’s call hierarchy;
that is, a structured list of the functions that call it and the functions it calls.

For each software product you want to develop, you create a project in the IDE. A
project incorporates all the information necessary to build the program, such as the
names of the source files and the compiler options. The IDE uses an external or
internal make tool, and is able to export an appropriate makefile to build the C pro‐
gram from the command line (see Chapter 20)—or, conversely, to import a makefile
to create a corresponding IDE project.

The sections that follow introduce the workflow of C software development with an
IDE using Eclipse CDT as a typical example.

The Eclipse IDE for C/C++
Eclipse is descended from the IBM product Visual Age for Java. In 2004, the Eclipse
Foundation was created to take over the development of that IDE as free software
under the name Eclipse. Since 2006, the foundation has released a new version in
the middle of each year with an individual version nickname. Version 4.4 of 2014 is
called Luna; version 4.5 of 2015 is named Mars. Eclipse is free, open source software
published under the terms of the Eclipse Public License (EPL).

Eclipse uses plug-ins to provide the various capabilities of the IDE. Because a
majority of Eclipse users are still Java developers, the most commonly used Eclipse
plug-in is JDT, which provides the Java development tools. There are also plug-ins
for many other languages, including Fortran, Perl, PHP, and Python, to name just a
few. In particular, C development is supported by the Eclipse plug-in CDT (C/C++
Development Tooling), first released in 2006 and continuously developed since then
(see http://www.eclipse.org/cdt).

Installing Eclipse CDT
Eclipse itself is a Java program, and requires the Java Runtime Environment (JRE) to
run. If the JRE is not yet installed on your system, you can download it from http://
java.com. (You may also choose to use another IDE that does not require Java, such
as Code::Blocks.) If you intend to use Eclipse to produce Java programs (or if you
want to use Eclipse on OS X), you need to install the Java Development Kit (JDK).
Both the JRE and the JDK are available at http://www.oracle.com/technetwork/java/
javase/downloads.

768 | Chapter 22: Using an IDE with C

http://www.eclipse.org/cdt
http://java.com
http://java.com
http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

To develop C programs, you will also need a C compiler. Eclipse CDT is most often
used with the GNU Compiler Collection (GCC). If GCC is not yet installed on your
system, see “Obtaining and Installing GCC” on page 670.

On Windows, Eclipse can use either the Cygwin or the MinGW version of GCC. To
ensure that Eclipse on Windows finds the directory with your MinGW (or
MinGW64) installation, set the environment variable MINGW_HOME to the directory
path. You can set environment variables in the System applet in the Control Panel
under “Advanced System Settings”. You may also have to add the directory
%MINGW_HOME%\bin to the PATH variable.

Once you have installed Java and the “GCC toolchain,” download and install the
“Eclipse IDE for C/C++ Developers” from http://www.eclipse.org/downloads/. This
package contains the CDT plug-in. If you also want to use Eclipse for Java develop‐
ment, install the “Eclipse IDE for Java Developers” first, and then start Eclipse and
add the CDT plug-in by clicking “Install New Software” in the Help menu. Select
“C/C++ Development Tools” in the list of available plug-ins.

Running Eclipse
The first time you start Eclipse, you will be prompted to choose a workspace, which
is a directory in which you want Eclipse to save your work. Click OK to use the
default directory. If you want to change to a different directory later, you can go to
File -> Switch workspace. (This does not move any files from your previous work‐
space.) After you have chosen a workspace, Eclipse displays a “welcome” window
with links to helpful documents about the program. You can go to Help -> Welcome
at any time to display this window again. When you close the welcome window, the
main Eclipse window shows your workbench.

Perspectives and Views
The workbench window shows your work in one of several possible perspectives. A
perspective is a window layout that groups certain commands and views that are
appropriate for a given type of project or workflow phase. A view is a pane in the
workbench window that displays a given kind of information in an appropriate for‐
mat. When several views share the same section of the window layout, they are
managed by tabs.

The concept of perspectives allows the various plug-ins to provide the appropriate
commands and views depending on your current task. You can have several work‐
bench windows open at the same time. (On OS X, you need to add an Eclipse plug-
in called the OS X Eclipse Launcher for this capability.)

A small toolbar at the top right in the workbench window allows you to open or
close a perspective, or to switch between the currently open perspectives. When you
click the Open Perspective icon (see Figure 22-1), Eclipse displays a list of the avail‐
able perspectives for you to choose from. If the “C/C++” perspective is not already
active, open or switch to it.

U
sing

 an
ID

E
 w

ith C

The Eclipse IDE for C/C++| 769

http://www.eclipse.org/downloads/

Figure 22-1. The Open Perspective icon

Developing a C Program with Eclipse
For each C program, you must start by creating a project in which Eclipse will save
all the information necessary to build the program.

Creating a New C Project
To create a new C project, open the C/C++ perspective and select File -> New ->
C Project. In the dialog that appears, enter a name for the project (such as First for
your first trial project). Under Project Types, choose the type Executable -> Empty
project (or Hello World ANSI C project) and a compiler toolchain, such as Cygwin
GCC. Eclipse automatically detects the C/C++ toolchains installed on your system.
If you have installed both Cygwin and MinGW on Windows, for example, both are
shown for you to choose from. Click on the Next button to open the Select Configu‐
ration dialog. Keep the default options to build Release and Debug versions of your
program. Click Finish, and your new project will appear in the Project Explorer
pane on the left.

To add a new C source file to your project, right-click on the project in the project
explorer and select New -> Source File in the context menu. If you prefer to create a
new subdirectory first, select New -> Source Folder in the context menu. There are
also icons for these options in the default toolbar.

Editing
When you create a new source file, it is automatically opened in the editor pane. To
edit a source file that is not yet open, double-click on the filename in the Project
Explorer. A useful feature of the IDE’s editor is code completion, which you can acti‐
vate by pressing Ctrl+Space. Eclipse then displays a list of suggested completions of
the word or line you are typing. For example, when you type #include, it lists the
most likely header filenames to insert in the line, as shown in Figure 22-2.

770 | Chapter 22: Using an IDE with C

Figure 22-2. Code completion

When the code completion list shows a function name as a suggested completion, it
also displays the prototypes and brief descriptions of the possible functions.

Compiling and Running a Program
Right-click on the project and select Build Project in the context menu to compile
and link the program. Or you can select Build Project in the Project menu to com‐
pile and link the program currently selected in the Project Explorer. (Note that the
source file currently displayed in the editor may belong to a different project from
that selected in the Project Explorer view!) The command Build All, which you can
also invoke by pressing Ctrl+B, performs the Build command for every project open
in the Project Explorer, except those that are up to date (i.e., those that have not
been edited since they were last built).

If the attempt to build the program produces compiler warnings or error messages,
they are summarized in the Problems tab, and the full compiler output is displayed
in the Console tab at the bottom of the window. Compiler warnings are highlighted
in yellow, errors in red. Furthermore, the Console and Problems tabs are helpfully
integrated with the source code view in the editor: the line referred to in each warn‐
ing or error is flagged in the left margin of the editor with the appropriate color.
And you can simply double-click on a highlighted warning in the Console view to
jump to the faulty source code line in the editor, where you can correct it. When
you can build the program without producing any errors, you can run it.

To run a program, simply select the Run command in the Run menu, or click the
Run icon in the toolbar (see Figure 22-3). If you have edited any of the source files

U
sing

 an
ID

E
 w

ith C

Developing a C Program with Eclipse | 771

or settings since the last build, Eclipse builds the program anew before running it.
The program’s output appears in the console view at the bottom of the window. If
the program is waiting for keyboard input, click in the console to put the focus
there before typing your input.

Figure 22-3. The Run icon

Some programs require other information to run, such as command-line arguments
or certain environment variable values. You can set such information in the Run
Configuration dialog. To open it, select the Run Configurations command in the
Run menu, or in the drop-down list attached to the Run icon in the toolbar.
Figure 22-4 illustrates a run configuration with the command-line arguments for
the sample program in Example 7-6 from Chapter 7.

Figure 22-4. Run configuration

The Environment tab in the Run Configurations dialog allows you to define and
modify environment variables for the environment in which Eclipse runs your pro‐
gram. This may be necessary for programs that read an environment variable to
find certain files, for example. If you are using Cygwin GCC on Windows, and have
not added the Cygwin bin directory to the Windows PATH variable, you can simply
add it to the Path variable in the Run Configuration. Then your programs will be
able to load the runtime library cygwin1.dll. Changes you make to these settings
only affect the current project.

772 | Chapter 22: Using an IDE with C

Project Properties
All the information necessary to build a C program is stored in a project. In particu‐
lar, this includes the toolchain to build the program and all the compiler and linker
options. You can verify and adjust these settings in the Properties dialog. To open
the dialog, right-click on the project and select the command Properties in the con‐
text menu. (Or select Properties in the Project menu, or press Alt+Enter.)

To change the command-line options of the compiler or linker, click on C/C++
Build -> Settings in the left pane of the Properties dialog.

• Then click on the Tool Settings tab and select “… Compiler” in the list of tools.
The text fields at the right show the command gcc and all the command-line
options with which gcc is invoked to build your program. The items in the list
under “… Compiler” are specific categories of compiler options. To set the
option for C11, for example, select Dialect in the list, and in the drop-down list
“Language standard,” choose the option “ISO C11 (-std=c11).”

• If you expand the node “… Linker” in the list of tools on the Tool Settings page,
and then click on Libraries, you can specify the names of libraries to link with
your program (such as ncurses for the program in Example 19-1), and addi‐
tional paths to search for libraries.

Debugging a C Program in Eclipse
Having the debugger integrated in the graphical user interface is perhaps the great‐
est feature of an IDE for efficient software development. Eclipse CDT’s Debug per‐
spective is a graphical frontend for the GDB debugger. Different views offer
synchronized views of the program’s source code, values of variables and CPU regis‐
ters, memory blocks, and console I/O.

The GDB debugger is described in detail in Chapter 21. The program in
Example 21-1, containing a logic error in the swap() function, is used in this section
as well to illustrate the basic commands used in a debugging session in Eclipse. In
this section, we assume that you have created a new project named GDB-Example
that contains the source file gdb_example.c, with the content shown in
Example 21-1. When you run the program, its console output shows that the con‐
tents of the variables are not exchanged. Now you want to find the problem by step‐
ping through the program in a debugging session.

Starting the Debugger
To start debugging the program, select the command Debug in the Run menu, or
click on the Debug icon (see Figure 22-5) in the toolbar. Or simply press the func‐
tion key F11. If you have not built the program since the last modification, Eclipse
first builds it again. Then confirm the prompt to change to the Debug perspective
by clicking on Yes (unless you already switched to the Debug perspective before‐

U
sing

 an
ID

E
 w

ith C

Debugging a C Program in Eclipse | 773

hand). The debugger immediately starts the program and interrupts it at the first
line in the main() function.

Figure 22-5. The Debug icon

If you want to debug a program started with certain command-line arguments or
environment variables, you can enter the desired information in the Debug Config‐
uration. Select the command Debug Configuration; in the Run menu, or in the
drop-down list attached to the Debug icon in the toolbar. The contents of the dialog
are similar to those of the Run Configurations dialog (see Figure 22-4) with the
addition of tabs for GDB options and source code paths.

Setting Breakpoints
Because the error in the sample program has to be in the swap() function, we will
set a breakpoint at the line that contains the swap() function call. To set the break‐
point, simply double-click in the left margin next to that line in the editor.

The breakpoint is indicated by a blue disc in the left margin of the source code edi‐
tor (see Figure 22-6). Double-click again in the margin beside the line to clear the
breakpoint.

