

Contents

1. Cover Page

2. About This eBook

3. Title Page

4. Copyright Page

5. About the Authors

6. About the Technical Reviewers

7. Dedications

8. Acknowledgments

9. Contents at a Glance

10. Reader Services

11. Contents

12. Icons Used in This Book

13. Command Syntax Conventions

14. Introduction

1. Goals and Methods

2. Who Should Read This Book?

3. Strategies for Exam Preparation

4. The Companion Website for Online Content Review

5. How This Book Is Organized

6. Certification Exam Topics and This Book

15. Figure Credits

16. Chapter 1. Introduction to Cisco DevNet Associate

Certification

1. Do I Know This Already?

2. Foundation Topics

3. Why Get Certified

4. Cisco Career Certification Overview

5. Cisco DevNet Certifications

6. Cisco DevNet Overview

7. Summary

17. Chapter 2. Software Development and Design

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Software Development Lifecycle

4. Common Design Patterns

5. Linux BASH

6. Software Version Control

7. Git

8. Conducting Code Review

9. Exam Preparation Tasks

10. Review All Key Topics

11. Define Key Terms

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/cover.xhtml

18. Chapter 3. Introduction to Python

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Getting Started with Python

4. Understanding Python Syntax

5. Data Types and Variables

6. Input and Output

7. Flow Control with Conditionals and Loops

8. Exam Preparation Tasks

9. Review All Key Topics

10. Define Key Terms

11. Additional Resources

19. Chapter 4. Python Functions, Classes, and Modules

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Python Functions

4. Using Arguments and Parameters

5. Object-Oriented Programming and Python

6. Python Classes

7. Working with Python Modules

8. Exam Preparation Tasks

9. Review All Key Topics

10. Define Key Terms

20. Chapter 5. Working with Data in Python

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. File Input and Output

4. Parsing Data

5. Error Handling in Python

6. Test-Driven Development

7. Unit Testing

8. Exam Preparation Tasks

9. Review All Key Topics

10. Define Key Terms

11. Additional Resources

21. Chapter 6. Application Programming Interfaces (APIs)

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Application Programming Interfaces (APIs)

4. Exam Preparation Tasks

5. Review All Key Topics

6. Define Key Terms

22. Chapter 7. RESTful API Requests and Responses

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. RESTful API Fundamentals

4. REST Constraints

5. REST Tools

6. Exam Preparation Tasks

7. Review All Key Topics

8. Define Key Terms

23. Chapter 8. Cisco Enterprise Networking Management

Platforms and APIs

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. What Is an SDK?

4. Cisco Meraki

5. Cisco DNA Center

6. Cisco SD-WAN

7. Exam Preparation Tasks

8. Review All Key Topics

9. Define Key Terms

24. Chapter 9. Cisco Data Center and Compute Management

Platforms and APIs

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Cisco ACI

4. UCS Manager

5. Cisco UCS Director

6. Cisco Intersight

7. Exam Preparation Tasks

8. Review All Key Topics

9. Define Key Terms

25. Chapter 10. Cisco Collaboration Platforms and APIs

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Introduction to the Cisco Collaboration Portfolio

4. Webex Teams API

5. Cisco Finesse

6. Webex Meetings APIs

7. Webex Devices

8. Cisco Unified Communications Manager

9. Exam Preparation Tasks

10. Review All Key Topics

11. Define Key Terms

26. Chapter 11. Cisco Security Platforms and APIs

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Cisco’s Security Portfolio

4. Cisco Umbrella

5. Cisco Firepower

6. Cisco Advanced Malware Protection (AMP)

7. Cisco Identity Services Engine (ISE)

8. Cisco Threat Grid

9. Exam Preparation Tasks

10. Review All Key Topics

11. Define Key Terms

27. Chapter 12. Model-Driven Programmability

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. NETCONF

4. YANG

5. RESTCONF

6. Model-Driven Telemetry

7. Exam Preparation Tasks

8. Review All Key Topics

9. Define Key Terms

28. Chapter 13. Deploying Applications

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Application Deployment Models

4. NIST Definition

5. Application Deployment Options

6. Application Deployment Methods

7. Bare-Metal Application Deployment

8. Virtualized Applications

9. Cloud-Native Applications

10. Containerized Applications

11. Serverless

12. DevOps

13. What Is DevOps?

14. Putting DevOps into Practice: The Three Ways

15. DevOps Implementation

16. Docker

17. Understanding Docker

18. Docker Architecture

19. Using Docker

20. Docker Hub

21. Exam Preparation Tasks

22. Review All Key Topics

23. Define Key Terms

24. Additional Resources

29. Chapter 14. Application Security

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Identifying Potential Risks

4. Protecting Applications

5. Exam Preparation Tasks

6. Review All Key Topics

7. Define Key Terms

30. Chapter 15. Infrastructure Automation

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Controller Versus Device-Level Management

4. Infrastructure as Code

5. Continuous Integration/Continuous Delivery Pipelines

6. Automation Tools

7. Cisco Network Services Orchestrator (NSO)

8. Exam Preparation Tasks

9. Review All Key Topics

10. Define Key Terms

31. Chapter 16. Network Fundamentals

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Network Reference Models

4. Switching Concepts

5. Routing Concepts

6. Exam Preparation Tasks

7. Review All Key Topics

8. Define Key Terms

32. Chapter 17. Networking Components

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. What Are Networks?

4. Elements of Networks

5. Software-Defined Networking

6. Exam Preparation Tasks

7. Review All Key Topics

8. Define Key Terms

33. Chapter 18. IP Services

1. “Do I Know This Already?” Quiz

2. Foundation Topics

3. Common Networking Protocols

4. Network Address Translation (NAT)

5. Layer 2 Versus Layer 3 Network Diagrams

6. Troubleshooting Application Connectivity Issues

7. Exam Preparation Tasks

8. Review All Key Topics

9. Define Key Terms

34. Chapter 19. Final Preparation

1. Getting Ready

2. Tools for Final Preparation

3. Suggested Plan for Final Review/Study

4. Summary

35. Appendix A. Answers to the “Do I Know This Already?” Quiz

Questions

36. Appendix B. DevNet Associate DEVASC 200-901 Official Cert

Guide Exam Updates

1. Always Get the Latest at the Book’s Product Page

2. Technical Content

37. Glossary

38. Index

39. Appendix C. Study Planner

40. Where are the companion content files? - Register

41. Inside Front Cover

42. Inside Back Cover

43. Code Snippets

1. i

2. ii

3. iii

4. iv

5. v

6. vi

7. vii

8. viii

9. ix

10. x

11. xi

12. xii

13. xiii

14. xiv

15. xv

16. xvi

17. xvii

18. xviii

19. xix

20. xx

21. xxi

22. xxii

23. xxiii

24. xxiv

25. xxv

26. xxvi

27. xxvii

28. xxviii

29. xxix

30. xxx

31. xxxi

32. xxxii

33. xxxiii

34. xxxiv

35. xxxv

36. 2

37. 3

38. 4

39. 5

40. 6

41. 7

42. 8

43. 9

44. 10

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ch02_images

45. 11

46. 12

47. 13

48. 14

49. 15

50. 16

51. 17

52. 18

53. 19

54. 20

55. 21

56. 22

57. 23

58. 24

59. 25

60. 26

61. 27

62. 28

63. 29

64. 30

65. 31

66. 32

67. 33

68. 34

69. 35

70. 36

71. 37

72. 38

73. 39

74. 40

75. 41

76. 42

77. 43

78. 44

79. 45

80. 46

81. 47

82. 48

83. 49

84. 50

85. 51

86. 52

87. 53

88. 54

89. 55

90. 56

91. 57

92. 58

93. 59

94. 60

95. 61

96. 62

97. 63

98. 64

99. 65

100. 66

101. 67

102. 68

103. 69

104. 70

105. 71

106. 72

107. 73

108. 74

109. 75

110. 76

111. 77

112. 78

113. 79

114. 80

115. 81

116. 82

117. 83

118. 84

119. 85

120. 86

121. 87

122. 88

123. 89

124. 90

125. 91

126. 92

127. 93

128. 94

129. 95

130. 96

131. 97

132. 98

133. 99

134. 100

135. 101

136. 102

137. 103

138. 104

139. 105

140. 106

141. 107

142. 108

143. 109

144. 110

145. 111

146. 112

147. 113

148. 114

149. 115

150. 116

151. 117

152. 118

153. 119

154. 120

155. 121

156. 122

157. 123

158. 124

159. 125

160. 126

161. 127

162. 128

163. 129

164. 130

165. 131

166. 132

167. 133

168. 134

169. 135

170. 136

171. 137

172. 138

173. 139

174. 140

175. 141

176. 142

177. 143

178. 144

179. 145

180. 146

181. 147

182. 148

183. 149

184. 150

185. 151

186. 152

187. 153

188. 154

189. 155

190. 156

191. 157

192. 158

193. 159

194. 160

195. 161

196. 162

197. 163

198. 164

199. 165

200. 166

201. 167

202. 168

203. 169

204. 170

205. 171

206. 172

207. 173

208. 174

209. 175

210. 176

211. 177

212. 178

213. 179

214. 180

215. 181

216. 182

217. 183

218. 184

219. 185

220. 186

221. 187

222. 188

223. 189

224. 190

225. 191

226. 192

227. 193

228. 194

229. 195

230. 196

231. 197

232. 198

233. 199

234. 200

235. 201

236. 202

237. 203

238. 204

239. 205

240. 206

241. 207

242. 208

243. 209

244. 210

245. 211

246. 212

247. 213

248. 214

249. 215

250. 216

251. 217

252. 218

253. 219

254. 220

255. 221

256. 222

257. 223

258. 224

259. 225

260. 226

261. 227

262. 228

263. 229

264. 230

265. 231

266. 232

267. 233

268. 234

269. 235

270. 236

271. 237

272. 238

273. 239

274. 240

275. 241

276. 242

277. 243

278. 244

279. 245

280. 246

281. 247

282. 248

283. 249

284. 250

285. 251

286. 252

287. 253

288. 254

289. 255

290. 256

291. 257

292. 258

293. 259

294. 260

295. 261

296. 262

297. 263

298. 264

299. 265

300. 266

301. 267

302. 268

303. 269

304. 270

305. 271

306. 272

307. 273

308. 274

309. 275

310. 276

311. 277

312. 278

313. 279

314. 280

315. 281

316. 282

317. 283

318. 284

319. 285

320. 286

321. 287

322. 288

323. 289

324. 290

325. 291

326. 292

327. 293

328. 294

329. 295

330. 296

331. 297

332. 298

333. 299

334. 300

335. 301

336. 302

337. 303

338. 304

339. 305

340. 306

341. 307

342. 308

343. 309

344. 310

345. 311

346. 312

347. 313

348. 314

349. 315

350. 316

351. 317

352. 318

353. 319

354. 320

355. 321

356. 322

357. 323

358. 324

359. 325

360. 326

361. 327

362. 328

363. 329

364. 330

365. 331

366. 332

367. 333

368. 334

369. 335

370. 336

371. 337

372. 338

373. 339

374. 340

375. 341

376. 342

377. 343

378. 344

379. 345

380. 346

381. 347

382. 348

383. 349

384. 350

385. 351

386. 352

387. 353

388. 354

389. 355

390. 356

391. 357

392. 358

393. 359

394. 360

395. 361

396. 362

397. 363

398. 364

399. 365

400. 366

401. 367

402. 368

403. 369

404. 370

405. 371

406. 372

407. 373

408. 374

409. 375

410. 376

411. 377

412. 378

413. 379

414. 380

415. 381

416. 382

417. 383

418. 384

419. 385

420. 386

421. 387

422. 388

423. 389

424. 390

425. 391

426. 392

427. 393

428. 394

429. 395

430. 396

431. 397

432. 398

433. 399

434. 400

435. 401

436. 402

437. 403

438. 404

439. 405

440. 406

441. 407

442. 408

443. 409

444. 410

445. 411

446. 412

447. 413

448. 414

449. 415

450. 416

451. 417

452. 418

453. 419

454. 420

455. 421

456. 422

457. 423

458. 424

459. 425

460. 426

461. 427

462. 428

463. 429

464. 430

465. 431

466. 432

467. 433

468. 434

469. 435

470. 436

471. 437

472. 438

473. 439

474. 440

475. 441

476. 442

477. 443

478. 444

479. 445

480. 446

481. 447

482. 448

483. 449

484. 450

485. 451

486. 452

487. 453

488. 454

489. 455

490. 456

491. 457

492. 458

493. 459

494. 460

495. 461

496. 462

497. 463

498. 464

499. 465

500. 466

501. 467

502. 468

503. 469

504. 470

505. 471

506. 472

507. 473

508. 474

509. 475

510. 476

511. 477

512. 478

513. 479

514. 480

515. 481

516. 482

517. 483

518. 484

519. 485

520. 486

521. 487

522. 488

523. 489

524. 490

525. 491

526. 492

527. 493

528. 494

529. 495

530. 496

531. 497

532. 498

533. 499

534. 500

535. 501

536. 502

537. 503

538. 504

539. 505

540. 506

541. 507

542. 508

543. 509

544. 510

545. 511

546. 512

547. 513

548. 514

549. 515

550. 516

551. 517

552. 518

553. 519

554. 520

555. 521

556. 522

557. 523

558. 524

559. 525

560. 526

561. 527

562. 528

563. 529

564. 530

565. 531

566. 532

567. 533

568. 534

569. 535

570. 536

571. 537

572. 538

573. 539

574. 540

575. 541

576. 542

577. 543

578. 544

579. 545

580. 546

581. 547

582. 548

583. 549

584. 550

585. 551

586. 552

587. 553

588. 554

589. 555

590. 556

591. 557

592. 558

593. 559

594. 560

595. 561

596. 562

597. 563

598. 564

599. 565

600. 566

601. 567

602. 568

603. 569

604. 570

605. 571

606. 572

607. 573

608. 574

609. 575

610. 576

611. 577

612. 578

613. 579

614. 580

615. 581

616. 582

617. 583

618. 584

619. 585

620. 586

621. 587

622. 588

623. 589

624. 590

625. 591

626. 592

627. 593

628. 594

629. 595

630. 596

631. 597

632. 598

633. 599

634. 600

635. 601

636. 602

637. 603

638. 604

639. 605

640. 606

641. 607

642. 608

643. 609

644. 610

645. 611

646. 612

647. 613

648. 614

649. 615

650. 616

651. 617

652. 618

653. 619

654. 620

655. 621

656. 622

657. 623

658. 624

659. 625

660. 626

661. 627

662. 628

663. 629

664. 630

665. 631

666. 632

667. 633

668. 634

669. 635

670. 636

671. 637

672. 638

About This eBook

ePUB is an open, industry-standard format for eBooks.

However, support of ePUB and its many features varies

across reading devices and applications. Use your device

or app settings to customize the presentation to your

liking. Settings that you can customize often include font,

font size, single or double column, landscape or portrait

mode, and figures that you can click or tap to enlarge.

For additional information about the settings and

features on your reading device or app, visit the device

manufacturer’s Web site.

Many titles include programming code or configuration

examples. To optimize the presentation of these

elements, view the eBook in single-column, landscape

mode and adjust the font size to the smallest setting. In

addition to presenting code and configurations in the

reflowable text format, we have included images of the

code that mimic the presentation found in the print

book; therefore, where the reflowable format may

compromise the presentation of the code listing, you will

see a “Click here to view code image” link. Click the link

to view the print-fidelity code image. To return to the

previous page viewed, click the Back button on your

device or app.

Cisco Certified DevNet

Associate DEVASC 200-901

Official Cert Guide

Chris Jackson, CCIEX2 (RS, SEC) [CCIE NO.

6256]

Jason Gooley, CCIEX2 (RS, SP) [CCIE NO.

38759]

Adrian Iliesiu, CCIE RS [CCIE NO. 43909]

Ashutosh Malegaonkar

Cisco Press

Cisco Certified DevNet Associate DEVASC

200-901 Official Cert Guide

Chris Jackson, Jason Gooley, Adrian Iliesiu, Ashutosh

Malegaonkar

Copyright© 2021 Cisco Systems, Inc.

Published by:

Cisco Press

All rights reserved. No part of this book may be

reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying,

recording, or by any information storage and retrieval

system, without written permission from the publisher,

except for the inclusion of brief quotations in a review.

ScoutAutomatedPrintCode

Library of Congress Control Number: 2020937218

ISBN-13: 978-01-3664296-1

ISBN-10: 01-3664296-9

Warning and Disclaimer

This book is designed to provide information about the

Cisco DevNet Associate DEVASC 200-901 exam. Every

effort has been made to make this book as complete and

as accurate as possible, but no warranty or fitness is

implied.

The information is provided on an “as is” basis. The

authors, Cisco Press, and Cisco Systems, Inc. shall have

neither liability nor responsibility to any person or entity

with respect to any loss or damages arising from the

information contained in this book or from the use of the

discs or programs that may accompany it.

The opinions expressed in this book belong to the

authors and are not necessarily those of Cisco Systems,

Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be

trademarks or service marks have been appropriately

capitalized. Cisco Press or Cisco Systems, Inc., cannot

attest to the accuracy of this information. Use of a term

in this book should not be regarded as affecting the

validity of any trademark or service mark.

Special Sales

For information about buying this title in bulk

quantities, or for special sales opportunities (which may

include electronic versions; custom cover designs; and

content particular to your business, training goals,

marketing focus, or branding interests), please contact

our corporate sales department at

corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact

governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact

intlcs@pearson.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical

books of the highest quality and value. Each book is

crafted with care and precision, undergoing rigorous

development that involves the unique expertise of

members from the professional technical community.

Readers’ feedback is a natural continuation of this

process. If you have any comments regarding how we

could improve the quality of this book, or otherwise alter

it to better suit your needs, you can contact us through

email at feedback@ciscopress.com. Please make sure to

include the book title and ISBN in your message.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
mailto:feedback@ciscopress.com

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub

Alliances Manager, Cisco Press: Arezou Gol

Director, ITP Project Management: Brett Bartow

Executive Editor: James Manly

Managing Editor: Sandra Schroeder

Development Editor: Ellie Bru

Technical Editors: Bryan Byrne, John McDonough

Project Editor: Lori Lyons

Copy Editor: Catherine D. Wilson

Editorial Assistant: Cindy Teeters

Cover Designer: Chuti Prasertsith

Production Manager: Vaishnavi Venkatesan,

codeMantra

Composition: codeMantra

Indexer: Ken Johnson

Proofreader: Donna Mulder

Americas Headquarters

Cisco Systems, Inc.

San Jose, CA

Asia Pacific Headquarters

Cisco Systems (USA) Pte. Ltd.

Singapore

Europe Headquarters

Cisco Systems International BV Amsterdam,

The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and

fax numbers are listed on the Cisco Website at

www.cisco.com/go/offices.

http://www.cisco.com/go/offices

Cisco and the Cisco logo are trademarks or registered trademarks of

Cisco and/or its affiliates in the U.S. and other countries. To view a list of

Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third

party trademarks mentioned are the property of their respective owners.

The use of the word partner does not imply a partnership relationship

between Cisco and any other company. (1110R)

http://www.cisco.com/go/trademarks

About the Authors

Chris Jackson, CCIE No. 6256 (R&S and SEC), is a

Distinguished Architect and CTO for Global Sales

Training at Cisco. Chris is focused on digital

transformation and showing customers how to leverage

the tremendous business value Cisco technologies can

provide. He is the author of Network Security Auditing

(Cisco Press, 2010), CCNA Cloud CLDADM 210-455

Official Cert Guide (Cisco Press, 2016), and various

online video courses for Cisco Press. He holds dual

CCIEs in security and routing and switching, CISA,

CISSP, ITIL v3, seven SANS certifications, and a

bachelor’s degree in business administration. Residing in

Franklin, Tennessee, Chris enjoys tinkering with

electronics, robotics, and anything else that can be

programmed to do his bidding. In addition, he is a 3rd

Degree Black Belt in Taekwondo, rabid Star Wars fan,

and has a ridiculous collection of Lego. His wife Piper

and three children Caleb, Sydney, and Savannah are the

true joy of his life and proof that not everything has to

plug into a wall outlet to be fun.

Jason Gooley, CCIE No. 38759 (R&S and SP), is a

very enthusiastic and spontaneous person who has more

than 20 years of experience in the industry. Currently,

Jason works as a Technical Evangelist for the Worldwide

Enterprise Networking Sales team at Cisco Systems.

Jason is very passionate about helping others in the

industry succeed. In addition to being a Cisco Press

author, Jason is a distinguished speaker at Cisco Live,

contributes to the development of the Cisco CCIE and

DevNet exams, provides training for Learning@Cisco, is

an active CCIE mentor, is a committee member for the

Cisco Continuing Education Program (CE), and is a

program committee member of the Chicago Network

Operators Group (CHI-NOG), www.chinog.org. Jason

http://www.chinog.org/

also hosts a show called “MetalDevOps.” Jason can be

found at www.MetalDevOps.com, @MetalDevOps, and

@Jason_Gooley on all social media platforms.

Adrian Iliesiu, CCIE No. 43909 (R&S), is a network

engineer at heart with more than 15 years of professional

IT experience. Currently, Adrian works as a Technical

Leader with the Cisco DevNet Co-Creations team. During

his career, Adrian has worked in several roles, including

team leader and network, systems, and QA engineer

across multiple industries and international

organizations. When not working on innovative projects

with customers and partners, Adrian advocates the

advantages of network programmability and automation

with a focus on enterprise and data center infrastructure.

He is an established blog author, distinguished speaker

at Cisco Live, and a recipient of the coveted Cisco

Pioneer award. Adrian also appeared on Cisco

TechWiseTV, Cisco Champion podcasts, and DevNet

webinars. He holds a bachelor’s degree in Electronics

and Telecommunications from Technical University of

Cluj-Napoca and a master’s degree in

Telecommunication Networks from Politehnica

University of Bucharest.

Ashutosh Malegaonkar is a Cisco Distinguished

Engineer, a senior technical contributor, and an industry

thought leader. His experience spans across different

technology domains: ISR Platforms, Voice, Video,

Search, Video Analytics, and Cloud. Over two decades at

Cisco, he has done two startups and has won several

accolades, including the Pioneer awards. He has

delivered several keynotes and talks at Cisco Connect

and Cisco Live. He has also been a Tech Field Day

Speaker. With more than 25 years of professional

experience, he currently leads the DevNet Co-Creations

team whose mission is to co-create, innovate, and inspire

alongside our strategic customers, partners, and

developers. Ashutosh inspires those around him to

http://www.metaldevops.com/

innovate, and he is continually developing creative new

ways to use software and Cisco APIs to solve real

problems for our customers. He has a deep

understanding of the breadth of Cisco products and

technologies and where they can best be applied to serve

our customers. Ashutosh has 16 approved patents and

two publications.

About the Technical Reviewers

Bryan Byrne, CCIE No. 25607 (R&S), is a Technical

Solutions Architect in Cisco’s Global Enterprise segment.

With more than 20 years of data networking experience,

his current focus is helping his customers transition from

traditional LAN/WAN deployments toward Cisco’s next-

generation Software-Defined network solutions. Prior to

joining Cisco, Bryan spent the first 13 years of his career

in an operations role with a global service provider

supporting large-scale IP DMVPN and MPLS networks.

Bryan is multi-time Cisco Live Distinguished Speaker

covering topics on NETCONF, RESTCONF, and YANG.

He is a proud graduate of The Ohio State University and

currently lives outside Columbus, Ohio, with his wife

Lindsey and their two children Evan and Kaitlin.

John McDonough has more than 30 years of

development experience and is currently a Developer

Advocate for Cisco’s DevNet. As a Developer Advocate,

John writes code and creates DevNet Learning Labs

about how to write code. He writes blogs about writing

code and presents at Cisco Live, SXSW, AnsibleFest, and

other industry events. John focuses on Cisco’s

Computing Systems Products, Cisco UCS, and Cisco

Intersight. John’s career at Cisco has varied from

Product Engineer to Custom Application Developer,

Technical Marketing Engineer, and now a Developer

Advocate.

Dedications

Chris Jackson:

Writing a book is a solitary effort, but the real work is

shared by everyone who loves and supports you. This

book is just the latest project that my beautiful wife Piper

has provided infinite patience, love, and understanding

as I wrote late into the evening and on weekends. She is

my rock, my light, and my greatest cheerleader. My life is

amazing because of her and her love. My children Caleb,

Sydney, and Savannah have been so forgiving of my time

commitments and allowed me to focus on delivering

something I could be proud of. Each of you are so

wonderful and the time away from you has been a

sacrifice that I do not make lightly. Now it’s time to

celebrate! Last, but certainly not least, are all my friends

and co-workers who take up the slack when my inability

to say no to new projects rears its head. They drive me to

be better, and I am fortunate to work with some of the

most professional and high-quality individuals in the

industry.

Jason Gooley:

This book is dedicated to my wife, Jamie, and my

children, Kaleigh and Jaxon. Without their support,

these books would not be possible. I can’t believe they let

me write four books in one year! To my father and

brother, thank you for always supporting me. In

addition, I want to thank my extended family and friends

for all the unwavering support over the years. It is

because of all of you that I get to do these things! Huge

thank-you to Thom Hazaert, Melody Myers, and David

Ellefson for supporting and believing in MetalDevOps!

Thank you for giving us a home at EMP Label Group,

Combat Records, and Ellefson Coffee Co.! Can’t wait to

see what the future holds for us!

Adrian Iliesiu:

I dedicate this book to my family and especially my wife,

Martina. This book wouldn’t have been possible without

her continuous support through so many challenges and

sacrifices over the years. I am grateful she agreed to let

me write this book, especially after the CCIE exam

preparation “experience.” I promise I’ll be back at doing

dishes for the foreseeable future. Special thank-you to

my parents, Grigore and Ana, for all their support and

encouragement through the years. Vă

pentru tot, mamă tată! Big thank-you to my sister,

and especially my grandmother, for shaping and

instilling in me a set of values that has made me the

person I am today. Thanks also to Susie Wee for her

continuous support and leadership.

Ashutosh Malegaonkar:

I want to dedicate this book to my Guru, Shri.

Gondavlekar Maharaj, for giving me this opportunity and

letting me follow through with this opportunity.

I would also like to dedicate this book to my wife Medha.

She has been my strength and biggest supporter. It is

because of some of her sacrifices that I am where I am

today. Our sons, Jai and Yash, and their constant

positivity keep making me feel special in whatever I do.

I would like to thank my Mom (she would have been

proud), Dad, my brother, and my sister, for shaping me

during the years.

Last but not the least, I sincerely thank Susie Wee for

believing in me and letting me be part of DevNet since

the very early days of DevNet.

Acknowledgments

Chris Jackson:

This book would not have been written if it hadn’t been

for the team of amazing people at Cisco Press; you guys

make us sound coherent, fix our silly mistakes, and

encourage us to get the project done! James, Ellie, and

Brett are the best in the industry. Thanks as well to our

tech editors, John McDonough and Bryan Byrne, for

making sure our code is tight and works.

I am so very thankful to my manager Jeff Cristee for

being an incredible mentor and supporting me in so

many ways. You are the best, and I feel blessed to work

with you. Linda Masloske, you are an amazing friend and

have been one of my biggest supporters during my 20-

year career at Cisco. I could write an entire chapter on

how much you have done for me over the years. Thank

you for everything, but most importantly for giving a kid

from Kentucky the chance to shine.

A big Thanks to my SNAP crew Jodi, Deonna, Angie, and

Doug, for giving me time to work on all of my many

projects. You guys are the best and I LOVE working with

you. Virtual or live, you bring the magic.

Jason Gooley:

Big thank-you to Brett and Marianne Bartow, Ellie Bru,

and everyone else involved at Cisco Press! You are all

amazing to work with, and six books later, I’m not sure

how you put up with me! Shout out to my brother in

metal, Stuart Clark (@bigevilbeard), for letting me use

his code examples! Thanks, brother!

Adrian Iliesiu:

Huge thank-you to Casey Tong, designer in chief, for all

her help with images and graphics for this book. Big

thank-you to Ashutosh for all his support. Thanks to

Chris and Jason for allowing me to embark on this

journey with them; Ellie Bru and James Manly from

Cisco Press for editing and trying to keep the project on

track; and to John and Bryan for their feedback and

insight. I would also like to thank Mike Mackay for

believing in me when it mattered and for giving me a

chance to prove myself.

Ashutosh Malegaonkar:

Thanks to the entire Cisco DevNet team for being the

soul of the program. Adrian—we did it! A special thanks

to Susie Wee for the support and encouragement from

day one. This being the first for me, thanks to Jason and

Chris for the mentorship; Ellie Bru for keeping up with

my novice questions; and finally John McDonough and

Bryan Byrne for the excellent technical reviews.

Contents at a Glance

Introduction

Chapter 1 Introduction to Cisco DevNet Associate

Certification

Chapter 2 Software Development and Design

Chapter 3 Introduction to Python

Chapter 4 Python Functions, Classes, and Modules

Chapter 5 Working with Data in Python

Chapter 6 Application Programming Interfaces (APIs)

Chapter 7 RESTful API Requests and Responses

Chapter 8 Cisco Enterprise Networking Management

Platforms and APIs

Chapter 9 Cisco Data Center and Compute Management

Platforms and APIs

Chapter 10 Cisco Collaboration Platforms and APIs

Chapter 11 Cisco Security Platforms and APIs

Chapter 12 Model-Driven Programmability

Chapter 13 Deploying Applications

Chapter 14 Application Security

Chapter 15 Infrastructure Automation

Chapter 16 Network Fundamentals

Chapter 17 Networking Components

Chapter 18 IP Services

Chapter 19 Final Preparation

Appendix A Answers to the “Do I Know This Already?”

Quiz Questions

Appendix B DevNet Associate DEVASC 200-901 Official

Cert Guide Exam Updates

Glossary

Index

Online Elements

Appendix C Study Planner

Glossary

Reader Services

Other Features

In addition to the features in each of the core chapters,

this book has additional study resources on the

companion website, including the following:

Practice exams: The companion website contains an

exam engine that enables you to review practice exam

questions. Use these to prepare with a sample exam and

to pinpoint topics where you need more study.

Flash Cards: An online interactive application to help

you drill on Key Terms by chapter.

Glossary quizzes: The companion website contains

interactive quizzes that enable you to test yourself on

every glossary term in the book.

Video training: The companion website contains unique

test-prep videos.

To access this additional content, simply register your

product. To start the registration process, go to

www.ciscopress.com/register and log in or create an

account.* Enter the product ISBN 9780136642961 and

click Submit. After the process is complete, you will find

any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on

future editions of this product.

http://www.ciscopress.com/register

Contents

Introduction

Chapter 1 Introduction to Cisco DevNet Associate

Certification

Do I Know This Already?

Foundation Topics

Why Get Certified

Cisco Career Certification Overview

Cisco DevNet Certifications

Cisco Certified DevNet Associate

Certification (DEVASC)

Cisco Certified DevNet Professional

Certification

Cisco DevNet Overview

Discover

Technologies

Community

Support

Events

DevNet Automation Exchange

Summary

Chapter 2 Software Development and Design

“Do I Know This Already?” Quiz

Foundation Topics

Software Development Lifecycle

Waterfall

Lean

Agile

Common Design Patterns

Model-View-Controller (MVC) Pattern

Observer Pattern

Linux BASH

Getting to Know BASH

Directory Navigation

cd

pwd

ls

mkdir

File Management

cp

mv

rm

touch

cat

Environment Variables

Software Version Control

Git

Understanding Git

Using Git

Cloning/Initiating Repositories

Adding and Removing Files

Committing Files

Pushing and Pulling Files

Working with Branches

Merging Branches

Handling Conflicts

Comparing Commits with diff

Conducting Code Review

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 3 Introduction to Python

“Do I Know This Already?” Quiz

Foundation Topics

Getting Started with Python

Understanding Python Syntax

Data Types and Variables

Variables

Data Types

Integers, Floating Point, and Complex

Numbers

Booleans

Strings

Lists

Tuples

Dictionaries

Sets

Input and Output

Getting Input from the User

The Mighty print() Function

Flow Control with Conditionals and Loops

If Statements

For Loops

While Loops

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Additional Resources

Chapter 4 Python Functions, Classes, and

Modules

“Do I Know This Already?” Quiz

Foundation Topics

Python Functions

Using Arguments and Parameters

Object-Oriented Programming and Python

Python Classes

Creating a Class

Methods

Inheritance

Working with Python Modules

Importing a Module

The Python Standard Library

Importing Your Own Modules

Useful Python Modules for Cisco

Infrastructure

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 5 Working with Data in Python

“Do I Know This Already?” Quiz

Foundation Topics

File Input and Output

Parsing Data

Comma-Separated Values (CSV)

JavaScript Object Notation (JSON)

Extensible Markup Language (XML)

YAML Ain’t Markup Language (YAML)

Error Handling in Python

Test-Driven Development

Unit Testing

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Additional Resources

Chapter 6 Application Programming Interfaces

(APIs)

“Do I Know This Already?” Quiz

Foundation Topics

Application Programming Interfaces (APIs)

Northbound APIs

Southbound APIs

Synchronous Versus Asynchronous APIs

Representational State Transfer (REST)

APIs

RESTful API Authentication

Basic Authentication

API Keys

Custom Tokens

Simple Object Access Protocol (SOAP)

Remote-Procedure Calls (RPCs)

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 7 RESTful API Requests and Responses

“Do I Know This Already?” Quiz

Foundation Topics

RESTful API Fundamentals

API Types

API Access Types

HTTP Basics

Uniform Resource Locator (URL)

Method

REST Methods and CRUD

Deep Dive into GET and POST

HTTP Headers

Request Headers

Response Headers

Response Codes

XML

JSON

YAML

Webhooks

Tools Used When Developing with

Webhooks

Sequence Diagrams

REST Constraints

Client/Server

Stateless

Cache

Uniform Interface

Layered System

Code on Demand

REST API Versioning

Pagination

Rate Limiting and Monetization

Rate Limiting on the Client Side

REST Tools

Postman

curl

HTTPie

Python Requests

REST API Debugging Tools for Developing

APIs

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 8 Cisco Enterprise Networking

Management Platforms and APIs

“Do I Know This Already?” Quiz

Foundation Topics

What Is an SDK?

Cisco Meraki

Cisco DNA Center

Cisco SD-WAN

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 9 Cisco Data Center and Compute

Management Platforms and APIs

“Do I Know This Already?” Quiz

Foundation Topics

Cisco ACI

Building Blocks of Cisco ACI Fabric Policies

APIC REST API

UCS Manager

Cisco UCS Director

Cisco Intersight

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 10 Cisco Collaboration Platforms and

APIs

“Do I Know This Already?” Quiz

Foundation Topics

Introduction to the Cisco Collaboration

Portfolio

Unified Communications

Cisco Webex Teams

Cisco Unified Communications Manager

(Unified CM)

Unified Contact Center

Cisco Webex

Cisco Collaboration Endpoints

API Options in the Cisco Collaboration

Portfolio

Webex Teams API

API Authentication

Personal Access Tokens

Integrations

Bots

Guest Issuer

Webex Teams SDKs

Cisco Finesse

Cisco Finesse API

API Authentication

Finesse User APIs

Finesse Team APIs

Dialog APIs

Finesse Gadgets

Webex Meetings APIs

Authentication

Integration API Keys

Webex XML APIs

Creating a New Meeting

Listing All My Meetings Meeting

Setting or Modifying Meeting Attributes

Deleting a Meeting

Webex Devices

xAPI

xAPI Authentication

xAPI Session Authentication

Creating a Session

Getting the Current Device Status

Setting Device Attributes

Registering an Event Notification

Webhook

Room Analytics People Presence Detector

Cisco Unified Communications Manager

Administrative XML

Cisco AXL Toolkit

Accessing the AXL SOAP API

Using the Zeep Client Library

Using the CiscoAXL SDK

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 11 Cisco Security Platforms and APIs

“Do I Know This Already?” Quiz

Foundation Topics

Cisco’s Security Portfolio

Potential Threats and Vulnerabilities

Most Common Threats

Cisco Umbrella

Understanding Umbrella

Cisco Umbrella APIs

Authentication

Cisco Firepower

Firepower Management Center APIs

Cisco Advanced Malware Protection (AMP)

Listing All Computers

Listing All Vulnerabilities

Cisco Identity Services Engine (ISE)

ISE REST APIs

ERS API Authentication

Creating an Endpoint Group

Creating an Endpoint and Adding It to a

Group

Other ISE APIs

Cisco Threat Grid

Threat Grid APIs

Threat Grid API Format

API Keys

Who Am I

The Data, Sample, and IOC APIs

Feeds

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 12 Model-Driven Programmability

“Do I Know This Already?” Quiz

Foundation Topics

NETCONF

YANG

RESTCONF

Model-Driven Telemetry

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 13 Deploying Applications

“Do I Know This Already?” Quiz

Foundation Topics

Application Deployment Models

NIST Definition

Essential Characteristics

Service Models

Application Deployment Options

Private Cloud

Public Cloud

Hybrid Cloud

Community Cloud

Edge and Fog Computing

Application Deployment Methods

Bare-Metal Application Deployment

Virtualized Applications

Cloud-Native Applications

Containerized Applications

Serverless

DevOps

What Is DevOps?

Putting DevOps into Practice: The Three

Ways

First Way: Systems and Flow

Second Way: Feedback Loop

Third Way: Continuous Experimentation

and Learning

DevOps Implementation

Docker

Understanding Docker

Namespaces

Cgroups

Union File System

Docker Architecture

Using Docker

Working with Containers

Dockerfiles

Docker Images

Docker Hub

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Additional Resources

Chapter 14 Application Security

“Do I Know This Already?” Quiz

Foundation Topics

Identifying Potential Risks

Common Threats and Mitigations

Open Web Application Security Project

Using Nmap for Vulnerability Scanning

Basic Nmap Scan Against an IP Address

or a Host

CVE Detection Using Nmap

Protecting Applications

Tiers of Securing and Protecting

Encryption Fundamentals

Public Key Encryption

Data Integrity (One-Way Hash)

Digital Signatures

Data Security

Secure Development Methods

Securing Network Devices

Firewalls

Intrusion Detection Systems (IDSs)

Intrusion Prevention Systems (IPSs)

Domain Name System (DNS)

Load Balancing

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 15 Infrastructure Automation

“Do I Know This Already?” Quiz

Foundation Topics

Controller Versus Device-Level Management

Infrastructure as Code

Continuous Integration/Continuous Delivery

Pipelines

Automation Tools

Ansible

Puppet

Chef

Cisco Network Services Orchestrator (NSO)

Cisco Modeling Labs/Cisco Virtual

Internet Routing Laboratory

(CML/VIRL)

Python Automated Test System (pyATS)

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 16 Network Fundamentals

“Do I Know This Already?” Quiz

Foundation Topics

Network Reference Models

The OSI Model

The TCP/IP Model

Switching Concepts

Ethernet

MAC Addresses

Virtual Local-Area Networks (VLANs)

Switching

Routing Concepts

IPv4 Addresses

IPv6 Addresses

Routing

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 17 Networking Components

“Do I Know This Already?” Quiz

Foundation Topics

What Are Networks?

Elements of Networks

Hubs

Bridges

Switches

Virtual Local Area Networks (VLANs)

Routers

Routing in Software

Functions of a Router

Network Diagrams: Bringing It All

Together

Software-Defined Networking

SDN Controllers

Cisco Software-Defined Networking

(SDN)

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 18 IP Services

“Do I Know This Already?” Quiz

Foundation Topics

Common Networking Protocols

Dynamic Host Configuration Protocol

(DHCP)

Server Discovery

Lease Offer

Lease Request

Lease Acknowledgment

Releasing

Domain Name System (DNS)

Network Address Translation (NAT)

Simple Network Management Protocol

(SNMP)

Network Time Protocol (NTP)

Layer 2 Versus Layer 3 Network Diagrams

Troubleshooting Application Connectivity

Issues

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Chapter 19 Final Preparation

Getting Ready

Tools for Final Preparation

Pearson Cert Practice Test Engine and

Questions on the Website

Accessing the Pearson Test Prep Software

Online

Accessing the Pearson Test Prep Software

Offline

Customizing Your Exams

Updating Your Exams

Premium Edition

Chapter-Ending Review Tools

Suggested Plan for Final Review/Study

Summary

Appendix A Answers to the “Do I Know This Already?”

Quiz Questions

Appendix B DevNet Associate DEVASC 200-901

Official Cert Guide Exam Updates

Glossary

Index

Online Elements

Appendix C Study Planner

Glossary

Icons Used in This Book

Command Syntax Conventions

The conventions used to present command syntax in this

book are the same conventions used in the IOS

Command Reference. The Command Reference

describes these conventions as follows:

Boldface indicates commands and keywords that are entered literally

as shown. In actual configuration examples and output (not general

command syntax), boldface indicates commands that are manually

input by the user (such as a show command).

Italic indicates arguments for which you supply actual values.

Vertical bars (|) separate alternative, mutually exclusive elements.

Square brackets ([]) indicate an optional element.

Braces ({ }) indicate a required choice.

Braces within brackets ([{ }]) indicate a required choice within an

optional element.

Introduction

This book was written to help candidates improve their

network programmability and automation skills—not

only for preparation of the DevNet Associate DEVASC

200-901 exam, but also for real-world skills for any

production environment.

Readers of this book can expect that the blueprint for the

DevNet Associate DEVASC 200-901 exam tightly aligns

with the topics contained in this book. This was by

design. Candidates can follow along with the examples in

this book by utilizing the tools and resources found on

the DevNet website and other free utilities such as

Postman and Python.

This book is targeted for all learners who are learning

these topics for the first time, as well as for those who

wish to enhance their network programmability and

automation skillset.

Be sure to visit www.cisco.com to find the latest

information on DevNet Associate DEVASC 200-901

exam requirements and to keep up to date on any new

exams that are announced.

GOALS AND METHODS

The most important and somewhat obvious goal of this

book is to help you pass the DevNet Associate DEVASC

(200-901) exam. Additionally, the methods used in this

book to help you pass the DevNet Associate exam are

designed to also make you much more knowledgeable

about how to do your job. While this book and the

companion website together have more than enough

questions to help you prepare for the actual exam, the

method in which they are used is not to simply make you

memorize as many questions and answers as you

possibly can.

http://www.cisco.com/

One key methodology used in this book is to help you

discover the exam topics that you need to review in more

depth, to help you fully understand and remember those

details, and to help you prove to yourself that you have

retained your knowledge of those topics. So, this book

does not try to help you pass by memorization but helps

you truly learn and understand the topics. The DevNet

Associate exam is just one of the foundation exams in the

DevNet certification suite, and the knowledge contained

within is vitally important to consider yourself a truly

skilled network developer. This book would do you a

disservice if it didn’t attempt to help you learn the

material. To that end, the book will help you pass the

DevNet Associate exam by using the following methods:

Helping you discover which test topics you have not mastered

Providing explanations and information to fill in your knowledge gaps

Supplying exercises and scenarios that enhance your ability to recall

and deduce the answers to test questions

WHO SHOULD READ THIS BOOK?

This book is intended to help candidates prepare for the

DevNet Associate DEVASC 200-901 exam. Not only can

this book help you pass the exam, but also it can help you

learn the necessary topics to provide value to your

organization as a network developer.

Passing the DevNet Associate DEVASC 200-901 exam is

a milestone toward becoming a better network

developer. This in turn can help with becoming more

confident with these technologies.

STRATEGIES FOR EXAM PREPARATION

The strategy you use for the DevNet Associate exam

might be slightly different than strategies used by other

readers, mainly based on the skills, knowledge, and

experience you already have obtained.

Regardless of the strategy you use or the background you

have, this book is designed to help you get to the point

where you can pass the exam with the least amount of

time required. However, many people like to make sure

that they truly know a topic and thus read over material

that they already know. Several book features will help

you gain the confidence that you know some material

already and to also help you know what topics you need

to study more.

THE COMPANION WEBSITE FOR ONLINE
CONTENT REVIEW

All the electronic review elements, as well as other

electronic components of the book, are provided on this

book’s companion website.

How to Access the Companion Website

To access the companion website, start by establishing a

login at www.ciscopress.com and registering your book.

To do so, simply go to www.ciscopress.com/register and

enter the ISBN of the print book: 9780136642961. After

you have registered your book, go to your account page

and click the Registered Products tab. From there, click

the Access Bonus Content link to get access to the book’s

companion website.

Note that if you buy the Premium Edition eBook and

Practice Test version of this book from Cisco Press, your

book will automatically be registered on your account

page. Simply go to your account page, click the

Registered Products tab, and select Access Bonus

Content to access the book’s companion website.

How to Access the Pearson Test Prep (PTP) App

You have two options for installing and using the

Pearson Test Prep application: a web app and a desktop

app. To use the Pearson Test Prep application, start by

http://www.ciscopress.com/
http://www.ciscopress.com/register

finding the registration code that comes with the book.

You can find the code in these ways:

Print book: Look in the cardboard sleeve in the back of the book for a

piece of paper with your book’s unique PTP code.

Premium Edition: If you purchase the Premium Edition eBook and

Practice Test directly from the Cisco Press website, the code will be

populated on your account page after purchase. Just log in at

www.ciscopress.com, click Account to see details of your account, and

click the Digital Purchases tab.

Amazon Kindle: For those who purchase a Kindle edition from

Amazon, the access code will be supplied directly from Amazon.

Other Bookseller eBooks: Note that if you purchase an eBook

version from any other source, the practice test is not included because

other vendors to date have not chosen to vend the required unique

access code.

Note

Do not lose the activation code because it is the only

means with which you can access the QA content with

the book.

Once you have the access code, to find instructions about

both the PTP web app and the desktop app, follow these

steps:

Step 1. Open this book’s companion website, as shown

earlier in this Introduction under the heading

“How to Access the Companion Website.”

Step 2. Click the Practice Exams button.

Step 3. Follow the instructions listed there both for

installing the desktop app and for using the web

app.

If you want to use the web app only at this point, just

navigate to www.pearsontestprep.com, establish a free

login if you do not already have one, and register this

book’s practice tests using the registration code you just

found. The process should take only a couple of minutes.

Note

http://www.ciscopress.com/
http://www.pearsontestprep.com/

Amazon eBook (Kindle) customers: It is easy to miss

Amazon’s email that lists your PTP access code. Soon

after you purchase the Kindle eBook, Amazon should

send an email. However, the email uses very generic

text and makes no specific mention of PTP or practice

exams. To find your code, read every email from

Amazon after you purchase the book. Also do the usual

checks for ensuring your email arrives, like checking

your spam folder.

Note

Other eBook customers: As of the time of publication,

only the publisher and Amazon supply PTP access

codes when you purchase their eBook editions of this

book.