Figure 22-6. A breakpoint in the source code editor

All the breakpoints are shown in the Breakpoints view. Click on the Breakpoints tab
in the upper-right pane, or select Show View -> Breakpoints in the Window menu if

774 | Chapter 22: Using an IDE with C

the tab has been closed. Other views in this pane display the values of variables and
registers. Right-click on a breakpoint in the list (or on the blue disc in the left mar‐
gin of the editor) to open a context menu in which you can deactivate the break‐
point, or select Breakpoint Properties to specify a condition for the breakpoint. See
“Conditional breakpoints” on page 750.

Controlling Program Execution in the Debugger
To run the program to the next breakpoint (in our example, the breakpoint is before
the call to swap()), click on the Resume icon in the toolbar shown in Figure 22-7 (or
press F8). The highlighted line always indicates the statement that will be executed
next.

Figure 22-7. The Debug toolbar

Click on Step Into to begin the function call, jumping to the first line in the swap()
function. The Variables view, shown in Figure 22-8, now shows the values of the
local pointers p1 andp2, and the values of the variables to which they point.

Figure 22-8. The Variables view

In the Debug perspective, the value of a variable is also shown when you hold the
mouse pointer over a variable in the source code editor. In the Variables view, you
can also change the value of a variable between steps in the program, and without
changing the source code. This is practical when you want to test the program’s
behavior with a different value only in the current debugging session.

If you click on Step Return, the program runs to the end of the current function, or
more exactly, up to the first statement after the function call. But because we want to
watch the values of the function’s local variables, we’ll step through the three lines of
the swap() function. (Another option would be to set a breakpoint at the end of the
function, and examine the values of the variables again there.) In the Variables view,

U
sing

 an
ID

E
 w

ith C

Debugging a C Program in Eclipse | 775

you can see that only the values of the pointers are swapped—not the values of the
variables they point to, *p1 and *p2. That was the bug inswap(). For the corrected
version, see the end of the section “A Sample Debugging Session” on page 732.

Further Information on Eclipse
The most important resources on Eclipse are accessible from the program itself: go
to Welcome -> Overview in the Help menu. To make the most efficient use of
Eclipse CDT, you should certainly have a look at the C/C++ Development User
Guide. The Overview page also contains the link “Workbench basics,” which opens
the Workbench User Guide. This document explains the basic concepts of the
Eclipse user interface, such as views and perspectives, and explains how to custom‐
ize the Workbench layout. The Workbench User Guide contains a section on collab‐
orative version control in Eclipse titled “Team Programming with CVS”. An inter‐
face to the distributed version control system Git is also integrated in Eclipse, and is
described in a separate document: the link Git in the Overview page opens the EGit
User Guide.

The complete Eclipse documentation is also available on the Web.

There is also an Eclipse forum where you can discuss questions with the community
of Eclipse users and developers.

776 | Chapter 22: Using an IDE with C

http://help.eclipse.org/luna/index.jsp
http://www.eclipse.org/forums/

Index

Symbols
& (ampersand)

address operator, 87, 122, 141
bitwise AND operator, 84

&& (ampersand, double), logical AND
operator, 82

&= (ampersand, equal sign), bitwise AND
assignment operator, 76, 77

< > (angle brackets), enclosing filenames
in include directives, 262

* (asterisk)
automatic variable in makefiles, 708
in pointer declarations, 142, 182-186
indirection operator, 69, 87, 145
multiplication operator, 73
specifying array length, 121

*= (asterisk, equal sign), multiplication
assignment operator, 76, 77

@ (at sign), automatic variable in make‐
files, 708

\ (backslash)
beginning character codes, 45
beginning escape sequences, 9, 10,

44-45
escape sequence for, 44
in makefile rules, 699
in preprocessor directives, 261
trigraph representing, 13

{ } (braces)
digraphs representing, 12
enclosing array initialization lists, 132,

137
enclosing block statements, 100

enclosing enumeration values, 33, 90
enclosing initialization lists, 191
enclosing structure members, 160
trigraphs representing, 13

^ (caret)
automatic variable in makefiles, 708
bitwise exclusive OR operator, 84
trigraph representing, 13

^= (caret, equal sign), bitwise exclusive
OR assignment operator, 76, 77

: (colon)
in makefiles, 699
preceding bit-field width, 172

:: (colon, double), double-colon rule for
makefiles, 702

:= (colon, equal sign)
assignment operator in makefiles, 704
function definition in makefiles, 718

, (comma), sequential evaluation opera‐
tor, 90, 103

$ (dollar sign)
preceding function calls in makefiles,

715
preceding variable references in make‐

files, 697, 708
" " (double quotes)

enclosing filenames in include direc‐
tives, 262

enclosing string literals, 45
escape sequence for, 44

… (ellipsis), indicating optional parame‐
ters, 7, 121, 267

= (equal sign)
assignment operator, 76

777

assignment operator in makefiles, 704
in initializers, 190

== (equal sign, double), equal-to opera‐
tor, 80

! (exclamation mark), logical NOT opera‐
tor, 82

!= (exclamation mark, equal sign), not-
equal-to operator, 80

/ (forward slash), division operator, 73
/* */ (forward slash, asterisk), enclosing

block comments, 7
// (forward slash, double), preceding line

comments, 7
/= (forward slash, equal sign), division

assignment operator, 76, 77
(hash mark)

beginning preprocessor directives, 7,
261

digraph representing, 12
preceding comments in makefiles,

697, 703
stringify operator, 268
trigraph representing, 13

(hash mark, double), token-pasting
operator, 269

< (left angle bracket)
automatic variable in makefiles, 708
less-than operator, 80

<< (left angle bracket, double), shift left
operator, 85

<<= (left angle bracket, double, equal
sign), shift left assignment operator,
76, 77

<= (left angle bracket, equal sign)
less-than or equal-to operator, 80

- (minus sign)
subtraction operator, 73
unary negative operator, 73

-- (minus sign, double), decrement opera‐
tor, 78

-= (minus sign, equal sign), subtraction
assignment operator, 76, 77

-> (minus sign, right angle bracket),
arrow operator, 87, 89, 146, 162

() (parentheses)
enclosing function calls in makefiles,

715
enclosing type names in cast opera‐

tions, 49, 90

enclosing variable names in makefiles,
697

function calls, 90, 122
grouping expression operands, 72
in array pointer declarations, 152
in declarations, 177, 182-186
in function pointer declarations, 157

% (percent sign)
automatic variable in makefiles, 709
in makefile rules, 699
modulo operator, 73
preceding conversion specifications,

224
%= (percent sign, equal sign), modulo

assignment operator, 76, 77
. (period), member designator, 87, 162
+ (plus sign)

addition operator, 73
automatic variable in makefiles, 709
in access mode string, 214
unary positive operator, 73

++ (plus sign, double), increment opera‐
tor, 78

+= (plus sign, equal sign)
addition assignment operator, 76, 77
append operator in makefiles, 705

? (question mark)
automatic variable in makefiles, 708
escape sequence for, 44

?: (question mark, colon), conditional
evaluation operator, 90

?? (question mark, double), preceding tri‐
graphs, 13

?= (question mark, equal sign), condi‐
tional assignment operator in make‐
files, 705

> (right angle bracket), greater-than oper‐
ator, 80

>> (right angle bracket, double), shift
right operator, 85

>>= (right angle bracket, double, equal
sign), shift right assignment operator,
76, 77

>= (right angle bracket, equal sign),
greater-than or equal-to operator, 80

; (semicolon)
ending statements, 99
in command scripts for make, 698

' ' (single quotes)

778 | Index

enclosing character constants, 42
escape sequence for, 44

[] (square brackets)
digraphs representing, 12
enclosing array element designators,

133, 138
in array declarations, 182-186
in array definitions, 129, 136
indicating array parameters, 116
subscript operator, 69, 87, 131
trigraphs representing, 13

~ (tilde)
bitwise NOT operator, 84
trigraph representing, 13

| (vertical bar)
bitwise OR operator, 84
trigraph representing, 13

|| (vertical bar, double), logical OR opera‐
tor, 82

|= (vertical bar, equal sign), bitwise OR
assignment operator, 76, 77

0 (zero)
preceding octal constants, 39
return value, 119

\0 null character, 9
0x (zero, x), preceding hexadecimal con‐

stants, 39, 41

A
a (append), in access mode string, 214,

215
\a alert character, 9, 44
.a files, 676
-a option, gcc command, 675
A or a conversion specifier, 228, 234
abort function, 350
abort_handler_s function, 351
abs function, 352
access modes for files, 214-215
acos function, 352
acosh function, 353
addition assignment operator (+=), 76, 77
addition operator (+), 73
addprefix function, make, 717
address constants, 98
address operator (&), 87, 122, 141
addresses

determining (see address operator)

pointers containing (see pointers)
printing, 142

addsuffix function, make, 717
aggregate types, 24
alert character, 9
alignas specifier, 37, 303
_Alignas specifier, 36-37, 176
__alignas_is_defined macro, 303
alignment of objects in memory, 36-37
alignof operator, 37, 303
_Alignof operator, 36-37, 90
__alignof_is_defined macro, 303
ampersand (&)

address operator, 87, 122, 141
bitwise AND operator, 84

ampersand, double (&&), logical AND
operator, 82

ampersand, equal sign (&=), bitwise AND
assignment operator, 76, 77

and operator, 298
and_eq operator, 298
angle brackets (< >), enclosing filenames

in include directives, 262
anonymous structures, 171-172
anonymous unions, 171-172
-ansi option, gcc command, 682
ar command, 676
--args option, GDB, 738
arguments (see parameters)
arithmetic constant expressions, 98
arithmetic operators, 73-76

(see also mathematical functions)
arithmetic types, 24

conversion rank of, 50-51
conversions involving, 50-58, 74-74,

335-336
array designators, type conversions with,

58-59
array pointers, 152-154
arrays, 129-131

of characters (see strings)
declaring, 137, 177
default values of, 132
defining, 129-131, 136
elements of, accessing, 88, 131-132
fixed-length, 130
flexible array members of structures,

166-167
initializing, 132-134, 136, 137-138

Index | 779

lvalues using, 69
multidimensional, 136-138
passing as parameters, 116-118, 123,

138-140
of pointers, 154-156
size of, 129-130
variable-length, 130-131
variable-length, as parameters, 117,

121
arrow operator (->), 87, 89, 146, 162
as command, 671
-as option, gcc command, 675
ASCII codes, 9
asctime function, 354
asctime_s function, 355
asin function, 356
asinh function, 356
assembly language, 674
assert function, 357
assert.h header, 289
assertions (see static assertions)
assignment expressions, 77
assignment operator (=), 76
assignment operators, 76-78

for makefiles, 704
implicit type conversions with, 53

associativity of operators, 72-73
asterisk (*)

automatic variable in makefiles, 708
in pointer declarations, 142, 182-186
indirection operator, 69, 87, 145
multiplication operator, 73
specifying array length, 121

asterisk, equal sign (*=), multiplication
assignment operator, 76, 77

at sign (@), automatic variable in make‐
files, 708

atan function, 359
atan2 function, 359
atanh function, 360
atexit function, 361
atof function, 362
atoi function, 363
atol function, 363
atoll function, 363
atomic objects, 247, 249

declaring, 176, 180
standard header for, 304-307

atomic operations, 247-249, 249, 343-345

standard header for, 304-307
support for, determining, 239

_Atomic qualifier, 176, 180, 247
_Atomic specifier, 176
atomic_compare_exchange functions, 363
atomic_exchange functions, 365
atomic_…_explicit functions, 249
atomic_fetch functions, 366
atomic_flag type, 248, 305
atomic_flag_clear functions, 248, 368
ATOMIC_FLAG_INIT macro, 248, 307
atomic_flag_test functions, 369
atomic_flag_test_and_set function, 248
atomic_init function, 248, 307, 369
atomic_is_lock_free function, 248, 370
atomic_load functions, 370
atomic_signal_fence function, 371
atomic_store functions, 372
atomic_thread_fence function, 251, 372
ATOMIC_type_LOCK_FREE macros,

248, 306
ATOMIC_VAR_INIT macro, 247, 248,

307
at_quick_exit function, 358
auto specifier, 179, 189-190
awatch command, GDB, 761

B
b (binary), in access mode string, 214
\b backspace character, 9, 44
backslash (\)

beginning character codes, 45
beginning escape sequences, 9, 10,

44-45
escape seqeunce for, 44
in makefile rules, 699
in preprocessor directives, 261
trigraph representing, 13

backspace character, 9
backtrace (bt) command, GDB, 753
basename function, make, 717
basic character set, 9
basic types, 23
-batch option, GDB, 740
binary search tree (BST), 198-208

empty, generating, 200-201
implementing with dynamic memory

management, 199-206

780 | Index

inserting data, 201
removing data, 203-204
searching, 202
sort using, 206-208
structure of, 198
traversing, 205-206

binary streams, 210
bit-fields, 159, 172-174
bitand operator, 298
bitor operator, 298
bitwise AND assignment operator (&=),

76, 77
bitwise AND operator (&), 84
bitwise exclusive OR assignment operator

(^=), 76, 77
bitwise exclusive OR operator (^), 84
bitwise NOT operator (~), 84
bitwise operators, 83-86, 298
bitwise OR assignment operator (|=), 76,

77
bitwise OR operator (|), 84
block scope, 17, 100
block statements, 4, 100
blocks, reading and writing, 221-222
bool macro, 25, 307
_Bool type, 25, 54
boolean (logical) operators, 82-83
boolean bitwise operators, 84-85
__bool_true_false_are_defined macro,

307
bounds-checking functions (see secure

functions)
braces ({ })

digraphs representing, 12
enclosing array initialization lists, 132,

137
enclosing block statements, 100
enclosing enumeration values, 33, 90
enclosing initialization lists, 191
enclosing structure members, 160
trigraphs representing, 13

break (b) command, GDB, 734, 747
break if command, GDB, 750
break statement, 101, 105, 105, 109
breakpoints

Eclipse, 774
GDB, 734, 747-753

bsearch function, 374
bsearch_s function, 376

BST (see binary search tree)
btowc function, 377
bubble sort algorithm, 105
buffers, 212
BUFSIZ macro, 311
byte strings, 332-333
byte-oriented streams, 216

C
c conversion specifier, 226, 233
.c files, 6, 679
C language, 3-6

compiling (see compilation)
debugging (see debugging)
dialects of, choosing at compilation,

681
program execution (see execution of

program)
program structure, 4-6
source files, 6-7
standards, ix

-C option, gcc command, 672
-c option, gcc command, 675
-c option, GDB, 739
C11 standard, ix
c16rtomb function, 11, 378
c32rtomb function, 379
C99 standard, ix
cabs function, 379
cacos function, 380
cacosh function, 381
call function, make, 718
call stack, analyzing, 753-756
calloc function, 194-195, 383
call_once function, 382
caret (^)

automatic variable in makefiles, 708
bitwise exclusive OR operator, 84
trigraph representing, 13

caret, equal sign (^=), bitwise exclusive
OR assignment operator, 76, 77

carg function, 383
carriage return character, 9
case label, switch statement, 107-108
case mapping, 331
casin function, 384
casinh function, 385
casting, 49-50, 59-61, 90, 93, 184

Index | 781

catan function, 386
catanh function, 386
cbrt function, 387
cc command, 670
ccos function, 388
ccosh function, 388
ceil function, 389
cexp function, 390
char type, 25-26
char16_t type, 10, 29, 317
char32_t type, 10, 29, 318
character arrays (see strings)
character constants, 42-45
character sets, 8-14
character types, 25-26

(see also multibyte characters; wide
characters)

characters
classification of, 290, 330-331
conversion specifiers for, 226-227,

233-234
conversions involving, 11, 290, 331
pushing back to stream, 219
range of, 299
reading, 218
writing, 219

cimag function, 390
clearerr function, 391
clock function, 392
CLOCKS_PER_SEC macro, 317
clock_t type, 317
clog function, 393
CMPLX macro, 33
CMPLXF macro, 33
CMPLXL macro, 33
cnd_broadcast function, 252, 393
cnd_destroy function, 252, 395
cnd_init function, 252, 395
cnd_signal function, 252, 396
cnd_t type, 251, 315
cnd_timedwait function, 252, 396
cnd_wait function, 252, 398
Code::Blocks, 768
colon (:)

in makefiles, 699
preceding bit-field width, 172

colon, double (::), double-colon rule for
makefiles, 702

colon, equal sign (:=)

assignment operator in makefiles, 704
function definition in makefiles, 718

comma (,), sequential evaluation opera‐
tor, 90, 103

-command option, GDB, 740
command script, make, 696, 698
comments

in C programs, 7-8
in makefiles, 697, 703

comparative operators, 80-82
comparison macros, 326
compilation, 19-21, 671-681

(see also make utility)
assembling stage, 674
C dialect used in, 681
compiling stage, 674
conditional, 262, 263, 272-274
debugging options with, 688
Eclipse for, 771
environment variables used by, 693
freestanding programs with, 681
GCC for, 669-671
line numbers for, defining, 274
linking stage, 676-678
multiple source files with, 679-680
optimization options, 684-688
options for, list of, 689-693

(see also specific options)
#pragma directive for, 275
preprocessing, 672-674
process for, 671-681
profiling options with, 688
tokens produced by, 21-21
translation environment for, 8
translation phases of, 19-20
warnings from, 683

COMPILER_PATH environment vari‐
able, 693

compl operator, 298
complex floating-point types, 32-33, 57,

289
_Complex keyword, 33
complex macro, 33
complex.h header, 32, 33, 283, 289, 323
compound assignments, 76, 77-78
compound expressions, 68
compound literals, 92-93
compound statements (see block state‐

ments)

782 | Index

concatenation of strings, 134-135
concurrency (see multithreading)
condition command, GDB, 750
condition variables, 245, 251-255
conditional compiling, 262, 263, 272-274
conditional evaluation operator (?:), 90
conditionally defined macros, 278-279
conj function, 398
const qualifier, 63, 117, 148-150, 180-181
constant expressions, 97-98
constant pointers, 149-150
constants

character constants, 42-45
floating-point constants, 40-42
integer, 39-40
type of, 39-40, 41, 42

constraint_handler_t type, 312
contact information for this book, xiv
continue (c) command, GDB, 736
continue command, GDB, 751
continue statement, 101, 105, 105,

109-110
controlling expression, of loops, 101
conventions used in this book, xii
conversion rank, 50-51
conversion specifications

in printf functions, 224-229
in scanf functions, 231-235

conversions (see type conversions)
copysign function, 399
core files, analyzing in GDB, 763-765
-core option, GDB, 739
cos function, 399
cosh function, 400
CPATH environment variable, 693
__cplusplus macro, 279
cpow function, 401
cpp command, 671
cproj function, 402
CPU usage, 317
creal function, 402
critical sections, 246
crt0.o file, 681
csin function, 403
csinh function, 403
csqrt function, 404
ctan function, 405
ctanh function, 405
ctime function, 406

ctime_s function, 407
ctype.h header, 290, 330
CURDIR variable, make, 709
Cygwin, 670
cygwin1.dll file, 670
C_INCLUDE_PATH environment vari‐

able, 693

D
d conversion specifier, 227, 234
-D option, gcc command, 672
data race (race condition), 240, 244
dates and times

compilation date, 277
standard functions for, 317, 337-338

__DATE__ macro, 277
debugging, 345-346, 731

(see also GDB)
breakpoints, 734, 747-753
call stack, analyzing, 753-756
core files, analyzing, 763-765
displaying source code, 746-747
in Eclipse, 773-776
example session, 732-736
gcc compiler options for, 688
program data, displaying, 756-760
running program to debug, 744-746
starting debugger, 736-740
watchpoints, 761-763

decimal constants, 39
declarations, 175-176

of arrays, 137, 177
compared to definitions, 181-182
complex, 182-186
of function parameters, 114, 116-118
of functions, 5, 120-121, 176-184
of objects, 176-184
of pointers, 141-144, 177
static assertions, 175, 186-187
storage class specifiers in, 176, 178-180
type names in, 184-185
type qualifiers in, 176, 180-181
type specifiers in, 176
of typedef names, 185-186

declarator lists, 176, 177
declarators, 177
decrement operators (--), 78-80
default label, switch statement, 107-108

Index | 783

.DEFAULT target, make, 728
#define directive, 264-272
define directive, make, 714, 718, 719
defined operator, 273
definitions

of arrays, 129-131, 136
compared to declarations, 181-182
of functions, 4-6, 113-118
of structures, 160
tentative, 182
of unions, 170

delete command, GDB, 749
.DELETE_ON_ERROR target, make, 728
dereferencing operator (see indirection

operator)
derived types, 23
difftime function, 408
digraphs, 12-13
dir function, make, 716
directives

for compiler (see preprocessor direc‐
tives)

in makefiles, 719-722
disable command, GDB, 749
div function, 408
division assignment operator (/=), 76, 77
division operator (/), 73
div_t type, 312
do … while statement, 104
dollar sign ($)

preceding function calls in makefiles,
715

preceding variable references in make‐
files, 697, 708

domain errors, 329
dot operator (see member designator)
double imaginary type, 33
double quotes (" ")

enclosing filenames in include direc‐
tives, 262

enclosing string literals, 45
escape sequence for, 44

double type, 30-32
double _Complex type, 33
double-colon rule, makefiles, 702
double_t type, 300
dynamic memory management (see

memory, management of)

E
-E option, gcc command, 672, 682
-e option, GDB, 738
E or e conversion specifier, 228, 234
E or e, preceding exponent in constants,

40
Eclipse, 768-776

compiling programs, 771
debugging programs, 773-776
developing programs, 770-773
installing, 768
projects, 770, 773
running, 769
running programs, 771
user interface for, 769

EILSEQ error, 218
element designators in array initializers,

133-134, 138
#elif directive, 273-274
ellipsis (…), indicating optional parame‐

ters, 7, 121, 267
else clause, if statement, 106-107
ememmove_s function, 661
empty string, 46
enable command, GDB, 749
end-of-line indicators, 20, 210
end-of-stream character, 210
endef directive, in makefiles, 714
enum keyword, 33
enumerations, 33-34, 50
environment variables, 693

(see also conditional compiling)
in makefiles, 711
querying, 339
used by GCC, 693

EOF macro, 215, 217, 311
epoch, 337
equal sign (=)

assignment operator, 76
assignment operator in makefiles, 704
in initializers, 190

equal sign, double (==), equal-to opera‐
tor, 80

equality operators (see comparative oper‐
ators)

erf function, 409
erfc function, 410
errno macro, 291-291

784 | Index

errno variable, 217
errno.h header, 217, 291-291, 346
errno_t type, 289
#error directive, 275-275
error function (erf function), 409
error function (erfc function), 410
error function, make, 718
error handling

domain errors, 329
I/O functions, 216-218
mathematical functions, 329-330
range errors, 329
secure functions, 351

error messages, generating, 275-275, 346
escape sequences, 44-45

in character constants, 42
hexadecimal notation in, 10, 44
for nonprintable characters, 9
for question marks, 14
for universal character names, 12, 44

eval function, make, 717
exclamation mark (!), logical NOT opera‐

tor, 82
exclamation mark, equal sign (!=), not-

equal-to operator, 80
.exe files, 671
-exec option, GDB, 738
executable files, 19
execution character set, 8
execution environment, 8, 118, 284

(see also floating-point environment)
execution of program

ending, 350, 350, 358, 361, 410
final status of, 119

exit function, 119, 410
_Exit function, 350
EXIT_FAILURE macro, 119, 313
EXIT_SUCCESS macro, 119, 313
exp function, 411
exp2 function, 412
explicit initialization, 190-191
explicit type conversions (see casting)
expm1 function, 413
export directive, make, 722
.EXPORT_ALL_VARIABLES target,

make, 729
expression statements, 99-100
expressions, 67-73

assignment, 77

compound, 68
constant, 97-98
evaluation of, 68-73
generic selections, 68-69
lvalues, 69-70
operator precedence and associativity

in, 71-73
primary, 67, 68-69
rvalues, 69
sequence points in, 70-71
side effects of, 70-71
testing, 357
type of, 67
void, 35

extended alignments, 37
extended character set, 9
extern specifier, 114, 120, 125, 137, 179,