HOW THIS BOOK IS ORGANIZED

Although this book can be read cover-to-cover, it is

designed to be flexible and allow you to easily move

between chapters and sections of chapters to cover just

the material that you need more work with. Chapter 1

provides an overview of the Cisco career certifications

and offers some strategies for how to prepare for the

exams. The dichotomy of that is in Chapters 2 through

18. These chapters are the core chapters and can be

covered in any order. If you do intend to read them all,

the order in the book is an excellent sequence to use.

The core chapters, Chapters 2 through 18, cover the

following topics:

Chapter 2, “Software Development and Design”: This chapter

introduces key software development methods, like Waterfall and Agile,

and includes the common design patterns MVC and Observer. Software

version control systems, how to use Git, and how to conduct code

reviews are covered as well.

Chapter 3, “Introduction to Python”: This chapter provides an

overview of Python syntax, working with various data types, getting

input and producing output, and how to use conditionals and loops to

control program flow.

Chapter 4, “Python Functions, Classes, and Modules”: This

chapter introduces Python functions and Object-Oriented

Programming techniques. In addition, it also covers Python classes and

how to work with modules to extend Python capabilities.

Chapter 5, “Working with Data in Python”: This chapter covers

the various ways you can input data into your Python program, parse

data, and handle errors. Finally, test-driven development is introduced

as well as how to perform unit tests.

Chapter 6, “Application Programming Interfaces (APIs)”: This

chapter covers a high-level overview of some common API types, REST

API Authentication, Simple Object Access Protocol (SOAP), and

Remote-Procedure Call (RPC) protocol as well as common examples of

when and where each protocol is used.

Chapter 7, “RESTful API Requests and Responses”: This

chapter presents a detailed overview of REST APIs. It discusses several

aspects of REST APIs including URL, methods, headers, return codes,

data formats, architectural constraints, and various tools used for

working with REST APIs.

Chapter 8, “Cisco Enterprise Networking Management

Platforms and APIs”: This chapter starts with what SDKs are and

then covers Cisco Enterprise Networking Platforms and their APIs,

including examples of how to interact with the APIs. The platforms

covered in this chapter are Cisco Meraki, Cisco DNA Center, and Cisco

SD-WAN.

Chapter 9, “Cisco Data Center and Compute Management

Platforms and APIs”: This chapter introduces key Cisco Data Center

and Compute Management Platforms and their associated APIs. The

following platforms are covered in this chapter: Cisco ACI, Cisco UCS

Manager, Cisco UCS Director, and Cisco Intersight. Examples of API

consumption for all these platforms are also included in this chapter.

Chapter 10, “Cisco Collaboration Platforms and APIs”: This

chapter discusses in detail Cisco’s Collaboration platforms and their

associated APIs, along with examples. Platforms under consideration

are Webex Teams, Cisco Finesse, Webex Meetings, Webex Devices, and

Cisco Unified Call Manager.

Chapter 11, “Cisco Security Platforms and APIs”: This chapter

discusses in detail Cisco’s Security platforms, their associated APIs

along with examples. Platforms under consideration are Cisco

Firepower, Cisco Umbrella, Cisco Advanced Malware Protection—AMP,

Cisco Identity Services Engine—ISE, and Cisco ThreatGrid.

Chapter 12, “Model-Driven Programmability”: This chapter

introduces key model-driven programmability concepts and protocols.

An in-depth look at YANG, YANG data models, NETCONF,

RESTCONF, and Model-Driven telemetry is covered in this chapter.

Chapter 13, “Deploying Applications”: This chapter covers

numerous application deployment models and methods. It also

introduces the core concepts of DevOps as well as an introduction to

Docker and how to use it.

Chapter 14, “Application Security”: This chapter introduces

application security issues, the methods of how to secure applications

via modern networking components, and various tools used.

Additionally, this chapter also discusses the Open Web Application

Security Project (OWASP)’s top ten.

Chapter 15, “Infrastructure Automation”: This chapter

introduces several infrastructure automation concepts including

controller versus device-level management, infrastructure as code,

continuous integration/continuous delivery pipelines, and automation

tools such as Ansible, Puppet, and Chef. An overview of Cisco-related

products such as Cisco NSO, Cisco VIRL, and pyATS is also presented.

Chapter 16, “Network Fundamentals”: This chapter presents

several key networking concepts including networking reference

models, switching, and routing concepts. OSI and TCP/IP reference

models, Ethernet, MAC addresses, and VLANs—as well as IPv4 and

IPv6 addressing concepts—are discussed in this chapter.

Chapter 17, “Networking Components”: This chapter introduces

some basic networking concepts, including network definitions, types,

and elements such as hubs, switches, and routers. Further, it presents

and differentiates between process, fast, and CEF switching. It also

introduces software-defined networking discussing management, data,

and control planes.

Chapter 18, “IP Services”: This chapter starts by covering several

protocols and technologies that are critical to networking: DHCP, DNS,

NAT, SNMP, and NTP. The chapter continues with an overview of

Layer 2 versus Layer 3 network diagrams and ends with a look at how

to troubleshoot application connectivity issues.

CERTIFICATION EXAM TOPICS AND THIS BOOK

The questions for each certification exam are a closely

guarded secret. However, we do know which topics you

must know to successfully complete this exam. Cisco

publishes them as an exam blueprint for DevNet

Associate DEVASC 200-901 exam. Table I-1 lists each

exam topic listed in the blueprint along with a reference

to the book chapter that covers the topic. These are the

same topics you should be proficient in when working

with network programmability and automation in the

real world.

Table I-1 DEVASC Exam 200-901 Topics and

Chapter References

DEVASC 200-901 Exam
Topic

Chapter(s) in Which Topic Is
Covered

DEVASC 200-901 Exam
Topic

Chapter(s) in Which Topic Is
Covered

1.0 Software Development and Design 2

1.1 Compare data formats (XML, JSON, YAML) 2

1.2 Describe parsing of common data formats (XML,

JSON, YAML) to Python data structures

5

1.3 Describe the concepts of test-driven development 5

1.4 Compare software development methods (Agile,

Lean, Waterfall)

2

1.5 Explain the benefits of organizing code into

methods/ functions, classes, and modules

4

1.6 Identify the advantages of common design

patterns (MVC and Observer)

2

1.7 Explain the advantages of version control 2

1.8 Utilize common version control operations with

Git:

2

1.8.a Clone 2

1.8.b Add/remove 2

1.8.c Commit 2

1.8.d Push/pull 2

1.8.e Branch 2

1.8.f Merge and handling conflicts 2

1.8.g diff 2

2.0 Understanding and Using APIs

2.1 Construct a REST API request to accomplish a

task given API documentation

6

2.2 Describe common usage patterns related to

webhooks

6,

7

2.3 Identify the constraints when consuming APIs 6

2.4 Explain common HTTP response codes associated

with REST APIs

6

2.5 Troubleshoot a problem given the HTTP response

code, request, and API documentation

6

2.6 Identify the parts of an HTTP response (response

code, headers, body)

6

2.7 Utilize common API authentication mechanisms:

basic, custom token, and API keys

6

2.8 Compare common API styles (REST, RPC,

synchronous, and asynchronous)

6

2.9 Construct a Python script that calls a REST API

using the requests library

7

3.0 Cisco Platforms and Development

3.1 Construct a Python script that uses a Cisco SDK

given SDK documentation

8,

9

3.2 Describe the capabilities of Cisco network

management platforms and APIs (Meraki, Cisco

DNA Center, ACI, Cisco SD-WAN, and NSO)

8,

9,

1

5

3.3 Describe the capabilities of Cisco compute

management platforms and APIs (UCS Manager,

UCS Director, and Intersight)

9

3.4 Describe the capabilities of Cisco collaboration

platforms and APIs (Webex Teams, Webex

devices, Cisco Unified Communication Manager

including AXL and UDS interfaces, and Finesse)

1

0

3.5 Describe the capabilities of Cisco security

platforms and APIs (Firepower, Umbrella, AMP,

ISE, and ThreatGrid)

11

3.6 Describe the device level APIs and dynamic

interfaces for IOS XE and NX-OS

1

2

3.7 Identify the appropriate DevNet resource for a

given scenario (Sandbox, Code Exchange, support,

forums, Learning Labs, and API documentation)

7,

8,

9,

1

0,

11

,

1

2

3.8 Apply concepts of model driven programmability

(YANG, RESTCONF, and NETCONF) in a Cisco

environment

1

2

3.9 Construct code to perform a specific operation

based on a set of requirements and given API

reference documentation such as these:

8,

9,

1

5

3.9.a Obtain a list of network devices by using

Meraki, Cisco DNA Center, ACI, Cisco SD-

WAN, or NSO

8,

9,

1

5

3.9.b Manage spaces, participants, and messages in

Webex Teams

1

0

3.9.c Obtain a list of clients/hosts seen on a network

using Meraki or Cisco DNA Center

8

4.0 Application Deployment and Security 1

3

4.1 Describe benefits of edge computing 1

3

4.2 Identify attributes of different application

deployment models (private cloud, public cloud,

hybrid cloud, and edge)

1

3

4.3 Identify the attributes of these application

deployment types:

1

3

4.3.a Virtual machines 1

3

4.3.b Bare metal 1

3

4.3.c Containers 1

3

4.4 Describe components for a CI/CD pipeline in

application deployments

1

3,

1

5

4.5 Construct a Python unit test 5

4.6 Interpret contents of a Dockerfile 1

3

4.7 Utilize Docker images in local developer

environment

1

3

4.8 Identify application security issues related to

secret protection, encryption (storage and

transport), and data handling

1

4

4.9 Explain how firewall, DNS, load balancers, and

reverse proxy in application deployment

1

4

4.10 Describe top OWASP threats (such as XSS, SQL

injections, and CSRF)

1

4

4.11 Utilize Bash commands (file management, 2

directory navigation, and environmental

variables)

4.12 Identify the principles of DevOps practices 1

3

5.0 Infrastructure and Automation 1

5

5.1 Describe the value of model driven

programmability for infrastructure automation

1

2

5.2 Compare controller-level to device-level

management

1

5

5.3 Describe the use and roles of network simulation

and test tools (such as VIRL and pyATS)

1

5

5.4 Describe the components and benefits of CI/CD

pipeline in infrastructure automation

1

3,

1

5

5.5 Describe principles of infrastructure as code 1

5

5.6 Describe the capabilities of automation tools such

as Ansible, Puppet, Chef, and Cisco NSO

1

5

5.7 Identify the workflow being automated by a

Python script that uses Cisco APIs including ACI,

Meraki, Cisco DNA Center, or RESTCONF

8,

9

5.8 Identify the workflow being automated by an

Ansible playbook (management packages, user

management related to services, basic service

configuration, and start/stop)

1

5

5.9 Identify the workflow being automated by a bash

script (such as file management, app install, user

management, directory navigation)

2

5.10 Interpret the results of a RESTCONF or

NETCONF query

1

2

5.11 Interpret basic YANG models 1

2

5.12 Interpret a unified diff 2

5.13 Describe the principles and benefits of a code

review process

2

5.14 Interpret sequence diagram that includes API

calls

7

6.0 Network Fundamentals

6.1 Describe the purpose and usage of MAC addresses

and VLANs

1

6

6.2 Describe the purpose and usage of IP addresses,

routes, subnet mask/prefix, and gateways

1

6

6.3 Describe the function of common networking

components (such as switches, routers, firewalls,

and load balancers)

1

6,

1

7

6.4 Interpret a basic network topology diagram with

elements such as switches, routers, firewalls, load

balancers, and port values

1

6,

1

7

6.5 Describe the function of management, data, and

control planes in a network device

1

7

6.6 Describe the functionality of these IP services:

DHCP, DNS, NAT, SNMP, NTP

1

8

6.7 Recognize common protocol port values (such as,

SSH, Telnet, HTTP, HTTPS, and NETCONF)

1

2

6.8 Identify cause of application connectivity issues

(NAT problem, Transport Port blocked, proxy, and

VPN)

1

8

6.9 Explain the impacts of network constraints on

applications

1

8

Each version of the exam can have topics that emphasize

different functions or features, and some topics can be

rather broad and generalized. The goal of this book is to

provide the most comprehensive coverage to ensure that

you are well prepared for the exam. Although some

chapters might not address specific exam topics, they

provide a foundation that is necessary for a clear

understanding of important topics. Your short-term goal

might be to pass this exam, but your long-term goal

should be to become a qualified network developer.

It is also important to understand that this book is a

“static” reference, whereas the exam topics are dynamic.

Cisco can and does change the topics covered on

certification exams often.

This exam guide should not be your only reference when

preparing for the certification exam. You can find a

wealth of information available at Cisco.com that covers

each topic in great detail. If you think that you need more

detailed information on a specific topic, read the Cisco

documentation that focuses on that topic.

Note that as automation technologies continue to

develop, Cisco reserves the right to change the exam

topics without notice. Although you can refer to the list

of exam topics in Table I-1, always check Cisco.com to

verify the actual list of topics to ensure that you are

prepared before taking the exam. You can view the

current exam topics on any current Cisco certification

exam by visiting the Cisco.com website, choosing Menu,

and Training & Events, then selecting from the

Certifications list. Note also that, if needed, Cisco Press

might post additional preparatory content on the web

page associated with this book at

http://cisco.com/
http://cisco.com/
http://cisco.com/

http://www.ciscopress.com/title/9780136642961. It’s a

good idea to check the website a couple of weeks before

taking your exam to be sure that you have up-to-date

content.

http://www.ciscopress.com/title/9780136642961

Figure Credits

Page NoSelection TitleAttribution

Cover image Cisco Brand

Exchange, Cisco

Systems, Inc.

1

5

7

“YAML is a human-friendly data

serialization standard for all

programming languages.”

YAML Ain’t

Markup

Language,

YAML

1

6

5

Figure 7-12: Postman: HTTP GET from

the Postman Echo Server

Screenshot of

Postman: HTTP

GET from the

Postman Echo

Server ©2020

Postman, Inc.

1

6

6

Figure 7-13: Postman: HTTP POST to

the Postman Echo Server

Screenshot of

Postman: HTTP

POST to the

Postman Echo

Server ©2020

Postman, Inc.

1

6

6

Figure 7-14: Postman Collection Screenshot of

Postman

Collection

©2020

Postman, Inc.

1

6

7

Figure 7-15: Postman Automatic Code

Generation

Screenshot of

Postman

Automatic Code

Generation

©2020

Postman, Inc.

1

8

9

Figure 8-4: Output of the Python Script

from Example 8-4

Screenshot of

Output of the

Python Script

from Example 8-

4 ©2020

Postman, Inc.

2

0

1

Figure 8-10: Output of the Python

Script from Example 8-7

Screenshot of

Output of the

Python Script

from Example 8-

7 ©2020

Postman, Inc.

2

1

1

Figure 8-15: Output of the Python

Script from Example 8-10

Screenshot of

Output of the

Python Script

from Example 8-

10 ©2020

Postman, Inc.

3

7

0

Figure 12-6: Getting the REST API

Root Resource

Screenshot of

Getting the

REST API root

resource ©2020

Postman, Inc.

3

7

0

Figure 12-7: Top-Level Resource

Available in RESTCONF

Screenshot of

Top level

resource

available in

RESTCONF

©2020

Postman, Inc.

3

7

1

Figure 12-8: Getting Interface Statistics

with RESTCONF

Screenshot of

Getting interface

statistics with

RESTCONF

©2020

Postman, Inc.

3

7

7

Figure 13-1: NIST Cloud Computing

Definition

Source: NIST

Cloud

Computing

Definitions

3

7

8

Figure 13-2: Cloud Service Models Source: NIST

Cloud

Computing

Service Models

3

7

9

Figure 13-3: Private Cloud Source: NIST

Special

Publication 800-

146 (May 2012)

3

8

0

Figure 13-4: Public Cloud Source: NIST

Special

Publication 800-

146 (May 2012)

3

8

0

Figure 13-5: Hybrid Cloud Source: NIST

Special

Publication 800-

146 (May 2012)

3

8

1

Figure 13-6: Community Cloud Source: NIST

Special

Publication 800-

146 (May 2012)

3

9

5

Figure 13-20: XebiaLabs Periodic

Table of DevOps Tools

Source:

https://xebialab

s.com/periodic-

table-of-devops-

tools/

4

0

0

Figure 13-25: Docker Architecture source:https://d

ocs.docker.com/

introduction/un

derstanding-

docker/

4

1

6

Figure 13-30: Kitematic Screenshot of

Kitematic ©

2020 Docker Inc

4

2

2

Figure 14-1: NIST Cybersecurity

Framework

NIST,

CYBERSECURI

TY

FRAMEWORK.

U.S. Department

of Commerce

5

1

2

“Information system(s) implemented

with a collection of interconnected

components. Such components may

NIST,

COMPUTER

SECURITY

https://xebialabs.com/periodic-table-of-devops-tools/
https://docs.docker.com/introduction/understanding-docker/

include routers, hubs, cabling,

telecommunications controllers, key

distribution centers, and technical

control devices”

RESOURCE

CENTER. NIST

SP 800-53 Rev.

4 under Network

(CNSSI 4009)

CNSSI 4009-

2015 (NIST SP

800-53 Rev. 4).

U.S. Department

of Commerce

5

2

9

“an emerging architecture that is

dynamic, manageable, cost-effective,

and adaptable, making it ideal for the

high-bandwidth, dynamic nature of

applications. This architecture

decouples the network control and

forwarding functions, enabling the

network control to become directly

programmable and the underlying

infrastructure to be abstracted for

applications and network services.”

Open

Networking

Foundation,

Copyright ©

2020

Chapter 1

Introduction to Cisco DevNet
Associate Certification

This chapter covers the following topics:

Why Get Certified: This section covers the benefits and advantages

of becoming Cisco certified.

Cisco Career Certification Overview: This section provides a high-

level overview of the Cisco career certification portfolio.

Cisco DevNet Certifications: This section covers various aspects of

the Cisco Certified DevNet Associate, Professional, and Specialist

certifications and how they fit into the overall Cisco career certification

portfolio.

Cisco DevNet Overview: This section provides an overview of

DevNet, discusses the value DevNet provides to the industry, and

covers the resources available and how to best leverage them.

DO I KNOW THIS ALREADY?

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly.

If you are in doubt about your answers to these questions

or your own assessment of your knowledge of the topics,

read the entire chapter. Table 1-1 lists the major headings

in this chapter and their corresponding “Do I Know This

Already?” quiz questions. You can find the answers in

Appendix A, “Answers to the ‘Do I Know This Already?’

Quiz Questions.”

Table 1-1 “Do I Know This Already?” Foundation

Topics Section-to-Question Mapping

Foundations Topic SectionQuestions

Why Get Certified 2

Cisco Career Certification Overview 1, 4

Cisco DevNet Certifications 3

Cisco DevNet Overview 5

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. Which of the following are levels of accreditation for

Cisco certification? (Choose three.)

1. Associate

2. Entry

3. Authority

4. Expert

5. Maestro

2. What are some benefits certification provides for

candidates? (Choose three.)

1. Highlights skills to employer

2. Increases confidence

3. Makes candidate appear smarter than peers

4. Reduces workload

5. Improves credibility

3. What type of exams are necessary to obtain DevNet

Professional certification? (Choose two.)

1. Technology Core exam

2. Lab exam

3. CCT

4. Expert-level written exam

5. Concentration exam

4. True or false: In the new certification model, only a

single exam is required to become CCNA certified.

1. True

2. False

5. Which of the following are part of DevNet? (Choose

all that apply.)

1. Community

2. Technologies

3. Events

4. Cisco Automation Platform

5. Support

FOUNDATION TOPICS

WHY GET CERTIFIED

The IT industry is constantly changing and evolving. As

time goes on, an ever-increasing number of technologies

are putting strain on networks. New paradigms are

formed as others fall out of favor. New advances are

being developed and adopted in the networking realm.

These advances provide faster innovation and the ability

to adopt relevant technologies in a simplified way. We

therefore need more intelligence and the capability to

leverage the data from connected and distributed

environments such as the campus, branch, data center,

and WAN. Data is being used in interesting and more

powerful ways than ever in the past. The following are

some of the advances driving these outcomes:

Artificial intelligence (AI)

Machine learning (ML)

Cloud services

Virtualization

Internet of Things (IoT)

The influx of these technologies is putting strain on IT

operations staff, who are required to do more robust

planning, find relevant use cases, and provide detailed

adoption journey materials for easy consumption. All

these requirements are becoming critical to success.

Another area of importance is the deployment and day-

to-day operations of these technologies as well as how

they fit within the network environment. Some of these

technologies tend to disrupt typical operations and

present challenges in terms of how they will be

consumed by the business. Some advances in technology

are being adopted to reduce cost of operations as well as

complexity. It can be said that every network, to some

degree, has inherent complexity. Having tools to help

manage this burden is becoming a necessity.

Many in the industry are striving for automation to

handle networks as they become more and more

complicated. Businesses are often forced to operate with

lean IT staffs and flat or shrinking budgets; they must

struggle to find ways to increase the output of what the

network can do for the business. Another driver for the

adoption of these technologies is improving the overall

user experience within the environment. Users often

need the flexibility and capability to access any business-

critical application from anywhere in the network and

want to have an exceptional experience. In addition to

trying to improving user experience, operations staff

seek ways to simplify the operations of the network.

There are many inherent risks associated with manually

configuring networks. One risk is not being able to move

fast enough when deploying new applications or services

to the network. In addition, misconfigurations can cause

outages or suboptimal network performance, which can

impact business operations and potentially cause

financial repercussions. Finally, there is risk in that a

business relies on its network for business-critical

services but those services might not be available due to

the IT operations staff not being able to scale to keep up

with the demands of the business.

According to a 2016 Cisco Technical Assistance Center

(TAC) survey, 95% of Cisco customers are performing

configuration and deployment tasks manually in their

networks. The survey also found that 70% of TAC cases

created are related to misconfigurations. This means that

typos or improperly used commands are the culprits in a

majority of issues in the network environment. Dealing

with such issues is where automation shines. Automation

makes it possible to signify the intent of a change that

needs to be made, such as deploying quality of service

across the network, and then having the network

configure it properly and automatically. Automation can

configure services or features with great speed and is a

tremendous value to a business. Simplifying operations

while reducing human error can ultimately reduce risk

and potentially lower complexity.

As a simple analogy, think of an automobile. The reason

most people use an automobile is to meet a specific

desired outcome: to get from point A to point B. An

automobile is operated as a holistic system, not as a

collection of parts that make up that system. For

example, the dashboard provides the user all the

necessary information about how the vehicle is operating

and the current state of the vehicle. To use an

automobile, a driver must take certain operational steps,

such as putting it in gear and then using the system to

get from point A to point B. Figure 1-1 illustrates this

analogy.

Figure 1-1 Automobile as a System

We can think of networks as systems much as we think of

automobiles as systems. For over 30 years, the industry

has thought of a network as a collection of devices such

as routers, switches, and wireless components. The shift

in mindset to look at a network as a holistic system is a

more recent concept that stems from the advent of

network controllers, which split role and functionality

from one another. This is often referred to as separating

the control plane from the data plane. At a high level, the

control plane is where all the instructions on a device live

(for example, the routing protocols that exchange routing

updates). The data plane is where all the user or data

traffic flows (for example, the traffic between users on a

network). Having a controller that sits on top of the rest

of the devices makes it possible to operate the network as

a whole from a centralized management point—much

like operating an automobile from the driver’s seat rather

than trying to manage the automobile from all the pieces

and components of which it is composed. To put this in

more familiar terms, think of the command-line

interface (CLI). The CLI was not designed to make

massive-scale configuration changes to multiple devices

at the same time. Traditional methods of managing and

maintaining the network aren’t sufficient to keep up with

the pace and demands of the networks of today.

Operations staff need to be able to move faster and

simplify all the operations and configurations that have

traditionally gone into networking. Software-defined

networking (SDN) and controller capabilities are

becoming areas of focus in the industry, and they are

evolving to a point where they can address the challenges

faced by IT operations teams. Controllers offer the ability

to manage a network as a system, which means the policy

management can be automated and abstracted. They

provide the capability of supporting dynamic policy

changes rather than requiring manual policy changes

and device-by-device configurations when something

requires a change within the environment.

It is important from a career and skills perspective to

adapt to the changes within the industry. Keeping on top

of new skillsets is critical to maintaining relevance in the

industry or job market. Becoming Cisco certified helps

with this for multiple reasons, including the following:

Highlighting skills to employers

Highlighting skills to industry peers

Providing value to employers

Providing credibility

Providing a baseline of understanding

Building confidence

Enabling career advancement

Increasing salary

When pursuing certification, it is imperative to

understand why getting certified is beneficial in the first

place. Many people pursue certifications as a way to

break into the job market. Having certifications can be a

great differentiator in terms of skillset and discipline.

Pursuing a certification may also be valuable from a

continuing education perspective and to bolster the

candidate’s current job role. Pursuing certifications can

also help candidates evolve their skillsets to keep up with

the ever-changing advancements in the technology

industry. As mentioned earlier in this chapter, new

network operations techniques are rapidly becoming the

norm. Automation and programmability are at the center

of this paradigm shift. Becoming certified not only helps

embrace this type of momentum but also prepares the

candidate for the world of tomorrow.

CISCO CAREER CERTIFICATION

OVERVIEW

Cisco has evolved the way it offers certifications. In the

past, there were many separate tracks for each discipline,

such as Routing and Switching, Collaboration, Service

Provider, Data Center, and Security. Although there are

still separate disciplines, the number of disciplines has

been greatly reduced, and the process candidates go

through to achieve those certifications has changed

significantly. The traditional path for Routing and

Switching was Cisco Certified Network Associate

(CCNA), Cisco Certified Network Professional (CCNP),

and then Cisco Certified Internetwork Expert (CCIE). In

the past, in order to become CCNP certified, a candidate

would had to have previously completed the CCNA

certification and be in current certified status prior to

completing the CCNP. In addition, for the CCIE, a

written qualification exam had to be completed prior to

attempting the CCIE lab exam. However, having CCNA

or CCNP certification was not necessary in order to

pursue the CCIE certification. Today, the certification

process has been greatly simplified. As mentioned

previously, Cisco has evolved the certification structure

and the prerequisites for each track.

There are five levels of accreditation for Cisco career

certifications. The following sections cover how the

process has evolved and ultimately created the ability for

candidates to “choose their own destiny” when it comes

to what certifications and skillsets they want to pursue.

Figure 1-2 shows the pyramid hierarchy used to describe

the five levels of accreditation in Cisco certifications:

Architect

Expert

Professional

Associate

Entry

Figure 1-2 Cisco Career Certification Levels of

Accreditation

Each level of accreditation has multiple certifications and

exams that pertain to that specific level. The higher the

level, the more skill and rigorous hands-on experience

are required. For example, the CCIE lab exam is

experience based, and completing it requires hands-on

expertise. In addition to the five tiers of the pyramid,

there are also specialist certifications that candidates can

achieve in specific technologies to showcase their

knowledge and base level of understanding. (These

specialist certifications are covered later in this chapter.)

Simplifying the certification portfolio reduced the

number of certifications available in general and also

improved the process of achieving these certifications.

Table 1-2 lists some of the certifications and tracks that

were available in the past, as they relate to the five-level

pyramid. You can see that there were a tremendous

number of options available for each track.

Table 1-2 Cisco Career Certifications Tracks Prior to

Restructuring

EntryAssociateProfessionalExpertArchitect

Cisco

Certified

Entry

Networking

Technician

(CCENT)

Cisco

Certifie

d

Design

Associat

e

(CCDA)

Cisco

Certified

Design

Professio

nal

(CCDP)

Cisco

Certifie

d

Design

Expert

(CCDE)

Cisco

Certifi

ed

Archit

ect

(CCAr

)

Cisco

Certified

Technician

(CCT)

CCNA

Cloud

CCNP

Cloud

CCNA

Collabor

ation

CCNP

Collabor

ation

CCIE

Collabo

ration

CCNA

Cyber

Ops

CCNA

Data

Center

CCNP

Data

Center

CCIE

Data

Center

CCNA

Industri

al

CCNA

Routing

and

Switchi

ng

CCNP

Routing

and

Switchin

g

CCIE

Routing

and

Switchi

ng

CCNA

Security

CCNP

Security

CCIE

Securit

y

CCNA

Service

Provider

CCNP

Service

Provider

CCIE

Service

Provide

r

CCNA

Wireless

CCNP

Wireless

CCIE

Wireles

s

Table 1-3 shows the new and simplified certification

portfolio and how the certifications now fit into each

level of the pyramid. You can see that there has been a

significant reduction in the number of available

certifications, and there is now a succinct path to follow

through these certifications.

Table 1-3 Cisco Career Certifications Tracks After

Restructuring

EntryAssociateProfessionalExpertArchitect

Cisco

Certified

Design

Expert

(CCDE)

Cisco

Certified

Architect

(CCAr)

Dev

Net

Ass

ocia

te

DevNe

t

Profes

sional

DevNet

Expert

(TBA)

Cisco

Certified

Technicia

n (CCT)

CC

NA

CCNP

Enter

prise

CCIE

Enterprise

Infrastructu

re

CCIE

Enterprise

Wireless

CCNP

Collab

CCIE

Collaboratio

oratio

n

n

CCNP

Data

Center

CCIE Data

Center

CCNP

Securi

ty

CCIE

Security

CCNP

Servic

e

Provid

er

CCIE

Service

Provider

As changes were being made in the certification

portfolio, some certifications were completely removed.

Table 1-3 shows that there is now only a single CCNA

certification. Prior to this change, there were nine CCNA

certifications, and multiple exams had to be completed in

order to become a CCNA in any of the tracks. Now with

the new CCNA, a candidate need pass only a single exam

to become CCNA certified. An additional certification

that was removed was the CCENT. Now that the CCNA is

a broader exam and covers many introductory-level

topics, the CCENT topics have been absorbed into the

new CCNA. Furthermore, the CCDA and CCDP

certifications were retired as that design information has

been incorporated into other certifications within each

track, and separate certifications are no longer required

for the Associate and Professional levels of design

knowledge.

The CCNP has changed significantly as well. Previously,

for example, the CCNP Routing and Switching exam

consisted of three exams:

300-101 ROUTE

300-115 SWITCH

300-135 TSHOOT

A candidate would have to successfully pass all three of

these exams as well as the CCNA in the same track in

order to become CCNP Routing and Switching certified.

Today, only two exams are required in order to become

CCNP Enterprise certified. Candidates can now start

wherever they want; there are no prerequisites, and a

candidate can start earning any level of certification—

even Associate, Specialist, Professional, or Expert level

certification. For the CCNP Enterprise certification, the

first exam is the 300-401 ENCOR exam, which covers

core technologies in enterprise networks, including the

following:

Dual-stack (IPv4 and IPv6) architecture

Virtualization

Infrastructure

Network assurance

Security

Automation

Once the ENCOR exam is completed, a concentration

exam must be taken. This is perhaps the most important

and fundamental change made to the CCNP. The

available concentration exams include a variety of

different technology specialties and allow candidates to

build their own certification (or “choose their own

destiny”). Each CCNP track has its own core exam and

concentrations.

Cisco made a number of changes to the specialist

certifications, which allow candidates to get certified in

specific areas of expertise. For example, a candidate who

is proficient at Cisco Firepower can pursue a specialist

certification for Firepower. The specialist certifications

are important because candidates, especially consultants,

often have to use many different technologies in many

different customer environments. Specialist

certifications can help show a candidate’s ability to work

on a variety of projects. They also help build credibility

on a plethora of different platforms and technologies.

For example, a candidate looking to focus on routing and

Cisco SD-WAN could take the CCNP 300-401 ENCOR

exam and then take the 300-415 ENSDWI concentration

exam to become a CCNP with an SD-WAN specialty. In

essence, the concentration exams are the new specialist

exams, and a candidate can simply take a single

specialist exam and become certified in that technology

(for example, the 300-710 SNCF exam for certification in

network security and Firepower).

Table 1-4 lists and describes the different type of CCNP

concentration and specialist exams currently available.

Table 1-4 CCNP Core and Concentration Exams

TrackDescriptionConcentration Exam

Enterpri

se

Cisco Certified Specialist–Enterprise

Core

300-

401

ENCO

R

Enterpri

se

Cisco Certified Specialist–Enterprise

Advanced Infrastructure

Implementation

300-

410

ENAR

SI

Enterpri

se

Cisco Certified Specialist–Enterprise

SD-WAN Implementation

300-

415

ENSD

WI

Enterpri

se

Cisco Certified Specialist–Enterprise

Design

300-

420

ENSL

D

Enterpri

se

Cisco Certified Specialist–Enterprise

Wireless Design

300-

425

ENWL

SD

Enterpri

se

Cisco Certified Specialist–Enterprise

Wireless Implementation

300-

430

ENWL

SI

Data

Center

Cisco Certified Specialist–Data

Center Core

300-

601

DCCO

R

Data

Center

Cisco Certified Specialist–Data

Center Design

300-

610

DCID

Data

Center

Cisco Certified Specialist–Data

Center Operations

300-

615

DCIT

Data

Center

Cisco Certified Specialist–Data

Center ACI Implementation

300-

620

DCACI

Data

Center

Cisco Certified Specialist–Data

Center SAN Implementation

300-

625

DCSA

N

Security Cisco Certified Specialist–Security

Core

300-

701

SCOR

Security Cisco Certified Specialist–Network

Security Firepower

300-

710

SNCF

Security Cisco Certified Specialist–Network

Security VPN Implementation

300-

730

SVPN

Security Cisco Certified Specialist–Email

Content Security

300-

720

SESA

Security Cisco Certified Specialist–Web

Content Security

300-

725

SWSA

Security Cisco Certified Specialist–Security

Identity Management

Implementation

300-

715

SISE

Service

Provider

Cisco Certified Specialist–Service

Provider Core

300-

501

SPCO

R

Service

Provider

Cisco Certified Specialist–Service

Provider Advanced Routing

Implementation

300-

510

SPRI

Service

Provider

Cisco Certified Specialist–Service

Provider VPN Services

Implementation

300-

515

SPVI

Collabor

ation

Cisco Certified Specialist–

Collaboration Core

300-

801

CLCO

R

Collabor

ation

Cisco Certified Specialist–

Collaboration Applications

Implementation

300-

810

CLICA

Collabor

ation

Cisco Certified Specialist–

Collaboration Call Control & Mobility

Implementation

300-

815

CLAC

CM

Collabor

ation

Cisco Certified Specialist–

Collaboration Cloud & Edge

Implementation

300-

820

CLCEI

DevNet,

Enterpri

se

Cisco Certified DevNet Specialist–

Enterprise Automation and

Programmability

300-

435

ENAU

TO

DevNet,

Data

Center

Cisco Certified DevNet Specialist–

Data Center Automation and

Programmability

300-

635

DCAU

TO

DevNet,

Security

Cisco Certified DevNet Specialist–

Security Automation and

Programmability

300-

735

SAUT

O

DevNet,

Service

Provider

Cisco Certified DevNet Specialist–

Service Provider Automation and

Programmability

300-

535

SPAU

TO

DevNet,

Collabor

ation

Cisco Certified DevNet Specialist–

Collaboration Automation and

Programmability

300-

835

CLAU

TO

DevNet Cisco Certified DevNet Specialist–

Core

300-

901

DEVC

OR

DevNet Cisco Certified DevNet Specialist–

DevOps

300-

910

DEVO

PS

DevNet Cisco Certified DevNet Specialist–IoT 300-

915

DEVI

OT

DevNet Cisco Certified DevNet Specialist–

Webex

300-

920

DEVW

BX

Note

The exams listed in Table 1-4 were available at the time

of publication. Please visit

http://www.cisco.com/go/certifications to keep up on

all the latest available certifications and associated

tracks.

In addition to the Associate- and Professional-level

certifications, the Cisco certified specialist certifications

have changed as well. Previously, in some cases multiple

exams had to be completed to become certified as a

specialist in a specific topic or discipline. With the new

changes, however, candidates can take and complete any

one of the specialist exams mentioned in Table 1-4 to

become certified in that technology area. For example, a

candidate who is proficient with Cisco Identity Services

Engine (ISE) could pursue a specialist certification for

security identity management implementation by taking

the 300-715 SISE exam.

Another major change to the certification program is that

changes have been made to the flagship CCIE program.

The CCIE Routing and Switching certification and the

CCIE Wireless certification have both been rebranded as

CCIE Enterprise certifications: CCIE Routing and

Switching became CCIE Enterprise Infrastructure, and

CCIE Wireless became CCIE Enterprise Wireless. The

goal of this change was to align the certifications with the

current technologies that candidates are seeing in their

work environments as well as the industry trends that

are changing the way networking is being consumed and

managed. As mentioned earlier in this chapter, software-

defined networking, automation, programmability, IoT,

and other trends are drastically changing the approach

network operations teams are taking to networking in

general. The business outcomes and use case–driven

adoption of these new technologies are shaping the

industry, as are the approaches vendors are taking to

building and designing their products. User experience

as well as adoption are now critical and are top-of-mind

priority topics for many customers. Cisco therefore

wanted to align its career certification portfolio with

http://www.cisco.com/go/certifications

what candidates and the industry are seeing in their

networking environments. For all other Expert-level

certifications, there are now currently only the following

specialties:

Cisco Certified Design Expert (CCDE)

CCIE Enterprise Infrastructure

CCIE Enterprise Wireless

CCIE Collaboration

CCIE Data Center

CCIE Security

CCIE Service Provider

CISCO DEVNET CERTIFICATIONS

The following sections provide an overview of the new

Cisco DevNet certifications. It also explains the required

skillsets necessary to achieve these new certifications. As

you will see, there are many different options available

for candidates to pursue.

Note

The DevNet Expert certification will be announced in

the future. Please visit

http://www.cisco.com/go/certifications to keep up on

all the latest available certifications and associated

tracks.

Cisco Certified DevNet Associate Certification

(DEVASC)

Considering everything covered up to this point in the

chapter and the main focus of this book, this section

covers the Cisco DevNet Associate certification at a high

level. Although there was previously a very broad and

robust Cisco career certification portfolio that was long

established and well known, it had a gap—and that gap

was becoming more and more noticeable with the

changes that were happening in the industry, such as the

http://www.cisco.com/go/certifications

need for automation in the network environment across

all tracks and areas of the network, ranging from

enterprise and data center networks to large-scale

service provider networks. Today, all areas of the

business must work together, and it is important to

remove the silos that once compartmentalized different

departments. Applications are being instantiated at

speeds that have never been seen before. Furthermore,

with user experience becoming the benchmark for how a

business measures success, it is paramount to deploy

applications, network services, and security in an agile,

consistent, and repeatable manner. Much like the CCNA,

the DevNet Associate certification requires only a single

exam. The DevNet Associate certification covers multiple

knowledge domains, as shown in Figure 1-3.

Figure 1-3 Cisco DevNet Associate Knowledge

Domains

It is recommended that candidates attempting the Cisco

DevNet Associate exam have at least one year of

experience developing and maintaining applications

built on top of Cisco platforms. In addition, they must

have hands-on experience with programming languages

such as Python. This certification was designed for early-

in-career developers and for experienced network

engineers looking to expand their skillsets to include

software and automation practices. It is important to

note that the line is blurring between network engineers

and developers. The two skillsets are slowly merging, and

candidates are becoming “network developers.” Having a

certification like the DevNet Associate can open doors for

candidates to approach new job roles that didn’t

necessarily exist in the past including the following:

Junior or entry-level DevOps engineer

Cloud developer

Automation engineer

When pursuing any certification, a candidate should

remember the reason the certification is important in the

first place. Certifications can help expand a candidate’s

current skillset as well as ensure a baseline level of

knowledge around specific topics. The Cisco DevNet

Associate certification can help businesses find

individuals who possess a certain level of

programmability or automation skills. It gives businesses

a clear way to determine the base level of skills when

looking at hiring a candidate and ensure that new hires

have the necessary relevant skills. The upcoming

chapters of this book align directly with the DevNet

Associate blueprint. This book covers the topics

necessary to build a foundational level of understanding

for candidates to feel comfortable in pursuing the Cisco

DevNet Associate certification.

Cisco Certified DevNet Professional Certification

The next certification in the path after Cisco DevNet

Associate would the Cisco DevNet Professional. This

more robust certification requires a more advanced

skillset. Figure 1-4 illustrates some of the high-level

requirements for this certification and their associated

topic domains.

Figure 1-4 Cisco DevNet Professional Knowledge

Domains

It is recommended that candidates attempting the Cisco

DevNet Professional exam have a minimum of three to

five years of experience designing and implementing

applications built on top of Cisco platforms. It is also

critical that they have hands-on experience with

programming languages such as Python. This

certification was designed for experienced network

engineers looking to expand their capabilities and

include software and automation on their resume. It is

also designed for developers moving into automation

and DevOps roles as well as for solution architects who

leverage the Cisco ecosystem. Infrastructure developers

designing hardened production environments will also

benefit from the Cisco DevNet Professional certification.

Because the DevNet Professional provides many avenues

for a candidate to create a unique journey, it is one of the

most eagerly anticipated certifications and will be

integral to aligning candidates’ skillsets with their daily

job tasks.

Table 1-5 lists the CCNP concentration and specialist

exams currently available.

Table 1-5 DevNet Concentration and Specialist

Exams

TrackDescriptionSpecialist Exam

DevNet,

Enterpri

se

Cisco Certified DevNet Specialist–

Enterprise Automation and

Programmability

300-

435

ENAU

TO

DevNet,

Data

Center

Cisco Certified DevNet Specialist–

Data Center Automation and

Programmability

300-

635

DCAU

TO

DevNet,

Security

Cisco Certified DevNet Specialist–

Security Automation and

Programmability

300-

735

SAUT

O

DevNet,

Service

Provider

Cisco Certified DevNet Specialist–

Service Provider Automation and

Programmability

300-

535

SPAU

TO

DevNet,

Collabor

ation

Cisco Certified DevNet Specialist–

Collaboration Automation and

Programmability

300-

835

CLAU

TO

DevNet Cisco Certified DevNet Specialist–

Core

300-

901

DEVC

OR

DevNet Cisco Certified DevNet Specialist–

DevOps

300-

910

DEVO

PS

DevNet Cisco Certified DevNet Specialist–IoT 300-

915

DEVI

OT

DevNet Cisco Certified DevNet Specialist–

Webex

300-

920

DEVW

BX

You might notice that some of the specializations listed

in Table 1-5 were listed earlier in this chapter for the

CCNP exams as well. This is because they can be used for

both the CCNP exams and the DevNet Professional

exams. In addition, the DevNet Specialist exams can be

taken independently for Cisco Certified DevNet

Specialist certification. This is similar to the CCNP

concentration exams covered earlier. Figure 1-5

illustrates the entire Cisco career certification structure.

As you can see, regardless of what track a candidate

decides to pursue—whether it’s a Specialist or a

Professional level—it is possible to choose a variety of

DevNet skills as part of the journey.

Figure 1-5 Cisco Career Certification Overview

Note

The DevNet Expert certification is a planned offering

that was not available as this book went to press.

CISCO DEVNET OVERVIEW

This section looks at the tools and resources available for

Cisco DevNet certification candidates. These tools help

candidates to learn, practice, and share ideas as well as

experience.

The examples and tools discussed in this chapter are all

available to use and practice at

http://developer.cisco.com, which is the home for Cisco

http://developer.cisco.com/

DevNet. This site provides a single place for network

operators to go when looking to enhance or increase

their skills with APIs, coding, Python, or even controller

concepts. DevNet makes it easy to find learning labs and

content to help build or solidify current knowledge in

network programmability. Whether a candidate is just

getting started or a seasoned programmatic professional,

DevNet is the place to be! This section provides a high-

level overview of DevNet. It describes the different

sections of DevNet, some of the labs available, and other

content that is available. Figure 1-6 shows the DevNet

main page.

Figure 1-6 DevNet Main Page

Across the top of the main DevNet page, you can see that

the following menu options:

Discover

Technologies

Community

Support

Events

The following sections cover these menu options

individually.

Discover

The Discover page shows the different offerings that

DevNet has available. This page includes the subsection

Learning Tracks; the learning tracks on this page guide

you through various different technologies and

associated API labs. Some of the available labs are

Programming the Cisco Digital Network Architecture

(DNA), ACI Programmability, Getting Started with Cisco

WebEx Teams APIs, and Introduction to DevNet.

When you choose a learning lab and start a module,

DevNet tracks all your progress and allows you to go

away and then come back and continue where you left

off. This is an excellent feature if you are continuing your

education over the course of multiple days or weeks.

Being able to keep track of your progress means you can

easily see what you have already learned and also

determine what might be the next logical step in your

learning journey.

Technologies

The Technologies page allows you to pick relevant

content based on the technology you want to study and

dive directly into the associated labs and training for that

technology. Figure 1-7 shows some of the networking

content that is currently available in DevNet.

Figure 1-7 DevNet Technologies Page

Note

Available labs may differ from those shown in this

chapter’s figures. Please visit

http://developer.cisco.com to see the latest content

available and to interact with the current learning labs.

Community

Perhaps one of the most important section of DevNet is

the Community page, where you have access to many

different people at various stages of learning. You can

find DevNet ambassadors and evangelists to help at

various stages of your learning journey. The Community

page puts the latest events and news at your fingertips.

This is also the place to read blogs, sign up for developer

forums, and follow DevNet on all major social media

platforms. This is the safe zone for asking any questions,

regardless of how simple or complex they might seem.

Everyone has to start somewhere. The DevNet

Community page is the place to start for all things Cisco

and network programmability. Figure 1-8 shows some of

the options currently available on the Community page.

Figure 1-8 DevNet Community Page

Support

On the DevNet Support page you can post questions and

get answers from some of the best in the industry.

Technology-focused professionals are available to answer

questions from both technical and theoretical

perspectives. You can ask questions about specific labs or

overarching technologies, such as Python or YANG

models. You can also open a case with the DevNet

Support team, and your questions will be tracked and

http://developer.cisco.com/

answered in a minimal amount of time. This is a great

place to ask the Support team questions and to tap into

the expertise of the Support team engineers. Figure 1-9

shows the DevNet Support page, where you can open a

case. Being familiar with the options available from a

support perspective is key to understanding the types of

information the engineers can help provide.

Figure 1-9 DevNet Support Page Events

Events

The Events page, shown in Figure 1-10, provides a list of

all events that have happened in the past and will be

happening in the future. This is where you can find the

upcoming DevNet Express events as well as any

conferences where DevNet will be present or

participating. Be sure to bookmark this page if you plan

on attending any live events. DevNet Express is a one- to

three-day event led by Cisco developers for both

customers and partners. Attending one of these events

can help you with peer learning and confidence as well as

with honing your development skills.