187
external linkage (see extern specifier)

F
f conversion specifier, 228, 234
\f form feed character, 44
-f options, gcc command, 685
F or f, suffix for constants, 41, 42
fabs function, 413
false macro, 25, 307
__FAST_MATH__ macro, 686
fclose function, 215, 414
fdim function, 415
feclearexcept function, 415
fegetenv function, 416
fegetexceptflag function, 417
fegetround function, 418
feholdexcept function, 418
fences, 251, 345
fenv.h header, 292-293, 327
feof function, 217, 420
feraiseexcept function, 420
ferror function, 217, 422
fesetenv function, 422
fesetexceptflag function, 423
fesetround function, 423
fetestexcept function, 424
feupdateenv function, 425
-ffast-math option, gcc command, 686
-ffinite-math-only option, gcc command,

686

Index | 785

fflush function, 212, 425
fgetc function, 218, 427
fgetpos function, 217, 235-235, 428
fgets function, 220-220, 429
fgetwc function, 218, 430
fgetws function, 220-220, 431
field width, in format strings, 225, 232
file command, GDB, 745
file scope, 17
FILE type, 211, 311
FILENAME_MAX macro, 311
files, 211-215

(see also streams)
access modes for, 214-215
closing, 215
deleting, 211
opening, 211, 213-214
position indicator for, 212
position indicator for, obtaining,

235-235
position indicator for, setting, 236-238
renaming, 211
standard functions for, 321-323

__FILE__ macro, 274, 277
filter function, make, 716
filter-out function, make, 716
findstring function, make, 716
finish command, GDB, 751, 753
firstword function, make, 716
float imaginary type, 33
float type, 30-32
float _Complex type, 33
float.h header, 31, 293-296
floating-point constants, 40-42
floating-point environment, 327-328
floating-point types

categories of, 325
compiler optimizations for, 686
complex, 32-33
converation rank of, 51
conversion specifiers for, 228-229, 234
evaluation of, 295
exceptions for, 328
for imaginary numbers, 33
mathematical functions for, 300-302,

323-328
normalized representation of, 293
precision of, 31, 295
real, 30-32

rounding modes for, 328
rounding of, 32, 293, 294
standard headers for, 292-296
storage sizes of, 31
value range of, 295

float_t type, 300
floor function, 431
FLT_EVAL_METHOD macro, 31
FMA (fused multiply-and-add), 301
fma function, 432
fmax function, 433
fmin function, 434
fmod function, 434
-fno-math-errno option, gcc command,

686
-fno-rounding-math option, gcc com‐

mand, 686
-fno-signaling-nans option, gcc com‐

mand, 687
-fno-trapping-math option, gcc com‐

mand, 686
fonts used in this book, xii
fopen function, 211, 212, 213, 435
FOPEN_MAX macro, 215, 311
fopen_s function, 436
for statement, 102-104
foreach function, make, 717
format strings

in printf functions, 224-229
in scanf functions, 231-235

formatting
formatted input, 230-235
formatted output, 223-229
source code, 7

forward slash (/), division operator, 73
forward slash, asterisk (/* */), enclosing

block comments, 7
forward slash, double (//), preceding line

comments, 7
forward slash, equal sign (/=), division

assignment operator, 76, 77
fpack-struct flag, GCC, 165
fpclassify function, 437
fpclassify macro, 301
fpos_t type, 311
fprintf function, 223, 438

(see also printf functions)
fprintf_s function, 438
fputc function, 219, 439

786 | Index

fputs function, 220, 439
fputwc function, 219, 440
fputws function, 220, 440
FP_FAST_FMA macro, 301
FP_FAST_FMAF macro, 301
FP_FAST_FMAL macro, 301
FP_ILOGB0 macro, 302
FP_ILOGBNAN macro, 302
FP_INFINITE macro, 300
FP_NAN macro, 300
FP_NORMAL macro, 300
FP_SUBNORMAL macro, 300
FP_ZERO macro, 300
frame (f) command, GDB, 755
frame command, GDB, 752
fread function, 221, 441
free function, 196-197, 442
freestanding environment, 118, 284
freopen function, 211, 213, 214, 442
freopen_s function, 443
frexp function, 444
fscanf function, 230, 445

(see also scanf functions)
fscanf_s function, 445
fseek function, 236-238, 447
fsetpos function, 217, 236-238, 448
-fsyntax-only option, gcc command, 678
ftell function, 217, 235-235, 448
fully buffered streams, 212
__func__ identifier, 15, 268
function designators, type conversions

with, 58-59
function pointers, 61, 156-158
function prototype scope, 17
function scope, 17
function specifiers, 125
function types, 24
functions, 4-6, 113-120

(see also specific functions by name)
block of, 113
calling, 91-92, 122
calling, implicit type conversions on,

53
character classification, 330-331
character conversions, 331
date and time, 337-338
debugging, 345-346
declaring, 5, 120-121, 176-184
defining, 4-6, 113-118

error messages, 346
execution of, 122
head of, 113-114
hiding from other source files,

114-115
inline, 123-125
input and output, 321-323
internationalization, 340-340
in makefiles, 715-719
mathematical, 323-330
memory management, 336-337
multibyte characters, 333-334
multithreading, 341-345
name of, 113
name of, referencing as a string con‐

stant, 15
nesting, not allowed, 6
non-returning, 125-126
nonlocal jumps, 341
parameters of (see parameters, of

functions)
process control, 339-340
recursive, 126-127
return type of, 113, 120, 123
searching, 336
signal handlers, 303, 339
sorting, 336
in standard libraries (see standard

library functions)
storage class specifiers for, 114-115,

178-180
strings, 332-333
variadic, 127-128
void as return value, 35

-funsafe-math-optimizations option, gcc
command, 686

fused multiply-and-add (FMA), 301
fwide function, 216, 450
fwprintf function, 224, 451

(see also printf functions)
fwprintf_s function, 451
fwrite function, 222, 452
fwscanf function, 230, 452

(see also scanf functions)
fwscanf_s function, 452

Index | 787

G
-g option, gcc command, 675, 687, 688,

733
G or g conversion specifier, 228, 234
GCC (GNU Compiler Collection),

669-670
(see also make utility)
assembling stage, 674
C dialect used by, 681
compiler warnings from, 683
compiling stage, 674
debugging options with, 688
environment variables used by, 693
file types recognized by, 679
freestanding programs with, 681
include directories, order searched,

673
installing, 670-671
linking stage, 676-678
multiple source files with, 679-680
operation of, 671-681
optimization options, 684-688
options, list of, 689-693

(see also specific options)
preprocessing, 672-674
profiling options with, 688
shared object files with, 680
version of, 670

gcc command, 670, 671
GCC_EXEC_PREFIX environment vari‐

able, 693
GDB (GNU debugger), 731, 736-741

breakpoints, 734, 747-753
call stack, analyzing, 753-756
command completion in, 741
command help, 742
command scripts, executing, 740
command-line options, 737-740
core files, analyzing, 763-765
displaying source code, 746-747
example debugging session, 732-736
initialization files for, 740
input files for, 738
installing, 732
passing arguments to program, 738,

745
process ID number for, 737
program data, displaying, 756-760

program to debug, 737, 745
running program to debug, 744-746
starting, 736-740
status information, displaying,

743-744
symbol table used by, 733
user interface for, 739
version of, 732
watchpoints, 761-763

gdb command, 732
.gdbinit file, 740
_Generic keyword, 68, 272-272
generic selection, 68-69, 272-272
getc function, 218, 453
getchar function, 218, 454
getenv function, 454
gets function, 220-220, 456
gets_s function, 220-220, 457
getwc function, 218, 458
getwchar function, 218, 459
gmake utility (see make utility)
gmtime function, 460
gmtime_s function, 461
GNU Compiler Collection (see GCC)
goto statement, 110-112
greater-than operator (>), 80
greater-than or equal-to operator (>=), 80

H
.h files, 7, 679
-h option, GDB, 738
hash mark (#)

beginning preprocessor directives, 7,
261

digraph representing, 12
preceding comments in makefiles,

697, 703
stringify operator, 268
trigraph representing, 13

hash mark, double (##), token-pasting
operator, 269

header files, 7
including, 262-264
location of, 263
for standard libraries (see standard

headers)
help (h) command, GDB, 742
--help option, GDB, 738

788 | Index

hexadecimal escape sequences, 45
hexadecimal floating-point constants, 41
hexadecimal integer constants, 39
hosted environment, 118-120, 284
HUGE_VAL macro, 301
HUGE_VALF macro, 301
HUGE_VALL macro, 301
hypot function, 462

I
i conversion specifier, 227, 234
.i files, 679
I macro, 33
-I option, gcc command, 672
-I- option, gcc command, 673
I/O (input and output)

error handling with, 216-218
files, 211-215
formatted input, 230-235
formatted output, 223-229
library for, 209
random file access, 235
secure functions for, 209, 214, 224, 230
standard functions for, 321-323
standard header for, 310-312
streams, 209-211, 216
unformatted data, reading and writ‐

ing, 218-222
IDE (integrated development environ‐

ment), 767-776
Eclipse, compiling programs, 771
Eclipse, debugging programs, 773-776
Eclipse, developing programs, 770-773
Eclipse, installing, 768
Eclipse, projects, 773
Eclipse, running, 769
Eclipse, running programs, 771
software for, list of, 767

identifiers, 14-18, 175
linkage of, 179, 187-189
name spaces of, 16-17
reserved, 287
scope of, 17-18, 100

#if directive, 273-274
if function, make, 717
if statement, 106-107
#ifdef directive, 274-274
ifdef directive, make, 720

ifeq directive, make, 720
#ifndef directive, 274-274
ifndef directive, make, 720
ifneq directive, make, 720
ignore command, GDB, 749
.IGNORE target attribute, make, 713
ignore_handler_s function, 463
ilogb function, 464
imaginary numbers, 33
imaxabs function, 464
imaxdiv function, 465
implicit initialization, 190
implicit type conversions, 49, 51-54,

58-59, 61-64, 74
#include directive, 5, 7, 262-264, 284
include directive, make, 721
INCLUDE environment variable, 263
incomplete types, 24
increment operators (++), 78-80
indirection operator (*), 69, 87, 145
INFINITY macro, 301
info args command, GDB, 756
info command, GDB, 743, 748
info frame command, GDB, 755
info locals command, GDB, 755
info stack command, GDB, 753
initialization, 190-191

of arrays, 132-133, 137-138
explicit, 190-191
implicit, 190
of structures, 164
of unions, 171

inline functions, 123-125
inline specifier, 124, 178
int type, 24, 26
integer constant expressions, 97-98
integer constants, 39-40, 310
integer promotion, 51
integer types, 24-30

conversion rank of, 50
conversion specifiers for, 227-228,

234-234
conversions involving, 55-56, 64
exact-width types, 29-30
mathematical functions for, 323
overflows of, 28
standard header for, 296-297
in standard headers, 29-30
storage sizes of, 26-28