Figure 1-10 DevNet Events Page

Note

Keep in mind that the schedule shown in Figure 1-10

will differ from the schedule you see when you read

this chapter.

DevNet gives customers the opportunity to learn modern

development and engineering skills and also get hands-

on experience with them in a safe environment. DevNet

Express offers foundational development skills training

to expose attendees to the latest languages and tools

available. Once the foundational skills have been

covered, specific learning tracks or technology-specific

modules are then covered so attendees can apply their

newly learned skills to working with APIs on Cisco

products. These events are guided, which helps ensure

that attendees have the support they need to get started

in the world of APIs and programmability.

DevNet Automation Exchange

DevNet Automation Exchange makes code available for

consumption. This code is based on consumable use

cases; that is, use case–specific solutions have been

uploaded by various developers and are designed to

accomplish particular business outcomes. For example,

whereas one solution may contain the steps to fully

automate the provisioning of devices in Cisco DNA

Center, and another may make it possible to deploy a

fabric, the specific use case for both solutions might be to

increase the speed of onboarding new site locations or

improve the user experience for mobile users moving

from one area of a campus network to another,

regardless of whether they are connected via wire or

wirelessly. The use cases in the DevNet Automation

Exchange are divided by three different categories:

Walk

Run

Fly

Figure 1-11 shows the landing page for the DevNet

Automation Exchange. You can see that you can view the

use case library as well as share any use cases that you

have created.

Figure 1-11 DevNet Automation Exchange

When searching the use case library, you can search

using the Walk, Run, or Fly categories as well as by type

of use case. In addition, you can find use cases based on

the automation lifecycle stage or the place in the

network, such as data center, campus, or collaboration.

Finally, you can simply choose the product for which you

want to find use cases, such as IOS XE, Cisco DNA

Center, or ACI (see Figure 1-12).

Figure 1-12 DevNet Automation Exchange Use Case

Library

The Walk category allows you to gain visibility and

insights into your network. You can find various projects

involving gathering telemetry and insight data in a read-

only fashion. These projects can provide auditing

capabilities to ensure the network’s security and

compliance. Because the projects are read-only,

gathering the information has minimal risk of impacting

a network negatively. You could, for example, use

programmability to do a side-by-side configuration

comparison to see what has changed in the configuration

on a device. Using tools like this would be the next step

past using the DevNet sandboxes to write code in a

production environment.

The Run in Automation Exchange is where read/write

actions start taking place in the network environment,

such as when a network operations team begins to

activate policies and signify intent across different

network domains. These types of projects can also allow

for self-service network operations and ensure

compliance with security policies and operational

standards. Automation tools are key to ensuring

consistency and simplicity in day-to-day operations.

Finally, the Fly category is for proactively managing

applications, users, and devices by leveraging a DevOps

workflow. With such projects, you can deploy

applications using continuous integration and delivery

(CI/CD) pipelines while at the same time configuring the

network and keeping consistent application policies. By

combining machine learning capabilities with

automation, a business can shift from a reactive

application development approach to a more holistic

proactive approach—which lowers risk and increases

agility. Each of the Automation Exchange use cases

adheres to the automation lifecycle, which consists of

Day 0–2 operations. Table 1-6 lists the functions of the

automation lifecycle.

Table 1-6 Automation Lifecycle

DayFunctionDescription

0 In

sta

ll

Bringing devices into an initial operational state

1 Co

nfi

gu

re

Applying configurations to devices

2 Op

ti

mi

ze

Implementing dynamic services, optimizing

network behavior, and troubleshooting issues

N M

an

ag

e

Ensuring consistent and continuous operation of

the network, with reduced risk and human error

SUMMARY

This chapter provides a high-level overview of Cisco’s

career certifications and how candidates can choose their

own destiny by picking the areas where they want to

build experience and become certified. This chapter

describes Cisco’s new specialist exams, which focus on

many different technologies, such as Firepower, SD-

WAN, and IoT. This chapter also discusses some of the

benefits of becoming certified, from career advancement

to building confidence to commanding a higher salary in

the workplace. This chapter also details at a high level

the components of Cisco DevNet, the value of the DevNet

community, and DevNet events such as Cisco DevNet

Express. Finally, this chapter introduces DevNet tools

such as DevNet Automation Exchange and DevNet

learning labs.

Chapter 2

So�ware Development and
Design

This chapter covers the following topics:

Software Development Lifecycle: This section covers the Software

Development Lifecycle (SDLC) and some of the most popular SDLC

models, including Waterfall, Agile, and Lean.

Common Design Patterns: This section covers common software

design patterns, including the Model-View-Controller (MVC) and

Observer design patterns.

Linux BASH: This section covers key aspects of the Linux BASH shell

and how to use it.

Software Version Control: This section includes the use of version

control systems in software development.

Git: This section discusses the use of the Git version control system.

Conducting Code Review: This section discusses using peer review

to check the quality of software.

Are you a software developer? This has become an

existential question for traditional network engineers, as

programming and automation have become more

pervasive in the industry. Professional programmers

have picked up software integration with infrastructure

gear as a new service or capability they can add to their

applications. Traditional infrastructure engineers are

being expected to know how to use APIs and automation

tool sets to achieve more agility and speed in IT

operations. The bottom line is that we are all being asked

to pick up new skills to accomplish the business goals

that keep us relevant and employed. This chapter

discusses a few of the fundamental principles and tools

that modern software development requires. You will

learn about Agile, Lean, and common software design

patterns that are used to enable a whole new operational

model. In addition, you will see the importance of

version control and how to use Git to collaborate with

others and share your work with the world. These core

concepts are essential to understanding the influence of

software development methodologies as they pertain to

infrastructure automation.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 2-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 2-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Software Development Lifecycle 1, 2

Common Design Patterns 3, 4

Linux BASH 5, 6

Software Version Control 7

Git 8–10

Conducting Code Review 11

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. What is Waterfall?

1. A description of how blame flows from management on failed

software projects

2. A type of SDLC

3. A serial approach to software development that relies on a fixed

scope

4. All of the above

2. What is Agile?

1. A form of project management for Lean

2. An implementation of Lean for software development

3. A strategy for passing the CCNA DevNet exam

4. A key benefit of automation in infrastructure

3. The Model-View-Controller pattern is often used in

which of the following applications? (Choose three.)

1. Web applications with graphical interfaces

2. Client/server applications with multiple client types

3. PowerShell scripts

4. Django

4. Which of the following are true of the Observer

pattern? (Choose two.)

1. It is a publisher/subscriber pattern.

2. It is a multicast pattern.

3. It is used for configuration management applications and event

handling.

4. It is not commonly used in infrastructure application design.

5. What does BASH stand for?

1. Born Again Shell

2. Basic Shell

3. Bourne Again Shell

4. None of the above

6. Which of the following is the best option for

displaying your current environment variables?

1. env | cat >env.txt

2. env | more

3. export $ENV | cat

4. echo env

7. Which of the following is true of software version

control?

1. It is a naming convention for software releases.

2. It is also known as source code management.

3. It is the same thing as BitKeeper.

4. None of the above are true.

8. Who created Git?

1. Junio Hamano

2. Marc Andreesen

3. John Chambers

4. Linus Torvalds

9. What are the three main structures tracked by Git?

1. Index, head, and local repo

2. Local workspace, index, and local repository

3. Remote repository, head, and local index

4. None of the above

10. What command do you use to add the specific

filename file.py to the Git index?

1. git add .

2. git index file.py

3. git index add .

4. git add file.py

11. Which is one of the key benefits of conducting a

code review?

1. It helps you create higher-quality software

2. You can find weak programmers who need more training

3. It can be used to identify defects in software that are obvious

4. None of the above

FOUNDATION TOPICS

SOFTWARE DEVELOPMENT

LIFECYCLE

Anyone can program. Once you learn a programming

language’s syntax, it’s just a matter of slapping it all

together to make your application do what you want it to

do, right? The reality is, software needs to be built using

a structure to give it sustainability, manageability, and

coherency. You may have heard the phrase “cowboy

coding” to refer to an unstructured software project,

where there is little formal design work, and the

programmer just sort of “shoots from the hip” and slaps

code in with little or no forethought. This is a path that

leads straight to late-night support calls and constant

bug scrubbing. Heaven forbid if you inherit a ball of

spaghetti like this and you are asked to try to fix, extend,

or modernize it. You will more than likely be updating

your resume or packing your parachute for a quick

escape.

To prevent problems from slapdash approaches such as

cowboy coding, disciplines such as architecture and

construction establish rules and standards that govern

the process of building. In the world of software, the

Software Development Lifecycle (SDLC) provides sanity

by providing guidance on building sustainable software

packages. SDLC lays out a plan for building, fixing,

replacing, and making alterations to software.

As shown in Figure 2-1, these are the stages of the SDLC:

Stage 1—Planning: Identify the current use case or problem the

software is intended to solve. Get input from stakeholders, end users,

and experts to determine what success looks like. This stage is also

known as requirements analysis.

Stage 2—Defining: This stage involves analyzing the functional

specifications of the software—basically defining what the software is

supposed to do.

Stage 3—Designing: In this phase, you turn the software

specifications into a design specification. This is a critical stage as

stakeholders need to be in agreement in order to build the software

appropriately; if they aren’t, users won’t be happy, and the project will

not be successful.

Stage 4—Building: Once the software design specification is

complete, the programmers get to work on making it a reality. If the

previous stages are completed successfully, this stage is often

considered the easy part.

Stage 5—Testing: Does the software work as expected? In this stage,

the programmers check for bugs and defects. The software is

continually examined and tested until it successfully meets the original

software specifications.

Stage 6—Deployment: During this stage, the software is put into

production for the end users to put it through its paces. Deployment is

often initially done in a limited way to do any final tweaking or detect

any missed bugs. Once the user has accepted the software and it is in

full production, this stage morphs into maintenance, where bug fixes

and software tweaks or smaller changes are made at the request of the

business user.

Figure 2-1 Software Development Lifecycle

Note

ISO/IEC 12207 is the international standard for

software lifecycle processes, and there are numerous

organizations around the globe that use it for

certification of their software development efforts. It is

compatible with any SDLC models and augments them

from a quality and process assurance standpoint. It

does not, however, replace your chosen SDLC model.

There are quite a few SDLC models that further refine

the generic process just described. They all use the same

core concepts but vary in terms of implementation and

utility for different projects and teams. The following are

some of the most popular SDLC models:

Waterfall

Lean

Agile

Iterative model

Spiral model

V model

Big Bang model

Prototyping models

Luckily, you don’t need to know all of these for the 200-

901 DevNet Associate DEVASC exam. The following

sections cover the ones you should know most about:

Waterfall, Lean, and Agile.

Waterfall

Back in the 1950s, when large companies started to

purchase large mainframe computers to crunch

numbers, no one really knew how to run an IT

organization. It really wasn’t anything that had been

done before, and for the most part, computers were only

really understood by an elite group of scientists.

Programming a mainframe required structure and a

process. This caused a problem for businesses looking to

tap into the capabilities of these new systems since there

wasn’t a well-known method to create business

applications. So they looked around at other industries

for guidance.

The construction industry was booming at the time. The

construction industry followed a rigid process in which

every step along the way was dependent on the

completion of the previous step in the process. If you

want to end up with a building that stays standing and

meets the original design, you can’t start construction

until you have a plan and analyze the requirements for

the building. This thought process mapped nicely to

software development, and the complexity of designing

and constructing a building was similar to that of

creating software applications. Waterfall, which is based

on the construction industry approach, became one of

the most popular SDLC approaches.

As illustrated in Figure 2-2, Waterfall is a serial approach

to software development that is divided into phases:

Requirements/analysis: Software features and functionality needs

are cataloged and assessed to determine the necessary capabilities of

the software.

Design: The software architecture is defined and documented.

Coding: Software coding begins, based on the previously determined

design.

Testing: The completed code is tested for quality and customer

acceptance.

Maintenance: Bug fixes and patches are applied.

Figure 2-2 Waterfall

While this approach has worked successfully over the

years, a number of shortcomings have become

weaknesses in this approach. First, the serial nature of

Waterfall, while easy to understand, means that the

scope of a software project is fixed at the design phase. In

construction, making changes to the first floor of a

building after you have begun the fifth floor is extremely

difficult—and may even be impossible unless you knock

down the building and start from scratch. In essence, the

Waterfall approach does not handle change well at all.

When you finally get to the coding phase of the

application development process, you might learn that

the feature you are building isn’t needed anymore or

discover a new way of accomplishing a design goal;

however, you cannot deviate from the predetermined

architecture without redoing the analysis and design.

Unfortunately, it is often more painful to start over than

to keep building. It is similar to being stuck building a

bridge over a river that no one needs anymore.

The second aspect of Waterfall that is challenging is that

value is not achieved until the end of the whole process.

We write software to automate some business function

or capability—and value is only realized when the

software is in production and producing results. With the

Waterfall approach, even if you are halfway done with a

project, you still have no usable code or value to show to

the business. Figure 2-3 shows this concept.

Figure 2-3 The Value Problem of Waterfall

The third aspect of Waterfall that is challenging is

quality. As mentioned earlier, time is the enemy when it

comes to delivering value. If we had unlimited time, we

could create perfect software every time, but we simply

don’t live in that world. When software developers run

out of time, testing often suffers or is sacrificed in the

name of getting the project out the door.

The three challenges for Waterfall led to the

development of a new way of creating software that was

faster, better, and more adaptive to a rapidly changing

environment.

Lean

After World War II, Japan was in desperate need of

rebuilding. Most of Japan’s production capabilities had

been destroyed, including those in the auto industry.

When Japan tackled this rebuilding, it didn’t concentrate

on only the buildings and infrastructure; it looked at

ways to do things differently. Out of this effort, the

Toyota Production System (TPS) was born. Created by

Taiichi Ohno and Sakichi Toyoda (founder of Toyota),

this management and manufacturing process focuses on

the following important concepts:

Elimination of waste: If something doesn’t add value to the final

product, get rid of it. There is no room for wasted work.

Just-in-time: Don’t build something until the customer is ready to

buy it. Excess inventory wastes resources.

Continuous improvement (Kizan): Always improve your

processes with lessons learned and communication.

While these concepts seem glaringly obvious and

practical, TPS was the first implementation of these

principles as a management philosophy. TPS was the

start of the more generalized Lean manufacturing

approach that was introduced to the Western world in

1991 through a book written by Womack, Jones, and

Roos, The Machine That Changed the World. This book

was based on a five-year study MIT conducted on TPS,

and it has been credited with bringing Lean concepts and

processes beyond the auto industry.

Why spend this time talking about moldy old

management books? Lean led to Agile software

development, which has served as a lightning rod of

change for IT operations.

Agile

Agile is an application of Lean principles to software

development. With Agile, all the lessons learned in

optimizing manufacturing processes have been applied

to the discipline of creating software. In 2001, 17

software developers converged on the Snowbird resort in

Utah to discuss new lightweight development methods.

Tired of missing deadlines, endless documentation, and

the inflexibility of existing software development

practices, these Agile pioneers created the “Manifesto for

Agile Software Development,” which codifies the guiding

principles for Agile development practices. The following

12 principles are the core of the Agile Manifesto:

Customer satisfaction is provided through early and continuous

delivery of valuable software.

Changing requirements, even in late development, are welcome.

Working software is delivered frequently (in weeks rather than

months).

The process depends on close, daily cooperation between business

stakeholders and developers.

Projects are built around motivated individuals, who should be trusted.

Face-to-face conversation is the best form of communication (co-

location).

Working software is the principal measure of progress.

Sustainable development requires being able to maintain a constant

pace.

Continuous attention is paid to technical excellence and good design.

Simplicity—the art of maximizing the amount of work not done—is

essential.

The best architectures, requirements, and designs emerge from self-

organizing teams.

A team regularly reflects on how to become more effective and adjusts

accordingly.

These core tenets were the main spark of the Agile

movement. Mary Poppendieck and Tom Poppendieck

wrote Lean Software Development: An Agile Toolkit in

2003, based on the principles of the Agile Manifesto and

their many years of experience developing software. This

book is still considered one of the best on the practical

uses of Agile.

Developing software through Agile results in very

different output than the slow serial manner used with

Waterfall. With Waterfall, a project is not “finished” and

deployable until the very end. With Agile, the time frame

is changed: Agile uses smaller time increments (often 2

weeks), or “sprints,” that encompass the full process of

analysis, design, code, and test but on a much smaller

aspect of an application. The goal is to finish a feature or

capability for each sprint, resulting in a potentially

shippable incremental piece of software. Therefore, with

Agile, if you are 40% finished with a project, you have

100% usable code. Figure 2-4 shows how this process

looks on a timeline.

Figure 2-4 Agile Development Practices

By leveraging Agile, you can keep adding value

immediately and nimbly adapt to change. If a new

capability is needed in the software, or if a feature that

was planned is determined to no longer be necessary, the

project can pivot quickly and make those adjustments.

COMMON DESIGN PATTERNS

When creating software, you will often run into the same

problem over and over again. You don’t want to reinvent

the wheel each time you need a rolling thing to make

something move. In software engineering, many

common design paradigms have already been created,

and you can reuse them in your software project. These

design patterns make you faster and provide tried-and-

true solutions that have been tested and refined. The

following sections introduce a couple of design patterns

that are really useful for network automation projects:

the Model-View-Controller (MVC) and Observer

patterns. While there are many more that you may be

interested in learning about, these are the ones you will

most likely see on the 200-901 DevNet Associate

DEVASC exam.

Model-View-Controller (MVC) Pattern

The Model-View-Controller (MVC) pattern was one of

the first design patterns to leverage the separation of

concerns (SoC) principle. The SoC principle is used to

decouple an application’s interdependencies and

functions from its other parts. The goal is to make the

various layers of the application—such as data access,

business logic, and presentation (to the end user)—

modular. This modularity makes the application easier to

construct and maintain while also allowing the flexibility

to make changes or additions to business logic. It also

provides a natural organization structure for a program

that anyone can follow for collaborative development. If

you have used a web-based application, more than likely

the app was constructed using an MVC pattern.

Note

Numerous web frameworks use MVC concepts across

many programming languages. Angular, Express, and

Backbone are all written in JavaScript. Django and

Flask are two very popular examples written in Python.

The classical MVC pattern has three main parts:

Model: The model is responsible for retrieving and manipulating data.

It is often tied to some type of database but could be data from a simple

file. It conducts all data operations, such as select, insert, update, and

delete operations. The model receives instructions from the controller.

View: The view is what the end users see on the devices they are using

to interact with the program. It could be a web page or text from the

command line. The power of the view is that it can be tailored to any

device and any representation without changing any of the business

logic of the model. The view communicates with the controller by

sending data or receiving output from the model through the controller.

The view’s primary function is to render data.

Controller: The controller is the intermediary between what the user

sees and the backend logic that manipulates the data. The role of the

controller is to receive requests from the user via the view and pass

those requests on to the model and its underlying data store.

Figure 2-5 shows the interactions between components

of the MVC pattern.

Figure 2-5 MVC Pattern Interactions

Observer Pattern

The Observer pattern was created to address the problem

of sharing information between one object to many other

objects. This type of pattern describes a very useful

behavior for distributed systems that need to share

configuration information or details on changes as they

happen. The Observer pattern is actually very simple and

consists of only two logical components (see Figure 2-6):

Subject: The subject refers to the object state being observed—in other

words, the data that is to be synchronized. The subject has a

registration process that allows other components of an application or

even remote systems to subscribe to the process. Once registered, a

subscriber is sent an update notification whenever there is a change in

the subject’s data so that the remote systems can synchronize.

Observer: The observer is the component that registers with the

subject to allow the subject to be aware of the observer and how to

communicate to it. The only function of the observer is to synchronize

its data with the subject when called. The key thing to understand about

the observer is that it does not use a polling process, which can be very

inefficient with a larger number of observers registered to a subject.

Updates are push only.

Figure 2-6 Observer Pattern

The Observer pattern is often used to handle

communications between the model and the view in the

MVC pattern. Say, for example, that you have two

different views available to an end user. One view

provides a bar graph, and the other provides a scatter

plot. Both use the same data source from the model.

When that data changes or is updated, the two views

need to be updated. This is a perfect job for the Observer

pattern.

LINUX BASH

Knowing how to use Linux BASH is a necessary skill for

working with open-source technologies as well as many

of the tools you need to be proficient with to be

successful in the development world. Linux has taken

over the development world, and even Microsoft has

jumped into the game by providing the Windows

Subsystem for Linux for Windows 10 pro. For the

DEVASC exam, you need to know how to use BASH and

be familiar with some of the key commands.

Getting to Know BASH

BASH is a shell, and a shell is simply a layer between a

user and the internal workings of an operating system. A

user can use the shell to input commands that the

operating system will interpret and perform. Before

graphical user interfaces (GUI) became common, the

shell reigned supreme, and those who knew its

intricacies were revered as some tech wizards. Today that

skill is still in high demand, and without it you will find

yourself struggling as the GUI simply doesn’t make

possible many of the powerful operations available

through the shell.

While there are many shells you can use, BASH, which

stands for Bourne Again Shell, is one of the most

popular. It has been around since 1989 and is the default

shell on most Linux operating systems. Until recently, it

was also the default for the Mac operating system, but

Apple has replaced BASH with Z shell. The commands

and syntax you will learn with BASH are transferable to

Z shell, as it was built to maintain compatibility with

BASH.

BASH is not only a shell for command processing using

standard Linux operating system commands. It can also

read and interpret scripts for automation. These

capabilities are beyond the scope of what you need to

know for the DEVASC exam but would be worth looking

into as you continue your journey as these automation

scripts are where BASH really shines. Like all other

UNIX shells, BASH supports features such as piping

(which involves feeding output from one command as

the input of another command), variables, evaluation of

conditions, and iteration (repeated processing of a

command with if statements). You also have a command

history as part of the shell, where you can use the arrow

keys to cycle through and edit previous commands.

UNIX platforms such as Linux and OSX have built-in

documentation for each command the operating system

uses. To access help for any command, type man (short

for manual) and then the command you are curious

about. The output gives you a synopsis of the command,

any optional flags, and required attributes. Example 2-1

shows the man page for the man command.

Example 2-1 Example of the Manual Page for the man

Command

Click here to view code image

$ man man

man(1)
man(1)

NAME

 man - format and display the on-line
manual pages

SYNOPSIS
 man [-acdfFhkKtwW] [--path] [-m
system] [-p string] [-C config_file]
 [-M pathlist] [-P pager] [-B browser] [-
H htmlpager] [-S section_list]
 [section] name ...

DESCRIPTION
 man formats and displays the on-line
manual pages. If you specify sec-
 tion, man only looks in that section of
the manual. name is normally
 the name of the manual page, which is
typically the name of a command,
 function, or file. However, if name
contains a slash (/) then man
 interprets it as a file specification,
so that you can do man ./foo.5
 or even man /cd/foo/bar.1.gz.

 See below for a description of where man
looks for the manual page
 files.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#pexa2-1

<output cut for brevity>

Not every command is intended to be run with user-level

privileges. You can temporarily upgrade your privileges

by prepending the sudo command before you execute a

command that needs higher-level access. You will often

be prompted for a password to verify that you have the

right to use sudo. You need to be careful when using

sudo, as the whole idea of reduced privileges is to

increase security and prevent average users from

running commands that are dangerous. Use sudo only

when required, such as when you need to kick off an

update for your Linux distribution, which you do by

using the apt-get update command:

$ sudo apt-get update

As mentioned earlier, one of the most powerful features

of BASH is something called piping. This feature allows

you to string together commands. For example, the cat

command displays the contents of a file to the screen.

What if a file contains too much to fit on a single screen?

The cat command will happily spew every character of

the file at the screen until it reaches the end, regardless

of whether you could keep up with it. To address this,

you can pipe the output of cat to the more command to

stream the content from cat to more, which gives you a

prompt to continue one page at a time. To use the piping

functionality, you use the pipe character (|) between

commands, as shown in Example 2-2.

Example 2-2 Output of the cat Command Piped to the

more Command

Click here to view code image

$cat weather.py | more

import json

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#pexa2-2

import urllib.request
from pprint import pprint

def get_local_weather():

 weather_base_url =
'http://forecast.weather.gov/MapClick.php?
FcstType=json&'

 places = {
 'Austin': ['30.3074624',
'-98.0335911'],
 'Portland': ['45.542094',
'-122.9346037'],
 'NYC': ['40.7053111', '-74.258188']
 }

 for place in places:
 latitude, longitude = places[place][0],
places[place][1]
 weather_url = weather_base_url + "lat="
+ latitude + "&lon=" + longitude
 # Show the URL we use to get the
weather data. (Paste this URL into your
 browser!)
 # print("Getting the current weather
for", place, "at", weather_url, ":")

 page_response =
urllib.request.urlopen(weather_url).read()
<output cut for brevity>

Directory Navigation

A UNIX-based file system has a directory tree structure.

The top of the tree is called the root (as it’s an upside-

down tree), and you use the forward slash (/) to refer to

root. From root you have numerous directories, and

under each directory you can have more directories or

files. Figure 2-7 shows a UNIX directory structure.

Figure 2-7 UNIX Directory Structure

Whenever you call a file, you have to supply its path.

Everything you execute in UNIX is in relationship to

root. To execute a file in the directory you are in, you can

use ./filename.sh, where the leading . is simply an alias

for the current directory.

In addition to the root file system, each user has a home

directory that the user controls and that stores the user’s

individual files and applications. The full path to the

home directory often looks something like

/home/username on Linux and /Users/username on

Mac OS X, but you can also use the tilde shortcut (~/) to

reference the home directory.

The following sections describe some of the commands

most commonly used to interact with the BASH shell and

provide examples of their options and use.

cd

The cd command is used to change directories and move

around the file system. You can use it as follows:

$ cd / Changes directory to the root directory

$ cd

/home/usernam

e

Changes directory to the

/home/username directory

$ cd test Changes directory to the test folder

$ cd .. Moves up one directory

pwd

If you ever get lost while navigating around the file

system, you can use the pwd command to print out your

current working directory path. You can use it as follows:

$ pwd Print your current working directory

ls

Once you have navigated to a directory, you probably

want to know what is in it. The ls command gives you a

list of the current directory. If you execute it without any

parameters, it just displays whatever is in the directory.

It doesn’t show any hidden files (such as configuration

files). Anything that starts with a . does not show up in a

standard directory listing, and you need to use the -a flag

to see all files, including hidden files. By using the -l flag,

you can see permissions and the user and group that own

the file or directory. You can also use the wildcard * to

list specific filename values; for example, to find any files

with test as a part of the name, you can use ls *test*,

which would match both 1test and test1. You can use the

ls command as follows:

$ ls Lists files and directories in the current

working directory

$ ls -a Lists everything in the current directory,

including hidden files

$ ls

/home/usern

ame

Lists everything in the /home/username

directory

$ ls -l Lists permissions and user and group

ownership

$ ls -F Displays files and directories and denotes

which are which

mkdir

To create a directory, you use the mkdir command. If

you are in your home directory or in another directory

where you have the appropriate permissions, you can use

this command without sudo. You can use the mkdir

command as follows:

$ mkdir test Makes a new directory called test in the

current working directory if you have

permission

$ mkdir

/home/usern

ame/test

Makes a new directory called test at

/home/username/test

File Management

Working with files is easy with BASH. There are just a

few commands that you will use often, and they are

described in the following sections.

cp

The purpose of the cp command is to copy a file or folder

someplace. It does not delete the source file but instead

makes an identical duplicate. When editing configuration

files or making changes that you may want to roll back,

you can use the cp command to create a copy as a sort of

backup. The command requires several parameters: the

name of the file you want to copy and where you want to

copy it to and the name of the copy. When copying the

contents of a folder, you need to use the -r, or recursive,

flag. You can use the cp command as follows:

$ cp sydney.txt

sydney2.txt

Copies a file called sydney.txt from

the current directory and names the

copy sydney2.txt

$ cp

/home/username/

sydney.txt

~/sydney2.txt

Copies a file as described above but

using the full path and the home

directory path

$ cp -r folder

folder.old

Copies a folder

mv

The mv command allows you to move a file or folder

from one directory to another, and it is also used to

rename files or folders from the command line, as BASH

does not have a dedicated renaming function. The mv

command takes a source and destination, just as cp

does. You can use the -i flag to create an interactive

option prompt when moving files that exist at the

destination. The -f flag forces the move and overwrites

any files at the destination. Wildcards also work to select

multiple source files or directories. You can use the mv

command as follows:

$ mv caleb.txt

calebfinal.txt

Renames a file called caleb.txt to

calebfinal.txt

$ mv

/home/username/cal

Renames a file as described above

but using full paths

eb.txt

~/calebfinal.txt

$ mv -i *

/home/username/ne

w/

Moves all files and directories in

the current folder to a directory

called new

rm

To delete a file or directory, you use the rm command. If

the item you are deleting is a file or an empty directory,

you just need to supply the name and press Enter. On the

other hand, if you try to delete a directory that has files

in it, rm tells you that the directory is not empty. In that

case, you can use the -rf flag to force the deletion. You

can use the rm command as follows:

$ rm

test.txt

Deletes the file test.txt in the current working

directory

$ rm -rf

test

Forces the deletion of the folder test and

everything in it

touch

The touch command is used to create a file and/or

change the timestamps on a file’s access without opening

it. This command is often used when a developer wants

to create a file but doesn’t want to put any content in it.

You can use the touch command as follows:

$ touch

emptyfile.txt

Creates an empty file named

emptyfile.txt

$ touch

file{1..20}.txt

Bulk creates files from file1.txt to

file20.txt

cat

The cat (which stands for concatenate) command allows

you to view or create files and also pipe to other

commands. It’s one of the most useful commands in

UNIX when it comes to working with files. You can use

the cat command as follows:

$cat

file1.txt

Displays the contents of file1.txt

$cat

file1.txt |

more

Displays the contents of file1.txt and pipes the

output to more to add page breaks

$cat

>file2.txt

Sends a user’s typed or copied content from the

command line to file2.txt

Environment Variables

BASH environment variables contain information about

the current session. Environment variables are available

in all operating systems and are typically set when you

open your terminal from a configuration file associated

with your login. You set these variables with similar

syntax to how you set them when programming. You do

not often use these variables directly, but the programs

and applications you launch do. You can view all of your

currently set environment variables by entering the env

command. Since there can be more entries than you have

room to display on a single terminal page, you can pipe

the results to the more command to pause between

pages:

$env |

more

Shows all environment variables with page

breaks

If you execute this command, you are likely to notice a

lot of keywords with the = sign tied to values. One

environment variable that you use every time you

execute a command is the PATH variable. This is where

your shell looks for executable files. If you add a new

command and can’t execute it, more than likely the place

where the command was copied is not listed in your

PATH. To view any variable value, you can use the echo

command and the variable you want to view. You also

need to tell BASH that it’s a variable by using the $ in

front of it. Here’s an example:

Click here to view code image

$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Applications/VMware

Fusion.app/Contents/Public:/opt/X11/bin

To add a new value to the PATH variable, you can’t just

type $PATH=/new_directory because the operating

system reads the environment variables only when the

terminal session starts. To inform Linux that an

environment variable needs to be updated, you use the

export command. This command allows you to append

your additional path to BASH and exists for the duration

of the session. Make sure you add the : or , in front of

your new value, depending on your operating system.

The following example is for a Linux-style OS:

Click here to view code image

$ export PATH=$PATH:/Home/chrijack/bin

When you end your terminal session, the changes you

made are not saved. To retain the changes, you need to

write the path statement to your .bashrc (or .zshrc if

using Z shell) profile settings. Anything written here will

be available anytime you launch a terminal. You can

simply copy, add the previous command to the end of the

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg38-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg38-2

.bashrc with your favorite text editor, or use the

following command:

Click here to view code image

$ echo "export PATH=$PATH:/Home/chrijack/bin" >>

.bashrc

This addition becomes active only after you close your

current session or force it to reload the variable. The

source command can be used to reload the variables

from the hidden configuration file .bashrc:

$ source ~/.bashrc

The following command does the same thing as the

previous one because . is also an alias for the source

command:

$. ~/.bashrc

There are many more tricks you can uncover with BASH.

You will get plenty of chances to use it as you study for

the DEVASC exam.

SOFTWARE VERSION CONTROL

The term version control is used to describe the process

of saving various copies of a file or set of files in order to

track changes made to those files. This description

highlights how incredibly useful it is to the world of

programming. Software version control (SVC) typically

involves a database that stores current and historical

versions of source code to allow multiple people or teams

to work on it at the same time. If a mistake is made and

you want to go back a revision (or to any previous

version), SVC is the answer. You may also hear it called

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg38-3

revision control or source control, but it all falls under

the topic of software configuration management. Once

you have used an SVC, you will quickly become a believer

in its power and won’t want to go back to using manual

processes again.

If you have a team of developers working on a project, all

writing new code or changing previously written code,

losing those files could set you back weeks or months.

Version control can protect your code by allowing

changes to be checked in (through a process known as a

code commit) to a hierarchical tree structure of folders

with files in them. You often don’t know what a

developer might need to change or has changed, but the

version control system does. Each check-in is tagged with

who made the change and what the person changed

within the code. Instead of using inefficient techniques

such as file locking, a version control system handles

concurrent check-ins, allowing two programmers to

commit code at the same time.

Another aspect of a version control system is the ability

to branch and merge code built independently. This is

very useful if you are writing code on a part of an

application that could conflict with another part written

by another team. By creating a branch, you effectively

create a separate work stream that has its own history

and does not impact the main “trunk” of the code base.

Once the code is written and any conflicts are resolved,

the code from the branch can be merged back into the

main trunk. Many application developers use this

technique for new features or application revisions.

Can you write software without a version control system?

Sure, but why would you? A lot of version control

software options are available, many of them free, and it

is good practice to always use a version control system to

store your code. Git is one of the most commonly used

version control systems today, and the 200-901 DevNet

Associate DEVASC exam will test your knowledge of it,

so the next section covers how to use Git.

GIT

If you are working with version control software, chances

are it is Git. A staggering number of companies use Git,

which is free and open source. In 2005, Linus Torvalds

(the father of Linux) created Git as an alternative to the

SCM system BitKeeper, when the original owner of

BitKeeper decided to stop allowing free use of the system

for Linux kernel development. With no existing open-

source options that would meet his needs, Torvalds

created a distributed version control system and named

it Git. Git was created to be fast and scalable, with a

distributed workflow that could support the huge

number of contributors to the Linux kernel. His creation

was turned over to Junio Hamano in 2006, and it has

become the most widely used source management

system in the world.

Note

GitHub is not Git. GitHub is a cloud-based social

networking platform for programmers that allows

anyone to share and contribute to software projects

(open source or private). While GitHub uses Git as its

version control system underneath the graphical front

end, it is not directly tied to the Git open-source

project (much as a Linux distribution, such as Ubuntu

or Fedora, uses the Linux kernel but is independently

developed from it).

Understanding Git

Git is a distributed version control system built with

scalability in mind. It uses a multi-tree structure, and if

you look closely at the design, you see that it looks a lot

like a file system. (Linus Torvalds is an operating system

creator after all.) Git keeps track of three main

structures, or trees (see Figure 2-8):

Local workspace: This is where you store source code files, binaries,

images, documentation, and whatever else you need.

Staging area: This is an intermediary storage area for items to be

synchronized (changes and new items).

Head, or local repository: This is where you store all committed

items.

Figure 2-8 Git Tree Structure

Another very important concept with Git is the file

lifecycle. Each file that you add to your working directory

has a status attributed to it. This status determines how

Git handles the file. Figure 2-9 shows the Git file status

lifecycle, which includes the following statuses:

Untracked: When you first create a file in a directory that Git is

managing, it is given an untracked status. Git sees this file but does not

perform any type of version control operations on it. For all intents and

purposes, the file is invisible to the rest of the world. Some files, such as

those containing settings or passwords or temporary files, may be

stored in the working directory, but you may not want to include them

in version control. If you want Git to start tracking a file, you have to

explicitly tell it to do so with the git add command; once you do this,

the status of the file changes to tracked.

Unmodified: A tracked file in Git is included as part of the repository,

and changes are watched. This status means Git is watching for any file

changes that are made, but it doesn’t see any yet.

Modified: Whenever you add some code or make a change to the file,

Git changes the status of the file to modified. Modified status is where

Git sees that you are working on the file but you are not finished. You

have to tell Git that you are ready to add a changed (modified) file to

the index or staging area by issuing the git add command again.

Staged: Once a changed file is added to the index, Git needs to be able

to bundle up your changes and update the local repository. This process

is called staging and is accomplished through git commit. At this

point, your file status is moved back to the tracked status, and it stays

there until you make changes to the file in the future and kick off the

whole process once again.

Figure 2-9 Git File Status Lifecycle

If at any point you want to see the status of a file from

your repository, you can use the extremely useful

command git status to learn the status of each file in

your local directory.

You can pull files and populate your working directory

for a project that already exists by making a clone. Once

you have done this, your working directory will be an

exact match of what is stored in the repository. When

you make changes to any source code or files, you can

add your changes to the index, where they will sit in

staging, waiting for you to finish all your changes or

additions. The next step is to perform a commit and

package up the changes for submission (or pushing) to

the remote repository (usually a server somewhere local

or on the Internet). This high-level process uses

numerous commands that are covered in the next

section. If you understand Git’s tree structure, figuring

out what command you need is simple. Figure 2-10

shows the basic Git workflow.

Figure 2-10 Git Workflow

Using Git

Git may not come natively with your operating system. If

you are running a Linux variation, you probably already

have it. For Mac and Windows you need to install it. You

can go to the main distribution website (https://git-

scm.com) and download builds for your operating

system directly. You can install the command-line

version of Git and start using and practicing the

commands discussed in this section. There are also GUI-

based Git clients, but for the purposes of the DEVASC

exam, you should focus your efforts on the command

line. Git commands come in two different flavors. The

standard user-friendly commands are called “porcelain,”

and the more complicated inner workings of Git

manipulating commands are called “plumbing.” At its

core, Git is a content-addressable file system. The

version control system part was layered on top to make it

easier to use. For the DEVASC exam, you need to know

your way around Git at a functional level (by using the

porcelain). There is a significant amount of manipulation

you can do with Git at the plumbing level. Most of the

https://git-scm.com/

plumbing commands and tools are not ones you will be

using on a regular basis and are not covered on the exam.

Cloning/Initiating Repositories

Git operates on a number of processes that enable it to

do its magic. The first of these processes involves

defining a local repository by using either git clone or

git init. The git clone command has the following

syntax:

Click here to view code image

git clone (url to repository) (directory to clone

to)

If there is an existing repository you are planning to start

working on, like one from GitHub that you like, you use

git clone. This command duplicates an existing Git

project from the URL provided into your current

directory with the name of the repository as the directory

name. You can also specify a different name with a

command-line option. Example 2-3 shows an example of

cloning a repository and listing the files in the newly

created local repository.

Example 2-3 Cloning a GitHub Repository

Click here to view code image

#git clone
https://github.com/CiscoDevNet/pyats-coding-
101.git
Cloning into 'pyats-coding-101'...
remote: Enumerating objects: 71, done.
remote: Total 71 (delta 0), reused 0 (delta 0),
pack-reused 71
Unpacking objects: 100% (71/71), done.
#cd pyats-coding-101
#pyats-coding-101 git:(master) ls
COPYRIGHT coding-102-parsers
LICENSE coding-103-
yaml
README.md coding-201-
advanced-parsers

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg42
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#pexa2-3

coding-101-python
 git init (directory name)

To create a completely new repository, you need to create

a directory. Luckily, git init can be supplied with a

directory name as an option to do this all in one

command:

Click here to view code image

#git init newrepo
Initialized empty Git repository in
/Users/chrijack/Documents/
GitHub/newrepo/.git/

#newrepo git:(master)

What you just created is an empty repository, and you

need to add some files to it. By using the touch

command, you can create an empty file. The following

example shows how to view the new file in the repository

with the directory (ls) command:

Click here to view code image

#newrepo git:(master) touch newfile

#newrepo git:(master) ls

newfile

Once the file is added, Git sees that there is something

new, but it doesn’t do anything with it at this point. If

you type git status, you can see that Git identified the

new file, but you have to issue another command to add

it to index for Git to perform version control on it. Here’s

an example:

Click here to view code image

git status

On branch master

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg43-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg43-2
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg43-3

No commits yet

Untracked files:
 (use "git add <file>..." to include in what
will be committed)

 newfile

nothing added to commit but untracked files
present (use "git add"
to track)

Git is helpful and tells you that it sees the new file, but

you need to do something else to enable version control

and let Git know to start tracking it.

Adding and Removing Files

When you are finished making changes to files, you can

add them to the index. Git knows to then start tracking

changes for the files you identified. You can use the

following commands to add files to an index:

git add . or -A: Adds everything in the entire local workspace.

git add (filename): Adds a single file.

The git add command adds all new or deleted files and

directories to the index. Why select an individual file

instead of everything with the . or -A option? It comes

down to being specific about what you are changing and

adding to the index. If you accidently make a change to

another file and commit everything, you might

unintentionally make a change to your code and then

have to do a rollback. Being specific is always safest. You

can use the following commands to add the file newfile to

the Git index (in a process known as staging):

Click here to view code image

git add newfile

git status

On branch master

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg44-1

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: newfile

Removing files and directories from Git is not as simple

as just deleting them from the directory itself. If you just

use file system commands to remove files, you may

create headaches as the index can become confused. You

can remove files and directories from Git, but it requires

an extra step of adding the file deletion to the index

(which sounds counterintuitive, right?). The best way is

to use the git rm command, which has the following

syntax:

Click here to view code image

git rm (-r) (-f) (folder/file.py)

This command removes a file or directory and syncs it

with the index in one step. If you want to remove a

directory that is not empty or has subdirectories, you can

use the -r option to remove recursively. In addition, if

you add a file to Git and then decide that you want to

remove it, you need to use the -f option to force removal

from the index. This is required only if you haven’t

committed the changes to the local repository. Here is an

example:

touch removeme.py

git add .

ls

newfile removeme.py

git rm -f removeme.py

rm 'removeme.py'

git mv is the command you use to move or rename a file,

directory, or symbolic link. It has the following syntax:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg44-0

Click here to view code image

git mv (-f) (source) (destination)

For this command you supply a source argument and a

destination argument to indicate which file or directory

you want to change and where you want to move it.

(Moving in this case is considered the same as

renaming.) Keep in mind that when you use this

command, it also updates the index at the same time, so

there is no need to issue git add to add the change to

Git. You can use the -f argument if you are trying to

overwrite an existing file or directory where the same

target exists. The following example shows how to

change a filename in the same directory:

Click here to view code image

ls

oldfile.py

git mv oldfile.py newfile.py

ls

newfile.py

Committing Files

When you commit a file, you move it from the index or

staging area to the local copy of the repository. Git

doesn’t send entire updates; it sends just changes. The

commit command is used to bundle up those changes to

be synchronized with the local repository. The command

is simple, but you can specify a lot of options and tweaks.

In its simplest form, you just need to type git commit.

This command has the following syntax:

Click here to view code image

git commit [-a] [-m] <"your commit message">

The -a option tells Git to add any changes you make to

your files to the index. It’s a quick shortcut instead of

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg44-0-0
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg45-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg45

using git add -A, but it works only for files that have

been added at some point before in their history; new

files need to be explicitly added to Git tracking. For every

commit, you will need to enter some text about what

changed. If you omit the -m option, Git automatically

launches a text editor (such as vi, which is the default on

Linux and Mac) to allow you to type in the text for your

commit message. This is an opportunity to describe the

changes you made so others know what you did. It’s

tempting to type in something silly like “update” or “new

change for a quick commit,” but don’t fall into that trap.

Think about the rest of your team. Here is an example of

the commit command in action:

Click here to view code image

git commit -a -m "bug fix 21324 and 23421"

[master e1fec3d] bug fix 21324 and 23421

 1 file changed, 0 insertions(+), 0 deletions(-)

 delete mode 100644 newfile

Note

As a good practice, use the first 50 characters of the

commit message as a title for the commit followed by a

blank line and a more detailed explanation of the

commit. This title can be used throughout Git to

automate notifications such as sending an email

update on a new commit with the title as the subject

line and the detailed message as the body.

Pushing and Pulling Files

Up until this point in the chapter, you have seen how Git

operates on your local computer. Many people use Git in

just this way, as a local version control system to track

documents and files. Its real power, however, is in its

distributed architecture, which enables teams from

around the globe to come together and collaborate on

projects.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg45-2

In order to allow Git to use a remote repository, you have

to configure Git with some information so that it can find

it. When you use the command git clone on a

repository, Git automatically adds the remote repository

connection information via the URL entered with the

clone command.

When using the git init command, however, you need to

make sure that you enter the information to find the

remote location for the server with the git remote add

command, which has the following syntax:

git remote add (name) (url)

git remote -v can be used to show which remote

repository is configured. The following example shows

how to add a remote repository and then display what is

configured:

Click here to view code image

git remote add origin

https://github.com/chrijack/devnetccna.git

git remote -v

origin

https://github.com/chrijack/devnetccna.git (fetch)

origin

https://github.com/chrijack/devnetccna.git (push)

What if you make a mistake or want to remove remote

tracking of your repository? This can easily be done with

the git remote rm command, which has the following

syntax:

git remote rm (name)

Here is an example of this command in action:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg46-1

git remote rm origin

git remote -v

In order for your code to be shared with the rest of your

team or with the rest of the world, you have to tell Git to

sync your local repository to the remote repository (on a

shared server or service like GitHub). The command git

push, which has the following syntax, is useful in this

case:

Click here to view code image

git push (remotename) (branchname)

This command needs a remote name, which is an alias

used to identify the remote repository. It is common to

use the name origin, which is the default if a different

name is not supplied. In addition, you can reference a

branch name with git push in order to store your files in

a separately tracked branch from the main repository.

(You can think of this as a repository within a

repository.) The sole purpose of the git push command

is to transfer your files and any updates to your Git

server. The following is an example of the git push

command in use:

Click here to view code image

git push origin master

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Writing objects: 100% (3/3), 210 bytes | 210.00

KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://github.com/chrijack/devnetccna.git

 * [new branch] master -> master

Branch 'master' set up to track remote branch

'master' from 'ori-

gin'.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg46
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg46-3

The command git pull syncs any changes that are on the

remote repository and brings your local repository up to

the same level as the remote one. It has the following

syntax:

Click here to view code image

git pull (remotename) (branchname)

Whenever you begin to work with Git, one of the first

commands you want to issue is pull so you can get the

latest code from the remote repository and work with the

latest version of code from the master repository. git

pull does two things: fetches the latest version of the

remote master repository and merges it into the local

repository. If there are conflicts, they are handled just as

they would be if you issued the git merge command,

which is covered shortly. Example 2-4 shows an example

of using the git pull command.

Example 2-4 git pull Command

Click here to view code image

git pull origin master
remote: Enumerating objects: 9, done.
remote: Counting objects: 100% (9/9), done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 8 (delta 1), reused 0 (delta 0),
pack-reused 0
Unpacking objects: 100% (8/8), done.
From https://github.com/chrijack/devnetccna
 * branch master -> FETCH_HEAD
 8eb16e3..40aaf1a master ->
origin/master
Updating 8eb16e3..40aaf1a
Fast-forward
2README.md | 3 +++
Picture1.png | Bin 0 -
> 83650 bytes
Picture2.jpg | Bin 0 -
> 25895 bytes
Picture3.png | Bin 0 -
> 44064 bytes
 4 files changed, 3 insertions(+)
 create mode 100644 2README.md
 create mode 100644 Picture1.png

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg47
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#pexa2-4

 create mode 100644 Picture2.jpg
 create mode 100644 Picture3.png

Working with Branches

Branches are an important workflow in software

development. Say you want to add a new feature to your

software or want to fix a bug. You can create a branch in

order to add a separate development workspace for your

project and prevent changes from destabilizing the main

project (the master branch in Git). Remember that Git

keeps a running history of every commit you make. This

history (called a snapshot in Git terminology) details all

the changes to the software over time and ensures the

integrity of this record by applying an SHA-1 hash. This

hash is a 40-character string that is tied to each and

every commit. Example 2-5 shows an example of three

commits with a hash, displayed using the git log

command.

Example 2-5 git log Command Output

Click here to view code image

#git log

commit 40aaf1af65ae7226311a01209b62ddf7f4ef88c2
(HEAD -> master, origin/master)
Author: Chris Jackson <chrijack@cisco.com>
Date: Sat Oct 19 00:00:34 2019 -0500

 Add files via upload

commit 1a9db03479a69209bf722b21d8ec50f94d727e7d
Author: Chris Jackson <chrijack@cisco.com>
Date: Fri Oct 18 23:59:55 2019 -0500

 Rename README.md to 2README.md

commit 8eb16e3b9122182592815fa1cc029493967c3bca
Author: Chris Jackson <chrijack@me.com>
Date: Fri Oct 18 20:03:32 2019 -0500

 first commit

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#pexa2-5

Notice that the first entry is the current commit state, as

it is referenced by HEAD. The other entries show the

chronological history of the commits. Figure 2-11 shows a

visual representation of this simple three-step commit

history; for brevity, only the first four values of the hash

are used.

Figure 2-11 Git Commit History

To add a Git branch, you simply issue the git branch

command and supply the new branch with a name, using

the following syntax:

Click here to view code image

git branch (-d) <branchname> [commit]

You can alternatively specify a commit identified by a tag

or commit hash if you want to access a previous commit

from the branch history. By default, Git selects the latest

commit. In addition, you can delete a branch when you

no longer need it but using the -d argument. The

following example shows how to create a branch and

display the current branches with the git branch

command with no argument:

git branch newfeature

git branch

* master

 newfeature

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg48

The * next to master shows that the branch you are

currently in is still master, but you now have a new

branch named newfeature. Git simply creates a pointer

to the latest commit and uses that commit as the start for

the new branch. Figure 2-12 shows a visual

representation of this change.

Figure 2-12 Adding a Branch

In order to move to the new branch and change your

working directory, you have to use the git checkout

command, which has the following syntax:

Click here to view code image

git checkout [-b] (branchname or commit)

The -b argument is useful for combining the git branch

command with the checkout function and saves a bit of

typing by creating the branch and checking it out

(switching to it) all at the same time. This example

moves Head on your local machine to the new branch, as

shown in Figure 2-13:

Click here to view code image

#git checkout newfeature

Switched to branch 'newfeature'

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg49
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg49-1

Figure 2-13 Changing Head to a New Branch

Now you have a separate workspace where you can build

your feature. At this point, you will want to perform a git

push to sync your changes to the remote repository.

When the work is finished on the branch, you can merge

it back into the main code base and then delete the

branch by using the command git branch -d

(branchname).

Merging Branches

The merge process in Git is used to handle the combining

of multiple branches into one. The git merge command

is used to make this easier on the user and provide a

simple way to manage the changes. It has the following

syntax:

Click here to view code image

git merge (branch to merge with current)

To understand the merge process, it helps to take a look

at your two branches. Figure 12-14 shows all of the

commits that have taken place as part of the feature

build. In addition, you can see other commits that have

also occurred on the master branch.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg50

Figure 2-14 Two Branches with Commits

In order to get the two branches merged, Git has to

compare all the changes that have occurred in the two

branches. You have a text file that exists in both the

master branch and the newfeature branch, and for

simplicity’s sake, there are just a couple of lines of text.

Figure 12-15 shows the master branch text file.

Figure 2-15 Master Branch Text File

In the newfeature branch, this text file has been modified

with some new feature code. Figure 12-16 shows a simple

change made to the text file.

Figure 2-16 Changes to the Text File in the

newfeature Branch

On the newfeature branch, you can issue the following

commands to add the changes to the index and then

commit the change:

Click here to view code image

#git add .

#git commit -a -m "new feature"

Now the branch is synced with the new changes, and you

can switch back to the master branch with the following

command:

Click here to view code image

#git checkout master

Switched to branch 'master'

From the master branch, you can then issue the git

merge command and identify the branch to merge with

(in this case, the newfeature branch):

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg51-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg51-2
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg51-3

git merge newfeature

Updating 77f786a..dd6bce5

Fast-forward

 text1 | 1 +

 1 file changed, 1 insertion(+)

In this very simple example, no changes were made to

the master branch, and Git was able to automatically

merge the two branches and create a new combined

commit that had the new content from the newfeature

branch. Notice that the output above says “Fast-

forward”; this refers to updating past the changes in the

branch, which is much like fast-forwarding through the

boring parts of a movie. At this point, you can delete the

branch newfeature, as the code in it has been moved to

master. Figure 2-17 illustrates how this is done: Git

creates a new commit that has two sources.

Figure 2-17 Git Merge Between Two Branches

Handling Conflicts

Merging branches is a very useful capability, but what

happens if the same file is edited by two different

developers? You can have a conflict in terms of which

change takes precedence. Git attempts to handle merging

automatically, but where there is conflict, Git relies on

human intervention to decide what to keep. In the

previous example, if there had been changes made to

text1 in both the master branch and the newfeature

branch, you would have seen the following message after

using the command git merge:

Click here to view code image

#git merge newfeature

Auto-merging text1

CONFLICT (content): Merge conflict in text1

Automatic merge failed; fix conflicts and then

commit the result.

In addition, text1 would look as shown in Figure 2-18

(which shows the conflicting merge).

Figure 2-18 Git Conflicting Merge

Git shows you that “line 3” was added to text1 on the

master branch and “new feature code” was added to text1

on the newfeature branch. Git is letting you delete one or

keep both. You can simply edit the file, remove the parts

that Git added to highlight the differences, and save the

file. Then you can use git add to index your changes and

git commit to save to the local repository, as in the

following example:

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg52-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg52-2

#git add .

#git commit -m "merge conflict fixed"

[master fe8f42d] merge conflict fixed

Comparing Commits with diff

The diff command is one of the most powerful Git tools.

It allows you to compare files and text to see which you

want to use if there are multiple options. The ability to

compare specific commits in Git makes it easier to know

what to keep and what to discard between two similar

versions of code.

The diff command takes two sets of inputs and outputs

the differences or changes between them. This is its

syntax:

Click here to view code image

git diff [--stat] [branchname or commit]

git diff looks at the history of your commits, individual

files, branches, and other Git resources. It’s a very useful

tool for troubleshooting issues as well as comparing code

between commits. It has a lot of options and command-

line parameters, which makes it a bit of a Swiss Army

knife in terms of functionality. One of the most useful

functions of diff is to be able to see the differences

between the three Git tree structures. The following are

variations of the git diff command that you can use:

git diff: This command highlights the differences between your

working directory and the index (that is, what isn’t yet staged).

git diff --cached: This command shows any changes between the

index and your last commit.

git diff HEAD: This command shows the differences between your

most recent commit and your current working directory. It is very

useful for seeing what will happen with your next commit.

The following is an example of executing git diff --

cached after text2 is added to the index:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg53

Click here to view code image

#git diff --cached

diff --git a/text2 b/text2

new file mode 100644

index 0000000..b9997e5

--- /dev/null

+++ b/text2

@@ -0,0 +1 @@

+new bit of code

git diff identified the new file addition and shows the

a/b comparison. Since this is a new file, there is nothing

to compare it with, so you see --- /dev/null as the a

comparison. In the b comparison, you see +++ b/text2,

which shows the addition of the new file, followed by

stacks on what was different. Since there was no file

before, you see -0,0 and +1. (The + and - simply denote

which of the two versions you are comparing. It is not

actually a -0, which would be impossible.) The last line

shows the text that was added to the new file. This is a

very simple example with one line of code. In a big file,

you might see a significant amount of text.

Another very useful capability of git diff is to compare

branches. By using git diff (branchname), you can see

the differences between a file in the branch you are

currently in and one that you supply as an argument. The

following compares text1 between the branches master

and newfeature, where you can see that line 3 is present

on newfeature branch’s text1 file:

Click here to view code image

#git diff newfeature text1

 diff --git a/text1 b/text1

index 45c2489..ba0a07d 100644

--- a/text1

+++ b/text1

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg54-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch02_images.xhtml#ppg54-2

@@ -1,3 +1,4 @@

 line 1

 line 2

+line 3

 new feature code

This section has covered quite a bit of the syntax and

commands that you will see on a regular basis when

working with Git. You need to spend some time working

with these commands on your local machine and become

familiar with them so you will be ready for the 200-901

DevNet Associate DEVASC exam. Make sure you are

using resources such as Git documentation on any

command you don’t understand or for which you want to

get deeper insight. All of these commands have a

tremendous amount of depth for you to explore.

CONDUCTING CODE REVIEW

Every good author needs an editor. This book wouldn’t

have been even half as understandable if it hadn’t been

for the fact that we had other people check our work for

comprehension and technical accuracy. Why should code

you write be treated any differently? The intent behind a

code review process is to take good code and make it

better by showing it to others and having them critique it

and look for potential errors. When you develop

software, the vast majority of your time is spent by

yourself—just you and the keyboard. Sometimes when

you are this close to a software project, you miss errors

or use ineffective coding techniques; a simple code

review can quickly uncover such issues.

Beyond the aspects mentioned above, why should you

conduct code reviews? The following are a few common

benefits of code review:

It helps you create higher-quality software.

It enables your team to be more cohesive and deliver software projects

on time.

It can help you find more defects and inefficient code that unit tests and

functional tests might miss, making your software more reliable.

There are many ways to conduct code reviews. Some

organizations use specialized applications such as Gerrit,

and others conduct reviews as if they were professors

grading college papers. Whatever process you use, the

following are some good practices to help make your

code review effective:

Use a code review checklist that includes organization-specific practices

(naming conventions, security, class structures, and so on) and any

areas that need special consideration. The goal is to have a repeatable

process that is followed by everyone.

Review the code, not the person who wrote it. Avoid being robotic and

harsh so you don’t hurt people’s feeling and discourage them. The goal

is better code, not disgruntled employees.

Keep in mind that code review is a gift. No one is calling your baby ugly.

Check your ego at the door and listen; the feedback you receive will

make you a better coder in the long run.

Make sure the changes recommended are committed back into the code

base. You should also share findings back to the organization so that

everyone can learn from mistakes and improve their techniques.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 2-2 lists these key topics and the page number on

which each is found.

Table 2-2 Key Topics

Key Topic ElementDescriptionPage Number

Paragraph Waterfall 27

Paragraph Lean 28

Paragraph Agile 29

Paragraph Model-View-Controller (MVC) pattern 30

Section Observer Pattern 31

Paragraph Getting to Know BASH 32

Paragraph Software version control 38

Section Using Git 42

Section Conducting Code Review 55

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

Software Development Lifecycle (SDLC)

Waterfall

Lean

Agile

Model-View-Controller (MVC)

Observer

software version control

Git

GitHub

repository

staging

index

local workspace

Chapter 3

Introduction to Python

This chapter covers the following topics:

Getting Started with Python: This section covers what you need to

know when using Python on your local machine.

Understanding Python Syntax: This section describes the basic

Python syntax and command structure.

Data Types and Variables: This section describes the various types

of data you need to interact with when coding.

Input and Output: This section describes how to get input from a

user and print out results to the terminal.

Flow Control with Conditionals and Loops: This section

discusses adding logic to your code with conditionals and loops.

Python is an easy language that anyone can learn

quickly. It has become the de facto language for

custom infrastructure automation. Thanks to its

English-like command structure, readability, and

simple programming syntax, you will find that you can

accomplish your goals more quickly with Python than

with languages such as C or Java. While you are not

expected to be an expert in Python for the 200-901

DevNet Associate DEVASC exam, you do need to be

fluent enough to understand what is going on in a

sample of Python code. You also need to be able to

construct Python code by using samples from DevNet

and GitHub to interact with Cisco products. While the

next few chapters are not intended to replace a deep

dive into Python programming, they serve as a starting

point for success on the exam.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 3-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 3-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Getting Started with Python 1, 2

Understanding Python Syntax 3, 4

Data Types and Variables 5, 6

Input and Output 7, 8

Flow Control with Conditionals and Loops 9, 10

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. What is the appropriate way to create a virtual

environment for Python 3?

1. python3 -virtual myvenv

2. python3 virtual myvenv

3. python3 -m vrt myvenv

4. python3 -m venv myvenv

2. What command is used to install Python modules

from PyPI?

1. pip load packagename

2. pip install packagename

3. python3 -m pip install packagename

4. python3 -t pip install packagename

3. What is the standard for indention in Python?

1. One space for each block of code

2. Four spaces for each block of code

3. One tab for each block of code

4. One tab and one space per block of code

4. How are comments in Python denoted?

1. // on each line you want to make a comment

2. # or '" quotation marks encompassing multiline comments

3. /* comment */

4. @$ comment %@

5. Which of the following are mutable data types?

(Choose two.)

1. Lists

2. Dictionary

3. Integers

4. Tuples

6. Which of the following would create a dictionary?

1. a= (" name","chris","age",45)

2. a= dict()

3. a= [name, chris, age, 45]

4. a= {" name":"chris", "age": 45}

7. What data type does the input() function create

when assigned to a variable?

1. List

2. Raw

3. String

4. An auto typed one

8. Which print statement is valid for Python 3?

1. print 'hello world'

2. print('hello world')

3. print(hello, world)

4. print("'hello world'")

9. How do if statements operate?

1. If evaluates a variable against a condition to determine whether the

condition is true.

2. If uses Boolean operators.

3. An if statement needs to end with :.

4. All of the above are correct.

10. Which statements are true about the range()

function? (Choose two.)

1. The range() function iterates by one, starting at 0, up to but not

including the number specified.

2. The range() function iterates by one, starting at 1, up to the

number specified.

3. A range() function cannot count down, only up.

4. A range() function can count up or down, based on a positive or

negative step value.

FOUNDATION TOPICS

GETTING STARTED WITH PYTHON

Those from many engineering backgrounds are looking

to integrate programming into their infrastructure.

Maybe you are a hardcore computer science major and

have been programming in multiple languages for years.

You might be an infrastructure engineer who is strong in

the ways of Cisco IOS and looking for new ways to

operate in a diverse environment. You might even be a

server expert who is familiar with Ansible or Terraform

automation and are being asked to bring that automation

knowledge to the networking team. Regardless of your

background or experience level, the DevNet certifications

are designed to help you build the competency needed to

be successful and give you a chance to prove what you

have learned. If you haven’t coded in years, or if the

language that you currently program in isn’t one that is

very popular for infrastructure automation, where do you

start? Python.

The Python language has become the most popular

language in infrastructure automation because it is super

easy to pick up and doesn’t have all of the crazy syntax

and structure that you see in languages like Java or C.

It’s based on the English language and is not only

readable but extendable and powerful enough to be the

one language you can count on to be able to get things

accomplished in your day-to-day life. Those repetitive

tasks that suck your productivity dry can be automated

with just a few lines of code. Plus, due to the popularity

of Python, millions of sample scripts provided by users

like you as well as engineers at Cisco are free on GitHub

for you to use and modify.

The software company TIOBE has published a list of the

most popular programming languages each year for the

past 10 years, and Python has consistently made the list.

As of December 2019, it was ranked number 3. In

addition, a significant number of job postings reference

Python programming skills as a requirement for

successful candidates. Python is used in AI, machine

learning, big data, robotics, security, penetration testing,

and many other disciplines that are being transformed

by automation. Needless to say, learning Python has

become a differentiator for skilled engineers, and it is

part of the core tool set for DevOps and cloud

operational models.

The 200-901 DevNet Associate DEVASC exam is not a

Python test per se. You will not be asked to answer

esoteric questions about techniques and syntax that only

a Python wizard would know. The exam ensures that you

are competent enough with Python to know how to

interact with Cisco hardware through APIs and to use

Cisco software development kits and frameworks such as

pyATS and Genie. It is a very good idea to continue

learning Python and spend some time in either online

courses or self-study via books focused on the Python

language itself; you should also spend lots of time

working through examples on DevNet at

developer.cisco.com. This chapter and the several that

follow provide a crash course in functional Python to get

you going with the basics you need for success on the

exam.

Many UNIX-based operating systems, such as Mac and

Linux, already have Python installed, but with Windows,

you need to install it yourself. This used to be a hassle,

but now you can even install Python from the Windows

Store. On a Mac, the default version of Python is 2.7, and

you should update it to the more current 3.8 version.

One of the easiest ways is to head over to python.org and

download the latest variant from the source. The

installation is fast, and there are many tutorials on the

Internet that walk you through the process.

Note

Why would a Mac have such an old version of Python?

Well, that’s a question for Apple to answer, but from a

community standpoint, the move to version 3

historically was slow to happen because many of the

Python extensions (modules) where not updated to the

newer version. If you run across code for a 2.x version,

you will find differences in syntax and commands (also

known as the Python standard library) that will

prevent that code from running under 3.x. Python is

not backward compatible without modifications. In

addition, many Python programs require additional

modules that are installed to add functionality to

Python that aren’t available in the standard library. If

you have a program that was written for a specific

module version, but you have the latest version of

Python installed on your machine, the program might

not work properly. You will learn more about common

Python modules and how to use them in Chapter 4,

“Python Functions, Classes, and Modules.”

http://developer.cisco.com/
http://python.org/

The use of Python 3 has changed dramatically as support

for the 2.x version ended in January 2020. The 3.x

version came out in 2008 and is the one that you should

be using today. Of course, this version issue is still a

problem even within the 3.x train of Python and the

corresponding modules you may want to use. To address

this compatibility conundrum across different versions

and modules, Python virtual environments have been

created. Such an environment allows you to install a

specific version of Python and packages to a separate

directory structure. This way, you can ensure that the

right modules are loaded, and your applications don’t

break when you upgrade your base Python installation.

As of Python 3.3, there is native support for these virtual

environments built into the Python distribution. You can

code in Python without using virtual environments, but

the minute you update modules or Python itself, you run

the risk of breaking your apps. A virtual environment

allows you to lock in the components and modules you

use for your app into a single “package,” which is a good

practice for building Python apps.

To use virtual environments, you launch Python 3 with

the -m argument to run the venv module. You need to

supply a name for your virtual environment, which will

also become the directory name that will include all the

parts of your virtual environment. Next, you need to

activate the virtual environment by using the source

command in Linux or Mac, as shown in this example. On

Windows, you will need to run the activate batch file.

Click here to view code image

MacOS or Linux

python3 -m venv myvenv

source myvenv/bin/activate

Windows

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg62

C:\py -3 -m venv myvenv

C:\myvenv\Scripts\activate.bat

At this point, you will see your virtual environment name

in parentheses at the beginning of your command

prompt:

(myvenv)$

This indicates that you are running Python in your

virtual environment. If you close the terminal, you have

to reactivate the virtual environment if you want to run

the code or add modules via pip (the Python module

package manager).

To turn off the virtual environment, just type deactivate

at the command prompt, and your normal command

prompt returns, indicating that you are using your local

system Python setup and not the virtual environment.

To install new modules for Python, you use pip, which

pulls modules down from the PyPI repository. The

command to load new modules is as follows:

pip install packagename

where packagename is the name of the package or

module you want to install. You can go to pypi.org and

search for interesting modules and check to see what

others are using. There are more than 200,000 projects

in the PyPI repository, so you are sure to find quite a few

useful modules to experiment with. These modules

extend Python functionality and contribute to its

flexibility and heavy use today.

The pip command also offers a search function that

allows you to query the package index:

pip search "search value"

http://pypi.org/

The output includes the name, version, and a brief

description of what the package does.

To install a specific version of a package, you can specify

a version number or a minimum version so that you can

get recent bug fixes:

Click here to view code image

pip install package==1.1.1. To install a specific

version

pip install package>=1.0 To install a version

greater than or

 equal to 1.0

When you download sample code, if there are package

dependencies, there is usually a readme file that lists

these requirements.

Using a requirements.txt file included with your code is

another essential good practice. Such a file makes it

simpler to get your Python environment ready to go as

quickly as possible. If you have a requirements.txt file

included with your code, it will give pip a set of packages

that need to be installed, and you can issue this one

command to get them loaded:

Click here to view code image

pip install -r requirements.txt

The requirements.txt file is just a list that maps Python

package names to versions. Example 3-1 shows what it

looks like.

Example 3-1 Contents of requirements.txt

ansible==2.6.3
black==19.3b0
flake8==3.7.7
genie==19.0.1
ipython==6.5.0

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg63-0
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg63-1

napalm==2.4.0
ncclient==0.6.3
netmiko==2.3.3
pyang==1.7.5
pyats==19.0
PyYAML==5.1
requests==2.21.0
urllib3==1.24.1
virlutils==0.8.4
xmltodict==0.12.0

If you are building your own code and want to save the

current modules configured in your virtual environment,

you can use the freeze command and have it

automatically populate the requirements.txt file:

Click here to view code image

pip freeze > requirements.txt

UNDERSTANDING PYTHON SYNTAX

The word syntax is often used to describe structure in a

language, and in the case of programming syntax, is used

in much the same way. Some programming languages

are very strict about how you code, which can make it

challenging to get something written. While Python is a

looser language than some, it does have rules that should

be followed to keep your code not only readable but

functional. Keep in mind that Python was built as a

language to enhance code readability and named after

Monty Python (the British comedy troop) because the

original architects of Python wanted to keep it fun and

uncluttered. Python is best understood through its core

philosophy (The Zen of Python):

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Readability counts.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg63

Python is a scripted language, which means that any text

editor can become a Python programming environment.

Your choice of editor is completely up to your own

preferences. The easiest way to get started with some

Python code is to just enter python3 at the command

prompt (assuming that Python 3 is installed, of course)

and use the interactive interpreter:

$ python3

>>> print("Savannah rules!")

Savannah rules!

For doing simple repetitive tasks, the interpreter is a

quick interface to Python. For any program that you

want to do a lot of editing, an editor is your best bet.

Atom and Visual Studio Code are two editors that are

very popular among Python programmers. Any modern

editor will do, but a strong ecosystem of plug-ins can

certainly make your life easier when interacting with

GitHub and creating more complex applications. Figure

3-1 shows the Atom editor in action.

Figure 3-1 Atom Text Editor

One aspect in which Python is different from other

languages is that within Python code, whitespace

matters. This can seem really weird and frustrating if you

are coming from another language, such as Java or C,

that uses curly braces or start/stop keywords; instead,

Python uses indentation to separate blocks of code. This

whitespace is not used just to make your code readable;

rather, Python will not work without it. Here is an

example of a simple loop that highlights why whitespace

is so important:

Click here to view code image

>>> for kids in ["Caleb", "Sydney", "Savannah"]:

... print("Clean your room,", kids, "!")

 File "<stdin>", line 2

 print("Clean your room,", kids, "!")

 ^

IndentationError: expected an indented block

This code will generate a syntax error the minute you try

to run it. Python is expecting to see indentation on the

line after the :. If you insert four spaces before the

print() statement, the code works:

Click here to view code image

>>> for kids in ["Caleb", "Sydney", "Savannah"]:

... print("Clean your room,", kids, "!")

...

Clean your room, Caleb !

Clean your room, Sydney !

Clean your room, Savannah !

Python allows you to use spaces or tabs. You can use

both spaces and tabs in Python 2, but Python 3 will

return a syntax error; however, if you use both tabs and

spaces, you might end up with really weird issues that

you need to troubleshoot. The standard for Python from

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg65-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg65-2

the PEP 8 style guide is to use four spaces of indentation

before each block of code. Why four spaces? Won’t one

space work? Yes, it will, but your code blocks will be hard

to align, and you will end up having to do extra work.

The alignment issue becomes especially important when

you nest loops and conditional statements, as each loop

needs to correspond to another block of code, indented

using spaces. Many text editors allow you to view

whitespace, and some even give you a visual indication of

what is in a code block. Figure 3-2 shows this in Atom.

Figure 3-2 Spaces and Code Blocks in Atom

Comments in Python are created by entering # or a

string of three quotation marks (either single or double

quotation marks). One very important good practice

when coding is to write a description of what is

happening in code that is not obvious. You probably will

not want to write a comment for a simple print

statement, but describing the output of a nested function

would be useful for anyone who needs to make additions

to your code in the future or to remind yourself why you

did what you did during that late night caffeine-fueled

coding session. The # is used to comment out a single

line so the Python interpreter ignores it. Here is an

example:

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg65-3

#get input from user in numeric format

The triple quote method is used to comment multiple

lines and can be helpful when you want to provide a bit

more context than what can fit on a single line of text.

Here is an example:

''' This is

 line 2

 and line 3'''

DATA TYPES AND VARIABLES

Data and variables are like the fuel and the fuel tank for a

program. You can insert various types of data into a

variable, and Python supports many types natively.

Python can also be expanded with modules to support

even more variables. A variable is really just a label that

maps to a Python object stored somewhere in memory.

Without variables, your programs would not be able to

easily identify these objects, and your code would be a

mess of memory locations.

Variables

Assigning a variable in Python is very straightforward.

Python auto types a variable, and you can reassign that

same variable to another value of a different type in the

future. (Try doing that in C!) You just need to remember

the rules for variable names:

A variable name must start with a letter or the underscore character.

A variable name cannot start with a number.

A variable name can only consist of alphanumeric characters and

underscores (A–Z, 0–9, and _).

A variable name is case sensitive (so Value and value are two different

variable names).

To assign a variable you just set the variable name equal

to the value you want, as shown in these examples:

Pip = "cat" Variable assigned to a string

Age = 9 Variable assigned to an integer

Chill = True Variable assigned to a Boolean

Variable1 = Variable2 Variable assigned to another variable

Data Types

Everything in Python is an object, and depending on the

type of object, there are certain characteristics that you

must be aware of when trying to determine the correct

action you can perform on them. In Python, whenever

you create an object, you are assigning that object an ID

that Python uses to recall what is being stored. This

mechanism is used to point to the memory location of

the object in question and allows you to perform actions

on it, such as printing its value. When the object is

created, it is assigned a type that does not change. This

type is tied to the object and determines whether it is a

string, an integer, or another class.

Within these types, you are allowed to either change the

object (mutable) or are not allowed to change the object

(immutable) after it has been created. This doesn’t mean

that variables are not able to be changed; it means that

most of the basic data types are not able to be modified

but need to be replaced (or assigned, in Python speak)

with another value. You can’t just add a character at the

end of a string value, for example. You have to instead

reassign the whole string if you want to change it. This

mutable/immutable concept will make more sense as

you interact with various data types in programs. Python

treats these two types of objects differently, and each has

nuances that you must work around as you build your

Python programs. To make it simple, think of immutable

objects as ones that you want to stay the same, such as

constants. Mutable objects, on the other hand, are

objects that you will be adding elements to and

subtracting from on a regular basis.

Table 3-2 lists the most commonly used Python data

types. The rest of this section covers them in more detail.

Table 3-2 Python Data Types

NameTypeMutableDescription

Inte

ger

i

n

t

N

o

Whole numbers, such as 6, 600, and 1589

Boo

lean

b

o

o

l

N

o

Comparison value, either True or False

Stri

ng

s

t

r

N

o

Sequence of characters delimited by

quotes, such as "Cisco", 'Piper', and "2000"

List l

i

s

t

Y

e

s

Ordered sequence of objects, such as [10,

"DNA", 19.8]

Tup

le

t

u

p

N

o

Ordered sequence of immutable objects,

such as (10, "DNA", 19.8)

Dict

iona

ry

d

i

c

t

Y

e

s

Unordered key:value pairs, such as

{"key1":"value1","name":"Pip"}

Set s

e

t

Y

e

s

Unordered collection of unique objects,

such as {"a","b"}

Integers, Floating Point, and Complex Numbers

The integers and floating point numbers are the simplest

of data types:

Integers: Whole numbers without decimal points

Floating point: Numbers with decimal points or exponents (such as

10e5, which indicates 10 to the fifth power)

Python can perform advanced calculations, so it is used

heavily in data science, and many features are built into

the language and can be easily added with modules. For

our purposes, though, the basic building blocks will

suffice. Python has a simple set of built-in operators for

working with numbers, much like the operators on a

regular calculator. Table 3-3 lists Python’s numeric

operators.

Table 3-3 Python’s Numeric Operators

OperatorDescriptionExampleEvaluates to

+ Adds two expressions together 5 +

5

1

0

- Subtracts one expression from another 35 -

15

2

0

* Multiplies two expressions 10 *

10

1

0

0

/ Divides one expression by another 20

/ 5

4

/

/

Performs integer division (leaving off the

remainder)

30

// 7

4

% Performs modulus division (printing the

remainder only)

30

% 7

2

*

*

Indicates an exponent 2 **

8

2

5

6

When working with numbers in Python, a defined order

of precedence must be observed in calculations. Python

uses the following order (also known as PEMDAS):

1. Parentheses: Parentheses are always evaluated first.

2. Power: The exponent is evaluated.

3. Multiplication: Any multiplication is performed.

4. Division: Division is evaluated.

5. Addition: Addition is performed.

6. Subtraction: Subtraction is performed.

7. Left to right: After PEMDAS, anything else (such as sqrt() or

other math functions) is evaluated from left to right.

In most languages, the parentheses are preferred over

anything else. Most Python programmers use them

liberally in their math formulas to make them simpler to

construct without being so strict with the rules. Take the

following example:

>>> 5 * 6 - 1

29

Python evaluates the multiplication first and then

subtracts 1 from the result. If you wanted the subtraction

to happen first, you could simply add parentheses

around the parts you want evaluated:

>>> 5 * (6 - 1)

25

A floating point number is just a whole number with a

decimal point. When you divide in Python, you often get

a remainder that is displayed as a floating point number,

as in this example:

>>> 10 / 7

1.4285714285714286

If you just want to see whole numbers, you can use

integer division and lop off the remainder, as shown

here:

>>> 10 // 7

1

Likewise, if you are only interested in the remainder, you

can have modulus division show you what is left over:

>>> 10 % 7

3

You have the option to use other base systems instead of

just the default base 10. You have three choices in

addition to base 10: binary (base 2), octal (base 8), and

hex (base 16). You need to use prefixes before integers in

order for Python to understand that you are using a

different base:

0b or 0B for binary

0o or 0O for octal

0x or 0X for hex

From Python’s perspective, these are still just integers,

and if you type any of them into the interpreter, it will

return the decimal value by default, as shown in this

example:

>>> 0xbadbeef

195935983

You can also convert back and forth by using the base

keyword in front of the value you want to exchange, as in

these examples:

>>> hex(195935983)

'0xbadbeef'

>>> bin(195935983)

'0b1011101011011011111011101111'

Booleans

A Boolean has only two possible values, True and False.

You use comparison operators to evaluate between two

Boolean objects in Python. This data type is the

foundation for constructing conditional steps and

decisions within programs. Table 3-4 shows the various

Boolean comparison operators and some examples of

how to use them.

Table 3-4 Boolean Comparisons

OperatorWhat It DoesExampleEvaluates to

< Less than 5 < 10 True

> Greater than 6.5 > 3.5 True

<= Less than or equal to 0 <= -5 False

>= Greater than or equal to 6 >= 6 True

== Equal to 5 = “5” False

!= Not equal to 5 != “5” True

Strings

The string data type is a sequence of characters and uses

quotes to determine which characters are included. The

string ‘Hello’ is just a set of characters that Python

stores in order from left to right. Even if a string contains

a series of numbers, it can still be a string data type. If

you try to add a 1 to a string value, Python gives you an

error, as shown in this example:

Click here to view code image

>>> '10' + 1

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to

str

This error tells you that you have to convert the string to

an integer or another data type to be able to use it as a

number (in a math formula, for example). The int()

function can convert a string value into an integer for

you, as shown in this example:

>>> int('10') + 1

11

A string is just a list of characters in a certain order that

Python keeps track of. In fact, this aspect of strings

makes them easy to manipulate. If you use the string

'DevNet', you can pull out any individual characters of

the string by knowing where it sits in the string index.

One thing to keep in mind is that indexes in Python

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg70-1

always start with 0, so if you want the very first character

in a string, your index value would be 0 and not 1. Figure

3-3 shows the string DevNet with its corresponding

index values.

Figure 3-3 DevNet String Index

If you assign the string DevNet to a variable, you can

separate and manipulate the component values of the

string by using the index value. You can use brackets to

specify the index number. The following example prints a

capitol D from DevNet:

>>> a='DevNet'

>>> a[0]

'D'

You can also specify ranges to print. The colon operator

gives you control over whole sections of a string. The first

number is the beginning of the slice, and the second

number determines the end. The second number may be

confusing at first because it is intended to identify “up to

but not including” the last character. Consider this

example:

>>> a[0:3]

'Dev'

This example shows a 3 at the end, but this is technically

four characters since the index starts at 0, but Python

doesn’t print the last character and instead stops right

before it. For new Python programmers, this can be

confusing, but remember that Python is literal. If you

think of an index value as a box, in Figure 3-3, you want

to stop at box 3 (but don’t want to open the box). If you

want to print the whole string, just pick a number

beyond the index value, and Python will print everything,

as in this example:

>>> a[0:6]

'DevNet'

If you omit a value for the first number, Python starts at

0, as in this example:

>>> a[:2]

'De'

If you omit the second value, Python prints to the end of

the string, as in this example:

>>> a[2:]

'vNet'

You can also reverse direction by using negative

numbers. If you put a negative first number, you start

from the end of the string, as in this example:

>>> a[-2:]

'et'

A negative value on the other side of the colon causes

Python to print using the end as a reference point, as in

this example:

>>> a[:-2]

'DevN'

You can perform math operations on strings as well. The

+ is used to add or concatenate two strings together, as

in this example:

>>> 'DevNet' + 'Rocks'

'DevNetRocks'

Multiplication works as well, as in this example:

Click here to view code image

>>> 'DevNet Rocks ' * 5

'DevNet Rocks DevNet Rocks DevNet Rocks DevNet

Rocks DevNet Rocks '

There is a tremendous amount of string manipulation

you can do with Python, and there are a number of built-

in methods in the standard string library. These methods

are called with a dot after the variable name for a string.

Table 3-5 lists some commonly used string manipulation

methods, including the syntax used for each and what

each method does.

Table 3-5 String Methods

MethodWhat It Does

str.capitalize() Capitalize the string

str.center(width

[, fillchar])

Center justify the string

str.endwith(suffi

x[, start[, end]])

Add an ending string to the string

str.find(sub[,

start[, end]])

Find the index position of the

characters in a string

str.lstrip([chars]

)

Remove whitespace characters from

the end of the string

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg72-1

str.replace(old,

new[, count])

Replace characters in the string

str.lower() Make the string all lowercase

str.rstrip([chars

])

Strip whitespace characters from the

front of the string

str.strip([chars]) Remove whitespace characters from

the beginning and end of the string

str.upper() Make the string all uppercase

Lists

Python, unlike other programming languages, such as

C++ and Java, doesn’t have arrays. If you want to store a

bunch of values, you can use a list. You can use a variable

to store a collection of items in a list. To create a list, you

assign the contents of the list to a variable with the = and

[] and separate the items with commas, as in this

example:

Click here to view code image

>>> kids = ['Caleb', 'Sydney', 'Savannah']

>>> kids

['Caleb', 'Sydney', 'Savannah']

A list can contain any Python object, such as integers,

strings, and even other lists. A list can also be empty and

is often initialized in an empty state for programs that

pull data from other sources. To initialize a list in an

empty state, you just assign two brackets with nothing in

them or you can use the built-in list() function:

emptylist = []

emptylist2 = list()

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg72-2

Lists are similar to strings in that each is a set of items

indexed by Python that you can interact with and slice

and dice. To pull out values, you just use the variable

name with brackets and the index number, which starts

at 0, as in this example:

>>> print(kids[1])

Sydney

Figure 3-4 shows a list from the perspective of the index.

Figure 3-4 List Index

Unlike strings, lists are mutable objects, which means

you can change parts of the list at will. With a string, you

can’t change parts of the string without creating a new

string. This is not the case with lists, where you have a

number of ways to make changes. If you have a

misspelling, for example, you can change just one

element of the list, leaving the rest untouched, as in this

example:

Click here to view code image

>>> kids

['Caleb', 'Sidney', 'Savannah']

>>> kids[1]="Sydney"

>>> kids

['Caleb', 'Sydney', 'Savannah']

>>>

You can concatenate lists as well by using the + operator

to join two lists together. The list items do not need to be

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg73

unique. Python just connects the two together into a new

list, as shown in the following example:

>>> a = [1, 2, 4]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print(c)

[1, 2, 4, 4, 5, 6]

Remember all of the slicing you saw with strings? The

same principles apply here, but instead of having a single

string with each letter being in a bucket, the elements in

the list are the items in the bucket. Don’t forget the rule

about the second number after the colon, which means

“up to but not including.” Here is an example:

Click here to view code image

>>> c= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> c[1:4]

[2, 3, 4]

>>> c[:-4]

[1, 2, 3, 4, 5, 6]

>>> c[:]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Table 3-6 describes some of the most common list

methods.

Table 3-6 List Methods

MethodWhat It Does

list.appe

nd(elem

ent)

Adds an element to the end of the list

list.clear

()

Removes everything from the list

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg73-1

list.copy(

alist)

Returns a copy of the list

list.coun

t(elemen

t)

Shows the number of elements with the

specified value

list.exten

d(alist)

Adds the elements of a list to the end of the

current list

list.inde

x()

Returns the index number of the first element

with a specified value

list.inser

t(index,

element)

Adds an element at a specified index value

list.pop(i

ndex)

Removes an element at a specific index

position, or if no index position is provided,

removes the last item from the list

list.remo

ve()

Removes a list item with a specified value

list.rever

se()

Reverses the list order

list.sort(

)

Sorts the list alphabetically and/or numerically

Tuples

Tuples and lists are very similar. The biggest difference

between the two comes down to mutability. As discussed

earlier, Python data types are either mutable or

immutable. Lists are mutable, and tuples are immutable.

So why would you need these two types if they are so

similar? It all comes down to how Python accesses

objects and data in memory. When you have a lot of

changes occurring, a mutable data structure is preferred

because you don’t have to create a new object every time

you need to store different values. When you have a value

that is constant and referenced in multiple parts of a

program, an immutable data type (such as a tuple), is

more memory efficient and easier to debug. You don’t

want some other part of your program to make changes

to a crucial piece of data stored in a mutable data type.

To create a tuple, you use parentheses instead of

brackets. You can use the type() function to identify a

Python data type you have created. Here is an example:

Click here to view code image

>>> person = (2012, 'Mike', 'CCNA')

>>> person

(2012, 'Mike', 'CCNA')

>>> type(person)

<class 'tuple'>

You access data in a tuple the same way as in a list—by

using brackets and the index value of the item in the

tuple that you want to return:

>>> person[0]

2012

What you can’t do with a tuple is make an assignment to

one of the values:

Click here to view code image

>>> person[0]=15

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item

assignment

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg74-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg75-2

Tuples can, however, be used to assign a set of variables

quickly:

Click here to view code image

>>> (a, b, c) = (12, 'Fred',18)

>>> c

18

Dictionaries

A dictionary provides another way of creating a

collection of items. Why do you need another way of

storing data when you already have lists and tuples? A

list is an ordered set of items tracked by an index. What

if you need to access data that is tied to a certain value,

such as a person’s name? This capability is exactly why

you need dictionaries in Python. A dictionary saves a ton

of effort by giving you a built-in system for storing data

in a key:value pair. As when you use labels on files in a

filing cabinet, you can assign data to a key and retrieve it

by calling that key as if you are pulling a file from the

cabinet. Dictionaries don’t have any defined order; all

you need is the key—and not some index number—to get

access to your data. There are some rules regarding

dictionaries.

Keys: A dictionary’s keys are limited to only using immutable values

(int, float, bool, str, tuple, and so on). No, you can’t use a list as a key,

but you can use a tuple, which means you could use a tuple as a key

(immutable) but you can’t use a list as a key (mutable).

Values: A value can be any Python object or any combination of

objects.

To create a dictionary, you use braces and your key and

value separated by a colon. You separate multiple items

with commas. Here’s an example:

Click here to view code image

>>> cabinet = { "scores":(98,76,95),

"name":"Chris",

"company":"Cisco"}

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg75-0
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg75-3

>>> type(cabinet)

<class 'dict'>

Instead of using an index, you use the key, as shown in

this example:

>>> cabinet["scores"]

(98, 76, 95)

>>> cabinet["company"]

'Cisco'

To add more items to a dictionary, you can assign them

with a new key. You can even add another dictionary to

your existing dictionary, as shown in this example:

Click here to view code image

>>> cabinet["address"] = {"street":"123 Anywhere

Dr",

"city":"Franklin", "state":"TN"}

>>> cabinet["address"]

{'street': '123 Anywhere Dr', 'city': 'Franklin',

'state': 'TN'}

Sets

A set in Python consists of an unordered grouping of

data and is defined by using the curly braces of a

dictionary, without the key:value pairs. Sets are mutable,

and you can add and remove items from the set. You can

create a special case of sets called a frozen set that makes

the set immutable. A frozen set is often used as the

source of keys in a dictionary (which have to be

immutable); it basically creates a template for the

dictionary structure. If you are familiar with how sets

work in mathematics, the various operations you can

perform on mutable sets in Python will make logical

sense. To define a set, do the following:

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg76
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg76-1

>>> numbs = {1, 2, 4, 5, 6, 8, 10}

>>> odds = {1, 3, 5, 7, 9}

To check that these are indeed sets, use the type()

function:

>>> type(odds)

<class 'set'>

To join two sets (just as in a mathematical join), you can

use the | operator to show a combined set with no

duplicates:

Click here to view code image

>>> numbs | odds

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

You can get an intersection of two sets and show what

numbers are in both by using the & operator:

>>> numbs & odds

{1, 5}

There are many ways to evaluate sets, and the Python

documentation can be used to explore them all. In

addition, Python has library collections that give you

even more options for ways to store data. Search the

Python documentation for “collections” and take a look

at ordered dictionaries, named tuples, and other

variations that may suit your data collecting needs. For

the purposes of the DEVASC exam, though, you do not

need to know data structures beyond the basic types

discussed here.

INPUT AND OUTPUT

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg76-2

Input and output pretty much define what a computer

does for you. In Python, the input() function and the

print() function are two essential components that

allow you to create interactive applications. In this

section you will learn how to leverage these powerful

functions in your applications.

Getting Input from the User

Python has the input() function to get information from

a user running your Python code. The user is asked a

question, and the program waits until the user types a

response. It really is as simple as that. The input()

function takes the characters that are entered and

automatically stores them as a string data type,

regardless of what the user enters. Here is an example:

Click here to view code image

>>> inpt = input('Type your name: ')

Type your name: Chris Jackson

>>> inpt

'Chris Jackson'

You assign a variable (in this case, inpt) to the input()

function with a text prompt so that the user knows what

is expected. That variable now holds the string the user

typed. What if you need to get an integer or a floating

point number? Since Python stores every input as a

string, you need to do a conversion on the data supplied.

Here is an example:

Click here to view code image

>>> inpt = float(input('What is the Temperature in

F: '))

What is the Temperature in F: 83.5

>>> inpt

83.5

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg77
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg77-1

Here you asked the user for the temperature in

Fahrenheit, which can be expressed as a floating point

number. To make sure the variable holds the correct

type, you used the input() function inside the float()

function to convert the string into a floating point

number.

The Mighty print() Function

The print() function provides output that can be

displayed in the user’s terminal. Just like every other

function in Python, it is called with parentheses. This

function is usually the gateway to writing your first code

in Python, as in this example:

>>> print('Hello World')

Hello World

Every line printed with the print() function includes a

newline character (\n) at the end, which is a special

character that tells the terminal to advance one line. If

you use the \n sequence within the print() string, it is

interpreted as a new line, as shown in this example:

>>> print('Hello\nWorld')

Hello

World

There are numerous codes like this that can control how

text is displayed in a string and how Python interprets

the output. Without them, you would not be able to use,

for example, a backslash in your text output. Here are a

few of the most common ones:

\\: Backslash

\b: Backspace

\' : Single quote

\": Double quote

\t: Tab

\r: Carriage return

You can add multiple arguments to the print() function

by using commas between elements. This is very useful

in creating meaningful text, and the print() function

also handles concatenation of the different data types

automatically. Consider this example:

Click here to view code image

>>> print('Numbers in set', 1, ':', numbs)

Numbers in set 1 : {1, 2, 4, 5, 6, 8, 10}

By default, the print() function uses a separator

between elements. This is normally not an issue if you

want spaces to appear between words or elements. In the

previous example, you can see a space between the 1 and

the : that just doesn’t look good. You can fix it by

changing the separator that the print() functions uses

with the sep=" attribute (using single quotes with

nothing in between). Since you will be removing all

automatic spacing, you have to compensate for this by

adding spaces in your actual text if you need them.

Remember that separators come between elements and

don’t add anything to the start or end of the print()

function. Consider this example:

Click here to view code image

>>> print('Numbers in set ', 1, ': ', numbs,

sep='')

Numbers in set 1: {1, 2, 4, 5, 6, 8, 10}

One capability added to Python 3.6 and up is the

addition of f-string formatting. Not only are these strings

easier to read and less prone to syntax errors but they

allow you to write formatting code a lot faster. To create

an f-string, you put an f at the beginning of a string,

within the print() function, to let Python know what you

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg78-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg78-2

are doing, and then you can use {} within your string to

insert values or other functions. Here is an example:

Click here to view code image

>>> name = 'Piper'

>>> name2 = 'Chris'

>>> print(f'{name2} says Hi to {name}!')