Index | 789

value ranges of, 28-28, 298-299, 308
integrated development environment (see

IDE)
.INTERMEDIATE target attribute, make,

713
internal linkage (see static specifier)
international characters, 9-11
internationalization, 299, 340-340
INTMAX_C macro, 310
INTnn_C macros, 310
inttypes.h header, 30, 296-297, 323, 335
_IOFBF macro, 311
_IOLBF macro, 311
_IONBF macro, 311
-iquote option, gcc command, 672
isalnum function, 465
isalpha function, 466
isblank function, 467
iscntrl function, 468
isdigit function, 468
isfinite function, 469
isfinite macro, 301
isgraph function, 469
isgreater function, 470
isgreaterequal function, 470
isinf function, 471
isinf macro, 301
isless function, 471
islessequal function, 471
islessgreater function, 471
islower function, 472
isnan function, 473
isnan macro, 301
isnormal function, 473
isnormal macro, 301
iso646.h header, 298
isprint function, 474
ispunct function, 475
isspace function, 476
isunordered function, 477
isupper function, 478
iswalnum function, 478
iswalpha function, 480
iswblank function, 481
iswcntrl function, 482
iswctype function, 482
iswdigit function, 484
iswgraph function, 484
iswlower function, 485

iswprint function, 485
iswpunct function, 486
iswspace function, 487
iswupper function, 487
iswxdigit function, 488
isxdigit function, 488
-isysroot option, gcc command, 673
-isystem option, gcc command, 673
iteration statements, 101-105

controlling expression of, 101
do … while statement, 104
for statement, 102-104
nested, 105
not using in inline functions, 124
while statement, 101-102

J
jmp_buf type, 302
join function, make, 717
jump statements, 108-112

break statement, 109
continue statement, 109-110
goto statement, 110-112
nonlocal jumps, 112, 341
return statement, 112

K
K&R (Kernighan-Ritchie) style function

definitions, 115
Kdevelop, 767
keywords, reserved, 15
kill command, GDB, 746
kill_dependency macro, 307

L
-L option, gcc command, 675
L or l, suffix for constants, 40, 41, 42
L, prefix for wide string literals, 46, 135
L, prefix for wide-character constants, 42,

43
labels, goto statement, 110, 175
labs function, 489
ld command, 671
ldexp function, 489
ldiv function, 490
ldiv_t type, 312

790 | Index

LD_LIBRARY_PATH environment vari‐
able, 693

left angle bracket (<)
automatic variable in makefiles, 708
less-than operator, 80

left angle bracket, double (<<), shift left
operator, 85

left angle bracket, double, equal sign
(<<=), shift left assignment operator,
76, 77

left angle bracket, equal sign (<=), less-
than or equal-to operator, 80

less-than operator (<), 80
less-than or equal-to operator (<=), 80
.LIBPATTERNS variable, make, 710
libraries, 349

(see also shared object files)
headers for (see header files; standard

headers)
non-standard, linking, 676-678
standard (see standard library func‐

tions)
LIBRARY_PATH environment variable,

678, 693
limits.h header, 28, 298-299
#line directive, 274
line-buffered streams, 212
__LINE__ macro, 274, 277
linkage for identifiers, 179, 187-189, 284
linker, 19
list (l) command, GDB, 734, 746
literals, 39-48

character constants, 42-45
floating-point constants, 40-42
integer constants, 39-40
string literals, 45-48

LL or ll, suffix for constants, 40
llabs function, 490
lldiv function, 490
lldiv_t type, 312
llrint function, 491
llround function, 491
locale.h header, 299, 340
localeconv function, 299, 491
locales, 299, 340-340

(see also international characters)
localtime function, 495
localtime_s function, 495
locking

mutexes using, 246
streams using, 210

log function, 496
log10 function, 497
log1p function, 497
log2 function, 498
logb function, 499
logical AND operator (&&), 82
logical NOT operator (!), 82
logical operators, 82-83, 298
logical OR operator (||), 82
long double imaginary type, 33
long double type, 30-32
long double _Complex type, 33
long long type, 24, 26
long type, 24, 26
longjmp function, 112, 500
loops (see iteration statements)
.LOW_RESOLUTION_TIME target

attribute, make, 713
lrint function, 500
lround function, 501
lvalues, 69-70
L_tmpnam macro, 311
L_tmpnam_s macro, 312

M
-m options, gcc command, 687
macros, 264-272

comparison, 326
conditionally defined, list of, 278-279
defining, 264-266
for floating-point math, 325-326
in makefiles, 714
other macros within, 270
parameters of, 266-270
predefined, list of, 277-279
redefining, 271
scope of, 271
standard library functions imple‐

mented as, 286-286
type-generic, 68, 272-272, 325
undefining, 271

main function, 4, 113, 118-120, 284
make utility, 695-696

automatic variables, 708
built-in rules, 700
command script, 696, 698

Index | 791

command-line options, 725-728
comments in makefiles, 697, 703
directives, 719-722
double-colon rule, 702
environment variables with, 711
functions, 715-719
header dependencies, 723
implicit rule chains, 701
macros, 714
makefile, 696
pattern rules, 699
phony targets, 711-712
prerequisites, 696
recursive calls to, 724
rules, 696, 696-703
rules, generating, 729
running, 722-730
suffix rules, 700
target attributes, 712-714
targets, 696, 697, 728
variables, 704-711
variables, assignment of, 704
variables, built-in, 709
variables, operations on, 718
variables, referencing, 697
variables, substitution in, 707
variables, target-specific assignment

of, 706
MAKE variable, make, 710
MAKECMDGOALS variable, make, 710
MAKEFILES variable, make, 710
MAKEFILE_LIST variable, make, 710
MAKEFLAGS variable, make, 710
MAKELEVEL variable, make, 710
MAKESHELL variable, make, 710
malloc function, 144, 166, 194-195, 502
-Map option, gcc command, 678
math.h header, 300-302, 323, 325
mathematical functions, 300-302,

313-314, 323-330
(see also arithmetic operators)

mathematical macros, 325-326
MATH_ERREXCEPT macro, 302
math_errhandling macro, 302, 329
MATH_ERRNO, 302
matrices, 136

(see also multidimensional arrays)
max_align_t type, 308
mblen function, 503

mbrlen function, 504
mbrtoc16 function, 505
mbrtoc32 function, 507
mbrtowc function, 218, 508
mbsinit function, 510
mbsrtowcs function, 510
mbsrtowcs_s function, 511
mbstate_t type, 216, 318
mbstowcs function, 512
mbstowcs_s function, 513
mbtowc function, 514
MB_CUR_MAX macro, 313
-mcpu option, gcc command, 687
member designator (.), 87, 162
memchr function, 515
memcmp function, 516
memcpy function, 516
memcpy_s function, 516
memmove function, 517
memmove_s function, 517
memory

alignment of objects in, 36-37, 165
allocating dynamically, 194-196
binary search tree using, 198-208
initializing when allocating, 195
management of, 193-208, 336-337
releasing, 196-197
resizing, 196-197

memory addressing operators, 87-90
memory barriers (see fences)
memory ordering, 249-251
memory_order type, 305
memset function, 143, 518
memset_s function, 518
Microsoft Visual Studio, 767
MinGW, 671
minus sign (-)

subtraction operator, 73
unary negative operator, 73

minus sign, double (--), decrement opera‐
tor, 78

minus sign, equal sign (-=), subtraction
assignment operator, 76, 77

minus sign, right angle bracket (->),
arrow operator, 87, 89, 146, 162

mktime function, 519
modf function, 521
modules, 19

(see also object files)

792 | Index

modulo assignment operator (%=), 76, 77
modulo operator (%), 73
-mtune option, gcc command, 687
mtx_destroy function, 246, 522
mtx_init function, 245, 522
mtx_lock function, 246, 523
mtx_plain constant, 316
mtx_recursive constant, 316
mtx_t type, 315
mtx_timed constant, 316
mtx_timedlock function, 246, 523
mtx_trylock function, 246, 525
mtx_unlock function, 246, 526
multibyte characters, 9-11, 318-319,

333-334
multibyte conversion state, 216
multidimensional arrays, 136-138
multiplication assignment operator (*=),

76, 77
multiplication operator (*), 73
multithreading

atomic operations for, 247-249
compared to POSIX threads, 239
condition variables for, 251-255
fences in, 251
library for, 240
memory ordering in, 249-251
mutexes for, 245-247
shared data, synchronizing access to,

244
standard functions for, 341-345
standard header for, 315-316
support for, determining, 239
thread-local objects in, 257
thread-specific storage in, 257-258
threads, 240-244

mutex (mutual exclusion), 245-247

N
\n newline character, 20, 44, 210
-n option, GDB, 741
name spaces

of identifiers, 16-17
of labels, 110

names (see identifiers)
NAN macro, 301
nearbyint function, 526
nested loops, 105

next (n) command, GDB, 735
next command, GDB, 751
nextafter function, 527
nexttoward function, 528
non-returning functions, 125-126
nonlocal jumps, 112, 341
nonprintable characters, 9
noreturn macro, 126, 313
_Noreturn specifier, 125
not operator, 298
not-equal-to operator (!=), 80
notdir function, make, 716
.NOTPARALLEL target, make, 729
not_eq operator, 298
-nowindows option, GDB, 739
null character, 9
NULL macro, 64, 308
null pointer constants, 64, 143
null pointers, 143
null statements, 100
-nw option, GDB, 739
-nx option, GDB, 741

O
o conversion specifier, 227, 234
.o files, 19, 675
-O options, gcc command, 684
.obj files, 19
object files, 19, 674
object files, shared, 680
object pointers, 60-61
object types, 24
objects, 23

declaring, 176-184
expressions designating (see lvalues)
initializing, 190-191
storage class specifiers for, 178-180
storage duration of, 179, 189-190
type of (see types)
type qualifiers for, 180-181

octal constants, 39
octal escape sequences, 45
offsetof macro, 165, 166, 308
once_flag type, 315
ONCE_FLAG_INIT macro, 316
online resources, xii, xiv
Open Watcom, 767
operators

Index | 793

arithmetic, 73-76
assignment, 76-78
associativity of, 72-73
atomic operations with, 248
bitwise, 83-86
comparative, 80-82
increment and decrement, 78-80
ISO 646 macro names for, 298
logical, 82-83
memory addressing, 87-90
precedence of, 71-73
prefix and postfix, 73, 78

or operator, 298
origin function, make, 718
or_eq operator, 298
.out files, 671
output (see I/O (input and output))
overflows, 28, 329
override directive, make, 721

P
%p format specifier, 142
-p option, gcc command, 688
-p option, GDB, 739
P or p, preceding exponent in constants,

41
parameters, of functions

arrays as, 116-118, 123, 138-140
call by reference used in, 122-123
call by value used in, 122
declarations of, 114, 116-118
multidimensional arrays as, 139
optional, 121
register specifier for, 116
structures, 163
validity of arguments passed to,

285-286
variable number of, 127-128
variable-length arrays as, 117, 121, 139

parameters, of macros, 266-270
parameters, of programs

passing to debugger, 738, 745
specifying on command-line, 119

parentheses (())
in array pointer declarations, 152
in declarations, 177, 182-186
enclosing function calls in makefiles,

715

enclosing type names in cast opera‐
tions, 49, 90

enclosing variable names in makefiles,
697

function calls, 90, 122
in function pointer declarations, 157
grouping expression operands, 72

patsubst function, make, 715
-pedantic option, gcc command, 682
Pelles C, 767
percent sign (%)

automatic variable in makefiles, 709
in makefile rules, 699
modulo operator, 73
preceding conversion specifications,

224
percent sign, equal sign (%=), modulo

assignment operator, 76, 77
period (.), member designator, 87, 162
perror function, 217, 528
-pg option, gcc command, 689
.PHONY target attribute, make, 712, 713
-pid option, GDB, 739
plus sign (+)

addition operator, 73
automatic variable in makefiles, 709
in access mode string, 214
unary positive operator, 73

plus sign, double (++), increment opera‐
tor, 78

plus sign, equal sign (+=)
addition assignment operator, 76, 77
append operator in makefiles, 705

pointer arrays, 154-156
pointers, 141-144

accessing and modifying objects using,
145

arithmetic operations on, 75-76, 132,
147-148

array parameters converted to,
116-117

array parameters declared as, 138
array pointers, 152-154
to char, initializing, 46
comparing, 147
constant pointers, 149-150
conversions involving, 58-65, 144
declaring, 141-144, 177
default value of, 144