Chris says Hi to Piper!

For more on formatting strings and beautifying your

output, see the Python documentation.

FLOW CONTROL WITH CONDITIONALS

AND LOOPS

So far you have been exposed to many of the building

blocks of the Python language. The real power of a

programming language is in the mechanisms you can use

to embed logic and respond to different conditions by

changing the flow of operation. Python has three primary

control statements:

if: An if statement is a conditional statement that can compare values

and make branching decisions.

for: A for loop is a counting loop that can iterate through data a

specific number of times.

while: The while loop can iterate forever when certain conditions are

met.

You can use these three statements in various

combinations to create very sophisticated programs. In

this section you will see how each of these statements

work.

If Statements

An if statement starts with an if and then sets up a

comparison to determine the truth of the statement it is

evaluating and ending with a : to tell Python to expect

the clause (the action if the condition is true) block of

code next. As mentioned earlier in this chapter,

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg78-3

whitespace indenting matters very much in Python. The

clause of an if statement must be indented (four spaces

is the standard) from the beginning of the if statement.

The following example looks for a condition where the

variable n is equal to 5 and prints a message to the

console indicating that the number is indeed a 5:

Click here to view code image

>>> n = 20

>>> if n == 20:

... print('The number is 20')

...

The number is 20

The Python interpreter uses three dots to let you

continue the clause for the if statement. Notice that there

is space between the start of the dots and the print()

statement. Without these four spaces, Python would spit

back a syntax error like this:

Click here to view code image

>>> if n == 20:

... print('oops')

 File "<stdin>", line 2

 print('oops')

 ^

IndentationError: expected an indented block

The goal of an if statement is to determine the “truth” of

the elements under evaluation. This is Boolean logic,

meaning that the operators evaluate True or False (refer

to Table 3-4). The previous example is determining

whether a variable is equal to a specific integer. What if

the number is different? You might want to apply other

logic by asking more questions. This is where else if (elif

in Python) comes into play.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg79
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg79-1

An if statement can have as many elif conditions as you

want to add to the conditional check. Good coding

practices recommend simplification, but there is no real

limit to how many you add. Here is an example that uses

two elif conditionals:

Click here to view code image

>>> n = 3

>>> if n == 17:

... print('Number is 17')

... elif n < 10:

... print('Number is less than 10')

... elif n > 10:

... print('Number is greater than 10')

...

Number is less than 10

Since each if and elif statement does something only if

the condition identified is true, it may be helpful to have

a default condition that handles situations where none of

the if or elif statements are true. For this purpose, you

can assign a single else statement at the end, as shown

in Example 3-2.

Example 3-2 Adding a Final else Statement

Click here to view code image

score = int(input('What was your test
score?:'))

if score >= 90:
 print('Grade is A')
elif score >= 80:
 print('Grade is B')
elif score >= 70:
 print('Grade is C')
elif score >= 60:
 print('Grade is D')
else:
 print('Grade is F')

What was your test score?:53

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#ppg80
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#pexa3-2

Grade is F
>>>

For Loops

The for statement allows you to create a loop that

continues to iterate through the code a specific number

of times. It is also referred to as a counting loop and can

work through a sequence of items, such as a list or other

data objects. The for loop is heavily used to parse

through data and is likely to be your go-to tool for

working with data sets. A for loop starts with the for

statement, followed by a variable name (which is a

placeholder used to hold each sequence of data), the in

keyword, some data set to iterate through, and then

finally a closing colon, as shown in this example:

>>> dataset=(1,2,3,4,5)

>>> for variable in dataset:

... print(variable)

...

1

2

3

4

5

The for loop continues through each item in the data set,

and in this example, it prints each item. You can also use

the range() function to iterate a specific number of

times. The range() function can take arguments that let

you choose what number it starts with or stops on and

how it steps through each one. Here is an example:

>>> for x in range(3):

... print(x)

...

0

1

2

By default, if you just give range() a number, it starts at

0 and goes by 1s until it reaches the number you

provided. Zero is a valid iteration, but if you don’t want

it, you can start at 1. Consider this example:

>>> for x in range(1,3):

... print(x)

...

1

2

To change the increment from the default of 1, you can

add a third attribute to the range() statement. In the

following example, you start at 1 and increment by 3

until you reach 10:

>>> for x in range(1,11,3):

... print(x)

...

1

4

7

10

Remember that these ranges are up to and not including

the final number you specify. If you want to go all the

way to 10 in this example, you need to set your range to

11.

While Loops

Whereas the for loop counts through data, the while

loop is a conditional loop, and the evaluation of the

condition (as in if statements) being true is what

determines how many times the loop executes. This

difference is huge in that it means you can specify a loop

that could conceivably go on forever, as long as the loop

condition is still true. You can use else with a while

loop. An else statement after a while loop executes

when the condition for the while loop to continue is no

longer met. Example 3-3 shows a count and an else

statement.

Example 3-3 else Statement with a while Loop

Click here to view code image

>>> count = 1
>>> while (count < 5):
... print("Loop count is:", count)
... count = count + 1
... else:
... print("loop is finished")
...
Loop count is: 1
Loop count is: 2
Loop count is: 3
Loop count is: 4
loop is finished

You can probably see similarities between the loop in

Example 3-3 and a for loop. The difference is that the

for loop was built to count, whereas this example uses

an external variable to determine how many times the

loop iterates. In order to build some logic into the while

loop, you can use the break statement to exit the loop.

Example 3-4 shows a break with if statements in an

infinite while loop.

Example 3-4 Using the break Statement to Exit a

Loop

Click here to view code image

while True:
 string = input('Enter some text to print.
\nType "done" to quit> ')
 if string == 'done' :
 break
 print(string)

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#pexa3-3
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch03_images.xhtml#pexa3-4

print('Done!')

Enter some text to print.
Type "done" to quit> Good luck on the test!
Good luck on the test!
Enter some text to print
Type "done" to quit> done
Done!

Notice the condition this example is checking with the

while statement. Because True will always be True

from an evaluation perspective, the while condition is

automatically met. Without that if statement looking for

the string 'done', your loop would keep asking for input

and printing what you typed forever.

This chapter provides an overview of some of the key

concepts and capabilities in Python. The goal is to

prepare you to be able to read and understand code

snippets that you might see on the DEVASC exam. The

next two chapters dive into other aspects of working with

Python and Cisco APIs that are considered essential

skills. Make sure you have followed along with the code

examples here and that you are familiar with how to

construct these basic examples. The following chapters

build on these skills.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 3-7 lists these key topics and the page number on

which each is found.

Table 3-7 Key Topics for Chapter 3

Key Topic ElementDescriptionPage Number

Paragraph Whitespace in Python code blocks 64

Table 3-2 Python Data Types 67

Paragraph Strings 70

DEFINE KEY TERMS

There are no key terms for this chapter.

ADDITIONAL RESOURCES

Python Syntax:

https://www.w3schools.com/python/python_syntax.a

sp

A Quick Tour of Python Language Syntax:

https://jakevdp.github.io/WhirlwindTourOfPython/0

2-basic-python-syntax.html

PEP 8—Style Guide for Python Code:

https://www.python.org/dev/peps/pep-0008/

Coding & APIs:

https://developer.cisco.com/startnow/#coding-apis-

v0

Mutable vs Immutable Objects in Python:

https://medium.com/@meghamohan/mutable-and-

https://www.w3schools.com/python/python_syntax.asp
https://jakevdp.github.io/WhirlwindTourOfPython/02-basic-python-syntax.html
https://www.python.org/dev/peps/pep-0008/
https://developer.cisco.com/startnow/#coding-apis-v0
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747

immutable-side-of-python-c2145cf72747

Your Guide to the Python print() Function:

https://realpython.com/python-print/

https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://realpython.com/python-print/

Chapter 4

Python Functions, Classes, and
Modules

This chapter covers the following topics:

Python Functions: This section provides an overview of working

with and building Python functions.

Object-Oriented Programming and Python: This section

describes key aspects of using object-oriented programming

techniques.

Python Classes: This section provides an overview of creating and

using Python classes.

Working with Python Modules: This section provides an overview

of creating and using Python modules.

This chapter moves away from the basics introduced in

Chapter 3, “Introduction to Python,” and introduces

Python functions, classes, and modules. Building Python

functions allows for the creation of reusable code and is

the first step toward writing object-oriented code.

Classes are the Python tools used to construct Python

objects and make it easier to produce scalable

applications that are easy to maintain and readable.

Finally, this chapter introduces the wide world of Python

modules and how they can extend the capabilities of

Python and make your job of coding much easier.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 4-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 4-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Python Functions 1–3

Object-Oriented Programming and Python 4–5

Python Classes 6–8

Working with Python Modules 9–10

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. Which of the following is the correct syntax for a

Python function?

1. define function (arg):

2. function function(arg);

3. def function(arg):

4. func function(arg):

2. Which of the following is a valid Python function

name?

1. 1function

2. __init__

3. True

4. Funct1on

3. When three single quotation marks are used on the

next line directly after defining a function, what does

this indicate?

1. Multi-line text

2. A docstring

3. A string value including double or single quotation marks

4. None of the above

4. What are key components of object-oriented

programming in Python? (Choose two.)

1. Functions that can be performed on a data structure

2. Attributes that are stored in an object

3. Configuration templates

4. YAML files

5. Which of the following are benefits of OOP?

(Choose all that apply.)

1. Reusable code

2. Easy to follow

3. Low coupling/high cohesion

4. Complex integration

6. Which of the following are used to define a class in

Python? (Choose two.)

1. class classname(parent):

2. class classname:

3. def class classname(arg):

4. None of the above

7. What is a method?

1. A variable applied to a class

2. Syntax notation

3. A function within a class or an object

4. Something that is not used in a class

8. Which of the following describes inheritance?

1. A hierarchy for functions in Python

2. Class attributes and methods used as the starting point for another

class

3. A function only applied to methods being used in another class

4. None of the above

9. Which module provides access to the file system

and directory structure?

1. filesystem

2. open

3. system

4. os

10. Which module is a testing framework for Cisco

infrastructure?

1. pyATS

2. pyang

3. devnetats

4. ncclient

FOUNDATION TOPICS

PYTHON FUNCTIONS

In Python, a function is a named block of code that can

take a wide variety of input parameters (or none at all)

and return some form of output back to the code that

called the function to begin with. It represents a key

concept in programming sometimes referred to as DRY,

which stands for Don’t Repeat Yourself. The idea behind

DRY is that if you perform some particular operations in

your code multiple times, you can simply create a

function to reuse that block of code anywhere you need it

instead of duplicating effort by typing it each time.

Python offers two types of functions: built-in functions

that are part of the standard library and functions you

create yourself. The standard library includes a huge

number of functions you can use in your program, like

print(), many of which you have already been

introduced to in Chapter 3. Building your own functions

is how you construct capabilities that are not already

present within the Python language.

To define a function in Python, you use the keyword def,

a name for the function, a set of parentheses enclosing

any arguments you want to pass to the function, and a

colon at the end. The name of a function must follow

these rules:

Must not start with a number

Must not be a reserved Python word, a built-in function (for example,

print(), input(), type()), or a name that has already been used as a

function or variable

Can be any combination of the A–Z, a–z, 0–9 and the underscore (_)

and dash (-)

The following is an example of an incredibly simple

function that could be entered into the interactive

Python interpreter:

Click here to view code image

Python 3.8.1 (v3.8.1:1b293b6006, Dec 18 2019,

14:08:53)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license"

for more

information.

>>> def devnet():

 '''prints simple function'''

 print('Simple function')

>>> devnet()

Simple function

This function prints out the string “Simple function” any

time you call it with devnet(). Notice the indented

portion that begins on the next line after the colon.

Python expects this indented portion to contain all the

code that makes up the function. Keep in mind that

whitespace matters in Python. The three single quotation

marks that appear on the first line of the indented text of

the function are called a docstring and can be used to

describe what the function does.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg89-1

As shown in the following example, you can use the built-

in Python function help() to learn what a function does

and any methods that can be used:

Click here to view code image

>>> help(devnet)

Help on function devnet in module __main__:

devnet()

 prints simple function

USING ARGUMENTS AND

PARAMETERS

An argument is some value (or multiple values) that you

pass to a function when you call the function within code.

Arguments allow a function to produce different results

and make code reuse possible. You simply place

arguments within the parentheses after a function name.

For example, this example shows how you can pass

multiple numeric arguments to the max() function to

have it return the largest number in the list:

>>> max(50, 5, 8, 10, 1)

50

Each function must define how it will use arguments,

using parameters to identify what gets passed in and how

it gets used. A parameter is simply a variable that is used

in a function definition that allows code within the

function to use the data passed to it. To get results back

from the function, you use the keyword return and the

object you want to pass back. The following example

shows how to create a function that subtracts two

numbers and stores the result in a local variable called

result that gets returned when the function is called:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg89-2

>>> def sub(arg1, arg2):

 result = arg1 - arg2

 return result

>>> sub(10, 15)

-5

The variable result is local, meaning that it is not

accessible to the main Python script, and it is used only

within the function itself. If you tried to call result

directly, Python would produce an error saying that

result is not defined. You can, however, access global

variables from within the function; you might do this, for

example, to set certain constants or key variables that

any function can use (for example, IP addresses). The

difference in accessibility between a local variable and

global variable is important, because they allow your

code to maintain separation and can keep your functions

self-contained.

The previous example uses positional arguments, which

must be passed to a function in a particular order.

Positional arguments work with a simple set of

consistently applied arguments, but if a function needs

more flexible alignment to parameters within a function,

you can use keyword arguments instead. A keyword

argument is a name/value pair that you pass to a

function. Instead of using position, you specify the

argument the function uses. It is a lot like assigning a

variable to an argument. In the previous example, arg1 is

subtracted from arg2, and if the positions of these

arguments were switched, you would get a different

result when subtracting the values. With keyword

arguments, it doesn’t matter in what order they are

passed to the function. Here is an example:

>>> sub(arg2=15, arg1=10)

-5

What happens if you don’t know the total number of

arguments that are being passed to a function? When

you read in data, you might not know how many

arguments to expect. Python allows you to use * and **

(often referred to as *args and **kwargs) to define any

number of arguments or keyword arguments. * and **

allow you to iterate through a list or other collection of

data, as shown in this example:

Click here to view code image

>>> def hello(*args):

 for arg in args:

 print("Hello", arg, "!")

>>> hello('Caleb', 'Sydney', 'Savannah')

Hello Caleb !

Hello Sydney !

Hello Savannah !

By using keyword arguments, you can send a list of

key/value pairs to a function, as in the following

example:

Click here to view code image

>>> def hello(**kwargs):

 for key, value in kwargs.items():

 print("Hello", value, "!")

>>> hello(kwarg1='Caleb', kwarg2='Sydney',

kwarg3='Savannah')

Hello Caleb !

Hello Sydney !

Hello Savannah !

Note the use of the items() function in the for

statement to unpack and iterate through the values.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg90-2
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg91-1

You can also supply a default value argument in case you

have an empty value to send to a function. By defining a

function with an assigned key value, you can prevent an

error. If the value in the function definition is not

supplied, Python uses the default, and if it is supplied,

Python uses what is supplied when the function is called

and then ignores the default value. Consider this

example:

Click here to view code image

>>> def greeting(name, message="Good morning!"):

 print("Hello", name + ', ' + message)

>>> greeting('Caleb')

Hello Caleb, Good morning!

>>> greeting('Sydney', "How are you?")

Hello Sydney, How are you?

OBJECT-ORIENTED PROGRAMMING

AND PYTHON

Python was developed as a modern object-oriented

programming (OOP) language. Object-oriented

programming is a computer programming paradigm that

makes it possible to describe real-world things and their

relationships to each other. If you wanted to describe a

router in the physical world, for example, you would list

all its properties, such as ports, software versions,

names, and IP addresses. In addition, you might list

different capabilities or functions of the router that you

would want to interact with. OOP was intended to model

these types of relationships programmatically, allowing

you to create an object that you can use anywhere in your

code by just assigning it to a variable in order to

instantiate it.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg91-2

Objects are central to Python; in fact, Python really is

just a collection of objects interacting with each other. An

object is self-contained code or data, and the idea of OOP

is to break up a program into smaller, easier-to-

understand components. Up until now, you have mainly

seen procedural programming techniques, which take a

top-down approach and follow predefined sets of

instructions. While this approach works well for simple

programs, to write more sophisticated applications with

better scalability, OOP is often the preferred method

used by professional programmers. However, Python is

very flexible in that you can mix and match these two

approaches as you build applications.

Functions are an important part of the OOP principles of

reusability and object-oriented structure. For the 200-

901 DevNet Associate DEVASC exam, you need to be

able to describe the benefits and techniques used in

Python to build modular programs. Therefore, you need

to know how to use Python classes and methods, which

are covered next.

PYTHON CLASSES

In Python, you use classes to describe objects. Think of a

class as a tool you use to create your own data structures

that contain information about something; you can then

use functions (methods) to perform operations on the

data you describe. A class models how something should

be defined and represents an idea or a blueprint for

creating objects in Python.

Creating a Class

Say that you want to create a class to describe a router.

The first thing you have to do is define it. In Python, you

define a class by using the class keyword, giving the

class a name, and then closing with a colon. Pep8

(introduced in Chapter 3) recommends capitalizing a

class name to differentiate it from a variable. Here is a

simple example of creating a class in Python:

>>> class Router:

 pass

This example uses pass as a sort of placeholder that

allows the class to be defined and set up to be used as an

object. To make the class more useful, you can add some

attributes to it. In the case of a router, you typically have

some values that you want to have when you instantiate

the class. Every router has a model name, a software

version, and an IP address for management. You also

need to pass some values to get started. The first value is

always self. The reason for this will become obvious

when you instantiate the class: The self value passes the

object name that you select to instantiate the class. In the

following example, the object you will create is rtr1:

Click here to view code image

class Router:

 '''Router Class'''

 def __init__(self, model, swversion, ip_add):

 '''initialize values'''

 self.model = model

 self.swversion = swversion

 self.ip_add = ip_add

rtr1 = Router('iosV', '15.6.7', '10.10.10.1')

After defining the class, you add a docstring to document

what the class is for and then you create a function that

calls __init__, which is a special case that is used for

the setup of the class. (In __init__, the double

underscores are called dunder or magic methods.)

Functions that are within the class are called methods

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg92

and become actions that you can perform on the object

you are creating. To store attributes, you map the name

self and the values you pass to it become variables inside

the object, which then store those values as attributes.

The last bit of code instantiates the object itself. Up until

now, you have been creating a template, and by assigning

data to the variables within the class, you have been

telling Python to build the object. Now you can access

any of the stored attributes of the class by using dot

notation, as shown here:

>>> rtr1.model

'iosV'

When you call rtr1.model, the interpreter displays the

value assigned to the variable model within the object.

You can also create more attributes that aren’t defined

during initialization, as shown in this example:

Click here to view code image

>>> rtr1.desc = 'virtual router'

>>> rtr1.desc

'virtual router'

This example shows how flexible objects are, but you

typically want to define any attributes as part of a class to

automate object creation instead of manually assigning

values. When building a class, you can instantiate as

many objects as you want by just providing a new

variable and passing over some data. Here is another

example of creating a second router object rtr2:

Click here to view code image

>>> rtr2= Router('isr4221', '16.9.5',

'10.10.10.5')

>>> rtr2.model

'isr4221'

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg93-2
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg93-3

Methods

Attributes describe an object, and methods allow you to

interact with an object. Methods are functions you define

as part of a class. In the previous section, you created an

object and applied some attributes to it. Example 4-1

shows how you can work with an object by using

methods. A method that allows you to see the details

hidden within an object without typing a bunch of

commands over and over would be a useful method to

add to a class. Building on the previous example,

Example 4-1 adds a new function called getdesc() to

format and print the key attributes of your router. Notice

that you pass self to this function only, as self can

access the attributes applied during initialization.

Example 4-1 Router Class Example

Click here to view code image

class Router:
 '''Router Class'''
 def __init__(self, model, swversion,
ip_add):
 '''initialize values'''
 self.model = model
 self.swversion = swversion
 self.ip_add = ip_add

 def getdesc(self):
 '''return a formatted description of
the router'''
 desc = f'Router Model :
{self.model}\n'\
 f'Software Version :
{self.swversion}\n'\
 f'Router Management Address:
{self.ip_add}'
 return desc

rtr1 = Router('iosV', '15.6.7', '10.10.10.1')
rtr2 = Router('isr4221', '16.9.5',
'10.10.10.5')

print('Rtr1\n', rtr1.getdesc(), '\n', sep='')
print('Rtr2\n', rtr2.getdesc(), sep='')

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#pexa4-1

There are two routers instantiated in this example: rtr1

and rtr2. Using the print function, you can call the

getdesc() method to return formatted text about the

object’s attributes. The following output would be

displayed:

Click here to view code image

Rtr1

Router Model :iosV

Software Version :15.6.7

Router Management Address:10.10.10.1

Rtr2

Router Model :isr4221

Software Version :16.9.5

Router Management Address:10.10.10.5

Inheritance

Inheritance in Python classes allows a child class to take

on attributes and methods of another class. In the

previous section, Example 4-1 creates a class for routers,

but what about switches? If you look at the Router

class, you see that all of the attributes apply to a switch

as well, so why not reuse the code already written for a

new Switch class? The only part of Example 4-1 that

wouldn’t work for a switch is the getdesc() method,

which prints information about a router. When you use

inheritance, you can replace methods and attributes that

need to be different. To inherit in a class, you create the

class as shown earlier in this chapter, but before the

colon, you add parentheses that include the class from

which you want to pull attributes and methods. It is

important to note that the parent class must come before

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg94

the child class in the Python code. Example 4-2 shows

how this works, creating a second class named Switch,

using the Router class as parent. In addition, it creates a

different getdesc() method that prints text about a

switch rather than about a router.

Example 4-2 Router Class and Switch Class with

Inheritance

Click here to view code image

class Router:
 '''Router Class'''
 def __init__(self, model, swversion,
ip_add):
 '''initialize values'''
 self.model = model
 self.swversion = swversion
 self.ip_add = ip_add

 def getdesc(self):
 '''return a formatted description of
the router'''
 desc = (f'Router Model :
{self.model}\n'
 f'Software Version :
{self.swversion}\n'
 f'Router Management Address:
{self.ip_add}')
 return desc

class Switch(Router):
 def getdesc(self):
 '''return a formatted description of
the switch'''
 desc = (f'Switch Model :
{self.model}\n'
 f'Software Version :
{self.swversion}\n'
 f'Switch Management Address:
{self.ip_add}')
 return desc

rtr1 = Router('iosV', '15.6.7', '10.10.10.1')
rtr2 = Router('isr4221', '16.9.5',
'10.10.10.5')
sw1 = Switch('Cat9300', '16.9.5', '10.10.10.8')

print('Rtr1\n', rtr1.getdesc(), '\n', sep='')
print('Rtr2\n', rtr2.getdesc(), '\n', sep='')
print('Sw1\n', sw1.getdesc(), '\n', sep='')

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#pexa4-2

You can add another variable named sw1 and instantiate

the Switch class just as you did the Router class, by

passing in attributes. If you create another print

statement using the newly created sw1 object, you see

the output shown in Example 4-3.

Example 4-3 Code Results of Using Class Inheritance

Click here to view code image

Rtr1
Router Model :iosV
Software Version :15.6.7
Router Management Address:10.10.10.1

Rtr2
Router Model :isr4221
Software Version :16.9.5
Router Management Address:10.10.10.5

Sw1
Switch Model :Cat9300
Software Version :16.9.5
Switch Management Address:10.10.10.8

To learn more about classes, methods, and inheritance,

you can refer to the Python documentation.

https://docs.python.org/3/tutorial/classes.html

WORKING WITH PYTHON MODULES

A central goal of OOP is to allow you to build modular

software that breaks code up into smaller, easier-to-

understand pieces. One big file with thousands of lines of

code would be extremely difficult to maintain and work

with. If you are going to break up your code into

functions and classes, you can also separate that code

into smaller chunks that hold key structures and classes

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#pexa4-3
https://docs.python.org/3/tutorial/classes.html

and allow them to be physically moved into other files,

called modules, that can be included in your main

Python code with the import statement. Creating

modular code provides the following benefits:

Easier readability/maintainability: Code written in a modular

fashion is inherently easier to read and follow. It’s like chapters in a

book providing groupings of similar concepts and topics. Even the best

programmers struggle to understand line after line of code, and

modularity makes maintaining and modifying code much easier.

Low coupling/high cohesion: Modular code should be written in

such a way that modules do not have interdependencies. Each module

should be self-contained so that changes to one module do not affect

other modules or code. In addition, a module should only include

functions and capabilities related to what the module is supposed to do.

When you spread your code around multiple modules, bouncing back

and forth, it is really difficult to follow. This paradigm is called low

coupling/high cohesion modular design.

Code reusability: Modules allow for easy reusability of your code,

which saves you time and makes it possible to share useful code.

Collaboration: You often need to work with others as you build

functional code for an organization. Being able to split up the work and

have different people work on different modules speeds up the code-

production process.

There are a few different ways you can use modules in

Python. The first and easiest way is to use one of the

many modules that are included in the Python standard

library or install one of thousands of third-party modules

by using pip. Much of the functionality you might need

or think of has probably already been written, and using

modules that are already available can save you a lot of

time. Another way to use modules is to build them in the

Python language by simply writing some code in your

editor, giving the file a name, and appending a .py

extension. Using your own custom modules does add a

bit of processing overhead to your application, as Python

is an interpreted language and has to convert your text

into machine-readable instructions on the fly. Finally,

you can program a module in the C language, compile it,

and then add its capabilities to your Python program.

Compared to writing your own modules in Python, this

method results in faster runtime for your code, but it is a

lot more work. Many of the third-party modules and

those included as part of the standard library in Python

are built this way.

Importing a Module

All modules are accessed the same way in Python: by

using the import command. Within a program—by

convention at the very beginning of the code—you type

import followed by the module name you want to use.

The following example uses the math module from the

standard library:

Click here to view code image

>>> import math

>>> dir(math)

['__doc__', '__file__', '__loader__', '__name__',

'__package__',

'__spec__', 'acos', 'acosh', 'asin', 'asinh',

'atan', 'atan2',

'atanh', 'ceil', 'comb', 'copysign', 'cos',

'cosh', 'degrees',

'dist', 'e', 'erf', 'erfc', 'exp', 'expm1',

'fabs', 'factorial',

'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd',

'hypot', 'inf',

'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt',

'ldexp', 'lgam-

ma', 'log', 'log10', 'log1p', 'log2', 'modf',

'nan', 'perm', 'pi',

'pow', 'prod', 'radians', 'remainder', 'sin',

'sinh', 'sqrt',

'tan', 'tanh', 'tau', 'trunc']

After you import a module, you can use the dir()

function to get a list of all the methods available as part

of the module. The ones in the beginning with the __ are

internal to Python and are not generally useful in your

programs. All the others, however, are functions that are

now available for your program to access. As shown in

Example 4-4, you can use the help() function to get

more details and read the documentation on the math

module.

Example 4-4 math Module Help

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg97
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#pexa4-4

>>> help(math)
Help on module math:

NAME
 math

MODULE REFERENCE
 https://docs.python.org/3.8/library/math

 The following documentation is
automatically generated from the Python
 source files. It may be incomplete,
incorrect or include features that
 are considered implementation detail and
may vary between Python
 implementations. When in doubt, consult
the module reference at the
 location listed above.

DESCRIPTION
 This module provides access to the
mathematical functions
 defined by the C standard.

FUNCTIONS
 acos(x, /)
 Return the arc cosine (measured in
radians) of x.

 acosh(x, /)
 Return the inverse hyperbolic cosine of
x.

 asin(x, /)
 Return the arc sine (measured in
radians) of x.
-Snip for brevity-

You can also use help() to look at the documentation on

a specific function, as in this example:

Click here to view code image

>>> help(math.sqrt)

Help on built-in function sqrt in module math:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg98

sqrt(x, /)

 Return the square root of x.

If you want to get a square root of a number, you can use

the sqrt() method by calling math.sqrt and passing a

value to it, as shown here:

>>> math.sqrt(15)

3.872983346207417

You have to type a module’s name each time you want to

use one of its capabilities. This isn’t too painful if you’re

using a module with a short name, such as math, but if

you use a module with a longer name, such as the

calendar module, you might wish you could shorten the

module name. Python lets you do this by adding as and a

short version of the module name to the end of the

import command. For example, you can use this

command to shorten the name of the calendar module

to cal.

>>> import calendar as cal

Now you can use cal as an alias for calendar in your

code, as shown in this example:

Click here to view code image

>>> print(cal.month(2020, 2, 2, 1))

 February 2020

Mo Tu We Th Fr Sa Su

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg99-1

Importing a whole module when you need only a specific

method or function adds unneeded overhead. To help

with this, Python allows you to import specific methods

by using the from syntax. Here is an example of

importing the sqrt() and tan() methods:

Click here to view code image

>>> from math import sqrt,tan

>>> sqrt(15)

3.872983346207417

As you can see here, you can import more than one

method by separating the methods you want with

commas.

Notice that you no longer have to use math.sqrt and

can just call sqrt() as a function, since you imported

only the module functions you needed. Less typing is

always a nice side benefit.

The Python Standard Library

The Python standard library, which is automatically

installed when you load Python, has an extensive range

of prebuilt modules you can use in your applications.

Many are built in C and can make life easier for

programmers looking to solve common problems

quickly. Throughout this book, you will see many of these

modules used to interact programmatically with Cisco

infrastructure. To get a complete list of the modules in

the standard library, go to at

https://docs.python.org/3/library/. This documentation

lists the modules you can use and also describes how to

use them.

Importing Your Own Modules

As discussed in this chapter, modules are Python files

that save you time and make your code readable. To save

the class example from earlier in this chapter as a

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg99
https://docs.python.org/3/library/

module, you just need to save all of the code for defining

the class and the attributes and functions as a separate

file with the .py extension. You can import your own

modules by using the same methods shown previously

with standard library modules. By default, Python looks

for a module in the same directory as the Python

program you are importing into. If it doesn’t find the file

there, it looks through your operating system’s path

statements. To print out the paths your OS will search

through, consider this example of importing the sys

module and using the sys.path method:

Click here to view code image

>>> import sys

>>> sys.path

['', '/Users/chrijack/Documents',

'/Library/Frameworks/Python.

framework/Versions/3.8/lib/python38.zip',

'/Library/Frameworks/

Python.framework/Versions/3.8/lib/python3.8',

'/Library/Frameworks/

Python.framework/Versions/3.8/lib/python3.8/lib-

dynload', '/

Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/

site-packages']

Depending on your OS (this output is from a Mac), the

previous code might look different from what you see

here, but it should still show you what Python sees, so it

is useful if you are having trouble importing a module.

If you remove the class from the code shown in Example

4-2 and store it in a separate file named device.py, you

can import the classes from your new module and end up

with the following program, which is a lot more readable

while still operating exactly the same:

Click here to view code image

from device import Router, Switch

rtr1 = Router('iosV', '15.6.7', '10.10.10.1')

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg100-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg100-2

rtr2 = Router('isr4221', '16.9.5', '10.10.10.5')

sw1 = Switch('Cat9300', '16.9.5', '10.10.10.8')

print('Rtr1\n', rtr1.getdesc(), '\n', sep='')

print('Rtr2\n', rtr2.getdesc(), '\n', sep='')

print('Sw1\n', sw1.getdesc(), '\n', sep='')

When you execute this program, you get the output

shown in Example 4-5. If you compare these results with

the results shown in Example 4-3, you see that they are

exactly the same. Therefore, the device module is just

Python code that is stored in another file but used in

your program.

Example 4-5 Code Results of device.py Import as a

Module

Click here to view code image

Rtr1
Router Model :iosV
Software Version :15.6.7
Router Management Address:10.10.10.1

Rtr2
Router Model :isr4221
Software Version :16.9.5
Router Management Address:10.10.10.5

Sw1
Switch Model :Cat9300
Software Version :16.9.5
Router Management Address:10.10.10.8

Useful Python Modules for Cisco Infrastructure

This chapter cannot cover every single module that you

might find valuable when writing Python code to interact

with Cisco infrastructure. As you become more familiar

with Python, you will come to love and trust a wide range

of standard library and third-party modules. The

following list includes many that are widely used to

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#pexa4-5

automate network infrastructure. Many of these modules

are used throughout this book, so you will be able to see

them in action. The following list provides a description

of each one, how to install it (if it is not part of the

standard library), and the syntax to use in your Python

import statement:

General-purpose standard library modules:

pprint: The pretty print module is a more intelligent print

function that makes it much easier to display text and data by, for

example, aligning data for better readability. Use the following

command to import this module:

from pprint import pprint

sys: This module allows you to interact with the Python

interpreter and manipulate and view values. Use the following

command to import this module:

import sys

os: This module gives you access to the underlying operating

system environment and file system. It allows you to open files and

interact with OS variables. Use the following command to import

this module:

import os

datetime: This module allows you to create, format, and work

with calendar dates and time. It also enables timestamps and other

useful additions to logging and data. Use the following command

to import this module:

import datetime

time: This module allows you to add time-based delays and clock

capabilities to your Python apps. Use the following command to

import this module:

import time

Modules for working with data:

xmltodict: This module translates XML-formatted files into

native Python dictionaries (key/value pairs) and back to XML, if

needed. Use the following command to install this module:

pip install xmltodict

Use the following command to import this module:

import xmltodict

csv: This is a standard library module for understanding CSV files.

It is useful for exporting Excel spreadsheets into a format that you

can then import into Python as a data source. It can, for example,

read in a CSV file and use it as a Python list data type. Use the

following command to import this module:

import csv

json: This is a standard library module for reading JSON-

formatted data sources and easily converting them to dictionaries.

Use the following command to import this module:

import json

PyYAML: This module converts YAML files to Python objects that

can be converted to Python dictionaries or lists. Use the following

command to install this module:

pip install PyYAML

Use the following command to import this module:

import yaml

pyang: This isn’t a typical module you import into a Python

program. It’s a utility written in Python that you can use to verify

your YANG models, create YANG code, and transform YANG

models into other data structures, such as XSD (XML Schema

Definition). Use the following command to install this module:

pip install pyang

Tools for API interaction:

requests: This is a full library to interact with HTTP services and

used extensively to interact with REST APIs. Use the following

command to install this module:

pip install requests

Use the following command to import this module:

import requests

ncclient: This Python library helps with client-side scripting and

application integration for the NETCONF protocol. Use the

following command to install this module:

pip install ncclient

Use the following command to import this module:

from ncclient import manager

netmiko: This connection-handling library makes it easier to

initiate SSH connections to network devices. This module is

intended to help bridge the programmability gap between devices

with APIs and those without APIs that still rely on command-line

interfaces and commands. It relies on the paramiko module and

works with multiple vendor platforms. Use the following command

to install this module:

pip install netmiko

Use the following command to import this module:

Click here to view code image

from netmiko import ConnectHandler

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg103-1

pysnmp: This is a Python implementation of an SNMP engine for

network management. It allows you to interact with older

infrastructure components without APIs but that do support

SNMP for management. Use the following command to install this

module:

pip install pysnmp

Use the following command to import this module:

import pysnmp

Automation tools:

napalm: napalm (Network Automation and Programmability

Abstraction Layer with Multivendor Support) is a Python module

that provides functionality that works in a multivendor fashion.

Use the following command to install this module:

pip install napalm

Use the following command to import this module:

import napalm

nornir: This is an extendable, multithreaded framework with

inventory management to work with large numbers of network

devices. Use the following command to install this module:

pip install nornir

Use the following command to import this module:

Click here to view code image

from nornir.core import InitNornir

Testing tools:

unittest: This standard library testing module is used to test the

functionality of Python code. It is often used for automated code

testing and as part of test-driven development methodologies. Use

the following command to import this module:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg103-2

import unittest

pyats: This module was a gift from Cisco to the development

community. Originally named Genie, it was an internal testing

framework used by Cisco developers to validate their code for Cisco

products. pyats is an incredible framework for constructing

automated testing for infrastructure as code. Use the following

command to install this module:

Click here to view code image

Many parts of the pyats framework can be imported. Check the

documentation on how to use it.

Chapter 5, “Working with Data in Python,” places more

focus on techniques and tools used to interact with data

in Python. This will round out the key Python knowledge

needed to follow along with the examples in the rest of

the book.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 4-2 lists these key topics and the page number on

which each is found.

pip install pyats (just installs the core fra

documentation for more options)

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch04_images.xhtml#ppg104-1

Table 4-2 Key Topics

Key Topic ElementDescriptionPage Number

Paragraph Defining functions 88

Paragraph The value of object-oriented

programming

92

Paragraph Defining classes 92

Paragraph Inheritance 94

Paragraph Python modules 96

Bulleted

list

Common Python modules 10

1

DEFINE KEY TERMS

There are no key terms for this chapter.

Chapter 5

Working with Data in Python

This chapter covers the following topics:

File Input and Output: This section shows how to work with test

files in Python.

Parsing Data: This section discusses how to parse data into native

Python objects.

Error Handling in Python: This section discusses how to use try-

except-else-finally to work through errors in Python input.

Test-Driven Development: This section discusses using software

testing to validate function.

Unit Testing: This section discusses how to use the internal Python

module unittest to automate Python code testing.

There are numerous ways to ingest data into a Python

program. You can get input from the user, pull data

from a website or an API, or read data from a file. The

trick is being able to convert data from a data source

into native Python structures and objects so that you

can use it to automate your infrastructure. This

chapter discusses a number of ways to use built-in and

third-party modules to transform different types of

data into Python dictionaries, lists, and other data

collection objects. The rest of the book provides more

detail on how to use these techniques to interact with

Cisco infrastructure; this chapter provides a

foundation for understanding how these data formats

differ and how best to interact with them.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 5-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 5-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

File Input and Output 1, 2

Parsing Data 3–6

Error Handling in Python 7, 8

Test-Driven Development 9

Unit Testing 10, 11

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. When parsing a text file, what determines the end of

a line?

1. Return code

2. Nothing; Python sees it as one big string

3. \n or EoF

4. All of the above

2. What syntax would you use to open a text file to be

written to?

1. data = open("text.txt", "w")

2. data = load("text.txt", "w")

3. load("text.txt", "w")

4. open("text.txt", "w")

3. Which of the following do you use to write to a CSV

file in Python?

1. with open("text.csv", "a") as filehandle:

csv_writer = csv.write(filehandle)

csv_writer.writerow(data)

2. with open("text.csv", "a") as filehandle:

csv_writer.writerow(data)

3. with open("text.csv", "a") as filehandle:

csv_writer = csv.writer(filehandle)

csv_writer.writerow(data)

4. with open("text.csv", "a") as filehandle:

csv_writer = csv.writer(f)

csv_writer.writerow(data)

4. Which module is imported to read XML data?

1. xmlm

2. xmltodict

3. XMLParse

4. None of the above

5. Which methods are used for converting a native

JSON file to Python and then back to JSON?

(Choose two.)

1. load() and dump()

2. loads() and dump()

3. loads() and dumps()

4. load() and dumps()

6. What does YAML stand for?

1. Yet Another Markup Language

2. YAML Ain’t Markup Language

3. The name of its creator

4. None of the above

7. What is the syntax for error handling in Python?

1. try-except-else-finally

2. raise ErrorMessage

3. assertErrorValue

4. All of the above

8. When does the finally block execute?

1. After the try block is successful

2. After the except block

3. At the end of every try block

4. When an error code stops the else block

9. Test-driven development requires that developers:

1. Create a unit test for every bit of code they write

2. Know how to use DevOps tools for automated testing

3. Create a simple test that fails and then write code that allows the

test to succeed

4. Completely unnecessary in an Agile development shop

10. What is the difference between a unit test and an

integration test? (Choose two.)

1. An integration test is for validation of how different parts of the

application work together.

2. An integration test verifies that the application operates as

expected.

3. A unit test verifies API functionality.

4. A unit test is most specific in scope and tests small bits of code.

11. Which class is inherited as part of a unit test?

1. unittest.testcase

2. unittest.TestCase

3. unittest

4. TestCase

FOUNDATION TOPICS

FILE INPUT AND OUTPUT

Pulling data from a file in Python is very straightforward.

To extract data from a text file, you can use native

Python capabilities. Binary files, on the other hand, need

to be processed by some module or another external

program before it is possible to extract the data from

them. The vast majority of your needs will be addressed

through text files, so that is what this section focuses on.

From Python’s perspective, a text file can be thought of

as a sequence of lines. Each line, as it is read in to

Python, is typically 79 characters long (per PEP 8

convention), with a newline character at the end (\n for

Python). There are just two functions that you need to

know when working with a text file: open() and

close().

To open a file and read in its contents, you have to first

tell Python the name of the file you want to work with.

You do this by using the open() function and assigning

the output to a Python object (the variable readdata in

this case). The function returns a file handle, which

Python uses to perform various operations on the file.

The code looks as follows:

Click here to view code image

readdata = open("textfile.txt", "r")

The open() function requires two arguments: the name

of the file as a string and the mode that you want to open

the file. In the preceding example, it opens the file in

read mode. There are numerous options you can use

when you set mode, and you can combine them in some

cases to fine-tune how you want Python to handle the

file. The following are some of the options:

r: Open for reading (default)

w: Open for writing, truncating the file first

x: Open for exclusive creation, failing if the file already exists

a: Open for writing, appending to the end of the file if it exists

b: Open in binary mode

t: Open in text mode (default)

+: Open for updating (reading and writing)

With the previous code, you now have a file handling

object named readdata, and you can use methods to

interact with the file methods. To print the contents of

the file, you can use the following:

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg109-0
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg109

print(readdata.read())

Line one of a text file

Line two of a text file, just like line one, but

the second one.

Third line of a text file.

When using the open() function, you have to remember

to close the file when you are finished reading from it. If

you don’t, the file will stay open, and you might run in to

file lock issues with the operating system while the

Python app is running. To close the file, you simply use

the close() method on the readdata object:

readdata.close()

Keeping track of the state of the file lock and whether

you opened and closed it can be a bit of a chore. Python

provides another way you can use to more easily work

with files as well as other Python objects. The with

statement (also called a context manager in Python) uses

the open() function but doesn’t require direct

assignment to a variable. It also has better exception

handling and automatically closes the file for you when

you have finished reading in or writing to the file. Here’s

an example:

Click here to view code image

with open("textfile.txt", "r") as data:

 print(data.read())

This is much simpler code, and you can use all of the

same methods to interact with the files as before. To

write to a file, you can use the same structure, but in this

case, because you want to append some data to the file,

you need to change how you open the file to allow for

writing. In this example, you can use "a+" to allow

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg110-1

reading and appending to the end of the file. Here is

what the code would look like:

Click here to view code image

with open("textfile.txt", "a+") as data:

 data.write('\nFourth line added by Python')

Notice the newline in front of the text you are appending

to the file. It appears here so that it isn’t just tacked on at

the very end of the text. Now you can read the file and

see what you added:

Click here to view code image

with open ("textfile.txt", "r") as data:

 print(data.read())

Line one of a text file

Line two of a text file, just like line one, but

the second one.

Third line of a text file.

Fourth line added by Python

PARSING DATA

Imagine a world where all the data is in nice, neatly

formatted cells, completely structured, and always

consistent. Unfortunately, data is not so easily accessible,

as there are a multitude of types, structures, and formats.

This is why it is essential that you learn how to parse

data in some of the more common forms within your

Python programs.

Comma-Separated Values (CSV)

A CSV file is just a plaintext spreadsheet or database file.

All of those spreadsheets or databases that you have with

infrastructure information can be easily exported as CSV

files so that you can use them as source data in Python.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg110-2
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg110-3

Each line in a CSV file represents a row, and commas are

used to separate the individual data fields to make it

easier to parse the data. Python has a built-in CSV

module that you can import that understands the CSV

format and simplifies your code. The following is an

example of a typical CSV file (in this case named

routerlist.csv):

Click here to view code image

"router1","192.168.10.1","Nashville"

"router2","192.168.20.1","Tampa"

"router3","192.168.30.1","San Jose"

This example shows a common asset list or device

inventory, such as one that you might pull from a

network management system or simply keep track of

locally. To start working with this data, you have to

import the CSV module, and then you need to create a

reader object to read your CSV file into. You first have

to read the file into a file handle, and then you run the

CSV read function on it and pass the results on to a

reader object. From there, you can begin to use the CSV

data as you wish. You can create another variable and

pass the reader object variable to the built-in list()

function. Here is what the code would look like:

Click here to view code image

>>> import csv

>>> samplefile = open('routerlist.csv')

>>> samplereader = csv.reader(samplefile)

>>> sampledata = list(samplereader)

>>> sampledata

[['router1', '192.168.10.1', 'Nashville'],

['router2',

'192.168.20.1', 'Tampa'], ['router3',

'192.168.30.1', 'San Jose ']]

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg110-4
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg111-1

In this example, you now have a list of lists that includes

each row of data. If you wanted to manipulate this data,

you could because it’s now in a native format for Python.

Using list notation, you can extract individual pieces of

information:

Click here to view code image

>>> sampledata[0]

['router1', '192.168.10.1', 'Nashville']

>>> sampledata[0][1]

'192.168.10.1'

Using with, you can iterate through the CSV data and

display information in an easier way:

Click here to view code image

import csv

with open("routerlist.csv") as data:

 csv_list = csv.reader(data)

 for row in csv_list:

 device = row[0]

 location = row[2]

 ip = row[1]

 print(f"{device} is in {location.rstrip()}

and has IP

 {ip}.")

Notice the rstrip function used to format the location

variable? You use it because the last entry in your CSV

file will have a whitespace character at the very end when

it is read into Python because it is at the very end of the

file. If you don’t get rid of it (by using rstrip), your

formatting will be off.

The output of this code is as follows:

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg111-2
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg111-3
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg112-1

router1 is in Nashville and has IP 192.168.10.1.

router2 is in Tampa and has IP 192.168.20.1.

router3 is in San Jose and has IP 192.168.30.1.

If you want to add a fourth device to the CSV file, you can

follow a process very similar to what you did with text

files. Example 5-1 shows how to add a little interaction

from the command line to fill in the fields and create a

Python list with details on the new router. Instead using

of a reader object, this example uses a writer object to

store the formatted CSV data and then write it to the file.

Example 5-1 Code and Input for a CSV File

Click here to view code image

import csv

print("Please add a new router to the list")
hostname = input("What is the hostname? ")
ip = input("What is the ip address? ")
location = input("What is the location? ")

router = [hostname, ip, location]

with open("routerlist.csv", "a") as data:
 csv_writer = csv.writer(data)
 csv_writer.writerow(router)

<Below is interactive from the terminal after
running the above code>
Please add a new router to the list
What is the hostname? router4
What is the ip address? 192.168.40.1
What is the location? London

If you run the code shown in Example 5-1 and input

details for router 4, now when you display the router list,

you have the new router included as well:

Click here to view code image

router1 is in Nashville and has IP 192.168.10.1.

router2 is in Tampa and has IP 192.168.20.1.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#pexa5-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg112-2

router3 is in San Jose and has IP 192.168.30.1.

router4 is in London and has IP 192.168.40.1.

JavaScript Object Notation (JSON)

JavaScript Object Notation (JSON) is a data structure

that is derived from the Java programming language, but

it can be used as a portable data structure for any

programming language. It was built to be an easily

readable and standard way for transporting data back

and forth between applications. JSON is heavily used in

web services and is one of the core data formats you need

to know how to use in order to interact with Cisco

infrastructure. The data structure is built around

key/value pairs that simplify mapping of data and its

retrieval. Example 5-2 shows an example of JSON.

Example 5-2 JSON

Click here to view code image

{
 "interface": {
 "name": "GigabitEthernet1",
 "description": "Router Uplink",
 "enabled": true,
 "ipv4": {
 "address": [
 {
 "ip": "192.168.1.1",
 "netmask": "255.255.255.0"
 }
]
 }
 }
}

In Example 5-2, you can see the structure that JSON

provides. interface is the main data object, and you can

see that its value is multiple key/value pairs. This nesting

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#pexa5-2

capability allows you to structure very sophisticated data

models. Notice how similar to a Python dictionary the

data looks. You can easily convert JSON to lists (for a

JSON array) and dictionaries (for JSON objects) with the

built-in JSON module. There are four functions that you

work with to perform the conversion of JSON data into

Python objects and back.

load(): This allows you to import native JSON and convert it to a

Python dictionary from a file.

loads(): This will import JSON data from a string for parsing and

manipulating within your program.

dump(): This is used to write JSON data from Python objects to a file.

dumps(): This allows you to take JSON dictionary data and convert it

into a serialized string for parsing and manipulating within Python.

The s at the end of dump and load refers to a string, as

in dump string. To see this in action, you load the JSON

file and map the file handle to a Python object (data) like

so:

Click here to view code image

import json

with open("json_sample.json") as data:

 json_data = data.read()

json_dict = json.loads(json_data)

The object json_dict has taken the output of

json.loads(json_data) and now holds the json object

as a Python dictionary:

Click here to view code image

>>> type(json_dict)

<class 'dict'>

>>> print(json_dict)

{'interface': {'name': 'GigabitEthernet1',

'description':

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg114-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg114-2

'Router Uplink', 'enabled': True, 'ipv4':

{'address':

[{'ip': '192.168.0.2', 'netmask':

'255.255.255.0'}]}}}

You can now modify any of the key/value pairs, as in this

example, where the description is changed:

Click here to view code image

>>> json_dict["interface"]["description"] =

"Backup Link"

>>> print(json_dict)

{'interface': {'name': 'GigabitEthernet1',

'description': 'Backup

Link', 'enabled': True, 'ipv4': {'address':

[{'ip': '192.168.0.2',

'netmask': '255.255.255.0'}]}}}

In order to save the new json object back to a file, you

have to use the dump() function (without the s) to

convert the Python dictionary back into a JSON file

object. To make it easier to read, you can use the indent

keyword:

Click here to view code image

with open("json_sample.json", "w") as fh:

 json.dump(json_dict, fh, indent = 4)

Now if you load the file again and print, you can see the

stored changes, as shown in Example 5-3.

Example 5-3 Loading the JSON File and Printing the

Output to the Screen

Click here to view code image

>>> with open ("json_sample.json") as data:
 json_data = data.read()
 print(json_data)
{
 "interface": {
 "name": "GigabitEthernet1",
 "description": "Backup Link",
 "enabled": true,
 "ipv4": {

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg114-3
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg114-4
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#pexa5-3

 "address": [
 {
 "ip": "192.168.0.2",
 "netmask": "255.255.255.0"
 }
]
 }
 }
}
>>>

Extensible Markup Language (XML)

Extensible Markup Language (XML) is a very common

data format that is used heavily in configuration

automation. Parsing XML is similar to using other data

formats, in that Python natively understands and can

support XML encoding and decoding. The following is a

very simple example of what XML structure looks like.

<device>

 <Hostname>Rtr01</Hostname>

 <IPv4>192.168.1.5</IP4>

 <IPv6> </IPv6>

 </device>

It should come as no surprise that XML looks a bit like

HTML syntax; it was designed to work hand-in-hand

with HTML for data transport and storage between web

services and APIs. XML has a tree structure, with the

root element being at the very top. There is a

parent/child relationship between elements. In the

preceding example, device is the root element that has

Hostname, IPv4, and IPv6 as child elements. Just like

with HTML, a tag has meaning and is used to enclose the

relationships of the elements with a start tag (<>)and a

closing tag (</>). It’s not all that different from JSON in

that a tag acts as a key with a value. You can also assign

attributes to a tag by using the following syntax:

attribute name="some value"

This works the same as an element in that it can provide

a way to represent data. Example 5-4 shows an example

of an IETF interface YANG model in XML.

Example 5-4 YANG Model Represented in XML

Click here to view code image

 <?xml version="1.0" encoding="UTF-8" ?>
<interface xmlns="ietf-interfaces">
 <name>GigabitEthernet2</name>
 <description>Wide Area Network</description>
 <enabled>true</enabled>
 <ipv4>
 <address>
 <ip>192.168.1.5</ip>
 <netmask>255.255.255.0</netmask>
 </address>
 </ipv4>
</interface>

To work with this, you can use the native XML library,

but it has a bit of a learning curve and can be a little hard

to use if you just want to convert XML into something

you can work with in Python. To make it easier, you can

use a module called xmltodict to convert XML into an

ordered dictionary in Python. This is a special class of

dictionary that does not allow elements to change order.

Since dictionaries use key/value pairs, where the

key/value pairs are stored is normally not a problem, but

in the case of XML, order matters. Example 5-5 reads in

the XML from Example 5-4 and converts it to an ordered

dictionary.

Example 5-5 Reading in XML and Printing the

Imported Dictionary to the Command Line

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#pexa5-4

Click here to view code image

import xmltodict

with open("xml_sample.xml") as data:
 xml_example = data.read()

xml_dict = xmltodict.parse(xml_example)

>>> print(xml_dict)
OrderedDict([('interface',
OrderedDict([('@xmlns', 'ietf-interfaces'),
('name',
'GigabitEthernet2'), ('description', 'Wide Area
Network'), ('enabled', 'true'),
('ipv4', OrderedDict([('address',
OrderedDict([('ip', '192.168.0.2'), ('netmask',
'255.255.255.0')]))]))]))])

Now that you have the XML in a Python dictionary, you

can modify an element, as shown here:

Click here to view code image

xml_dict["interface"]["ipv4"]["address"]["ip"] =

"192.168.55.3"

You can see your changes in XML format by using the

unparse function (see Example 5-6). You can use the

pretty=True argument to format the XML to make it a

bit easier to read. XML doesn’t care about whitespace,

but humans do for readability.

Example 5-6 Printing from the Command Line with

the unparse Function

Click here to view code image

>>> print(xmltodict.unparse(xml_dict,
pretty=True))
<?xml version="1.0" encoding="utf-8"?>
<interface xmlns="ietf-interfaces">
 <name>GigabitEthernet2</name>
 <description>Wide Area
Network</description>
 <enabled>true</enabled>
 <ipv4>

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#pexa5-5
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg116-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#pexa5-6

 <address>
 <ip>192.168.55.3</ip>
 <netmask>255.255.255.0</netmask>
 </address>
 </ipv4>
</interface>

To write these changes back to your original file, you can

use the following code:

Click here to view code image

with open("xml_sample.xml", "w") as data:

 data.write(xmltodict.unparse(xml_dict,

pretty=True))

YAML Ain’t Markup Language (YAML)

YAML is an extremely popular human-readable format

for constructing configuration files and storing data. It

was built for the same use cases as XML but has a much

simpler syntax and structure. It uses Python-like

indentation to differentiate blocks of information and

was actually built based on JSON syntax but with a

whole host of features that are unavailable in JSON (such

as comments). If you have ever used Docker or

Kubernetes, you have undoubtably run into YAML files.

The following is an example of YAML:

Click here to view code image

interface:

 name: GigabitEthernet2

 description: Wide Area Network

 enabled: true

 ipv4:

 address:

 - ip: 172.16.0.2

 netmask: 255.255.255.0

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg117-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg117

Notice that a YAML object has minimal syntax, all data

that is related has the same indentation level, and

key/value pairs are used to store data. YAML can also

represent a list by using the - character to identify

elements, as in the following example of IP addresses.

Click here to view code image

addresses:

 - ip: 172.16.0.2

 netmask: 255.255.255.0

 - ip: 172.16.0.3

 netmask: 255.255.255.0

 - ip: 172.16.0.4

 netmask: 255.255.255.0

To work with YAML in Python, you need to install and

import the PyYaml module. Once you import it into your

code, you can convert YAML to Python objects and back

again. YAML objects are converted to dictionaries, and

YAML lists automatically become Python lists. The two

functions that perform this magic are yaml.load to

convert from YAML objects into Python and

yaml.dump to convert Python objects back to YAML.

Just as in the other data examples, you can load a YAML

file and then pass it to yaml.load to work its magic. The

latest PyYaml module requires that you add an argument

to tell it which loader you want to use. This is a security

precaution so that your code will not be vulnerable to

arbitrary code execution from a bad YAML file. Here is

what the code looks like:

Click here to view code image

import yaml

with open("yaml_sample.yaml") as data:

 yaml_sample = data.read()

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg118-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg118-2

yaml_dict = yaml.load(yaml_sample,

Loader=yaml.FullLoader)

The variable yaml_dict is now a dictionary object

containing your YAML file. Had this key/value been a

YAML list, it would have created a list instead, like this:

Click here to view code image

>>> type(yaml_dict)

<class 'dict'>

>>> yaml_dict

{'interface': {'name': 'GigabitEthernet2',

'description': 'Wide

Area Network', 'enabled': True, 'ipv4':

{'address': [{'ip':

'192.168.0.2', 'netmask': '255.255.255.0'}]}}}

As before, you can modify this object to your liking. For

example, you can change the interface name to

GigabitEtherenet1, as shown in Example 5-7.

Example 5-7 Changing an Interface Name Within the

Python Dictionary and Printing the Results

Click here to view code image

>>> yaml_dict["interface"]["name"] =
"GigabitEthernet1"

>>> print(yaml.dump(yaml_dict,
default_flow_style=False))
interface:
 description: Wide Area Network
 enabled: true
 ipv4:
 address:
 - ip: 192.168.0.2
 netmask: 255.255.255.0
 name: GigabitEthernet1

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg118-3
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#pexa5-7

To write these changes back to your file, use the

following code.

Click here to view code image

with open("yaml_sample.yaml", "w") as data:

 data.write(yaml.dump(yaml_dict,

default_flow_style=False))

ERROR HANDLING IN PYTHON

Whenever you are working with code, errors are bound

to happen. In Python, errors often halt the execution of

code, and the interpreter spits out some type of cryptic

message. What if you wanted Python to tell the users

what they did wrong and let them try again or perform

some other task to recover from the error? That’s where

the try-except-else-finally code blocks come into play.

You have seen quite a bit of file access in this chapter.

What happens if you ask the user for the filename

instead of hard-coding it? If you did this, you would run

the risk of a typo halting your program. In order to add

some error handling to your code, you can use the try

statement. Example 5-8 shows an example of how this

works.

Example 5-8 try-except-else-finally Code Example

Click here to view code image

x = 0
while True:

 try:
 filename = input("Which file would you
like to open? :")
 with open(filename, "r") as fh:
 file_data = fh.read()
 except FileNotFoundError:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg119
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#pexa5-8

 print(f'Sorry, {filename} doesn't
exist! Please try again.')
 else:
 print(file_data)
 x = 0
 break
 finally:
 x += 1
 if x == 3:
 print('Wrong filename 3
times.\nCheck name and Rerun.')
 break

In this example, a variable keeps track of the number of

times the while loop will be run. This is useful for

building in some logic to make sure the program doesn’t

drive the users crazy by constantly asking them to enter a

filename. Next is an infinite while loop that uses the fact

that the Boolean True will always result in continuing

looping through the code. Next is the try statement,

which contains the block of code you want to subject to

error handling. You ask the user to enter a filename to

open, and it is stored in the filename variable. This

variable is used with open() to open a read-only text file

and use the file handle object fh. The file handle object

uses read() to store the text file in the file_data

variable. If Python can’t find the file specified, the

except FileNotFoundError block of code is executed,

printing an error message with the file’s name and

informing the user to try again. The else block runs only

if an exception does not occur and the filename can be

found. The file_data is printed, x is set to 0 (to empty

the counter), the loop is stopped, and the finally block is

run. The finally block runs regardless of whether an

exception occurs each time through the loop. The x

variable is incremented each time through the loop, and

if the user gets the wrong filename three times, a

message is printed, saying the user tried three times and

to check the file. At this point, the loop is broken, and the

script is halted.

Here is what the program output would look like with a

valid test.txt file in the script directory:

Click here to view code image

Which file would you like to open? :test

Sorry, test doesn't exist! Please try again.

Which file would you like to open? :test.txt

Test file with some text.

Two lines long.

Here is what the output would look like with three wrong

choices:

Click here to view code image

Which file would you like to open? :test

Sorry, test doesn't exist! Please try again.

Which file would you like to open? :test2

Sorry, test2 doesn't exist! Please try again.

Which file would you like to open? :test3

Sorry, test3 doesn't exist! Please try again.

Wrong filename 3 times.

Check name and Rerun.

There are quite a few other error-handling capabilities

available in Python, and if you want to try to make your

applications more user friendly, it would be worth your

time to explore them. The latest documentation can be

found at https://docs.python.org/3/tutorial/errors.html.

This documentation discusses custom errors and

provides more examples of types of errors you can use

with the previous sample code.

TEST-DRIVEN DEVELOPMENT

Test-driven development (TDD) is an interesting concept

that at first glance may seem completely backward. The

idea is that you build a test case first, before any software

has been created or modified. The goal is to streamline

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg120-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg120-2
https://docs.python.org/3/tutorial/errors.html

the development process by focusing on only making

changes or adding code that satisfies the goal of the test.

In normal testing, you test after the software is written,

which means you spend your time chasing errors and

bugs more than writing code. By writing the test first,

you spend your time focused on writing only what is

needed and making your code simple, easier to

understand, and hopefully bug free. Figure 5-1 shows the

TDD process in action.

Figure 5-1 Test-Driven Development in Action

The following are the five steps of TDD:

Step 1. Write a test: Write a test that tests for the

new class or function that you want to add to

your code. Think about the class name and

structure you will need in order to call the new

capability that doesn’t exist yet—and nothing

more.

Step 2. Test fails: Of course, the test fails because

you haven’t written the part that works yet. The

idea here is to think about the class or function

you want and test for its intended output. This

initial test failure shows you exactly where you

should focus your code writing to get it to pass.

This is like starting with your end state in mind,

which is the most effective way to accomplish a

goal.

Step 3. Write some code: Write only the code

needed to make the new function or class

successfully pass. This is about efficiency and

focus.

Step 4. Test passes: The test now passes, and the

code works.

Step 5. Refactor: Clean up the code as necessary,

removing any test stubs or hard-coded variables

used in testing. Refine the code, if needed, for

speed.

TDD may see like a waste of time initially. Why write

tests for stuff you know isn’t going to pass? Isn’t all of

this testing just wasted effort? The benefit of this style of

development is that it starts with the end goal in mind,

by defining success right away. The test you create is

laser focused on the application’s purpose and a clear

outcome. Many programmers add too much to their code

by trying to anticipate future needs or building in too

much complexity for an otherwise simple problem. TDD

works extremely well with the iterative nature of Agile

development, with the side benefit of having plenty of

test cases to show that the software works.

UNIT TESTING

Testing your software is not optional. Every script and

application that you create have to go through testing of

some sort. Maybe it’s just testing your syntax in the

interactive interpreter or using an IDE and trying your

code as you write it. While this is software testing, it’s not

structured and often is not repeatable. Did you test all

options? Did you validate your expectations? What

happens if you send unexpected input to a function?

These are some of the reasons using a structured and

automated testing methodology is crucial to creating

resilient software.

A unit test is a type of test that is conducted on small,

functional aspects of code. It’s the lowest level of

software testing and is interested in the logic and

operation of only a single function in your code. That’s

not to say that you can’t perform multiple tests at the

same time. Computers are great at performing repetitive

tasks, but the goal is for each test to be on one function at

a time so that the testing is specific and consistent.

Remember that a unit is the smallest testable part of

your software.

There are other types of testing that you may hear about,

such as integration testing and functional testing. The

differences between these types of testing and unit

testing come down to the scope of the test. As

mentioned, a unit test is testing a small piece of code,

such as a method or function. An integration test, on the

other hand, tests how one software component works

with the rest of the application. It is often used when

modules of an application are developed by separate

teams or when a distributed application has multiple

components working together. A functional test (also

called an end-to-end test) is the broadest in scope from a

testing perspective. This is where the entire system is

tested against the functional specifications and

requirements of the software application. Figure 5-2

shows a testing pyramid to put it in perspective.

Figure 5-2 Testing Pyramid

Python has a built-in unit test module, named unittest.

This module is quite full featured and can support a

tremendous number of test cases. There are other testing

modules that you can use, such as Nose and PyTest (who

comes up with these names?), but for the purposes of the

200-901 DevNet Associate DEVASC exam, you need to

know how unittest works. In order to use unittest, you

need a bit of code to test. Here is a simple function that

computes the area of a circle:

from math import pi

def area_of_circle(r):

 return pi*(r**2)

You import from the math module the pi method to

make it a little easier. A function is defined with the

name area_of_circle that takes the argument r. The

function computes the radius of a circle and returns the

value. This is very simple, but what happens if the

function is called, and odd values are passed to it? You

guessed it: lots of errors. So in order to test this function,

you can create a unit test.

Certain conventions must be followed for a unit test.

While you can create a unit test that has the code that

you want to test all in the same file, it’s a better idea to

use object-oriented principles when building tests. In

this case, the function you want to test is saved as

areacircle.py, so following good practices you should

name your unit test file test_areacircle.py. This makes it

easy to differentiate the two. You should also import the

unittest module, and from areacircle you can import the

area_of_circle function. Import the pi method from

math so that you can test your results. The import

statements would look as follows:

Click here to view code image

import unittest

from areacircle import area_of_circle

from math import pi

Next, you need to create a class for your test. You can

name it whatever you want, but you need to inherit

unittest.TestCase from the unittest module. This is

what enables the test function methods to be assigned to

your test class. Next, you can define your first test

function. In this case, you can test various inputs to

validate that the math in your function under test is

working as it should. You will notice a new method called

assertAlmostEqual(), which takes the function you

are testing, passes a value to it, and checks the returned

value against an expected value. You can add a number

of tests to this function. This is what the test now looks

like with the additional code:

Click here to view code image

class

Test_Area_of_Circle_input(unittest.TestCase):

 def test_area(self):

 # Test radius >= 0

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg123-2
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg124-1

 self.assertAlmostEqual(area_of_circle(1),

pi)

 self.assertAlmostEqual(area_of_circle(0),

0)

 self.assertAlmostEqual(area_of_circle(3.5),

pi * 3.5**2)

You can go to the directory where these two scripts

reside and enter python -m unittest

test_areacircle.py to run the test. If you don’t want to

type all that, you can add the following to the bottom of

the test_areacircle.py script to allow the unittest

module to be launched when you run the test script:

if __name__ == '__main__':

 unittest.main()

All this does is check to see if the script is being run

directly (because the __main__ special case is an

attribute for all Python scripts run from the command

line) and call the unittest.main() function. After

executing the function, you should see the following

results:

Click here to view code image

.

--

Ran 1 test in 0.000s

OK

The dot at the top shows that 1 test ran (even though you

had multiple checks in the same function) to determine

whether the values submitted produced an error. Since

all are valid for the function, the unit test came back

successfully.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg124-2

Now you can check to see if a negative number causes a

problem. Create a new function under your previous

test_area function. Name this function test_values.

(The test at the beginning is required, or unittest will

ignore the function and not check it.) You can use the

assertRaises check, which will be looking for a

ValueError exception for the function

area_of_circle, and pass it a value of -1. The following

function can be added to your code:

Click here to view code image

def test_values(self):

 # Test that bad values are caught

 self.assertRaises(ValueError,

area_of_circle, -1)

Example 5-9 shows the output of the test with this

additional check.

Example 5-9 Output from Adding a New Test That

Fails

Click here to view code image

.F
===
FAIL: test_values
(__main__.Test_Area_of_Circle_input)

Traceback (most recent call last):
 File
"/Users/chrijack/Documents/ccnadevnet/test_areacircle.py",
 line 14, in
 test_values
 self.assertRaises(ValueError,
area_of_circle, -1)
AssertionError: ValueError not raised by
area_of_circle

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg124-3
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#pexa5-9

Ran 2 tests in 0.001s

FAILED (failures=1)

The first check is still good, so you see one dot at the top,

but next to it is a big F for fail. You get a message saying

that the test_value function is where it failed, and see

that your original function did not catch this error. This

means that the code is giving bad results. A radius of -1 is

not possible, but the function gives you the following

output:

>>> area_of_circle(-1)

3.141592653589793

To fix this, you go back to your original function and

some error-checking code. You use a simple if statement

to check for a negative number, and you raise a

ValueError with a message to the user about invalid

input:

Click here to view code image

from math import pi

def area_of_circle(r):

 if r < 0:

 raise ValueError('Negative radius value

error')

 return pi*(r**2)

Now when you try the test from the interpreter, you see

an error raised:

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg125-2
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg125-3

>>> area_of_circle(-1)

Traceback (most recent call last):

 File "<pyshell>", line 1, in <module>

 File

"/Users/chrijack/Documents/ccnadevnet/areacircle.py",

 line 5, in area_of_circle

 raise ValueError('Negative radius value

error')

ValueError: Negative radius value error

If you rerun the unit test, you see that it now passes the

new check because an error is raised:

Click here to view code image

..

--

Ran 2 tests in 0.000s

OK

This simple example barely scratches the surface of how

you can use unit testing to check your software, but it

does show you how a unit test is constructed and, more

importantly, what it does to help you construct resilient

code. Many more tests can be conducted; see the

documentation at

https://docs.python.org/3/library/unittest.html.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, "Final

Preparation," and the exam simulation questions on the

companion website.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch05_images.xhtml#ppg125-4
https://docs.python.org/3/library/unittest.html

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 5-2 lists these key topics and the page number on

which each is found.

Table 5-2 Key Topics

Key Topic ElementDescriptionPage Number

Section JavaScript Object Notation (JSON) 113

Section Extensible Markup Language (XML) 115

Section Error Handling in Python 11

9

Steps Test-driven development 121

Paragraph Unit test in Python 12

3

Example 5-

9

Output from Adding a New Test That

Fails

12

5

Paragraph Fixing a test that fails 12

5

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

test-driven development (TDD)

unit test

integration test

functional test

ADDITIONAL RESOURCES

Reading Data from a File in Python:

https://developer.cisco.com/learning/lab/coding-

204-reading-a-file/step/1

Useful Python Libraries for Network

Engineers: https://www.youtube.com/watch?

v=Y4vfA11fPo0

Python unittest Module—How to Test Your

Python Code?

https://saralgyaan.com/posts/python-unittest-

module-how-to-test-your-python-code/

https://developer.cisco.com/learning/lab/coding-204-reading-a-file/step/1
https://www.youtube.com/watch?v=Y4vfA11fPo0
https://saralgyaan.com/posts/python-unittest-module-how-to-test-your-python-code/

Chapter 6

Application Programming
Interfaces (APIs)

This chapter covers the following topics:

Application Programming Interfaces (APIs): This section

describes what APIs are and what they are used for.

Representational State Transfer (REST) APIs: This section of

provides a high-level overview of the RESTful APIs and how they

function as well as the benefits of using RESTful APIs.

RESTful API Authentication: This section covers various aspects of

the API authentication methods and the importance of API security.

Simple Object Access Protocol (SOAP): This section examines

SOAP and common examples of when and where this protocol is used.

Remote-Procedure Calls (RPCs): This section provides a high-

level overview of RPCs, why they are used, and the components

involved.

Software developers use application programming

interfaces (APIs) to communicate with and configure

networks. APIs are used to communicate with

applications and other software. They are also used to

communicate with various components of a network

through software. You can use APIs to configure or

monitor specific components of a network, and there

are multiple different types of APIs. This chapter

focuses on two of the most common APIs: northbound

and southbound APIs. This chapter explains the

differences between these type of APIs through the

lens of network automation.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 6-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 6-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Application Programming Interfaces (APIs) 1, 2

Representational State Transfer (REST) APIs 3

RESTful API Authentication 4

Simple Object Access Protocol (SOAP) 5, 6

Remote-Procedure Calls (RPCs) 7

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. Which of the following is a sample use case of a

southbound API?

1. Pushing network configuration changes down to devices

2. Increasing security

3. Streaming telemetry

4. Sending information to the cloud

2. What are some benefits of using asynchronous

APIs? (Choose two.)

1. Not having to wait on a response to process data

2. Reduced processing time

3. Increased processing time

4. Data function reuse

3. What are the HTTP functions used for API

communication? (Choose three.)

1. GET

2. SOURCE

3. PURGE

4. PATCH

5. PUT

4. True or false: RESTful API authentication can use

API keys or custom tokens.

1. True

2. False

5. What does SOAP stand for?

1. Software Operations and Procedures

2. Software Operations Authentication Protocol

3. Simple Object Access Protocol

4. Simple Operations Automation Platform

5. Support Object Abstract Protocol

6. What are the main components of SOAP messages?

(Choose all that apply.)

1. Envelope

2. Header

3. Destination

4. Body

5. Fault

6. Authentication

7. Source

7. Remote-procedure calls (RPCs) behave similarly to

which of the following?

1. Synchronous API

2. Asynchronous API

FOUNDATION TOPICS

APPLICATION PROGRAMMING

INTERFACES (APIS)

For communicating with and configuring networks,

software developers commonly use application

programming interfaces (APIs). APIs are mechanisms

used to communicate with applications and other

software. They are also used to communicate with

various components of a network through software. A

developer can use APIs to configure or monitor specific

components of a network. Although there are multiple

different types of APIs, this chapter focuses on two of the

most common APIs: northbound and southbound APIs.

The following sections explain the differences between

these two API types through the lens of network

automation, and Figure 6-1 illustrates the typical basic

operations of northbound and southbound APIs.

Figure 6-1 Basic API Operations

Northbound APIs

Northbound APIs are often used for communication

from a network controller to its management software.

For example, Cisco DNA Center has a software graphical

user interface (GUI) that is used to manage its own

network controller. Typically, when a network operator

logs into a controller to manage the network, the

information that is passed to the management software

leverages a northbound REST-based API. Best practices

suggest that the traffic should be encrypted using TLS

between the software and the controller. Most types of

APIs have the ability to use encryption to secure the data

in flight.

Note

RESTful APIs are covered in an upcoming section of

this chapter and in depth in Chapter 7, “RESTful API

Requests and Responses.”

Southbound APIs

If a network operator makes a change to a switch’s

configuration in the management software of the

controller, those changes will then be pushed down to

the individual devices using a southbound API. These

devices can be routers, switches, or even wireless access

points. APIs interact with the components of a network

through the use of a programmatic interface.

Southbound APIs can modify more than just the data

plane on a device.

Synchronous Versus Asynchronous APIs

APIs can handle transactions either in a synchronous

manner or an asynchronous manner. A synchronous

API causes an application to wait for a response from

the API in order to continue processing data or function

normally. This can lead to interruptions in application

processing as delay in responses or failed responses

could cause the application to hang or stop performing

the way it was intended to work. This might occur, for

example, if an application relies on some piece of

information to be retrieved from another API before it

can continue functioning. For example, uploading videos

to YouTube was originally a synchronous use case. While

the videos were uploading, users couldn’t use the rest of

the GUI or change the names of the videos or make other

changes. Users had to wait until the process completed

prior to doing any other work within the YouTube

application. Figure 6-2 provides an example of a

synchronous process.

Figure 6-2 Synchronous API Call Example

Asynchronous APIs do exactly the opposite of

synchronous APIs in that they do not wait until a

response is received prior to continuing to function and

process other aspects of data. Asynchronous APIs

provide a callback function so that the API response can

be sent back at another time, without the application

having to wait for the entire transaction to complete. As

an example of an asynchronous API, today you can

upload a video to YouTube, and while it’s uploading,

users can change the title, add hashtags, and even

retrieve the URL to which the video will be posted once it

is finished being uploaded.

In summary, the main difference between synchronous

and asynchronous APIs is that a synchronous API waits

for other aspects of the code to complete prior to moving

on and processing additional code. An asynchronous

API, on the other hand, provides the ability to continue

processing code and provides a callback so that an

application doesn’t have to wait for the API call to

complete before it can continue processing other API

calls. An asynchronous API provides a better user

experience as the users do not have to wait on certain

aspects of information to be received prior to being able

to use the application for other things. Figure 6-3

illustrates an asynchronous API call and how the

application can continue processing while waiting for the

response from the initial API call.

Figure 6-3 Asynchronous API Call Example

Representational State Transfer (REST) APIs

An API that uses REST is often referred to a RESTful

API. RESTful APIs use HTTP methods to gather and

manipulate data. Because there is a defined structure for

how HTTP works, HTTP offers a consistent way to

interact with APIs from multiple vendors. REST uses

different HTTP functions to interact with data. Table 6-2

lists some of the most common HTTP functions and their

associated use cases.

HTTP functions are very similar to the functions that

most applications and databases use to store or alter

data, whether it is stored in a database or within an

application. These functions are called CRUD functions;

CRUD is an acronym that stands for CREATE, READ,

UPDATE, and DELETE. For example, in an SQL

database, the CRUD functions are used to interact with

or manipulate the data stored in the database. Table 6-3

lists the CRUD functions and their associated actions

and use cases.

Table 6-2 HTTP Functions and Sample Use Cases

HTTP FunctionActionUse Case

GET Requests data from a

destination

Viewing a website

POS

T

Submits data to a specific

destination

Submitting login

credentials

PUT Replaces data at a specific

destination

Updating an NTP

server

PAT

CH

Appends data to a specific

destination

Adding an NTP

server

DEL

ETE

Removes data from a

specific destination

Removing an NTP

server

Table 6-3 CRUD Functions and Sample Use Cases

CRUD FunctionActionUse Case

C

R

E

A

T

E

Inserts data inside a

database or an

application

Creating a customer’s

home address in a

database

R

E

A

D

Retrieves data from a

database or an

application

Pulling up a customer’s

home address from a

database

U

P

D

A

T

E

Modifies or replaces data

in a database or an

application

Changing a street

address stored in a

database

D

E

L

E

T

E

Removes data from a

database or an

application

Removing a customer

from a database

Whether you are trying to learn how APIs interact with

applications or controllers, test code and outcomes, or

become a full-time developer, one of the most important

pieces of interacting with any software via APIs is

testing. Testing code helps ensure that developers are

accomplishing the desired outcome. This chapter covers

some tools and resources that make it possible to

practice using APIs and REST functions and hone your

development skills in order to become a more efficient

network engineer with coding skills.

Note

Chapter 7 provides more detail on HTTP and CRUD

functions as well as response codes.

RESTful API Authentication

As mentioned earlier in this chapter, it is important to

able to interact with a software controller using RESTful

APIs and to be able to test code to see if the desired

outcomes are accomplished when executing the code.

Keep in mind that APIs are software interfaces into an

application or a controller. Many APIs require

authentication; such APIs are just like devices in that the

user needs to authenticate to gain access to utilize the

APIs. Once a user has authenticated, any changes that a

developer has access to make via the API are then able to

impact the application. This means if a RESTful API call

is used to delete data, that data will be removed from the

application or controller just as if a user were logged into

the device via the CLI and deleted it. It is best practice to

use a test lab or a Cisco DevNet sandbox while learning

or practicing API concepts to prevent accidental impacts

in a production or lab environment.

Note

Cisco DevNet is covered in Chapter 1, “Introduction to

Cisco DevNet Associate Certification.”

Basic Authentication

Basic authentication, illustrated in Figure 6-4, is one of

the simplest and most common authentication methods

used in APIs. The downfall of basic authentication is that

the credentials are passed unencrypted. This means that

if the transport is simple HTTP, it is possible to sniff the

traffic and capture the username and password with little

to no effort. The lack of encryption means that the

credentials are in simple plaintext base 64 encoding in

the HTTP header. However, basic authentication is more

commonly used with SSL or TLS to prevent such attacks.

Figure 6-4 Basic Authentication Example

Another big issue with basic authentication is that the

password is sent back and forth with each request, which

increases the opportunity for an attacker to capture the

traffic containing the password. This is yet another

reason to use encryption on this type of transaction.

API Keys

Some APIs use API keys for authentication. An API key

is a predetermined string that is passed from the client to

the server. It is intended to be a pre-shared secret and

should not be well known or easy to guess because it

functions just like a password. Anyone with this key can

access the API in question and can potentially cause a

major outage and gain access to critical or sensitive data.

An API key can be passed to the server in three different

ways:

String

Request header

Cookie

Example 6-1 provides an example of a string-based API

key. This type of API key is sent with every API call and is

often used as a one-off method of authentication. When

you’re looking to do multiple API calls, it isn’t convenient

to manually enter the API key string every time. This is

where the request header or cookie options come into

play.

Example 6-1 String-Based API Key Example

Click here to view code image

GET /something?api_key=abcdef12345

Request headers are frequently used when a user is

making multiple API calls and doesn’t want to keep

having to put the API key into each API individually. This

approach is typically seen in Postman and Python

scripts. The header must include the string or token in

the header of each API call. Example 6-2 shows the

request header option for API key authentication.

Example 6-2 Request Header API Key Example

GET /something HTTP/1.1
X-API-Key: abcdef12345

Finally, one of the most common methods for recurring

API calls is to use cookies. A cookie stores the API key

string and can be reused and stored over and over. This

is synonymous with a header. Example 6-3 shows an API

key cookie that uses the same key as the previous

examples.

Example 6-3 Cookie API Key Example

Click here to view code image

GET /something HTTP/1.1
Cookie: X-API-KEY=abcdef12345

Note

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch06_images.xhtml#pexa6-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch06_images.xhtml#pexa6-3

Later chapters provide detailed examples of the

authentication methods introduced in this chapter.

Custom Tokens

A custom token allows a user to enter his or her

username and password once and receive a unique auto-

generated and encrypted token. The user can then use

this token to access protected pages or resources instead

of having to continuously enter the login credentials.

Tokens can be time bound and set to expire after a

specific amount of time has passed, thus forcing users to

reauthenticate by reentering their credentials. A token is

designed to show proof that a user has previously

authenticated. It simplifies the login process and reduces

the number of times a user has to provide login

credentials. A token is stored in the user’s browser and

gets checked each time the user tries to access

information requiring authentication. Once the user logs

out of the web browser or website, the token is destroyed

so it cannot be compromised. Figure 6-5 provides an

overview of token-based authentication between a client

and a server.

Figure 6-5 Token-Based Authentication Example

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is used to access

web services. Although HTTP is the most commonly

deployed transport for SOAP, SOAP can use either

Simple Mail Transfer Protocol (SMTP) or HTTP. SOAP is

used to exchange data between applications that were

built on different programming languages, such as Java,

.NET, and PHP. SOAP greatly simplifies the life of a

developer, eliminating the need to know how to develop

in each of these specific programming languages. It

makes it possible to exchange data between these

applications in a more simplified manner, without

requiring a developer to be expert in all the different

languages. SOAP is based on XML. Because most

programming languages today have libraries for working

with XML, SOAP can act as an intermediary specification

between the different applications.

SOAP uses XML to communicate between web services

and clients. Because SOAP is platform and operating

system independent, it can work with both Windows and

Linux platforms. SOAP messages, which typically consist

of the following four main components, are sent between

the web applications and the clients (see Figure 6-6):

Envelope

Header

Body

Fault (optional)

Figure 6-6 SOAP Message Format

The SOAP envelope encloses the XML data and identifies

it as a SOAP message. The envelope indicates the

beginning and the end of the SOAP message. The next

portion of a SOAP message is the SOAP header, and it

can contain multiple header blocks. Header blocks are

targeted to specific SOAP receiver nodes. If a SOAP

message contains a header, it must come before the body

element. The SOAP body contains the actual message

that is designated for the SOAP receiver. Every SOAP

envelope must contain at least one body element.

Typically, SOAP messages are automatically generated

by the web service when it’s called by the client. Figure 6-

7 illustrates the high-level communication that occurs

between a client and a server or web service.

Figure 6-7 High-Level SOAP Communication

Another potentially beneficial aspect of SOAP is that

because it primarily uses HTTP, it is efficient in passing

through firewalls without requiring that any additional

ports be allowed or open for the web service traffic to be

permitted. This can save time and reduce some

operational overhead. To reiterate, the benefit of SOAP is

its capability to work between different languages while

using a simple common HTTP and XML structure.

Example 6-4 shows a sample SOAP message that is being

used to leverage an HTTP GET to retrieve the price for

Cisco’s stock, using the ticker symbol CSCO.

Example 6-4 Sample SOAP Message

Click here to view code image

POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml;
charset=utf-8
Content-Length: 299
SOAPAction: "http://www.w3.org/2003/05/soap-
envelope"

<?xml version="1.0"?>

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch06_images.xhtml#pexa6-4

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-
envelope" xmlns:m="http://
www.example.org">
 <soap:Header>
 </soap:Header>
 <soap:Body>
 <m:GetStockPrice>
 <m:StockName>CSCO</m:StockName>
 </m:GetStockPrice>
 </soap:Body>
</soap:Envelope>

The World Wide Web Consortium (W3C) recommends

using the current SOAP specification, version 1.2. The

previous version of SOAP is 1.1. Although it is possible

for a SOAP node to support both versions of the protocol,

a protocol binding must be used for the version of SOAP

that the client intends to use.

As mentioned briefly at the beginning of this section,

SOAP can include optional fault messages. Table 6-4 lists

the options that are available for the optional fault

messages as well as which of them are optional.

Table 6-4 SOAP Fault Options

Fault ElementDescriptionOptional

faultCode Specifies the fault code of an error No

faultString Describes an error No

faultActor Specifies who caused a fault Yes

detail Applies specific error messages Yes

Table 6-4 shows the options available in SOAP version

1.2. faultString provides a description of an error

message that is generated. This is not an optional field;

rather, it is mandatory in the communications between

the client and the web service. faultActor specifies

which node caused a fault. Although this field would

provide some additional information related to who

caused the fault at hand, this field is optional. The detail

element provides application-specific error messages;

that is, this element is populated with information

provided by the application. SOAP fault messages can

contain a variety of faultCode options, which indicate

what errors were generated as well as potentially who

caused each error (the sender or receiver). Table 6-5 lists

the available SOAP fault codes and their associated use

cases.

Table 6-5 SOAP Fault Codes

SOAP Fault CodeDescription

V

e

r

s

i

o

n

M

i

s

m

a

t

c

h

The faulting node found an invalid element information

item instead of the expected envelope element

information item. The namespace, local name, or both

did not match the envelope element information item

required by this recommendation.

M

u

s

t

U

n

d

e

r

This is a child element of the SOAP header. If this

attribute is set, any information that was not understood

triggers this fault code.

s

t

a

n

d

D

a

t

a

E

n

c

o

d

i

n

g

U

n

k

n

o

w

n

A SOAP header block or SOAP body child element

information item targeted at the faulting SOAP node is

scoped.

S

e

n

d

e

r

The message was incorrectly formed or did not contain

the information needed to succeed. For example, the

message might have lacked the proper authentication or

payment information. This code generally indicates that

the message is not to be resent without change.

R

e

c

e

i

v

e

r

The message could not be processed for reasons

attributable to the processing of the message rather than

to the contents of the message itself. For example,

processing could include communicating with an

upstream SOAP node, which did not respond. The

message could succeed, however, if resent at a later point

in time.

The fault message shown in Example 6-5 was generated

because the Detail value wasn’t interpreted correctly due

to the typo in the XML <m:MaxTime>

P5M</m:MaxTime>. The value P5M caused the issue in

this case because the code was expecting it to be 5PM.

The XML code and value should be

<m:MaxTime>5PM</m:MaxTime> in this case.

Example 6-5 Sample SOAP Fault

Click here to view code image

<env:Envelope
xmlns:env="http://www.w3.org/2003/05/soap-
envelope"

xmlns:m="http://www.example.org/timeouts"

xmlns:xml="http://www.w3.org/XML/1998/namespace">

 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 <env:Subcode>
 <env:Value>m:MessageTimeout</env:Value>
 </env:Subcode>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang="en">Sender
Timeout</env:Text>
 </env:Reason>
 <env:Detail>
 <m:MaxTime>P5M</m:MaxTime>
 </env:Detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

Note

The examples used in this chapter are all based on

SOAP version 1.2.

Remote-Procedure Calls (RPCs)

Remote-procedure calls (RPCs) make it possible to

execute code or a program on a remote node in a

network. RPCs behave as if the code were executed

locally on the same local node, even though the code is

executed on a remote address space, such as another

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch06_images.xhtml#pexa6-5

system on the network. Most remote and local calls are

very similar in nature and can be distinguished from one

another based on whether they are local or remote. RPCs

are sometimes also known as function or subroutine

calls. Using an RPC is a very common way of executing

specific commands, such as executing GET or POST

operations to a set API or URL.

When a client sends a request message, the RPC

translates it and then sends it to the server. A request

may be a procedure or a function call destined to a

remote server. When a server receives the request, it

sends back a response to the client. While this

communication is happening, the client is blocked,

allowing the server time to process the call. Once the call

is processed and a response has been sent back to the

client, the communication between the client and server

is unblocked so the client can resume executing the

procedure call. This can be considered a security

mechanism to prevent the flooding of RPCs to brute-

force the server and cause denial-of-service (DoS) attacks

or exhaustion of resources. Figure 6-8 showcases the

high-level RPC communications between a client and a

server.

Figure 6-8 High-Level RPC Communications

As mentioned earlier in this section, an RPC call is

blocked during the waiting periods. Once a procedure is

executed and the response is sent from the server and

received on the client, the execution of the procedure

continues. (This means that RPC calls are typically

synchronous. There are also asynchronous RPC calls, but

the focus of this section is on synchronous RPC calls.)

Now that the high-level communications of RPC have

been covered, let’s look at an example of an RPC request

message. There are different versions of RPC messages.

However, the most common is XML-RPC; XML-RPC was

also the most common version prior to SOAP becoming

available. Example 6-6 shows a simple RPC call with

XML-RPC that uses a GET to retrieve the name of the

21st state added to the United States.

Example 6-6 Sample XML-RPC Request Message

Click here to view code image

<?xml version="1.0"?>
<methodCall>

<methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value><i4>21</i4></value>
 </param>
 </params>
</methodCall>

You can see in Example 6-6 that the format of XML is

very similar to that of SOAP, making these messages

simple for humans to read and digest and also to build.

Example 6-7 shows an example of an XML-RPC reply or

response message, in which the response to the GET

message from Example 6-6 is Illinois.

Example 6-7 Sample XML-RPC Reply Message

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch06_images.xhtml#pexa6-6
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch06_images.xhtml#pexa6-7

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>Illinois</string>
</value>
 </param>
 </params>
</methodResponse>

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 6-6 lists these key topics and the page number on

which each is found.

Table 6-6 Key Topics for Chapter 6

Key Topic ElementDescriptionPage Number

Section Synchronous Versus Asynchronous

APIs

131

Table 6-2 HTTP Functions and Sample Use Cases 133

Table 6-3 CRUD Functions and Sample Use Cases 133

Section RESTful API Authentication 133

Paragrap

h

SOAP structure and components 136

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

Representational State Transfer (REST) APIs

synchronous API

asynchronous API

CRUD functions

API key

API token

Simple Object Access Protocol (SOAP)

remote-procedure call (RPC)

Chapter 7

RESTful API Requests and
Responses

This chapter covers the following topics:

RESTful API Fundamentals: This section covers the basics of

RESTful APIs and details operations such as GET, POST, PUT, and

DELETE. Other topics include REST headers and data formats such as

XML, JSON, and YAML.

REST Constraints: This section covers the six architectural

constraints of REST in detail.

REST Tools: This section covers sequence diagrams and tools such as

Postman, curl, HTTPie, and the Python Requests library that are used

to make basic REST calls.

Application programming interfaces (APIs) are the

foundation of the new generation of software,

including networking, cloud, mobile, and Internet of

Things (IoT) software. APIs connect pieces of software

together, “gluing” together any required information

components around a system and enabling two pieces

of software to communicate with each other.

REST, which stands for Representational State

Transfer, refers to a particular style of API building.

Most modern services and networking products today

rely on REST for their APIs simply because REST is

based on HTTP (which happens to be the protocol that

powers nearly all Internet connections). REST is

lightweight, flexible, and scalable, and its popularity

has been growing.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 7-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 7-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

RESTful API Fundamentals 1–5

REST Constraints 6, 7

REST Tools 8

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. In HTTP, in order to make a successful GET request

to the server, the client needs to include at least

which of the following? (Choose two.)

1. URL

2. Method

3. Headers

4. Body

2. Which of the following is not an HTTP method?

1. GET

2. HEAD

3. TRIGGER

4. PATCH

3. Webhooks are like which of the following? (Choose

two.)

1. Remote procedure calls

2. Callback functions

3. State-altering functions

4. Event-triggered notifications

4. Which response code indicates that a resource has

moved?

1. 201

2. 301

3. 401

4. 501

5. Which of the following model the interactions

between various objects in a single use case?

1. REST APIs

2. Sequence diagrams

3. Excel sheets

4. Venn diagrams

6. Which REST API architectural constraint allows

you to download code and execute it?

1. Client/server

2. Statelessness

3. Code on demand

4. Layered systems

7. Rate limiting is an essential REST API design

method for developers. Rate-limiting techniques are

used to ______.

1. increase security

2. have business impact

3. enhance efficiency end to end

4. do all the above

8. To add HTTP headers to a Python request, you can

simply pass them in as which of the following?

1. list

2. dict

3. tuple

4. set

FOUNDATION TOPICS

RESTFUL API FUNDAMENTALS

An application programming interface (API) is a

set of functions and procedures intended to be used as an

interface for software components to communicate with

each other. An API may be for a web app, an operating

system, a database system, computer hardware, or any

software library. A common example of an API is the

Google Maps API, which lets you interface with Google

Maps so that you can display maps in your application,

query locations, and so on. Figure 7-1 shows a simple

way to visualize an API.