794 | Index

function pointers, 156-158
initializing, 144
lvalues using, 69
modifying, 147-148
null pointer constants, 64
null pointers, 143
to pointers, 145-146
to qualified objects, 63
read-only, 64, 123
restricted pointers, 150-152
as return types, 123
size of, 142
as structure members, 167-169
to structures, 162
type qualifiers with, 148-152
void pointers, 143-144
to void, 35, 62-63, 194

POSIX threads (pthreads), 239
postfix operators, 73, 78
pow function, 529
#pragma directives, 275-277
_Pragma operator, 276
#pragma pack directive, 165, 275
#pragma STDC CX_LIMITED_RANGE

directive, 326
#pragma STDC FENV_ACCESS direc‐

tive, 327
#pragma STDC FP_CONTRACT direc‐

tive, 326
precedence of operators, 71-73
.PRECIOUS target attribute, make, 713
prefix operators, 73, 78
preprocessor directives, 261-262

#define, 264-272
#elif, 273-274
#error, 275-275
formatting, 7
#if, 273-274
#ifdef, 274-274
#ifndef, 274-274
#include, 5, 7, 262-264, 284
#line, 274
not producible by macro expansion,

264, 270
#pragma, 275
#undef, 271

preprocessor operators
defined, 273
_Pragma, 276

PRI prefix for type specifier macros, 297
primary expression, 67, 68-69
print (p) command, GDB, 735, 756-759
printf functions, 142, 223-229, 297, 529
printf_s function, 535
processes

standard functions for process control,
339-340

threads created by, 240
profiling, compiler options for, 688
programs

compiling (see compilation)
debugging (see debugging)
developing, with IDE (see IDE)
execution of (see execution of pro‐

gram)
structure of, 4-6

(see also source files)
prototype scope, 17
prototypes, function, 5, 120-121
pthreads (POSIX threads), 239
ptrdiff_t type, 29, 307
punctuation marks, 12-14
putc function, 219, 535
putchar function, 219, 536
puts function, 220, 537
putwc function, 219, 537
putwchar function, 219, 537

Q
qsort function, 538
qsort_s function, 539
qualified objects, pointers to, 63
qualifiers (see type qualifiers)
question mark (?)

automatic variable in makefiles, 708
escape sequence for, 44

question mark, colon (?:), conditional
evaluation operator, 90

question mark, double (??), preceding tri‐
graphs, 13

question mark, equal sign (?=), condi‐
tional assignment operator in make‐
files, 705

quick_exit function, 540
--quiet option, GDB, 738
quit (q) command, GDB, 736

Index | 795

R
r (read), in access mode string, 214
\r carriage return character, 9, 44, 210
race condition (see data race)
raise function, 540
rand function, 541
random file access, 235
RAND_MAX macro, 313
range errors, 329
read-only pointers, 64, 123
reading data (see I/O (input and output))
real floating-point types, 30-32, 57-58
realloc function, 196-197, 542
records, 159

(see also structures)
recursive functions, 126-127
register specifier, 116, 179
register storage class, 69
relational operators (see comparative

operators)
remainder function, 543
remove function, 211, 543
remquo function, 544
rename function, 211, 545
reserved identifiers, 287
reserved keywords, 15
restrict qualifier, 63, 117, 149, 150-152,

180-181
restricted pointers, 150-152
return statement, 54, 112, 122
rewind function, 545
right angle bracket (>), greater-than oper‐

ator, 80
right angle bracket, double (>>), shift

right operator, 85
right angle bracket, double, equal sign

(>>=), shift right assignment operator,
76, 77

right angle bracket, equal sign (>=),
greater-than or equal-to operator, 80

rint function, 546
Ritchie, Dennis, 3
round function, 547
rounding modes, 328
rounding, of floating-point types, 32
RSIZE_MAX macro, 288
rsize_t type, 288, 308
run (r) command, GDB, 734

run command, GDB, 745
runtime constraints, for secure functions,

288-289
rvalues, 69
rwatch command, GDB, 761

S
s conversion specifier, 226, 233
.s files, 674, 679
.S files, 679
-S option, gcc command, 674
-s option, GDB, 738
-save-temps option, gcc command, 678
scalar types, 24
scalbln function, 548
scalbn function, 548
scanf functions, 230-235, 297, 548
scanf_s function, 552
scientific notation, for constants, 40, 41
SCN prefix for conversion specifier mac‐

ros, 297
scope of identifiers, 17-18, 100
-se option, GDB, 738
searching functions, 336
.SECONDARY target attribute, make, 714
secure (bounds-checking) functions,

287-289
error handling, 351
for I/O functions, 209, 214
printf_s functions, 224
scanf_s functions, 230
support for, determining, 209

SEEK_CUR macro, 311
SEEK_END macro, 311
SEEK_SET macro, 311
selection statements, 105-108

if statement, 106-107
switch statement, 107-108

self-referential structures, 160
semicolon (;)

ending statements, 99
in command scripts for make, 698

sequence points, 70-71
sequential evaluation operator (,), 90, 103
set args command, GDB, 745
set listsize command, GDB, 747
setbuf function, 212, 555
setjmp function, 555

796 | Index

setjmp macro, 112, 302
setjmp.h header, 302, 341
setlocale function, 299, 557
setvbuf function, 212, 560
set_constraint_handler_s function, 289,

553
shared object files, 680
-shared option, gcc command, 680
shell function, make, 718
SHELL variable, make, 710
shift left assignment operator (<<=), 76,

77
shift left operator (<<), 85
shift operators, 85-86
shift right assignment operator (>>=), 76,

77
shift right operator (>>), 85
short type, 24, 26
show args command, GDB, 745
show command, GDB, 744
show listsize command, GDB, 747
signal function, 561
signal handlers, 303, 339
signal.h header, 302
signbit function, 564
signbit macro, 301
signed char type, 24, 25-26
signed integer types, 56
signed types, 23, 24-25
sig_atomic_t type, 302
SIG_DFL macro, 303
SIG_ERR macro, 303
SIG_IGN macro, 303
--silent option, GDB, 738
.SILENT target, make, 728
simple assignments, 76-77
sin function, 565
single quotes (' ')

enclosing character constants, 42
escape sequence for, 44

sinh function, 565
sizeof operator, 27, 90, 98, 129-130, 142,

165, 166, 193
size_t type, 28, 29, 193, 307
snprintf function, 223, 566

(see also printf functions)
snprintf_s function, 566
snwprintf_s function, 568
sort function, make, 716

sorting functions, 336
source character set, 8
source files, 6-7
special characters (see character sets;

escape sequences; punctuation marks)
specifiers (see conversion specifiers; func‐

tion specifiers; storage class specifiers;
type specifiers)

sprintf function, 223, 568
(see also printf functions)

sprintf_s function, 568
sqrt function, 569
square brackets ([])

digraphs representing, 12
enclosing array element designators,

133, 138
in array declarations, 182-186
in array definitions, 129, 136
indicating array parameters, 116
subscript operator, 69, 87, 131
trigraphs representing, 13

srand function, 570
sscanf function, 230, 570

(see also scanf functions)
sscanf_s function, 570
standard headers, 283-283

(see also specific headers by name)
including, 284
integer types in, 29-30
limited in freestanding environment,

284
list of, 283
for optional components, 283

standard library functions, 349
(see also specific functions by name)
external linkage of, 284
history of, 349
identifiers reserved by, 287
implemented as macros, 286-286
not reentrant, 284
secure, 287-289, 349
thread-safety of, 285
validity of arguments, 285-286

statements, 4, 99-112
block statements, 100
expression statements, 99-100
iteration statements, 101-105
jump statements, 108-112
null statements, 100

Index | 797

selection statements, 105-108
static assertions, 175, 186-187, 289
-static option, gcc command, 681
static specifier, 114-115, 117, 130, 179,

188, 189
_Static_assert declarations, 175, 186-187
-std option, gcc command, 682
stdalign.h header, 37, 303
stdarg.h header, 127, 224, 304
stdatomic.h header, 247, 283, 304-307
stdbool.h header, 25, 307
__STDC__ macro, 277
__STDC_ANALYZABLE__ macro, 279
__STDC_HOSTED__ macro, 277
__STDC_IEC_559__ macro, 31, 278
__STDC_IEC_559_COMPLEX__ macro,

278
__STDC_ISO_10646__ macro, 278
__STDC_LIB_EXT1__ macro, 209, 279,

288
__STDC_MB_MIGHT_NEQ_WC__

macro, 278
__STDC_NO_ATOMICS__ macro, 180,

239, 279, 283, 304
__STDC_NO_COMPLEX__ macro, 32,

279, 283
__STDC_NO_THREADS__ macro, 239,

279, 283, 315
__STDC_NO_VLA__ macro, 279
__STDC_UTF_16__ macro, 278
__STDC_UTF_32__ macro, 278
__STDC_VERSION__ macro, 277
__STDC_WANT_LIB_EXT1__ macro,

288, 349
stddef.h header, 10, 29, 307-308
stderr stream, 213, 312
stdin stream, 213, 312
stdint.h header, 29-30, 308, 323
stdio.h header, 5, 209, 310-312, 321
stdlib.h header, 119, 193, 312-313, 323,

335, 337, 339
stdnoreturn.h header, 126, 313
stdout stream, 213, 312
step (s) command, GDB, 735
step command, GDB, 751
storage class specifiers, 114-115, 116, 117,

120, 125, 130, 137, 176, 178-180, 257
linkage given by, 179, 187-189

storage duration given by, 179,
189-190

storage duration of objects, 179, 189-190
strcat function, 134-135, 571
strcat_s function, 571
strchr function, 572
strcmp function, 573
strcoll function, 574
strcpy function, 575
strcpy_s function, 575
strcspn function, 576
streams, 209-211

(see also files)
binary streams, 210
buffering of, 212
byte-oriented, 216
locks used by, 210
opening and closing, 210
redirecting, 213
standard, 213
text streams, 210
wide-oriented, 216

strerror function, 577
strerrorlen_s function, 577
strerror_s function, 577
strftime function, 578
string literals, 45-48

breaking into multiple lines, 47
concatenation of, 47
empty string, 46
initializing, 46, 48
wide string literals, 46

string.h header, 313, 332, 336
stringify operator (#), 268
strings, 134-135

byte strings, 332-333
concatenating, 134-135
conversion specifiers for, 226-227,

233-234
conversions involving, 335-336
converting macro arguments to, 268
initializing, 134, 135
length of, 135
reading, 220-220
standard functions for, 332-333
wide strings, 134, 135, 332-333
writing, 220

strip function, make, 716
strlen function, 135, 582

798 | Index

strncat function, 582
strncat_s function, 582
strncmp function, 583
strncpy function, 584
strncpy_s function, 584
strnlen_s function, 586
strpbrk function, 586
strrchr function, 587
strspn function, 587
strstr function, 588
strtod function, 589
strtof function, 589
strtoimax function, 590
strtok function, 590
strtok_s function, 591
strtol function, 593
strtold function, 589
strtoll function, 593
strtoul function, 594
strtoull function, 594
strtoumax function, 594
struct keyword, 160, 161
structure objects, 161
structures, 159-169

anonymous, 171-172
assignment of, 162
bit-fields as members of, 172-174
default values for, 164
defining, 160
flexible array member of, 166-167
incomplete, 161
initializing, 164-165
members of, accessing, 89-90, 162-163
memory storage of, 165-166
passing parameters as, 163
pointers as members of, 167-169
pointers to, 162
self-referential, 160
size of, 165, 166
typedef names for, 161

struct_tm type, 317
strxfrm function, 595
subscript operator ([]), 69, 87, 131
subst function, make, 715
subtraction assignment operator (-=), 76,

77
subtraction operator (-), 73
suffix function, make, 717
.SUFFIXES target, make, 729