Figure 7-1 APIs are a contract between two

communicating applications

The following sections look at the different API types.

API Types

APIs can be broadly classified into three categories,

based on the type of work that each one provides:

Service API: In a service API, an application can call on another

application to solve a particular problem (see Figure 7-2). Usually these

systems can exist independently. For example, in a payment system, an

application can call the API to accept payments via credit cards. As

another example, with a user-management system, an application can

call an API to validate and authenticate users.

Figure 7-2 Service API Providing a Complete Service

to the Calling Application

Information API: An information API allows one application to ask

another application for information. Information in this context can

refer to data gathered over time, telemetry data, or a list of devices that

are currently connected. Figure 7-3 provides a visual representation of

an information API.

Figure 7-3 Information API Providing Information

or Analysis of Data That Has Been Collected

Hardware API: Application developers use hardware APIs to gain

access to the features of hardware devices. Usually these APIs

encompass some kind of hardware or sensors, and an application can

call this kind of API to get the GPS location or real-time sensor data

such as temperature or humidity. Figure 7-4 provides a visual

representation of what a hardware API does.

Figure 7-4 Hardware API Providing Access to

Hardware in Order to Get or Set Data

API Access Types

There are typically three ways APIs can be accessed:

Private: A private API is for internal use only. This access type gives a

company the most control over its API.

Partner: A partner API is shared with specific business partners. This

can provide additional revenue streams without compromising quality.

Public: A public API is available to everyone. This allows third parties

to develop applications that interact with an API and can be a source

for innovation.

Regardless of how they are accessed, APIs are designed

to interact through a network. Because the most widely

used communications network is the Internet, most APIs

are designed based on web standards. Not all remote

APIs are web APIs, but it’s fair to assume that web APIs

are remote.

Thanks to the ubiquity of HTTP on the web, most

developers have adopted it as the protocol underlying

their APIs. The greatest benefit of using HTTP is that it

reduces the learning curve for developers, which

encourages use of an API. HTTP has several features that

are useful in building a good API, which will be apparent

as we start exploring the basics in the next section.

HTTP Basics

A web browser is a classic example of an HTTP client.

Communication in HTTP centers around a concept

called the request/response cycle, in which the client

sends the server a request to do something. The server,

in turn, sends the client a response saying whether or not

the server can do what the client asked. Figure 7-5

provides a very simple illustration of how a client

requests data from a server and how the server responds

to the client.

Figure 7-5 Simple HTTP Request/Response Cycle

Now let’s look at a request from the HTTP point of view,

where the client (web browser) makes a request (GET

/index.hml) to the server (developer.cisco.com). The

server eventually responds to the client with the actual

HTML page, which then gets rendered by the browser.

Figure 7-6 provides a very simple representation of how

a client sends a GET request requesting the page from

the server and how the server responds with the HTML

page to the client.

Figure 7-6 Simple HTTP GET Request with 200 OK

Response

http://developer.cisco.com/

In HTTP, in order to make a successful request to the

server, the client needs to include four items:

URL (uniform resource locator)

Method

List of headers

Body

The following sections look at each of these items in

detail.

Uniform Resource Locator (URL)

An URL is similar to a house address in that it defines

the location where a service resides on the Internet. A

URL typically has four components, as shown in Figure

7-7:

Protocol

Server/host address

Resource

Parameters

Figure 7-7 Anatomy of an HTTP URL

These four components are shown in the Figure 7-7.

As you can see, the server or host address is the unique

server name, /api/rooms/livingroom defines a resource

to access, and lights?state=ON is the parameter to send

in order to take some action.

Method

HTTP defines a set of request methods, outlined in Table

7-2. A client can use one of these request methods to

send a request message to an HTTP server.

Table 7-2 Request Methods

MethodExplanation

G

E

T

A client can use a GET request to get a web resource

from the server.

H

E

A

D

A client can use a HEAD request to get the header that a

GET request would have obtained. Because the header

contains the last-modified date of the data, it can be used

to check against the local cache copy.

P

O

S

T

A client can use a POST request to post data or add new

data to the server.

P

U

T

A client can use a PUT request to ask a server to store or

update data.

P

A

T

C

H

A client can use a PATCH request to ask a server to

partially store or update data.

D

E

L

E

T

E

A client can use a DELETE request to ask a server to

delete data.

T

R

A

C

E

A client can use a TRACE request to ask a server to

return a diagnostic trace of the actions it takes.

O

P

T

I

O

N

S

A client can use an OPTIONS request to ask a server to

return a list of the request methods it supports.

C

O

N

N

E

C

T

A client can use a CONNECT request to tell a proxy to

make a connection to another host and simply reply with

the content, without attempting to parse or cache it. This

request is often used to make SSL connection through

the proxy.

REST Methods and CRUD

As you have seen, REST is an architectural paradigm that

allows developers to build RESTful services. These

RESTful applications make use of HTTP requests for

handling all four CRUD operations: CREATE, READ,

UPDATE, and DELETE. These four operations are the

operations most commonly used in manipulating data.

The HTTP methods map in a one-to-one way to the

CRUD operations, as shown in Table 7-3.

Table 7-3 Mapping HTTP Methods to CRUD

Operations

HTTP MethodOperationExplanation

P

OS

T

C

R

EA

TE

Used to create a new object or resource.

Example: Add new room to a house

G

ET

R

EA

D

Used to retrieve resource details from the

system.

Example: Get a list of all the rooms or all the

details of one room

P

U

T

U

P

D

AT

E

Typically used to replace or update a resource.

Can be used to modify or create a resource.

Example: Update details of a room

PA

TC

H

U

P

D

AT

E

Used to modify some details about a resource.

Example: Change the dimensions of a room

D

EL

ET

E

D

EL

ET

E

Used to remove a resource from the system.

Example: Delete a room from a house.

Deep Dive into GET and POST

GET is the most common HTTP request method. A client

can use the GET request method to request (or “get”) a

resource from an HTTP server. GET requests, which

have special qualities, fetch information, and that’s it;

they have no side effects, make no modifications to the

system, create nothing, and destroy nothing. GET

requests should, in other words, be safe and idempotent.

(Idempotent means that no matter how many times you

perform an action, the state of the system you’re dealing

with remains the same.)

A GET request message has the following components, as

shown in Figure 7-8:

Figure 7-8 Syntax of a GET Request

GET: The keyword GET must be all uppercase.

Request URI: Specifies the path of the resource requested, which

must begin from the root / of the document base directory.

HTTP version: Either HTTP/1.0 or HTTP/1.1. This client negotiates

the protocol to be used for the current session. For example, the client

may request to use HTTP/1.1. If the server does not support HTTP/1.1,

it may inform the client in the response to use HTTP/1.0.

Request headers (optional): The client can use optional request

headers (such as accept and accept language) to negotiate with the

server and ask the server to deliver the preferred contents (such as in

the language the client prefers).

Request body (optional): A GET request message has an optional

request body, which contains the query string (explained later in this

chapter).

The POST request method is used to post additional data

to the server (for example, submitting HTML form data

or uploading a file). Issuing an HTTP URL from the

browser always triggers a GET request. To trigger a

POST request, you can use an HTML form with attribute

method=“post” or write your own code. For submitting

HTML form data, the POST request is the same as the

GET request except that the URL-encoded query string is

sent in the request body rather than appended behind

the request URI.

The POST request has the following components, as

shown in Figure 7-9:

Figure 7-9 Syntax of a POST Request

POST: The keyword POST must be all uppercase.

Request URI: Specifies the path of the resource requested, which

must begin from the root / of the document base directory.

HTTP version: Either HTTP/1.0 or HTTP/1.1. This client negotiates

the protocol to be used for the current session. For example, the client

may request to use HTTP/1.1. If the server does not support HTTP/1.1,

it may inform the client in the response to use HTTP/1.0.

Request headers (optional): The client can use optional request

headers, such as content type and content length to inform the server of

the media type and the length of the request body, respectively.

Request body (optional): A POST request message has an optional

request body, which contains the query string (explained later in this

chapter).

HTTP Headers

The HTTP headers and parameters provide of a lot of

information that can help you trace issues when you

encounter them. HTTP headers are an essential part of

an API request and response as they represent the

metadata associated with the API request and response.

Headers carry information for the following:

Request and response body

Request authorization

Response caching

Response cookies

In addition, HTTP headers have information about

HTTP connection types, proxies, and so on. Most of

these headers are for managing connections between a

client, a server, and proxies.

Headers are classified as request headers and response

headers. You have to set the request headers when

sending a request API and have to set the assertion

against the response headers to ensure that the correct

headers are returned.

Request Headers

The request headers appear as name:value pairs.

Multiple values, separated by commas, can be specified

as follows:

Click here to view code image

request-header-name: request-header-value1,

request-header-value2, ...

The following are some examples of request headers:

Click here to view code image

Host: myhouse.cisco.com

Connection: Keep-Alive

Accept: image/gif, image/jpeg, */*

Accept-Language: us-en, fr, cn

Response Headers

The response headers also appear as name:value pairs.

As with request headers, multiple values can be specified

as follows:

Click here to view code image

response-header-name: response-header-value1,

response-header-value2, ...

The following are some examples of response headers:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#ppg153-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#ppg153
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#ppg153-1-1

Click here to view code image

Content-Type: text/html

Content-Length: 35

Connection: Keep-Alive

Keep-Alive: timeout=15, max=100

The response message body contains the resource

data requested.

The following are some examples of request and

response headers:

Authorization: Carries credentials containing the authentication

information of the client for the resource being requested.

WWW-Authenticate: This is sent by the server if it needs a form of

authentication before it can respond with the actual resource being

requested. It is often sent along with response code 401, which means

“unauthorized.”

Accept-Charset: This request header tells the server which character

sets are acceptable by the client.

Content-Type: This header indicates the media type (text/HTML or

application/JSON) of the client request sent to the server by the client,

which helps process the request body correctly.

Cache-Control: This header is the cache policy defined by the server.

For this response, a cached response can be stored by the client and

reused until the time defined in the Cache-Control header.

Response Codes

The first line of a response message (that is, the status

line) contains the response status code, which the server

generates to indicate the outcome of the request. Each

status code is a three-digit number:

1xx (informational): The request was successfully received; the

server is continuing the process.

2xx (success): The request was successfully received, understood,

accepted, and serviced.

3xx (redirection): Further action must be taken to complete the

request.

4xx (client error): The request cannot be understood or is

unauthorized or the requested resource could not be found.

5xx (server error): The server failed to fulfill a request.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#ppg153-2

Table 7-4 describes some commonly encountered status

codes.

Table 7-4 HTTP Status Codes

Status CodeMeaningExplanation

1

0

0

Con

tinu

e

The server received the request and is in the

process of giving the response.

2

0

0

Oka

y

The request is fulfilled.

3

0

1

Mo

ve

per

ma

nen

tly

The resource requested has been permanently

moved to a new location. The URL of the new

location is given in the Location response

header. The client should issue a new request to

the new location, and the application should

update all references to this new location.

3

0

2

Fou

nd

and

redi

rect

(or

mov

e

tem

por

aril

y)

This is the same as code 301, but the new

location is temporary in nature. The client

should issue a new request, but applications

need not update the references.

3

0

4

Not

mo

difi

ed

In response to the if-modified-since conditional

GET request, the server notifies that the

resource requested has not been modified.

4 Bad The server could not interpret or understand the

0

0

req

uest

request; there is probably a syntax error in the

request message.

4

0

1

Aut

hen

ticat

ion

req

uire

d

The requested resource is protected and

requires the client’s credentials (username and

password). The client should resubmit the

request with the appropriate credentials

(username and password).

4

0

3

For

bid

den

The server refuses to supply the resource,

regardless of the identity of the client.

4

0

4

Not

fou

nd

The requested resource cannot be found on the

server.

4

0

5

Met

hod

not

allo

wed

The request method used (for example, POST,

PUT, DELETE) is a valid method. However, the

server does not allow that method for the

resource requested.

4

0

8

Req

uest

tim

eout

The request sent to the server took longer than

the website’s server was prepared to wait.

4

1

4

Req

uest

URI

too

larg

e

The URI requested by the client is longer than

the server is willing to interpret.

5

0

0

Inte

rnal

serv

er

erro

r

The server is confused; this may be caused by an

error in the server-side program responding to

the request.

5

0

1

Met

hod

not

The request method used is invalid; this could

be caused by a typing error, such as Get in place

of GET.

imp

lem

ente

d

5

0

2

Bad

gate

way

The proxy or gateway indicates that it received a

bad response from the upstream server.

5

0

3

Serv

ice

una

vail

able

The server cannot respond due to overloading or

maintenance. The client can try again later.

5

0

4

Gat

ewa

y

tim

eout

The proxy or gateway indicates that it received a

timeout from an upstream server.

Now that we have looked at HTTP methods and return

codes, let’s look at the data that is sent or received during

a GET or POST. Let’s look at an example and see how the

same information is represented in the various data

types. For this example, refer to Figure 7-7. In this

example, you are making a GET request to the server at

myhouse.com to change the state of lights in the living

room to ON.

The data sent and received in a RESTful connection

requires structured data formatting. For the house

example, you now see a response from the server that

includes information about the house. Standard data

formats include XML, JSON, and YAML, which are

described in the following sections.

XML

Extensible Markup Language (XML) is a markup

language that encodes information between descriptive

tags. XML is a superset of Hypertext Markup Language

(HTML), which was originally designed to describe the

formatting of web pages served by servers through

HTTP. The encoded information is defined within user-

defined schemas that enable any data to be transmitted

between systems. An entire XML document is stored as

text, and it is both machine readable and human

readable.

Example 7-1 shows a sample XML response document.

As you can see, with XML, you can assign some meaning

to the tags in the document. You can extract the various

attributes from the response by simply locating the

content surrounded by <study_room> and

</study_room>; this content is technically known as the

<study_room> element.

Example 7-1 XML Data Format

Click here to view code image

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <home>this is my house</home>
 <home>located in San Jose, CA</home>
 <rooms>
 <living_room>true</living_room>
 <kitchen>false</kitchen>
 <study_room>
 <size>20x30</size>
 </study_room>
 <study_room>
 <desk>true</desk>
 </study_room>
 <study_room>
 <lights>On</lights>
 </study_room>
 </rooms>
</root>

JSON

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-1

JSON, short for JavaScript Object Notation, is

pronounced like the name “Jason.” The JSON format is

derived from JavaScript object syntax, but it is entirely

text based. It is a key: value data format that is typically

rendered in curly braces {} and square brackets []. JSON

is readable and lightweight, and it is easy for humans to

understand.

A key/value pair has a colon (:) that separates the key

from the value, and each such pair is separated by a

comma in the document or the response.

JSON keys are valid strings. The value of a key is one of

the following data types:

String

Number

Object

Array

Boolean (true or false)

Null

Example 7-2 shows a sample JSON response document,

and you can see the full response. If you are interested in

seeing the status of the lights in the study_room, then

you look at all the values that are present and follow the

various key/value pairs (such as “lights”: “On”) and

extract the various values from the response by locating

the correct keys and corresponding values.

Example 7-2 JSON Data Format

{
 "home": [
 "this is my house",
 "located in San Jose, CA"
],
 "rooms": {
 "living_room": "true",
 "kitchen": "false",
 "study_room": [
 {
 "size": "20x30"

 },
 {
 "desk": true
 },
 {
 "lights": "On"
 }
]
 }}

YAML

YAML is an acronym that stands for “YAML Ain’t

Markup Language.” According to the official YAML site

(https://yaml.org), “YAML is a human-friendly data

serialization standard for all programming languages.”

YAML is a data serialization language designed for

human interaction. It’s a strict superset of JSON, another

data serialization language. But because it’s a strict

superset, it can do everything that JSON can do and

more. One significant difference is that newlines and

indentation mean something in YAML, whereas JSON

uses brackets and braces to convey similar ideas. YAML

uses three main data formats:

Scalars: The simplest is a keyvalue view.

Lists/sequences: Data can be ordered by indexes.

Dictionary mappings: These are similar to scalars but can contain

nested data, including other data types.

Example 7-3 shows a sample YAML response document.

As you can see, the response is very straightforward and

human readable. If you are interested in seeing the status

of the lights in study_room, you find the study_room

section and then look for the value of lights.

Example 7-3 YAML Data Format

home:
- this is my house
- located in San Jose, CA

https://yaml.org/

rooms:
 living_room: 'true'
 kitchen: 'false'
 study_room:
 - size: 20x30
 - desk: true
 - lights: 'On'

Webhooks

Webhooks are user-defined HTTP callbacks. A webhook

is triggered by an event, such as pushing code to a

repository or typing a keyword in a chat window. An

application implementing webhooks sends a POST

message to a URL when a specific event happens.

Webhooks are also referred to as reverse APIs, but

perhaps more accurately, a webhook lets you skip the

request step in the request/response cycle. No request is

required for a webhook, and a webhook sends data when

triggered.

For security reasons, the REST service may perform

some validation to determine whether the receiver is

valid. A simple validation handshake performs

validation, but this is just one way of validating.

The validation token is a unique token specified by the

server. Validation tokens can be generated or revoked on

the server side through the configuration UI. When the

server sends data to a webhook URL, it includes a

validation token in the request HTTP header. The

webhook URL should consist of the same validation

token value in the HTTP response header. In this way,

the server knows that it is sending to a validated

endpoint and not a rogue endpoint. Figure 7-10

illustrates the flow of webhooks.

Figure 7-10 Webhook Validation and Event Flow

Tools Used When Developing with Webhooks

You will face a particular difficulty when developing an

application that consumes webhooks. When using a

public service that provides webhooks, you need a

publicly accessible URL to configure the webhook

service. Typically, you develop on localhost, and the rest

of the world has no access to your application, so how do

you test your webhooks? ngrok (http://ngrok.com) is a

free tool that allows you to tunnel from a public URL to

your application running locally.

Sequence Diagrams

Now that you understand the fundamentals of REST API

(request, response, and webhooks), authentication, data

exchange, and constraints that go with rest APIs, it’s

time to introduce sequence diagrams. A sequence

diagram models the interactions between various objects

in a single use case. It illustrates how the different parts

of a system interact with each other to carry out a

function and the order in which the interactions occur

when a particular use case is executed. In simpler terms,

a sequence diagram shows how different parts of a

system work in a sequence to get something done.

http://ngrok.com/

Figure 7-11 is a sequence diagram for the example we’ve

been looking at, where a user wants to get list of all

rooms in the house. For this example, assume that there

is a web application with a user interface that renders the

list of all the rooms and the various attributes of the

rooms.

Figure 7-11 Sequence Diagram Showing End-to-End

Flow

The sequence of events that occur is as follows:

1. The client browser points to http://myhouse.cisco.com/ (the

HTTP GET request sent), which is the web application.

2. The server sends out a REST API request to get all the rooms to

the back-end service (/API/getallrooms) to get all the details of the

house.

3. The back-end API service returns data in JSON format.

4. The web application processes the JSON and renders the data in

the user interface.

5. The client sees the data.

REST CONSTRAINTS

REST defines six architectural constraints that make any

web service a truly RESTful API. These are constraints

also known as Fielding’s constraints (see

http://myhouse.cisco.com/

https://www.ics.uci.edu/~fielding/pubs/dissertation/to

p.htm). They generalize the web’s architectural

principles and represent them as a framework of

constraints or an architectural style. These are the REST

constraints:

Client/server

Stateless

Cache

Uniform interface

Layered system

Code on demand

The following sections discuss these constraints in some

detail.

Client/Server

The client and server exist independently. They must

have no dependency of any sort on each other. The only

information needed is for the client to know the resource

URIs on the server. The interaction between them is only

in the form of requests initiated by the client and

responses that the server sends to the client in response

to requests. The client/server constraint encourages

separation of concerns between the client and the server

and allows them to evolve independently.

Stateless

REST services have to be stateless. Each individual

request contains all the information the server needs to

perform the request and return a response, regardless of

other requests made by the same API user. The server

should not need any additional information from

previous requests to fulfill the current request. The URI

identifies the resource, and the body contains the state of

the resource. A stateless service is easy to scale

horizontally, allowing additional servers to be added or

removed as necessary without worry about routing

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

subsequent requests to the same server. The servers can

be further load balanced as necessary.

Cache

With REST services, response data must be implicitly or

explicitly labeled as cacheable or non-cacheable. The

service indicates the duration for which the response is

valid. Caching helps improve performance on the client

side and scalability on the server side. If the client has

access to a valid cached response for a given request, it

avoids repeating the same request. Instead, it uses its

cached copy. This helps alleviate some of the server’s

work and thus contributes to scalability and

performance.

Note

GET requests should be cacheable by default. Usually

browsers treat all GET requests as cacheable.

POST requests are not cacheable by default but can be

made cacheable by adding either an Expires header or

a Cache-Control header to the response.

PUT and DELETE are not cacheable at all.

Uniform Interface

The uniform interface is a contract for communication

between a client and a server. It is achieved through four

subconstraints:

Identification of resources: As we saw earlier in the chapter,

resources are uniquely identified by URIs. These identifiers are stable

and do not change across interactions, even when the resource state

changes.

Manipulation of resources through representations: A client

manipulates resources by sending new representations of the resource

to the service. The server controls the resource representation and can

accept or reject the new resource representation sent by the client.

Self-descriptive messages: REST request and response messages

contain all information needed for the service and the client to interpret

the message and handle it appropriately. The messages are quite

verbose and include the method, the protocol used, and the content

type. This enables each message to be independent.

Hypermedia as the Engine of Application State (HATEOS):

Hypermedia connects resources to each other and describes their

capabilities in machine-readable ways. Hypermedia refers to the

hyperlinks, or simply links, that the server can include in the response.

Hypermedia is a way for a server to tell a client what HTTP requests the

client might want to make in the future.

Layered System

A layered system further builds on the concept of

client/server architecture. A layered system indicates

that there can be more components than just the client

and the server, and each system can have additional

layers in it. These layers should be easy to add, remove,

or change. Proxies, load balancers, and so on are

examples of additional layers.

Code on Demand

Code on demand is an optional constraint that gives the

client flexibility by allowing it to download code. The

client can request code from the server, and then the

response from the server will contain some code, usually

in the form of a script, when the response is in HTML

format. The client can then execute that code.

REST API Versioning

Versioning is a crucial part of API design. It gives

developers the ability to improve an API without

breaking the client’s applications when new updates are

rolled out. Four strategies are commonly employed with

API versioning:

URI path versioning: In this strategy, the version number of the API

is included in the URL path.

Query parameter versioning: In this strategy, the version number

is sent as a query parameter in the URL.

Custom headers: REST APIs are versioned by providing custom

headers with the version number included as an attribute. The main

difference between this approach and the two previous ones is that it

doesn’t clutter the URI with versioning information.

Content negotiation: This strategy allows you to version a single

resource representation instead of versioning an entire API, which

means it gives you more granular control over versioning. Another

advantage of this approach is that it doesn’t require you to implement

URI routing rules, which are introduced by versioning through the URI

path.

Pagination

When a request is made to get a list, it is almost never a

good idea to return all resources at once. This is where a

pagination mechanism comes into play. There are two

popular approaches to pagination:

Offset-based pagination

Keyset-based pagination, also known as continuation token or cursor

pagination (recommended)

A really simple approach to offset-based pagination is to

use the parameters offset and limit, which are well

known from databases.

Example 7-4 shows how query parameters are passed in

the URI in order to get data based on offset and to limit

the number of results returned.

Example 7-4 Pagination: Offset and Limit

Click here to view code image

returns the devices between 100-115

Usually if the parameters are not specified, the default

values are used. Never return all resources. One rule of

thumb is to model the limit based on the design of your

store retrieval performance.

Example 7-5 shows a URI where no parameters are

passed, which results in the default number of results.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-4

Example 7-5 Pagination: No Parameters Yields the

Default

Click here to view code image

returns the devices 0 to 200

Note that the data returned by the service usually has

links to the next and the previous pages, as shown in

Example 7-6.

Example 7-6 Pagination Response Containing Links

Click here to view code image

GET /devices?offset=100&limit=10
{
 "pagination": {
 "offset": 100,
 "limit": 10,
 "total": 220,
 },
 "device": [
 //...
],
 "links": {
 "next": "http://myhouse.cisco.com/devices?
offset=110&limit=10",
 "prev": "http://myhouse.cisco.com/devices?
offset=90&limit=10"
 }
}

Rate Limiting and Monetization

Rate limiting is an essential REST API design method for

developers. Rate-limiting techniques are used to increase

security, business impact, and efficiency across the board

or end to end. Let’s look at how rate limiting helps with

each of them:

Security: Allowing unlimited access to your API is essentially like

handing over the master key to a house and all the rooms therein.

While it’s great when people want to use your API and find it useful,

open access can decrease value and limit business success. Rate

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-5
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-6

limiting is a critical component of an API’s scalability. Processing limits

are typically measured in transactions per second (TPS). If a user sends

too many requests, API rate limiting can throttle client connections

instead of disconnecting them immediately. Throttling enables clients

to keep using your services while still protecting your API. Finally, keep

in mind that there is always a risk of API requests timing out, and the

open connections also increase the risk of DDoS attacks. (DDoS stands

for distributed denial of service. A DDoS attack consists of a website

being flooded by requests during a short period of time, with the aim of

overwhelming the site and causing it to crash.)

Business impact: One approach to API rate limiting is to offer a free

tier and a premium tier, with different limits for each tier. Limits could

be in terms of sessions or in terms of number of APIs per day or per

month. There are many factors to consider when deciding what to

charge for premium API access. API providers need to consider the

following when setting up API rate limits:

Are requests throttled when they exceed the limit?

Do new calls and requests incur additional fees?

Do new calls and requests receive a particular error code and, if so,

which one?

Efficiency: Unregulated API requests usually and eventually lead to

slow page load times for websites. Not only does this leave customers

with an unfavorable opinion but it can lower your service rankings.

Rate Limiting on the Client Side

As discussed in the previous section, various rate-

limiting factors can be deployed on the server side. As a

good programming practice, if you are writing client-side

code, you should consider the following:

Avoid constant polling by using webhooks to trigger updates.

Cache your own data when you need to store specialized values or

rapidly review very large data sets.

Query with special filters to avoid re-polling unmodified data.

Download data during off-peak hours.

REST TOOLS

Understanding and testing REST API architecture when

engaging in software development is crucial for any

development process. The following sections explore a

few of the most commonly used tools in REST API

testing and how to use some of their most important

features. Based on this information, you will get a better

idea of how to determine which one suits a particular

development process the best.

Postman

One of the most intuitive and popular HTTP clients is a

tool called Postman

(https://www.getpostman.com/downloads/). It has a

very simple user interface and is very easy to use, even if

you’re just starting out with RESTful APIs. It can handle

the following:

Sending simple GETs and POSTs

Creating and executing collections (to group together requests and run

those requests in a predetermined sequence)

Writing tests (scripting requests with the use of dynamic variables,

passing data between requests, and so on)

Chaining, which allows you to use the output of response as an input to

another request

Generating simple code samples in multiple programming languages

Importing and executing collections created by the community

Now, let’s take a look at several Postman examples.

Figure 7-12 shows the user interface of Postman calling

an HTTP GET to the Postman Echo server, and Figure 7-

13 shows how easy it is to send a POST request using the

same interface.

https://www.getpostman.com/downloads/

Figure 7-12 Postman: HTTP GET from the Postman

Echo Server

Figure 7-13 Postman: HTTP POST to the Postman

Echo Server

Figure 7-14 illustrates collections. A collection lets you

group individual requests together. You can then

organize these requests into folders. Figure 7-14 shows

the user interface of Postman, with a default collection

that interacts with the Postman Echo Server. Using this

interface is a very good way to learn about various

options for sending or getting REST-based information.

Figure 7-14 Postman Collection

It is possible to generate code for any REST API call that

you try in Postman. After a GET or POST call is made,

you can use the Generate Code option and choose the

language you prefer. Figure 7-15 shows an example of

generating Python code for a simple GET request.

Figure 7-15 Postman Automatic Code Generation

Postman also has other helpful features, such as

environments. An environment is a key/value pair. The

key represents the name of the variable, which allows

you to customize requests; by using variables, you can

easily switch between different setups without changing

your requests.

Finally, Postman stores a history of past calls so you can

quickly reissue a call. Postman even includes some nice

touches such as autocompletion for standard HTTP

headers and support for rendering a variety of payloads,

including JSON, HTML, and even multipart payloads.

You can find Postman examples at

https://learning.postman.com/docs/postman/launching

https://learning.postman.com/docs/postman/launching-postman/introduction/

-postman/introduction/.

curl

curl is an extensive command-line tool that can be

downloaded from https://curl.haxx.se. curl can be used

on just about any platform on any hardware that exists

today. Regardless of what you are running and where,

the most basic curl commands just work.

With curl, you commonly use a couple of different

command-line options:

-d: This option allows you to pass data to the remote server. You can

either embed the data in the command or pass the data using a file.

-H: This option allows you to add an HTTP header to the request.

-insecure: This option tells curl to ignore HTTPS certificate

validation.

-c: This option stores data received by the server. You can reuse this

data in subsequent commands with the -b option.

-b: This option allows you to pass cookie data.

-X: This option allows you to specify the HTTP method, which

normally defaults to GET.

Now let’s take a look at some examples of how to use

curl. Example 7-7 shows how to use curl to call a simple

GET request.

Example 7-7 Sample HTTP GET Using curl

Click here to view code image

$ curl -sD - https://postman-echo.com/get?
test=123
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Tue, 27 Aug 2019 04:59:34 GMT
ETag: W/"ca-42Kz98xXW2nwFREN74xZNS6JeJk"
Server: nginx
set-cookie:
sails.sid=s%3AxZUPHE3Ojk1yts3qrUFqTj_MzBQZZR5n.NrjPkNm0WplJ7%2F%2BX9O7VU

TFpKHpJySLzBytRbnlzYCw; Path=/; HttpOnly
Vary: Accept-Encoding
Content-Length: 202
Connection: keep-alive

https://learning.postman.com/docs/postman/launching-postman/introduction/
https://curl.haxx.se/
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-7

{"args":{"test":"123"},"headers":{"x-forwarded-
proto":"https","host":"postman-
echo.com","accept":"*/*","user-
agent":"curl/7.54.0","x-forward-
ed-port":"443"},"url":"https://postman-
echo.com/get?test=123"}

Example 7-8 shows how to use curl to call a simple POST

request.

Example 7-8 Sample HTTP POST Using curl

Click here to view code image

$ curl -sD - -X POST https://postman-
echo.com/post -H 'cache-control: no-cache'
-H 'content-type: text/plain' -d 'hello
DevNet'
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Tue, 27 Aug 2019 05:16:58 GMT
ETag: W/"13a-0lMLfkxl7vDVWfb06pyVxdZlaug"
Server: nginx
set-cookie:
sails.sid=s%3AwiFXmSNJpzY0ONduxUCAE8IodwNg9Z2Y.j%2BJ5%2BOmch8XEq8jO1vzH8

kjNBi8ecJij1rGT8D1nBhE; Path=/; HttpOnly
Vary: Accept-Encoding
Content-Length: 314
Connection: keep-alive

{"args":{},"data":"hello DevNet","files":
{},"form":{},"headers":{"x-forwarded-
proto":"https","host":"postman-
echo.com","content-
length":"12","accept":"*/*","ca
che-control":"no-cache","content-
type":"text/plain","user-
agent":"curl/7.54.0","x-
forwarded-
port":"443"},"json":null,"url":"https://postman-
echo.com/post"}

Example 7-9 shows how to use curl to call a simple GET

request with Basic Auth sent via the header.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-8

Example 7-9 Basic Auth Using curl

Click here to view code image

$ curl -sD - -X GET https://postman-
echo.com/basic-auth -H 'authorization: Basic
cG9zdG1hbjpwYXNzd29yZA==' -H 'cache-control:
no-cache'
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Tue, 27 Aug 2019 05:21:00 GMT
ETag: W/"16-sJz8uwjdDv0wvm7//BYdNw8vMbU"
Server: nginx
set-cookie: sails.sid=s%3A4i3UW5-
DQCMpey8Z1Ayrqq0izt4KZR5-.Bl8QDnt44B690E8J06qyC-

s8oyCLpUfEsFxLEFTSWSC4; Path=/; HttpOnly
Vary: Accept-Encoding
Content-Length: 22
Connection: keep-alive
{"authenticated":true}

HTTPie

HTTPie is a modern, user-friendly, and cross-platform

command-line HTTP client written in Python. It is

designed to make CLI interaction with web services easy

and user friendly. Its simple HTTP commands enable

users to send HTTP requests using intuitive syntax.

HTTPie is used primarily for testing, trouble-free

debugging, and interacting with HTTP servers, web

services, and RESTful APIs. For further information on

HTTPie documentation, downloading, and installation,

see https://httpie.org/doc:

HTTPie comes with an intuitive UI and supports JSON.

It uses expressive and intuitive command syntax.

HTTPie allows for syntax highlighting, formatting, and colorized

terminal output.

HTTPie allows you to use HTTPS, proxies, and authentication.

It provides support for forms and file uploads.

It provides support for arbitrary request data and headers.

It enables Wget-like downloads and extensions.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-9
https://httpie.org/doc

Now let’s take a look at some examples of using HTTPie.

Example 7-10 shows how to use HTTPie to call a simple

GET request.

Example 7-10 Sample HTTP GET Using HTTPie

Click here to view code image

$ http https://postman-echo.com/get?test=123
HTTP/1.1 200 OK
Connection: keep-alive
Content-Encoding: gzip
Content-Length: 179
Content-Type: application/json; charset=utf-8
Date: Tue, 27 Aug 2019 05:27:17 GMT
ETag: W/"ed-mB0Pm0M3ExozL3fgwq7UlH9aozQ"
Server: nginx
Vary: Accept-Encoding
set-cookie:
sails.sid=s%3AYCeNAWJG7Kap5wvKPg8HYlZI5SHZoqEf.r7Gi96fe5g7%2FSp0jaJk%2Fa

VRpHZp3Oj5tDxiM8TPZ%2Bpc; Path=/; HttpOnly

{
 "args": {
 "test": "123"
 },
 "headers": {
 "accept": "*/*",
 "accept-encoding": "gzip, deflate",
 "host": "postman-echo.com",
 "user-agent": "HTTPie/1.0.2",
 "x-forwarded-port": "443",
 "x-forwarded-proto": "https"
 },
 "url": "https://postman-echo.com/get?
test=123"
}

Python Requests

Requests is a Python module that you can use to send

HTTP requests. It is an easy-to-use library with a lot of

possibilities ranging from passing parameters in URLs to

sending custom headers and SSL verification. The

Requests library is a very handy tool you can use

whenever you programmatically start using any APIs.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-10

Here you will see how to use this library to send simple

HTTP requests in Python as way to illustrate its ease of

use.

You can use Requests with Python versions 2.7 and 3.x.

Requests is an external module, so it needs to be

installed before you can use it. Example 7-11 shows the

command you use to install the Requests package for

Python.

Example 7-11 Installing the Requests Package for

Python

$ pip3 install requests

To add HTTP headers to a request, you can simply pass

them in a Python dict to the headers parameter.

Similarly, you can send your own cookies to a server by

using a dict passed to the cookies parameter. Example 7-

12 shows a simple Python script that uses the Requests

library and does a GET request to the Postman Echo

server.

Example 7-12 Simple HTTP GET Using Python

Requests

Click here to view code image

import requests
url = "https://postman-echo.com/get"
querystring = {"test":"123"}
headers = {}
response = requests.request("GET", url,
headers=headers, params=querystring)
print(response.text)

Example 7-13 shows a simple Python script that uses the

Requests library and does a POST request to the

Postman Echo server. Notice that the headers field is

populated with the content type and a new field call

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-12

payload that sends some random text to the service. The

response to the request is stored in a response object

called response. Everything in the response can be

parsed, and further actions can be taken. This example

simply prints the values of a few attributes of the

response.

Example 7-13 Simple HTTP POST Using Python

Requests

Click here to view code image

import requests
url = "https://postman-echo.com/post"
payload = "hello DevNet"
headers = {'content-type': "text/plain"}
response = requests.request("POST", url,
data=payload, headers=headers)
print(response.text)

Example 7-14 shows a simple Python script that uses the

Requests library and does a GET request to the Postman

Echo server. One difference you will notice between

Example 7-11 and Example 7-14 is related to

authentication. With the Requests library, authentication

is usually done by passing the ‘authorization’ keyword

along with the type and key.

Example 7-14 Basic Auth Using Python Requests

Click here to view code image

import requests
url = "https://postman-echo.com/basic-auth"
headers = {
 'authorization': "Basic
cG9zdG1hbjpwYXNzd29yZA=="
}
response = requests.request("GET", url,
headers=headers)
print(response.text)

REST API Debugging Tools for Developing APIs

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-13
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch07_images.xhtml#pexa7-14

As you start playing with RESTful APIs, you are bound to

encounter errors. You can use several techniques to

determine the nature of a problem. As you saw in Table

7-3, RESTful APIs use several mechanisms to indicate

the results of REST calls and errors that occur during

processing. You can use these methods to start your

debugging journey for a RESTful application. Usually the

error code returned is the biggest hint you can receive.

Once you have this information, you can use tools like

Postman and curl to make simple API calls and see the

sent and response headers. In addition, other tools that

are built in to web browsers can allow you to see traces

and do other types of debugging. Most browsers include

some type of developer tools, such as Safari’s Web

Development Tools, Chrome’s DevTools, and Firefox’s

Developer Tools. Such tools are included with browsers

by default and enable you to inspect API calls quickly.

Finally, if you plan on building your own test

environment or sandbox, you might want to use tools

like Simple JSON Server (an open-source server that you

can clone and run in your environment for playing with

and learning about RESTful APIs).

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions in the

Pearson Test Prep Software Online.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 7-5 lists these key topics and the page number on

which each is found.

Table 7-5 Key Topics

Key Topic ElementDescriptionPage

List The elements of a URL 14

9

Table 7-2 Request Methods 15

0

Table 7-4 HTTP Status Codes 15

4

Paragrap

hs

Data formats and XML, YAML, and

JSON data

15

5

Section REST Constraints 16

0

Paragrap

h

Pagination 16

2

Section REST Tools 16

4

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

API

REST

CRUD

YAML

JSON

webhook

Chapter 8

Cisco Enterprise Networking
Management Platforms and APIs

This chapter covers the following topics:

What Is an SDK?: This section covers what an SDK is and what it is

used for.

Cisco Meraki: This section covers the Cisco Meraki platform and the

REST APIs it exposes.

Cisco DNA Center: This section covers Cisco DNA Center and the

REST APIs that it publicly exposes.

Cisco SD-WAN: This section covers Cisco SD-WAN and the REST

APIs exposed through Cisco vManage.

In Chapter 7, “RESTful API Requests and Responses,”

you learned about REST API concepts. This chapter

begins exploring software development kits (SDKs) as

well as Cisco enterprise networking products, their

APIs, and the public SDKs that come with them. In

particular, this chapter explores the Cisco Meraki,

Cisco DNA Center, and Cisco SD-WAN platforms and

the REST APIs they expose. This chapter provides a

short introduction to each of these solutions and

shows authentication and authorization API calls for

each platform. This chapter also covers basic API calls,

such as for obtaining a list of devices and client health

status. API tools such as curl and Postman are used

throughout the chapter. Python SDKs and scripts are

also explored as an introduction to network

programmability and automation.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 8-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 8-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

What Is an SDK? 1–2

Cisco Meraki 3–5

Cisco DNA Center 6–8

Cisco SD-WAN 9–10

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. What are some of the features of a good SDK?

(Choose three.)

1. Is easy to use

2. Is well documented

3. Integrates well with other SDKs

4. Impacts hardware resources

2. What are the advantages of using an SDK? (Choose

two.)

1. Quicker integration

2. Faster development

3. Advanced customization

4. Error handling

3. What APIs does the Cisco Meraki platform provide

to developers? (Choose two.)

1. Captive Portal API

2. Scanning API

3. Access Point API

4. Infrastructure API

4. What is the name of the Cisco Meraki Dashboard

API authentication header?

1. X-Cisco-Meraki-API-Key

2. X-Cisco-Meraki-Token

3. X-Cisco-Meraki-Session-key

4. Bearer

5. What is the base URL for the Cisco Meraki

Dashboard API?

1. https://api.meraki.com/api/v0

2. https://api.meraki.com/v1/api

3. https://api.meraki.cisco.com/api/v0

4. https://api.meraki.cisco.com/v1/api

6. What type of authentication do the Cisco DNA

Center platform APIs use?

1. No auth

2. API key

3. Basic auth

4. Hash-based message authentication

7. When specifying the timestamp parameter with

the Cisco DNA Center APIs, what format should the

time be in?

1. UNIX time

2. OS/2

3. OpenVMS

4. SYSTEMTIME

https://api.meraki.com/api/v0
https://api.meraki.com/v1/api
https://api.meraki.cisco.com/api/v0
https://api.meraki.cisco.com/v1/api

8. What is the output of the multivendor SDK for

Cisco DNA Center platform?

1. Device driver

2. Device package

3. Software driver

4. Software package

9. Which component of the Cisco SD-WAN fabric

exposes a public REST API interface?

1. vSmart

2. vBond

3. vManage

4. vEdge

10. When initially authenticating to the Cisco SD-WAN

REST API, how are the username and password

encoded?

1. application/postscript

2. application/xml

3. application/json

4. application/x-www-form-urlencoded

FOUNDATION TOPICS

WHAT IS AN SDK?

An SDK (software development kit) or devkit is a set of

software development tools that developers can use to

create software or applications for a certain platform,

operating system, computer system, or device. An SDK

typically contains a set of libraries, APIs, documentation,

tools, sample code, and processes that make it easier for

developers to integrate, develop, and extend the

platform. An SDK is created for a specific programming

language, and it is very common to have the same

functionality exposed through SDKs in different

programming languages.

Chapter 6, “Application Programming Interfaces (APIs),”

describes what an API is, and Chapter 7 covers the most

common API framework these days, the REST API

framework. As a quick reminder, an application

programming interface (API) is, as the name implies, a

programming interface that implements a set of rules

developers and other software systems can use to

interact with a specific application.

As you will see in this chapter and throughout this book,

where there is an API, there is usually also an SDK.

Software developers can, of course, implement and

spend time on developing code to interact with an API

(for example, building their own Python classes and

methods to authenticate, get data from the API, or create

new objects in the API), or they can take advantage of the

SDK, which makes all these objects already available.

Besides offering libraries, tools, documentation, and

sample code, some SDKs also offer their own integrated

development environments (IDEs). For example, the

SDKs available for mobile application development on

Google Android and Apple iOS also make available an

IDE to give developers a complete solution to create, test,

debug, and troubleshoot their applications.

A good SDK has these qualities:

Is easy to use

Is well documented

Has value-added functionality

Integrates well with other SDKs

Has minimal impact on hardware resources

In order to be used by developers, an SDK should be easy

to use and follow best practices for software development

in the programming language for which the SDK was

developed. For example, for Python development, there

are Python Enhancement Proposals (PEPs), which are

documents that provide guidance and spell out best

practices for how Python code should be organized,

packaged, released, deprecated, and so on. PEP8 is a

popular standard for styling Python code and is

extensively used in the developer community.

Documenting the SDK inline as well as having external

documentation is critical to developer adoption and the

overall quality of the SDK. Having good, up-to-date

documentation of the SDK makes the adoption and

understanding of the code and how to use it much easier.

A good SDK also adds value by saving development time

and providing useful features. Integrating with other

SDKs and development tools should be easy and

scalable, and the code should be optimized for minimal

hardware resource utilization as well as execution time.

SDKs provide the following advantages:

Quicker integration

Faster and more efficient development

Brand control

Increased security

Metrics

As mentioned previously, there are significant

development time savings when adopting SDKs, as the

functionality and features provided by an SDK don’t have

to be developed in house. This leads to quicker

integration with the API and quicker time to market. In

addition, brand control can be enforced with the SDK.

The look and feel of applications developed using the

SDK can be uniform and in line with the overall brand

design. For example, applications developed for iOS

using the Apple SDK have a familiar and uniform look

and feel because they use the building blocks provided by

the SDK. Application security best practices can be

enforced through SDKs. When you develop using a

security-conscious SDK, the applications developed have

the SDK’s security features integrated automatically. Sets

of metrics and logging information can be included with

an SDK to provide better insights into how the SDK is

being used and for troubleshooting and performance

tweaking.

It is critical to ensure a great experience for all

developers when interacting with an API. In addition,

offering a great SDK with an API is mandatory for

success.

Cisco has been developing applications and software

since its inception. As the requirements for integrations

with other applications and systems have grown, APIs

have been developed to make it easier for developers and

integrators to create and develop their own solutions and

integrations. Throughout the years, software

architectures have evolved, and currently all Cisco

solutions provide some type of API. As mentioned

earlier, where there is an API, there is usually also an

SDK.

The starting point in exploring all the SDKs that Cisco

has to offer is https://developer.cisco.com. As you will

see in the following sections of this chapter and

throughout this book, there are several SDKs developed

by Cisco and third parties that take advantage of the APIs

that currently exist with all Cisco products.

CISCO MERAKI

Meraki became part of Cisco following its acquisition in

2012. The Meraki portfolio is large, comprising wireless,

switching, security, and video surveillance products. The

differentiating factor for Meraki, compared to similar

products from Cisco and other vendors, is that

management is cloud based. Explore all the current Cisco

Meraki products and offerings at

https://meraki.cisco.com.

https://developer.cisco.com/
https://meraki.cisco.com/

From a programmability perspective, the Meraki cloud

platform provides several APIs:

Captive Portal API

Scanning API

MV Sense Camera API

Dashboard API

The Cisco Meraki cloud platform also provides

webhooks, which offer a powerful and lightweight way to

subscribe to alerts sent from the Meraki cloud when an

event occurs. (For more about webhooks, see Chapter 7.)

A Meraki alert includes a JSON-formatted message that

can be configured to be sent to a unique URL, where it

can be further processed, stored, and acted upon to

enable powerful automation workflows and use cases.

The Captive Portal API extends the power of the built-in

Meraki splash page functionality by providing complete

control of the content and authentication process that a

user interacts with when connecting to a Meraki wireless

network. This means Meraki network administrators can

completely customize the portal, including the

onboarding experience for clients connecting to the

network, how the web page looks and feels, and the

authentication and billing processes.