SUFFIXES variable, make, 700, 710
switch statement, 107-108
swprintf function, 224, 596

(see also printf functions)
swprintf_s function, 596
swscanf function, 230, 597

(see also scanf functions)
swscanf_s function, 597
symbol table, 674, 733
symbolic debugger, 733

(see also GDB)
-symbols option, GDB, 738
synchronization, 244

(see also multithreading)
atomic operations for, 247-249
fences for, 251
memory ordering in, 249-251
mutexes for, 245-247
performance of, 247

system function, 598

T
\t horizontal tab character, 44
-t option, GDB, 739
tan function, 599
tanh function, 599
tbreak command, GDB, 749
tentative definitions, 182
text streams, 210
tgmath.h header, 68, 313-314, 325
thrd_busy constant, 316
thrd_create function, 241, 600
thrd_current function, 243
thrd_detach function, 241, 601
thrd_equal function, 243, 602
thrd_error constant, 316
thrd_exit function, 244, 603
thrd_join function, 241, 603
thrd_nomem constant, 316
thrd_sleep function, 243, 604
thrd_start_t type, 315
thrd_success constant, 316
thrd_success macro, 241
thrd_t type, 315
thrd_timeout constant, 316
thrd_yield function, 244, 604
thread-local objects, 257

Index | 799

thread-safety, of standard library func‐
tions, 285

thread-specific storage, 257-258
threads, 240-244

(see also multithreading)
blocking until finished, 241
comparing, 243
condition variables for, 251-255
creating, 240
data race with, 240
detaching, 241
ending with a specific result, 244
identification of, returning, 243
interrupting, 244
memory and resources of, 240
not waiting to finish, 241
shared memory of, 240
sleeping, 243

threads.h header, 240, 245, 283, 315-316
thread_local macro, 316
thread_local specifier, 257
_Thread_local specifier, 180, 189, 257
tilde (~)

bitwise NOT operator, 84
trigraph representing, 13

time function, 605
time.h header, 317, 337
times (see dates and times)
timespec_get function, 605
time_t type, 317
__TIME__ macro, 277
TMPDIR environment variable, 693
tmpfile function, 211, 214, 606
tmpfile_s function, 606
tmpnam function, 607
tmpnam_s function, 607
TMP_MAX macro, 312
TMP_MAX_S macro, 312
token-pasting operator (##), 269
tokens, 7, 21-21
tolower function, 608
toupper function, 609
towctrans function, 610
towlower function, 610
towupper function, 611
-traditional option, gcc command, 682
translation environment, 8
translation unit, 7, 19
trigraphs, 13-14

-trigraphs option, gcc command, 683
true macro, 25, 307
trunc function, 611
tss_create function, 258, 611
tss_delete function, 258, 612
TSS_DTOR_ITERATIONS macro, 316
tss_dtor_t type, 315
tss_get function, 258, 613
tss_set function, 258, 613
tss_t type, 258, 315
-tty option, GDB, 739
-tui option, GDB, 739
Turbo C, 767
type conversions, 49

allocated memory, 194
arithmetic types, 50-58, 74-74
array designators, 58-59
characters, 11, 331
explicit (see casting)
function designators, 58-59
implicit, 49, 51-54, 58-59, 61-64, 74-74
pointers, 59-64, 144
strings and numbers, 335-336

type names, 184-185
type qualifiers, 180-181

in object declarations, 176
in parameter declarations, 117
with pointers, 63, 148-152

type specifiers
alignment, 36
in function definitions, 113
macros for, 297
in object declarations, 176
void, 34-35

type-generic macros, 313-314, 325
typedef keyword, 161
typedef names, 185-186
typeless pointers (see pointers, to void)
types, 23-24

alignment of, 36-37
of character constants, 42-44
complex floating-point types, 32-33
of constants, 39-40, 41, 42
enumerations, 33-34
of expressions, 67
integer types, 24-30
real floating-point types, 30-32
value ranges of, 29

800 | Index

U
u conversion specifier, 227, 234
\u escape sequence, 12, 44
\U escape sequence, 12, 44
-U option, gcc command, 672
U or u, prefix for wide string literals, 46,

135
U or u, prefix for wide-character con‐

stants, 42, 43
U or u, suffix for constants, 40
u8, prefix for UTF-8 string literal, 46
uchar.h header, 10, 29, 317
UINTMAX_C macro, 310
UINTnn_C macros, 310
unbuffered streams, 212
unconditional jumps (see jump state‐

ments)
#undef directive, 271
underflows, 330
unexport directive, make, 722
unformatted data, reading and writing,

218-222
ungetc function, 219, 614
ungetwc function, 219, 615
Unicode characters, 10, 12, 317
union keyword, 170
unions, 159, 169-172

anonymous, 171-172
bit-fields as members of, 172-174
defining, 170-171
initializing, 171
members of, accessing, 89-90

universal character names, 12, 44
unsigned char type, 25, 25-26
unsigned int type, 25
unsigned integer types, conversions

involving, 55-56
unsigned long long type, 25
unsigned long type, 25
unsigned short type, 25
unsigned types, 23, 25

V
-v option, gcc command, 675
\v vertical tab character, 44
value function, make, 718
variables, 23

(see also objects)
condition variables, 251-255
in makefiles, 704-711

variadic functions, 127-128
va_arg function, 616
va_arg macro, 128, 304
__VA_ARGS__ identifier, 267
va_copy function, 616
va_copy macro, 128, 304
va_end function, 616
va_end macro, 128, 304
va_list type, 127, 304
va_start function, 616
va_start macro, 128, 304
--version option, GDB, 737
-v option, GDB, 737
vertical bar (|)

bitwise OR operator, 84
trigraph representing, 13

vertical bar, double (||), logical OR opera‐
tor, 82

vertical bar, equal sign (|=), bitwise OR
assignment operator, 76, 77

vfprintf function, 224, 619
(see also printf functions)

vfprintf_s function, 621
vfscanf function, 230, 622

(see also scanf functions)
vfscanf_s function, 624
vfwprintf function, 224, 624

(see also printf functions)
vfwprintf_s function, 625
vfwscanf function, 230, 626

(see also scanf functions)
vfwscanf_s function, 627
Visual Age for Java, 768
Visual Studio, 767
void pointers, 143-144
void type, 34-35, 62-63, 194
volatile qualifier, 63, 117, 148-149,

180-181
vpath directive, make, 722
VPATH variable, make, 711
vprintf function, 224, 619

(see also printf functions)
vprintf_s function, 621
vscanf function, 230, 622

(see also scanf functions)
vscanf_s function, 624

Index | 801

vsnprintf function, 224, 619
(see also printf functions)

vsnprintf_s function, 621
vsnwprintf function, 224

(see also printf functions)
vsprintf function, 224, 619

(see also printf functions)
vsprintf_s function, 621
vsscanf function, 230, 622

(see also scanf functions)
vsscanf_s function, 624
vswprintf function, 224, 624

(see also printf functions)
vswprintf_s function, 625
vswscanf function, 230, 626

(see also scanf functions)
vswscanf_s function, 627
vwprintf function, 224, 624

(see also printf functions)
vwprintf_s function, 625
vwscanf function, 230, 626

(see also scanf functions)
vwscanf_s function, 627

W
w (write), in access mode string, 214
-w option, gcc command, 683
-w option, GDB, 739
-Wa option, gcc command, 675
-Wall option, gcc command, 671, 683
warning function, make, 718
watch command, GDB, 761
watchpoints, GDB, 761-763
wchar.h header, 209, 318-319, 322, 332,

335, 336
wchar_t type, 10, 29, 216, 308
wcrtomb function, 218, 627
wcrtomb_s function, 628
wcscat function, 629
wcscat_s function, 629
wcschr function, 630
wcscmp function, 631
wcscoll function, 632
wcscpy function, 633
wcscpy_s function, 633
wcscspn function, 634
wcsftime function, 634
wcslen function, 635

wcsncat function, 636
wcsncat_s function, 636
wcsncmp function, 636
wcsncpy function, 637
wcsncpy_s function, 637
wcsnlen_s function, 638
wcspbrk function, 638
wcsrchr function, 639
wcsrtombs function, 640
wcsrtombs_s function, 641
wcsspn function, 642
wcsstr function, 643
wcstod function, 644
wcstof function, 644
wcstoimax function, 645
wcstok function, 645
wcstok_s function, 647
wcstol function, 647
wcstold function, 644, 648
wcstoll function, 647, 648
wcstombs function, 648
wcstombs_s function, 649
wcstoul function, 651
wcstoull function, 651
wcstoumax function, 651
wcsxfrm function, 652
wctob function, 654
wctomb function, 11, 655
wctomb_s function, 656
wctrans function, 657
wctrans_t type, 319
wctype function, 657
wctype.h header, 319, 330
wctype_t type, 319
website resources (see online resources)
WEOF macro, 217, 218, 319
-Werror option, gcc command, 683
-Wextra option, gcc command, 683
where command, GDB, 753
while statement, 101-102
whitespace

characters representing, 9
in makefiles, 697, 705
in source code, 7

wide characters, 9-11, 209, 318-319
wide string literals, 46
wide strings, 134, 135, 332-333
wide-character constants, 42, 43
wide-oriented streams, 216

802 | Index

wildcard function, make, 717
-windows option, GDB, 739
wint_t type, 218, 318
-Wl option, gcc command, 678
wmemchr function, 658
wmemcmp function, 659
wmemcpy function, 659
wmemcpy_s function, 659
wmemmove function, 661
wmemset function, 663
-Wno options, gcc command, 683
word function, make, 716
wordlist function, make, 716
words function, make, 716
wprintf function, 224, 663

(see also printf functions)
wprintf_s function, 663
writing data (see I/O (input and output))
wscanf function, 230, 664

(see also scanf functions)
wscanf_s function, 664
-Wsequence-point option, gcc command,

683
-Wswitch-default option, gcc command,

683

-Wtraditional option, gcc command, 684

X
x (exclusive), in access mode string, 215
x command, GDB, 759-760
\x escape sequence, 10, 44
-x option, gcc command, 680
-x option, GDB, 740
X or x conversion specifier, 227, 234
Xcode, 767
xor operator, 298
xor_eq operator, 298

Z
^Z end-of-stream character, 210
zero (0)

preceding octal constants, 39
return value, 119

zero, x (0x), preceding hexadecimal con‐
stants, 39, 41

/Zp1 option, Visual C/C++, 165

Index | 803

About the Authors
Peter Prinz is a seminar leader and key course developer, teaching courses to thou‐
sands of software developers for Unix and Windows systems. As the chief developer
and cofounder of the IT company Authensis AG in Germany, he has gained exten‐
sive experience in software development for computer telephony. Peter is also the
author of several other books on software development in C/C++, most of them as
coauthor with Ulla Kirch-Prinz, including O’Reilly’s C Pocket Reference.

Tony Crawford is a freelance writer, editor, and translator in Berlin, Germany.

Colophon
The animal on the cover of C in a Nutshell is a cow, in the broad sense that it is a
member of the domesticated species generally known as Western or European cattle
(Bos taurus). In cattle terminology, the word “cow” refers to an adult female (or
more specifically, a female who has given birth), as opposed to a heifer (young
female), steer (castrated male), or bull (intact male).

All domesticated cattle evolved from aurochs, ancient long-horned oxen that stood
six feet at the shoulder and had roughly half the mass of a rhinoceros. The head of
an aurochs (the term is both singular and plural) is currently featured on the Roma‐
nian coat of arms and the Moldovan flag, tracing back to the royal standard adopted
in 1359 by Bogdan I, founder of the Romanian principality of Bogdania (later
renamed Moldova). Full-body profiles of the animal survive in Paleolithic European
cave paintings, and animated renderings can be found in video games; aurochs have
been objects of fear and worship in a number of societies through the ages.

Aurochs are believed to have originated in India some two million years ago; over
time, they spread to neighboring continents and split into at least three genetically
distinct groups, which were domesticated independently. Domestication of aurochs
began 8,000 to 10,000 years ago in the southern Caucasus and northern Mesopota‐
mia; European cattle descended from this group. Wild aurochs survived in dwin‐
dling numbers in the forests of eastern Europe through the Middle Ages (the last
one was killed by a poacher in 1627). Attempts were made in Germany in the early
twentieth century to breed aurochs back into existence (guided by a pre-Darwinian
concept of atavism), using primitive varieties of cattle such as Highland cattle; the
result is a breed known as Heck cattle.

European cattle, brought to the Americas by Columbus on his second voyage, now
number in the hundreds of breeds. It is a popular misconception that only the males
have horns; in fact, both sexes are born with horns (except in a few breeds that are
polled, or naturally hornless). Seeing horns other than on isolated bulls is unusual
because of the common practice in modern cattle management of debudding calves
at or shortly after birth (that is, removing the immature base, or horn bud, before an
actual horn develops).

Cow horns, which consist of a bony core sheathed in keratinous material, figure in
the history of book manufacturing and the promulgation of the alphabet. In
sixteenth- to eighteenth-century Europe and in colonial America, a common type of
primer was composed of the alphabet (plus other text that varied) printed or written
on one side of a piece of paper or parchment, which was then attached to a wooden
board and covered with a thin, transparent sheet culled from the outer layer of a
cow horn. The board was shaped like a small paddle (with a hole in the handle for
attachment to a girdle) to make it easy to transport and share among students. The
protective layer of horn extended the life of the paper (a scarce and expensive
resource) and inspired the name of the device: a hornbook.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is an original illustration created by Susan Hart. The cover fonts
are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	How This Book Is Organized
	Part I
	Part II
	Part III

	Further Reading
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Peter
	Tony

	Part I. Language
	Chapter 1. Language Basics
	Characteristics of C
	The Structure of C Programs
	Source Files
	Comments
	Character Sets
	Wide Characters and Multibyte Characters
	Universal Character Names
	Digraphs and Trigraphs

	Identifiers
	Identifier Name Spaces
	Identifier Scope

	How the C Compiler Works
	The C Compiler’s Translation Phases
	Tokens

	Chapter 2. Types
	Typology
	Integer Types
	Integer Types Defined in Standard Headers

	Floating-Point Types
	Complex Floating-Point Types
	Enumerated Types
	The Type void
	void in Function Declarations
	Expressions of Type void
	Pointers to void

	The Alignment of Objects in Memory

	Chapter 3. Literals
	Integer Constants
	Floating-Point Constants
	Decimal Floating-Point Constants
	Hexadecimal Floating-Point Constants

	Character Constants
	Types and Values of Character Constants
	Escape Sequences

	String Literals

	Chapter 4. Type Conversions
	Conversion of Arithmetic Types
	Hierarchy of Types
	Integer Promotion
	Usual Arithmetic Conversions
	Other Implicit Type Conversions
	The Results of Arithmetic Type Conversions

	Conversion of Nonarithmetic Types
	Array and Function Designators
	Explicit Pointer Conversions
	Implicit Pointer Conversions
	Conversions Between Pointer and Integer Types

	Chapter 5. Expressions and Operators
	How Expressions Are Evaluated
	Generic Selections (C11)
	Lvalues
	Side Effects and Sequence Points
	Operator Precedence and Associativity

	Operators in Detail
	Arithmetic Operators
	Assignment Operators
	Increment and Decrement Operators
	Comparative Operators
	Logical Operators
	Bitwise Operators
	Memory Addressing Operators
	Other Operators

	Constant Expressions
	Integer Constant Expressions
	Other Constant Expressions

	Chapter 6. Statements
	Expression Statements
	Block Statements
	Loops
	while Statements
	for Statements
	do…while Statements
	Nested Loops

	Selection Statements
	if Statements
	switch Statements

	Unconditional Jumps
	The break Statement
	The continue Statement
	The goto Statement
	The return Statement

	Chapter 7. Functions
	Function Definitions
	Functions and Storage Class Specifiers
	K&R-Style Function Definitions
	Function Parameters
	Arrays as Function Parameters
	The main() Function

	Function Declarations
	Declaring Optional Parameters
	Declaring Variable-Length Array Parameters

	How Functions Are Executed
	Pointers as Arguments and Return Values
	Inline Functions
	Non-Returning Functions
	Recursive Functions
	Variable Numbers of Arguments

	Chapter 8. Arrays
	Defining Arrays
	Fixed-Length Arrays
	Variable-Length Arrays

	Accessing Array Elements
	Initializing Arrays
	Writing Initialization Lists
	Initializing Specific Elements

	Strings
	Multidimensional Arrays
	Matrices
	Declaring Multidimensional Arrays
	Initializing Multidimensional Arrays

	Arrays as Arguments of Functions

	Chapter 9. Pointers
	Declaring Pointers
	Null Pointers
	void Pointers
	Initializing Pointers

	Operations with Pointers
	Using Pointers to Read and Modify Objects
	Modifying and Comparing Pointers

	Pointers and Type Qualifiers
	Constant Pointers and Pointers to Constant Objects
	Restricted Pointers

	Pointers to Arrays and Arrays of Pointers
	Array Pointers
	Pointer Arrays

	Pointers to Functions

	Chapter 10. Structures, Unions, and Bit-Fields
	Structures
	Defining Structure Types
	Structure Objects and typedef Names
	Incomplete Structure Types
	Accessing Structure Members
	Initializing Structures
	Initializing Specific Members
	Structure Members in Memory
	Flexible Structure Members
	Pointers as Structure Members

	Unions
	Defining Union Types
	Initializing Unions

	Anonymous Structures and Unions
	Bit-Fields

	Chapter 11. Declarations
	Object and Function Declarations
	Examples
	Storage Class Specifiers
	Type Qualifiers
	Declarations and Definitions
	Complex Declarators

	Type Names
	typedef Declarations
	_Static_assert Declarations
	Linkage of Identifiers
	External Linkage
	Internal Linkage
	No Linkage

	Storage Duration of Objects
	Static Storage Duration
	Thread Storage Duration
	Automatic Storage Duration

	Initialization
	Implicit Initialization
	Explicit Initialization

	Chapter 12. Dynamic Memory Management
	Allocating Memory Dynamically
	Characteristics of Allocated Memory
	Resizing and Releasing Memory
	An All-Purpose Binary Tree
	Characteristics
	Implementation
	Generating an Empty Tree
	Inserting New Data
	Finding Data in the Tree
	Removing Data from the Tree
	Traversing a Tree
	A Sample Application

	Chapter 13. Input and Output
	Streams
	Text Streams
	Binary Streams

	Files
	File Position
	Buffers
	The Standard Streams

	Opening and Closing Files
	Opening a File
	Access Modes
	Closing a File

	Reading and Writing
	Byte-Oriented and Wide-Oriented Streams
	Error Handling
	Unformatted I/O
	Formatted Output
	Formatted Input

	Random File Access
	Obtaining the Current File Position
	Setting the File Access Position

	Chapter 14. Multithreading
	Threads
	Creating Threads
	Other Thread Functions

	Accessing Shared Data
	Mutual Exclusion
	Atomic Objects
	Atomic Operations
	Memory Ordering
	Fences

	Communication Between Threads: Condition Variables
	Thread-Local Objects and Thread-Specific Storage
	Using Thread-Local Objects
	Using Thread-Specific Storage

	Chapter 15. Preprocessing Directives
	Inserting the Contents of Header Files
	How the Preprocessor Finds Header Files
	Nested #include Directives

	Defining and Using Macros
	Macros Without Parameters
	Macros with Parameters
	Using Macros Within Macros
	Macro Scope and Redefinition

	Type-generic Macros
	Conditional Compiling
	The #if and #elif Directives
	The defined Operator
	The #ifdef and #ifndef Directives

	Defining Line Numbers
	Generating Error Messages
	The #pragma Directive
	The _Pragma Operator
	Predefined Macros
	Conditionally Defined Macros

	Part II. Standard Library
	Chapter 16. The Standard Headers
	Using the Standard Headers
	Execution Environments
	Function and Macro Calls
	Reserved Identifiers

	Functions with Bounds-Checking
	Availability
	Runtime Constraints

	Contents of the Standard Headers
	assert.h
	complex.h
	ctype.h
	errno.h
	fenv.h
	float.h
	inttypes.h
	iso646.h
	limits.h
	locale.h
	math.h
	setjmp.h
	signal.h
	stdalign.h
	stdarg.h
	stdatomic.h
	stdbool.h
	stddef.h
	stdint.h
	stdio.h
	stdlib.h
	stdnoreturn.h
	string.h
	tgmath.h
	threads.h
	time.h
	uchar.h
	wchar.h
	wctype.h

	Chapter 17. Functions at a Glance
	Input and Output
	Mathematical Functions
	Mathematical Functions for Integer Types
	Floating-Point Functions
	Function-Like Macros
	Pragmas for Arithmetic Operations
	The Floating-Point Environment
	Error Handling

	Character Classification and Conversion
	Character Classification
	Case Mapping

	String Processing
	Multibyte Characters
	Converting Between Numbers and Strings
	Searching and Sorting
	Memory Block Handling
	Dynamic Memory Management
	Date and Time
	Process Control
	Communication with the Operating System
	Signals

	Internationalization
	Nonlocal Jumps
	Multithreading (C11)
	Thread Functions
	Atomic Operations

	Debugging
	Error Messages

	Chapter 18. Standard Library Functions
	Part III. Basic Tools
	Chapter 19. Compiling with GCC
	The GNU Compiler Collection
	Obtaining and Installing GCC
	Compiling C Programs with GCC
	Step by Step
	Multiple Input Files
	Dynamic Linking and Shared Object Files
	Freestanding Programs

	C Dialects
	Compiler Warnings
	Optimization
	The -O Levels
	The -f Flags
	Floating-Point Optimization
	Architecture-Specific Optimization
	Why Not Optimize?

	Debugging
	Profiling
	Option and Environment Variable Summary
	Command-Line Options
	Environment Variables

	Chapter 20. Using make to Build C Programs
	Targets, Prerequisites, and Commands
	The Makefile
	Rules
	The Command Script
	Pattern Rules
	Suffix Rules
	Built-In Rules
	Implicit Rule Chains
	Double-Colon Rules

	Comments
	Variables
	Assignment Operators
	Variables and Whitespace
	Target-Specific Variable Assignments
	The Automatic Variables
	Other Built-In Variables
	Environment Variables

	Phony Targets
	Other Target Attributes
	Macros
	Functions
	Built-In Functions
	User-Defined Functions

	Directives
	Conditionals
	Includes
	Other Directives

	Running make
	Generating Header Dependencies
	Recursive make Commands
	Command-Line Options
	Special Targets Used as Runtime Options
	GCC Options for Generating Makefile Rules

	Chapter 21. Debugging C Programs with GDB
	Installing GDB
	A Sample Debugging Session
	Symbol Information
	Finding a Bug

	Starting GDB
	Command-Line Arguments
	Command-Line Options
	Initialization Files

	Using GDB Commands
	Command Completion
	Displaying Help for Commands
	Status Information
	Running a Program in the Debugger
	Displaying Source Code
	Working with Breakpoints
	Resuming Execution After a Break
	Analyzing the Stack
	Displaying Data
	Watchpoints: Observing Operations on Variables

	Analyzing Core Files in GDB

	Chapter 22. Using an IDE with C
	IDEs for C
	The Eclipse IDE for C/C++
	Installing Eclipse CDT
	Running Eclipse
	Perspectives and Views

	Developing a C Program with Eclipse
	Creating a New C Project
	Editing
	Compiling and Running a Program
	Project Properties

	Debugging a C Program in Eclipse
	Starting the Debugger
	Setting Breakpoints
	Controlling Program Execution in the Debugger

	Further Information on Eclipse

	Index