The Scanning API takes advantage of Meraki smart

devices equipped with wireless and BLE (Bluetooth Low

Energy) functionality to provide location analytics and

report on user behavior. This can be especially useful in

retail, healthcare, and enterprise environments, where

business intelligence and information can be extracted

about trends and user engagement and behavior. The

Scanning API delivers data in real time and can be used

to detect Wi-Fi and BLE devices and clients. The data is

exported to a specified destination server through an

HTTP POST of JSON documents. At the destination

server, this data can then be further processed, and

applications can be built on top of the received data.

Taking into consideration the physical placement of the

access points on the floor map, the Meraki cloud can

estimate the location of the clients connected to the

network. The geolocation coordinates of this data vary

based on a number of factors and should be considered

as a best-effort estimate.

The MV Sense Camera API takes advantage of the

powerful onboard processor and a unique architecture to

run machine learning workloads at the edge. Through

the MV Sense API, object detection, classification, and

tracking are exposed and become available for

application integration. You can, for example, extract

business insight from video feeds at the edge without the

high cost of compute infrastructure that is typically

needed with computer imagining and video analytics.

Both REST and MQTT API endpoints are provided, and

information is available in a request or subscribe model.

MQ Telemetry Transport (MQTT) is a client/server

publish/subscribe messaging transport protocol. It is

lightweight, simple, open, and easy to implement. MQTT

is ideal for use in constrained environments such as

Internet of Things (IoT) and machine-to-machine

communication where a small code footprint is required.

The Meraki APIs covered so far are mostly used to

extract data from the cloud platform and build

integrations and applications with that data. The

Dashboard API, covered next, provides endpoints and

resources for configuration, management, and

monitoring automation of the Meraki cloud platform.

The Dashboard API is meant to be open ended and can

be used for many purposes and use cases. Some of the

most common use cases for the Dashboard API are as

follows:

Provisioning new organizations, administrators, networks, devices, and

more

Configuring networks at scale

Onboarding and decommissioning of clients

Building custom dashboards and applications

To get access to the Dashboard API, you first need to

enable it. Begin by logging into the Cisco Meraki

dashboard at https://dashboard.meraki.com using your

favorite web browser and navigating to Organization >

Settings. From there, scroll down and locate the section

named Dashboard API Access and make sure you select

Enable Access and save the configuration changes at the

bottom of the page. Once you have enabled the API,

select your username at the top-right corner of the web

page and select My Profile. In your profile, scroll down

and locate the section named Dashboard API Access and

select Generate New API Key. The API key you generate

is associated with your account. You can generate,

revoke, and regenerate your API key in your profile.

Make sure you copy and store your API key in a safe

place, as whoever has this key can impersonate you and

get access through the Dashboard API to all the

information your account has access to. For security

reasons, the API key is not stored in plaintext in your

profile, so if you lose the key, you will have to revoke the

old one and generate a new one. If you believe that your

API key has been compromised, you can generate a new

one to automatically revoke the existing API key.

Every Dashboard API request must specify an API key

within the request header. If a missing or incorrect API

key is specified, the API returns a 404 HTTP error

message. Recall from Chapter 7 that HTTP error code

404 means that the API resource you were trying to

reach could not be found on the server. This error code

prevents information leakage and unauthorized

discovery of API resources.

https://dashboard.meraki.com/

The key for the authentication request header is X-Cisco-

Meraki-API-Key, and the value is the API key you

obtained previously.

In order to mitigate abuse and denial-of-service attacks,

the Cisco Meraki Dashboard API is limited to 5 API calls

per second per organization. In the first second, a burst

of an additional 5 calls is allowed, for a maximum of 15

API calls in the first 2 seconds per organization. If the

rate limit has been exceeded, an error message with

HTTP status code 429 is returned. The rate-limiting

technique that the Dashboard API implements is based

on the token bucket model. The token bucket is an

algorithm used to check that the data that is transmitted

in a certain amount of time complies with set limits for

bandwidth and burstiness. Based on this model, if the

number of API requests crosses the set threshold for a

certain amount of time, you have to wait a set amount of

time until you can make another request to the API. The

time you have to wait depends on how many more

requests you have performed above the allowed limit; the

more requests you have performed, the more time you

have to wait.

The Cisco Meraki Dashboard API uses the base URL

https://api.meraki.com/api/v0. Keep in mind that the

API will evolve, and different versions will likely be

available in the future. Always check the API

documentation for the latest information on all Cisco

APIs, including the Meraki APIs, at

https://developer.cisco.com.

To make it easier for people to become comfortable with

the Meraki platform, the Dashboard API is organized to

mirror the structure of the Meraki dashboard. When you

become familiar with either the API or the GUI, it should

be easy to switch between them. The hierarchy of the

Dashboard API looks as follows:

Organizations

https://api.meraki.com/api/v0
https://developer.cisco.com/

Networks

Devices

Uplink

Most Dashboard API calls require either the organization

ID or the network ID as part of the endpoint. (You will

see later in this chapter how to obtain these IDs and how

to make Dashboard API calls.) When you have these IDs,

you can build and make more advanced calls to collect

data, create and update new resources, and configure

and make changes to the network. Remember that all

API calls require an API key.

If your Meraki dashboard contains a large number of

organizations, networks, and devices, you might have to

consider pagination when making API calls. Recall from

Chapter 7 that pagination is used when the data returned

from an API call is too large and needs to be limited to a

subset of the results. The Meraki Dashboard API

supports three special query parameters for pagination:

perPage: The number of entries to be returned in the current request

startingAfter: A value used to indicate that the returned data will

start immediately after this value

endingBefore: A value used to indicate that the returned data will

end immediately before this value

While the types of the startingAfter and

endingBefore values differ based on API endpoints,

they generally are either timestamps specifying windows

in time for which the data should be returned or integer

values specifying IDs and ranges of IDs.

The Dashboard API also supports action batches, which

make it possible to submit multiple configuration

requests in a single transaction and are ideal for initial

provisioning of a large number of devices or performing

large configuration changes throughout the whole

network. Action batches also provide a mechanism to

avoid hitting the rate limitations implemented in the API

for high-scale configuration changes as you can

implement all the changes with one or a small number of

transactions instead of a large number of individual API

requests. Action batch transactions can be run either

synchronously, waiting for the API call return before

continuing, or asynchronously, in which case the API call

does not wait for a return as the call is placed in a queue

for processing. (In Chapter 7 you saw the advantages and

disadvantages of both synchronous and asynchronous

APIs.) With action batches, you can be confident that all

the updates contained in the transaction were submitted

successfully before being committed because batches are

run in an atomic fashion: all or nothing.

After you have enabled the Meraki Dashboard API,

generated the API key, and saved it in a safe place, you

are ready to interact with the API. For the rest of this

chapter, you will use the always-on Cisco DevNet Meraki

Sandbox, which can be found at

https://developer.cisco.com/sandbox. The API key for

this sandbox is

15da0c6ffff295f16267f88f98694cf29a86ed87.

At this point, you need to obtain the organization ID for

this account. As you saw in Chapter 7, there are several

ways you can interact with an API: You can use tools like

curl and Postman, or you can interact with the API

through programming languages and the libraries that

they provide. In this case, you will use curl and Postman

to get the organization ID for the Cisco DevNet Sandbox

account and then the Cisco Meraki Python SDK.

As mentioned earlier, the base URL for the Dashboard

API is https://api.meraki.com/api/v0. In order to get the

organizations for the account with the API key

mentioned previously, you have to append the

/organizations resource to the base URL. The resulting

endpoint becomes

https://api.meraki.com/api/v0/organizations. You also

need to include the X-Cisco-Meraki-API-Key header for

https://developer.cisco.com/sandbox
https://api.meraki.com/api/v0
https://api.meraki.com/api/v0/organizations

authentication purposes. This header will contain the

API key for the DevNet Sandbox Meraki account. The

curl command should look as follows in this case:

Click here to view code image

curl -I -X GET \

 --url

'https://api.meraki.com/api/v0/organizations' \

 -H 'X-Cisco-Meraki-API-Key:

15da0c6ffff295f16267f88f98694cf29a86ed87'

The response should look as shown in Example 8-1.

Example 8-1 Headers of the GET Organizations REST

API Call

Click here to view code image

HTTP/1.1 302 Found
Server: nginx
Date: Sat, 17 Aug 2019 19:05:25 GMT
Content-Type: text/html; charset=utf-8
Transfer-Encoding: chunked
Connection: keep-alive
Cache-Control: no-cache, no-store, max-age=0,
must-revalidate
Pragma: no-cache
Expires: Fri, 01 Jan 1990 00:00:00 GMT
X-Frame-Options: sameorigin
X-Robots-Tag: none
Location:
https://n149.meraki.com/api/v0/organizations
X-UA-Compatible: IE=Edge,chrome=1
X-Request-Id: 87654dbd16ae23fbc7e3282a439b211c
X-Runtime: 0.320067
Strict-Transport-Security: max-age=15552000;
includeSubDomains

You can see in Example 8-1 that the response code for

the request is 302. This indicates a redirect to the URL

value in the Location header. Redirects like the one in

Example 8-1 can occur with any API call within the

Dashboard API, including POST, PUT, and DELETE. For

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg182-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-1

GET calls, the redirect is specified through a 302 status

code, and for any non-GET calls, the redirects are

specified with 307 or 308 status codes. When you specify

the -I option for curl, only the headers of the response

are displayed to the user. At this point, you need to run

the curl command again but this time specify the

resource as

https://n149.meraki.com/api/v0/organizations, remove

the -I flag, and add an Accept header to specify that the

response to the call should be in JSON format. The

command should look like this:

Click here to view code image

curl -X GET \

 --url

'https://n149.meraki.com/api/v0/organizations' \

 -H 'X-Cisco-Meraki-API-Key:

 15da0c6ffff295f16267f88f98694cf29a86ed87'\

 -H 'Accept: application/json'

The response in this case contains the ID of the DevNet

Sandbox organization in JSON format:

Click here to view code image

[

 {

 "name" : "DevNet Sandbox",

 "id" : "549236"

 }

]

Now let’s look at how you can obtain the organization ID

for the Cisco DevNet Sandbox Meraki account by using

Postman. As mentioned in Chapter 7, Postman is a

popular tool used to explore APIs and create custom

requests; it has extensive built-in support for different

authentication mechanisms, headers, parameters,

collections, environments, and so on. By default,

https://n149.meraki.com/api/v0/organizations
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg182-2
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg183

Postman has the Automatically Follow Redirects option

enabled in Settings, so you do not have to change the

https://api.meraki.com/api/v0/organizations resource

as it is already done in the background by Postman. If

you disable the Automatically Follow Redirects option in

the Postman settings, you should see exactly the same

behavior you just saw with curl. Figure 8-1 shows the

Postman client interface with all the fields (the method

of the call, the resource URL, and the headers) populated

so that the Cisco Meraki REST API returns all the

organizations to which this account has access.

Figure 8-1 GET Organizations REST API Call in

Postman

In the body of the response, you see the same JSON-

formatted output as before, with the same organization

ID for the DevNet Sandbox account.

Let’s explore the Meraki Dashboard API further and

obtain the networks associated with the DevNet Sandbox

organization. If you look up the API documentation at

https://developer.cisco.com/meraki/api/#/rest/api-

endpoints/networks/get-organization-networks, you see

that in order to obtain the networks associated with a

specific organization, you need to do a GET request to

https://api.meraki.com/api/v0/organizations/{organiza

tionId}/networks, where {organizationId} is the ID you

obtained previously, in your first interaction with the

https://api.meraki.com/api/v0/organizations
https://developer.cisco.com/meraki/api/#/rest/api-endpoints/networks/get-organization-networks

Dashboard API. You have also discovered that the base

URL for the DevNet Sandbox organization is

https://n149.meraki.com/api/v0. You can modify the

API endpoint with this information to use the following

curl command:

Click here to view code image

curl -X GET \

 --url

'https://n149.meraki.com/api/v0/organizations/549236/

 networks' \

 -H 'X-Cisco-Meraki-API-Key:

15da0c6ffff295f16267f88f98694c

 f29a86ed87'\

 -H 'Accept: application/json'

The response from the API should contain a list of all the

networks that are part of the DevNet Sandbox

organization and should look similar to the output in

Example 8-2.

Example 8-2 List of All the Networks in a Specific

Organization

Click here to view code image

[
 {
 "timeZone" : "America/Los_Angeles",
 "tags" : " Sandbox ",
 "organizationId" : "549236",
 "name" : "DevNet Always On Read Only",
 "type" : "combined",
 "disableMyMerakiCom" : false,
 "disableRemoteStatusPage" : true,
 "id" : "L_646829496481099586"
 },
 {
 "organizationId" : "549236",
 "tags" : null,
 "timeZone" : "America/Los_Angeles",
 "id" : "N_646829496481152899",
 "disableRemoteStatusPage" : true,
 "name" : "test - mx65",
 "disableMyMerakiCom" : false,

https://n149.meraki.com/api/v0
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg184
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-2

 "type" : "appliance"
 }, ... omitted output

The output in Example 8-2 shows a list of all the

networks that are part of the DevNet Sandbox

organization with an ID of 549236. For each network,

the output contains the same information found in the

Meraki dashboard. You should make a note of the first

network ID returned by the API as you will need it in the

next step in your exploration of the Meraki Dashboard

API.

Now you can try to get the same information—a list of all

the networks that are part of the DevNet Sandbox

organization—by using Postman. As you’ve seen,

Postman by default does the redirection automatically,

so you can specify the API endpoint as

https://api.meraki.com/api/v0/organizations/549236/n

etworks. You need to make sure to specify the GET

method, the X-Cisco-Meraki-API-Key header for

authentication, and the Accept header, in which you

specify that you would like the response from the API to

be in JSON format. Figure 8-2 shows the Postman client

interface with all the information needed to obtain a list

of all the networks that belong to the organization with

ID 549236.

https://api.meraki.com/api/v0/organizations/549236/networks

Figure 8-2 GET Networks REST API Call in

Postman

The body of the response contains exactly the same

information as before: a complete list of all the networks

that are part of the DevNet Sandbox organization.

Next, you can obtain a list of all devices that are part of

the network that has the name “DevNet Always On Read

Only” and ID L_646829496481099586. Much as in the

previous steps, you start by checking the API

documentation to find the API endpoint that will return

this data to you. The API resource that contains the

information you are looking for is

/networks/{networkId}/devices, as you can see from the

API documentation at the following link:

https://developer.cisco.com/meraki/api/#/rest/api-

endpoints/devices/get-network-devices. You add the

base URL for the DevNet Sandbox account,

https://n149.meraki.com/api/v0, and populate

{networkId} with the value you obtained in the previous

step. Combining all this information, the endpoint that

will return the information you are seeking is

https://n149.meraki.com/api/v0/networks/L_6468294

96481099586/devices. The curl command in this case is

as follows:

Click here to view code image

curl -X GET \

 --url

'https://n149.meraki.com/api/v0/networks/L_646829496481099586/

 devices' \

 -H 'X-Cisco-Meraki-API-Key:

15da0c6ffff295f16267f88f98694cf29a86ed87'\

 -H 'Accept: application/json'

And the response from the API should be similar to the

one in Example 8-3.

https://developer.cisco.com/meraki/api/#/rest/api-endpoints/devices/get-network-devices
https://n149.meraki.com/api/v0
https://n149.meraki.com/api/v0/networks/L_646829496481099586/devices
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg185

Example 8-3 List of All the Devices in a Specific

Network

Click here to view code image

[
 {
 "wan2Ip" : null,
 "networkId" : "L_646829496481099586",
 "lanIp" : "10.10.10.106",
 "serial" : "QYYY-WWWW-ZZZZ",
 "tags" : " recently-added ",
 "lat" : 37.7703718,
 "lng" : -122.3871248,
 "model" : "MX65",
 "mac" : "e0:55:3d:17:d4:23",
 "wan1Ip" : "10.10.10.106",
 "address" : "500 Terry Francois, San
Francisco"
 },
 {
 "switchProfileId" : null,
 "address" : "",
 "lng" : -122.098531723022,
 "model" : "MS220-8P",
 "mac" : "88:15:44:df:f3:af",
 "tags" : " recently-added ",
 "serial" : "QAAA-BBBB-CCCC",
 "networkId" : "L_646829496481099586",
 "lanIp" : "192.168.128.2",
 "lat" : 37.4180951010362
 }
]

Notice from the API response that the “DevNet Always

On Read Only” network has two devices: an MX65

security appliance and an eight-port MS-220 switch. The

output also includes geographic coordinates, MAC

addresses, serial numbers, tags, model numbers, and

other information. The same information is available in

the Meraki GUI dashboard.

Following the process used so far, you can obtain the

same information but this time using Postman. Since the

redirection is automatically done for you, the API

endpoint for Postman is

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-3

https://api.meraki.com/api/v0/networks/L_646829496

481099586/devices. You populate the two headers

Accept and X-Cisco-Meraki-API-Key with their

respective values, select the GET method, and click the

Send button. If everything went well, the response code

should be 200 OK, and the body of the response should

contain exactly the same information found using curl.

Figure 8-3 shows the Postman client interface with all

the headers and fields needed to get a list of all devices

that are part of the network with ID

L_646829496481099586.

Figure 8-3 GET Devices REST API Call in Postman

So far, you have explored the Meraki Dashboard API

using curl and Postman. You first obtained the

organization ID of the DevNet Sandbox Meraki account

and then, based on that ID, you obtained all the networks

that are part of the organization and then used one of the

network IDs you obtained to find all the devices that are

part of that specific network. This is, of course, just a

subset of all the capabilities of the Meraki Dashboard

API, and we leave it as an exercise for you to explore in

more depth all the capabilities and functionalities of the

API.

As a final step in this section, let’s take a look at the

Meraki Python SDK. As of this writing, there are two

https://api.meraki.com/api/v0/networks/L_646829496481099586/devices

Meraki SDKs for the Dashboard API: one is Python

based and the other is Node.js based. The Meraki Python

SDK used in this book is version 1.0.2; it was developed

for Python 3 and implements a complete set of classes,

methods, and functions to simplify how users interact

with the Dashboard API in Python.

In order to get access to the SDK, you need to install the

meraki-sdk module. As a best practice, always use virtual

environments with all Python projects. Once a virtual

environment is activated, you can run pip install

meraki-sdk to get the latest version of the SDK. In this

section, you follow the same three steps you have

followed in other examples in this chapter: Get the

organization ID for the DevNet Sandbox account, get a

list of all the networks that are part of this organization,

and get all the devices associated to the “DevNet Always

on Read Only” network. The Python 3 code to

accomplish these three tasks might look as shown in

Example 8-4.

You need to import the MerakiSdkClient class from the

meraki_sdk module. You use the MerakiSdkClient class

to create an API client by passing the API key as a

parameter and creating an instance of this class called

MERAKI.

Example 8-4 Python Script That Uses meraki_sdk

Click here to view code image

#! /usr/bin/env python
from meraki_sdk.meraki_sdk_client import
MerakiSdkClient

#Cisco DevNet Sandbox Meraki API key
X_CISCO_MERAKI_API_KEY =
'15da0c6ffff295f16267f88f98694cf29a86ed87'

#Establish a new client connection to the
Meraki REST API
MERAKI =
MerakiSdkClient(X_CISCO_MERAKI_API_KEY)

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-4

#Get a list of all the organizations for the
Cisco DevNet account
ORGS = MERAKI.organizations.get_organizations()
for ORG in ORGS:
 print("Org ID: {} and Org Name:
{}".format(ORG['id'], ORG['name']))

PARAMS = {}
PARAMS["organization_id"] = "549236" # Demo
Organization "DevNet Sandbox"

#Get a list of all the networks for the Cisco
DevNet organization
NETS =
MERAKI.networks.get_organization_networks(PARAMS)

for NET in NETS:
 print("Network ID: {0:20s}, Name:
{1:45s},Tags: {2:<10s}".format(\
 NET['id'], NET['name'],
str(NET['tags'])))

#Get a list of all the devices that are part of
the Always On Network
DEVICES =
MERAKI.devices.get_network_devices("L_646829496
481099586")
for DEVICE in DEVICES:
 print("Device Model: {0:9s},Serial:
{1:14s},MAC: {2:17}, Firmware:{3:12s}"\
 .format(DEVICE['model'],
DEVICE['serial'], DEVICE['mac'], \
 DEVICE['firmware']))

After you instantiate the MerakiSdkClient class, you get

an API client object that provides access to all the

methods of the class. You can find the documentation for

the Python SDK at

https://developer.cisco.com/meraki/api/#/python/guid

es/python-sdk-quick-start. This documentation covers

all the classes and methods, their parameters, and input

and output values for the Python SDK implementation.

Unlike with the curl and Postman examples earlier in

this chapter, you do not need to determine the exact API

resource that will return the information you are

interested in; however, you do need to know how the

MerakiSdkClient API class is organized and what

https://developer.cisco.com/meraki/api/#/python/guides/python-sdk-quick-start

methods are available. There’s a consistent one-to-one

mapping between the Dashboard API and the Python

SDK, so when you are familiar with one of them, you

should find the other one very easy to understand. There

is also no need to pass the API key through the X-Cisco-

Meraki-API-Key header. This is all automatically

handled by the SDK as well as all the redirects that had

to manually be changed for the curl examples.

Obtaining the organization ID for the DevNet Sandbox

account is as easy as invoking the

organizations.get_organizations() method of the

API client class. The ORGS variable in Example 8-4

contains a list of all the organizations that the DevNet

Sandbox account is a member of. Next, you iterate within

a for loop through all these organizations and display to

the console the organization ID and the organization

name.

Next, you create an empty dictionary called PARAMS

and add to it a key called organization_id with the value

549236. Remember that this was the organization ID for

the DevNet Sandbox account. You still use the Meraki

API client instance, but in this case, you invoke the

networks.get_organization_networks() method.

Just as in the case of the REST API calls with curl and

Postman earlier in this section, where you had to specify

the organization ID when building the endpoint to obtain

the list of networks, the

get_organization_networks() method takes as input

the params dictionary, which contains the same

organization ID value but in a Python dictionary format.

The NETS variable stores the output of the API call. In

another iterative loop, information about each network is

displayed to the console.

Finally, you get the list of devices that are part of the

network and have the ID L_646829496481099586.

Recall from earlier that this ID is for the “DevNet Always

on Read Only” network. In this case, you use the

devices.get_network_devices() method of the

Meraki API client instance and store the result in the

DEVICES variable. You iterate over the DEVICES

variable and, for each device in the list, extract and print

to the console the device model, the serial number, the

MAC address, and the firmware version.

Running the Python 3 script discussed here should result

in output similar to that shown in Figure 8-4.

Figure 8-4 Output of the Python Script from

Example 8-4

CISCO DNA CENTER

Cisco Digital Network Architecture (DNA) is an open,

extensible, software-driven architecture from Cisco that

accelerates and simplifies enterprise network operations.

Behind this new architecture is the concept of intent-

based networking, a new era in networking, in which the

network becomes an integral and differentiating part of

the business. With Cisco DNA and the products behind

it, network administrators define business intents that

get mapped into infrastructure configurations by a

central SDN controller. In the future, an intent-based

network will dynamically adjust itself based on what it

continuously learns from the traffic it transports as well

as the business inputs it gets from the administrator.

Cisco DNA Center is the network management and

command center for Cisco DNA. With Cisco DNA Center,

you can provision and configure network devices in

minutes, define a consistent policy throughout a

network, get live and instantaneous statistics, and get

granular networkwide views. Multidomain and

multivendor integrations are all built on top of a secure

platform.

From a programmability perspective, Cisco DNA Center

provides a set of REST APIs and SDKs through the Cisco

DNA Center platform that are grouped in the following

categories:

Intent API

Integration API

Multivendor SDK

Events and notifications

The Intent API is a northbound REST API that exposes

specific capabilities of the Cisco DNA Center platform.

The main purpose of the Intent API is to simplify the

process of creating workflows that consolidate multiple

network actions into one. An example is the SSID

provisioning API, which is part of the Intent API. When

configuring an SSID on a wireless network, several

operations need to be completed, including creating a

wireless interface, adding WLAN settings, and adding

security settings. The SSID provisioning API combines

all these operations and makes them available with one

API call. This results in a drastic reduction in overall

wireless SSID deployment time and also eliminates

errors and ensures a consistent configuration policy. The

Intent API provides automation capabilities and

simplified workflows for QoS policy configuration,

software image management and operating system

updates for all devices in the network, overall client

health status, and monitoring of application health.

Application developers and automation engineers can

take advantage of this single northbound integration

layer to develop tools and applications on top of the

network.

One of the main goals of the Cisco DNA Center platform

is to simplify and streamline end-to-end IT processes.

The Integration API was created for exactly this purpose.

Through this API, Cisco DNA Center platform publishes

network data, events, and notifications to external

systems and at the same time can consume information

from these connected systems. Integrations with IT

service management systems like Service Now, BMC

Remedy, and other ticketing systems are supported.

Automatic ticket creation and assignment based on

network issues that are flagged by Cisco DNA Center are

now possible. Cisco DNA Center can even suggest

remediation steps based on the machine learning

algorithms that are part of the assurance capabilities.

You can see how a typical support workflow can be

improved with Cisco DNA Center platform in the future.

Cisco DNA Center detects a network issue, automatically

creates a ticket and assigns it to the right support

personnel, along with a possible solution to the issue.

The support team reviews the ticket and the suggested

solution and can approve either immediately or during a

maintenance window the remediation of the problem

that Cisco DNA Center suggested. IP Address

Management (IPAM) integrations are also supported by

the Integration API. It is possible to seamlessly import IP

address pools of information from IPAM systems such as

Infoblox and BlueCat into Cisco DNA Center.

Synchronization of IP pool/subpool information between

Cisco DNA Center and IPAM systems is also supported.

Through the Integration API that Cisco DNA Center

provides, developers can integrate with any third-party

IPAM solution.

Data as a service (DaaS) APIs that are part of the

Integration API allow Cisco DNA Center to publish

insights and data to external tools such as Tableau and

similar reporting solutions. IT administrators have the

option to build dashboards and extract business-relevant

insights.

The Integration API is also used for cross-domain

integrations with other Cisco products, such as Cisco

Meraki, Cisco Stealthwatch, and Cisco ACI. The idea is to

deliver a consistent intent-based infrastructure across

the data center, WAN, and security solutions.

Cisco DNA Center allows customers to have their non-

Cisco devices managed by DNA Center through a

multivendor SDK. Cisco DNA Center communicates with

third-party devices through device packages. The device

packages are developed using the multivendor SDK and

implement southbound interfaces based on CLI, SNMP,

or NETCONF.

Cisco DNA Center also provides webhooks for events and

notifications that are generated in the network or on the

Cisco DNA Center appliance itself. You have the option

of configuring a receiving URL to which the Cisco DNA

Center platform can publish events. Based on these

events, the listening application can take business

actions. For instance, if some of the devices in a network

are out of compliance, the events that the platform

generates can be interpreted by a custom application,

which might trigger a software upgrade action in Cisco

DNA Center. This completes the feedback loop in the

sense that a notification generated by Cisco DNA Center

is interpreted by a third-party custom application and

acted upon by sending either an Intent API or

Integration API call back to Cisco DNA Center to either

remedy or modify the network, based on the desired

business outcome. This mechanism of publishing events

and notifications also saves on processing time and

resources; before this capability existed, the custom

application had to poll continuously to get the status of

an event. By subscribing through the webhook, polling

can now be avoided entirely, and the custom application

receives the status of the event right when it gets

triggered.

Next, let’s focus on the Cisco DNA Center Platform

Intent API. As of this writing, the Intent API is organized

into several distinct categories:

Know Your Network category: This category contains API calls

pertaining to sites, networks, devices, and clients:

With the Site Hierarchy Intent API, you can get information about,

create, update, and delete sites as well as assign devices to a

specific site. (Sites within Cisco DNA Center are logical groupings

of network devices based on a geographic location or site.)

The Network Health Intent API retrieves data regarding network

devices, their health, and how they are connected.

The Network Device Detail Intent API retrieves detailed

information about devices. Different parameters can be passed to

limit the scope of the information returned by the API, such as

timestamp, MAC address, and UUID. Besides all the detailed

information you can retrieve for all the devices in the network, you

can also add, delete, update, or sync specified devices.

The Client Health Intent API returns overall client health

information for both wired and wireless clients.

The Client Detail Intent API returns detailed information about a

single client.

Site Management category: This category helps provision

enterprise networks with zero-touch deployments and manage the

activation and distribution of software images in the network:

The Site Profile Intent API gives you the option to provision NFV

and ENCS devices as well as retrieve the status of the provisioning

activities.

The Software Image Management (SWIM) API enables you to

completely manage the lifecycle of software images running within

a network in an automated fashion. With this API, you can retrieve

information about available software images, import images into

Cisco DNA Center, distribute images to devices, and activate

software images that have been deployed to devices.

The Plug and Play (PnP) API enables you to manage all PnP-

related workflows. With this API, you can create, update, and

delete PnP workflows and PnP server profiles, claim and unclaim

devices, add and remove virtual accounts, and retrieve information

about all PnP-related tasks.

Connectivity category: This category contains APIs that provide

mechanisms to configure and manage both non-fabric wireless and

Cisco SDA wired fabric devices. For fabric devices, you can add and

remove border devices to the fabric and get details about their status.

For non-fabric wireless devices, you can create, update, and delete

wireless SSIDs, profiles, and provisioning activities.

Operational Tools category: This category includes APIs for the

most commonly used tools in the Cisco DNA Center toolbelt:

The Command Runner API enables the retrieval of all valid

keywords that Command Runner accepts and allows you to run

read-only commands on devices to get their real-time

configuration.

The Network Discovery API provides access to the discovery

functionalities of Cisco DNA Center. You can use this API to create,

update, delete, and manage network discoveries and the

credentials needed for them. You can also retrieve network

discoveries, network devices that were discovered as part of a

specific network discovery task, and credentials associated with

these discoveries.

The Template Programmer API can be used to manage

configuration templates. You can create, view, edit, delete, version,

add commands, check contents for errors, deploy, and check the

status of template deployments.

The Path Trace API provides access to the Path Trace application

in Cisco DNA Center. Path Trace can be used to troubleshoot and

trace application paths throughout the network and provide

statistics at each hop. The API gives you access to initiating,

retrieving, and deleting path traces.

The File API enables you to retrieve files such as digital certificates,

maps, and SWIM files from Cisco DNA Center.

The Task API provides information about the network actions that

are being run asynchronously. Each of these background actions

can take from seconds to minutes to complete, and each has a task

associated with it. You can query the Task API about the

completion status of these tasks, get the task tree, retrieve tasks by

their IDs, and so on.

The Tag API gives you the option of creating, updating, and

deleting tags as well as assigning tags to specific devices. Tags are

very useful in Cisco DNA Center; they are used extensively to group

devices by different criteria. You can then apply policies and

provision and filter these groups of devices based on their tags.

The Cisco DNA Center platform APIs are rate limited to

five API requests per minute.

So far in this section, we’ve covered all the APIs and the

multivendor SDK offered by Cisco DNA Center. Next, we

will start exploring the Intent API, using Cisco DNA

Center version 1.3 for the rest of the chapter. As API

resources and endpoints exposed by the Cisco DNA

Center platform might change in future versions of the

software, it is always best to start exploring the API

documentation for any Cisco product at

https://developer.cisco.com/docs/dna-center/api/1-3-0-

x/.

In Cisco DNA Center version 1.3, the REST API is not

enabled by default. Therefore, you need to log in to DNA

Center with a super-admin role account, navigate to

Platform > Manage > Bundles, and enable the DNA

Center REST API bundle. The status of the bundle

should be active, as shown in Figure 8-5.

Figure 8-5 Cisco DNA Center Platform Interface

For this section, you can use the always-on DevNet

Sandbox for Cisco DNA Center at

https://sandboxdnac2.cisco.com. The username for this

sandbox is devnetuser, and the password is Cisco123!.

You need to get authorized to the API and get the token

that you will use for all subsequent API calls. The Cisco

DNA Center platform API authorization is based on basic

auth. Basic auth, as you learned in Chapter 7, is an

authorization type that requires a username and

password to access an API endpoint. In the case of Cisco

DNA Center, the username and password mentioned

previously are base-64 encoded and then transmitted to

the API service in the Authorization header. The are

many online services that can do both encoding and

decoding of base-64 data for you, or as a fun challenge

you can look up how to do it manually. The username

https://developer.cisco.com/docs/dna-center/api/1-3-0-x/
https://sandboxdnac2.cisco.com/

devnetuser and the password Cisco123! become

ZGV2- bmV0dXNlcjpDaXNjbzEyMyE= when they

are base-64 encoded. The only missing component is the

resource that you need to send the authorization request

to. You verify the documentation and see that the

authorization resource is /system/api/v1/auth/token

and requires the API call to be POST. With this

information, you can build the authorization API

endpoint, which becomes

https://sandboxdnac2.cisco.com/system/api/v1/auth/to

ken.

Next, you will use curl, a command-line tool that is

useful in testing REST APIs and web services. Armed

with the authorization API endpoint, the Authorization

header containing the base-64-encoded username and

password, and the fact that the API call needs to be a

POST call, you can now craft the authorization request in

curl. The authorization API call with curl should look as

follows:

Click here to view code image

curl -X POST \

https://sandboxdnac2.cisco.com/dna/system/api/v1/auth/token

 \

 -H 'Authorization: Basic

ZGV2bmV0dXNlcjpDaXNjbzEyMyE='

The result should be JSON formatted with the key Token

and a value containing the actual authorization token. It

should look similar to the following:

Click here to view code image

{"Token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI1Y2U3M-

TJiMDhlZTY2MjAyZmEyZWI4ZjgiLCJhdXRoU291cmNlIjoiaW50ZXJuYWwiL-

CJ0ZW5hbnROYW1lIjoiVE5UMCIsInJvbGVzIjpbIjViNmNmZGZmNDMwOTkwM-

https://sandboxdnac2.cisco.com/system/api/v1/auth/token
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg193
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg194-1

DA4OWYwZmYzNyJdLCJ0ZW5hbnRJZCI6IjViNmNmZGZjNDMwOTkwMDA4OWYwZ-

mYzMCIsImV4cCI6MTU2NjU0Mzk3OCwidXNlcm5hbWUiOiJkZXZuZXR1c2VyIn0.

Qv6vU6d1tqFGx9GETj6SlDa8Ts6uJNk9624onLSNSnU"}

Next, you can obtain an authorization token by using

Postman. Make sure you select POST as the verb for the

authorization API call and the endpoint

https://sandboxdnac2.cisco.com/dna/system/api/v1/au

th/token. This is a POST call because you are creating

new data in the system—in this case, a new authorization

token. Under the Authorization tab, select Basic Auth as

the type of authorization, and in the Username and

Password fields, make sure you have the correct

credentials (devnetuser and Cisco123!). Since you have

selected basic auth as the authorization type, Postman

does the base-64 encoding for you automatically. All you

need to do is click Send, and the authorization API call is

sent to the specified URL. If the call is successfully

completed, the status code should be 200 OK, and the

body of the response should contain the JSON-formatted

token key and the corresponding value. Figure 8-6 shows

the Postman client interface with the information needed

to successfully authenticate to the always-on Cisco

DevNet DNA Center Sandbox.

Figure 8-6 Authenticating to Cisco DNA Center over

the REST API

https://sandboxdnac2.cisco.com/dna/system/api/v1/auth/token

The body of the response for the Postman request should

look as follows:

Click here to view code image

{

 "Token":

"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI1

Y2U3MTJiMDhlZ-

TY2MjAyZmEyZWI4ZjgiLCJhdXRoU291cmNlIjoiaW50ZXJuYWw

iLCJ0ZW5hbnROY-

W1lIjoiVE5UMCIsInJvbGVzIjpbIjViNmNmZGZmNDMwOTkwMDA

4OWYwZmYzNyJdL-

CJ0ZW5hbnRJZCI6IjViNmNmZGZjNDMwOTkwMDA4OWYwZmYzMCI

sImV4cCI6MTU2N-

jU5NzE4OCwidXNlcm5hbWUiOiJkZXZuZXR1c2VyIn0.ubXSmZY

rI-yoCWmzCSY486y-

HWhwdTlnrrWqYip5lv6Y"

}

As with the earlier curl example, this token will be used

in all subsequent API calls performed in the rest of this

chapter. The token will be passed in the API calls

through a header that is called X-Auth-Token.

Let’s now get a list of all the network devices that are

being managed by the instance of Cisco DNA Center that

is running in the always-on DevNet Sandbox you’ve just

authorized with. If you verify the Cisco DNA Center API

documentation on

https://developer.cisco.com/docs/dna-center/api/1-3-0-

x/, you can see that the API resource that will return a

complete list of all network devices managed by Cisco

DNA Center is /dna/intent/api/v1/network-device.

Figure 8-7 shows the online documentation for Cisco

DNA Center version 1.3.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg194-2
https://developer.cisco.com/docs/dna-center/api/1-3-0-x/

Figure 8-7 Cisco DNA Center Platform API

Documentation (https://developer.cisco.com)

With all this information in mind, you can craft the curl

request to obtain a list of all the network devices

managed by the Cisco DevNet always-on DNA Center

Sandbox. The complete URL is

https://sandboxdnac2.cisco.com/dna/intent/api/v1/net

work-device. You need to retrieve information through

the API, so we need to do a GET request; don’t forget the

X-Auth-Token header containing the authorization

token. The curl command should look as follows, and it

should contain a valid token:

Click here to view code image

curl -X GET \

https://sandboxdnac2.cisco.com/dna/intent/api/v1/network-

device \

 -H 'X-Auth-Token:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.

eyJzdWIiOiI1Y2U3MTJiMDhlZTY2MjAyZmEyZWI4ZjgiLCJhdXRoU291c-

mNlIjoiaW50ZXJuYWwiLCJ0ZW5hbnROYW1lIjoiVE5UMCIsInJvbGVzIjpbI-

jViNmNmZGZmNDMwOTkwMDA4OWYwZmYzNyJdLCJ0ZW5hbnRJZCI6IjViNmNmZG-

ZjNDMwOTkwMDA4OWYwZmYzMCIsImV4cCI6MTU2NjYwODAxMSwidXNlcm5hbWUiOi-

JkZXZuZXR1c2VyIn0.YXc_2o8FDzSQ1YBhUxUIoxwzYXXWYeNJRkB0oKBlIHI'

https://developer.cisco.com/
https://sandboxdnac2.cisco.com/dna/intent/api/v1/network-device
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg195-2

The response to this curl command should look as

shown in Example 8-5.

Example 8-5 List of Network Devices Managed by the

Always-On Cisco DNA Center Sandbox Instance

Click here to view code image

{
 "response" : [
 {
 "type" : "Cisco 3504 Wireless LAN
Controller",
 "roleSource" : "AUTO",
 "apManagerInterfaceIp" : "",
 "lastUpdateTime" : 1566603156991,
 "inventoryStatusDetail" : "<status>
<general code=\"SUCCESS\"/></status>",
 "collectionStatus" : "Managed",
 "serialNumber" : "FCW2218M0B1",
 "location" : null,
 "waasDeviceMode" : null,
 "tunnelUdpPort" : "16666",
 "reachabilityStatus" : "Reachable",
 "lastUpdated" : "2019-08-23 23:32:36",
 "tagCount" : "0",
 "series" : "Cisco 3500 Series Wireless
LAN Controller",
 "snmpLocation" : "",
 "upTime" : "158 days, 13:59:36.00",
 "lineCardId" : null,
 "id" : "50c96308-84b5-43dc-ad68-
cda146d80290",
 "reachabilityFailureReason" : "",
 "lineCardCount" : null,
 "managementIpAddress" : "10.10.20.51",
 "memorySize" : "3735302144",
 "errorDescription" : null,
 "snmpContact" : "",
 "family" : "Wireless Controller",
 "platformId" : "AIR-CT3504-K9",
 "role" : "ACCESS",
 "softwareVersion" : "8.5.140.0",
 "hostname" : "3504_WLC",
 "collectionInterval" : "Global
Default",
 "bootDateTime" : "2019-01-19
02:33:05",
 "instanceTenantId" : "SYS0",
 "macAddress" : "50:61:bf:57:2f:00",
 "errorCode" : null,
 "locationName" : null,

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-5

 "softwareType" : "Cisco Controller",
 "associatedWlcIp" : "",
 "instanceUuid" : "50c96308-84b5-43dc-
ad68-cda146d80290",
 "interfaceCount" : "8"
 },
 ... omitted output
],
 "version" : "1.0"
}

From this verbose response, you can extract some very

important information about the network devices

managed by Cisco DNA Center. The data returned in the

response is too verbose to fully include in the previous

output, so just a snippet is included for your reference.

As of this writing, in the complete response output, you

can see that there are 14 devices in this network:

One AIR-CT3504-K9 wireless LAN controller

One WS-C3850-24P-L Catalyst 3850 switch

Two C9300-48U Catalyst 9300 switches

Ten AIR-AP141N-A-K9 wireless access points

For each device, you can see extensive information such

as the hostname, uptime, serial number, software

version, management interface IP address, reachability

status, hardware platform, and role in the network. You

can see here the power of the Cisco DNA Center platform

APIs. With one API call, you were able to get a complete

status of all devices in the network. Without a central

controller like Cisco DNA Center, it would have taken

several hours to connect to each device individually and

run a series of commands to obtain the same information

that was returned with one API call in less than half a

second. These APIs can save vast amounts of time and

bring numerous possibilities in terms of infrastructure

automation. The data returned by the API endpoints can

be extremely large, and it might take a long time to

process a request and return a complete response. As

mentioned in Chapter 7, pagination is an API feature that

allows for passing in parameters to limit the scope of the

request. Depending on the Cisco DNA Center platform

API request, different filter criteria can be considered,

such as management IP address, MAC address, and

hostname.

Now you will see how to obtain the same information you

just got with curl but now using Postman. The same API

endpoint URL is used:

https://sandboxdnac2.cisco.com/dna/intent/api/v1/net

work-device. In this case, it is a GET request, and the X-

Auth-Token header is specified under the Headers tab

and populated with a valid token. If you click Send and

there aren’t any mistakes with the request, the status

code should be 200 OK, and the body of the response

should be very similar to that obtained with the curl

request. Figure 8-8 shows how the Postman interface

should look in this case.

Figure 8-8 Getting a List of Network Devices

Now you can try to obtain some data about the clients

that are connected to the network managed by Cisco

DNA Center. Much like network devices, network clients

have associated health scores, provided through the

Assurance feature to get a quick overview of client

network health. This score is based on several factors,

including onboarding time, association time, SNR

(signal-to-noise ratio), and RSSI (received signal

https://sandboxdnac2.cisco.com/dna/intent/api/v1/network-device

strength indicator) values for wireless clients,

authentication time, connectivity and traffic patterns,

and number of DNS requests and responses. In the API

documentation, you can see that the resource providing

the health status of all clients connected to the network is

/dna/intent/api/v1/client-health. This API call requires

a parameter to be specified when performing the call.

This parameter, called timestamp, represents the UNIX

epoch time in milliseconds. UNIX epoch time is a system

for describing a point in time since January 1, 1970, not

counting leap seconds. It is extensively used in UNIX

and many other operating systems. The timestamp

provides the point in time for which the client health

information should be returned in the API response. For

example, if I retrieved the health status of all the clients

connected to the network on Thursday, August 22, 2019

8:41:29 PM GMT, the UNIX time, in milliseconds, would

be 1566506489000. Keep in mind that based on the data

retention policy set in Cisco DNA Center, client data

might not be available for past distant timeframes.

With the information you now have, you can build the

API endpoint to process the API call:

https://sandboxdnac2.cisco.com/dna/intent/api/v1/clie

nt-health?timestamp=1566506489000. The

authorization token also needs to be included in the call

as a value in the X-Auth-Token header. The curl

command should look as follows:

Click here to view code image

curl -X GET \

https://sandboxdnac2.cisco.com/dna/intent/api/v1/client-

 health?timestamp=1566506489000 \

 -H 'X-Auth-Token:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.

eyJzdWIiOiI1Y2U3MTJiMDhlZTY2MjAyZmEyZWI4ZjgiLCJhdXRoU291c

mNlIjoiaW50ZXJuYWwiLCJ0ZW5hbnROYW1lIjoiVE5UMCIsInJvbGVzIjpbI

https://sandboxdnac2.cisco.com/dna/intent/api/v1/client-health?timestamp=1566506489000
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg198

jViNmNmZGZmNDMwOTkwMDA4OWYwZmYzNyJdLCJ0ZW5hbnRJZCI6IjViNmNmZG-

ZjNDMwOTkwMDA4OWYwZmYzMCIsImV4cCI6MTU2NjYxODkyOCwidXNlcm5hbWUiO

iJkZXZuZXR1c2VyIn0.7JNXdgSMi3Bju8v8QU_L5nmBKYOTivinAjP8ALT_opw'

The API response should look similar to Example 8-6.

From this response, you can see that there are a total of

82 clients in the network, and the average health score

for all of them is 27. To further investigate why the

health scores for some of the clients vary, you can look

into the response to the /dna/intent/api/v1/client-detail

call. This API call takes as input parameters the

timestamp and the MAC address of the client, and it

returns extensive data about the status and health of that

specific client at that specific time.

Now you can try to perform the same API call but this

time with Postman. The API endpoint stays the same:

https://sandboxdnac2.cisco.com/dna/intent/api/v1/clie

nt-health?timestamp=1566506489000. In this case, you

are trying to retrieve information from the API, so it will

be a GET call, and the X-Auth-Token header contains a

valid token value. Notice that the Params section of

Postman gets automatically populated with a timestamp

key, with the value specified in the URL:

1566506489000. Click Send, and if there aren’t any

errors with the API call, the body of the response should

be very similar to the one obtained previously with curl.

The Postman window for this example should look as

shown in Figure 8-9.

https://sandboxdnac2.cisco.com/dna/intent/api/v1/client-health?timestamp=1566506489000

Figure 8-9 Viewing Client Health in Cisco DNA

Center

Example 8-6 List of Clients and Their Status

Click here to view code image

{
 "response" : [{
 "siteId" : "global",
 "scoreDetail" : [{
 "scoreCategory" : {
 "scoreCategory" : "CLIENT_TYPE",
 "value" : "ALL"
 },
 "scoreValue" : 27,
 "clientCount" : 82,
 "clientUniqueCount" : 82,
 "starttime" : 1566506189000,
 "endtime" : 1566506489000,
 "scoreList" : []
 }, ... output omitted
}

So far in this section, you’ve explored the Cisco DNA

Center platform API and seen how to authorize the API

calls and obtain a token, how to get a list of all the

devices in the network, and how to get health statistics

for all the clients in the network using both curl and

Postman. Next let’s explore the Cisco DNA Center

Python SDK. The SDK has been developed for Python 3

and maps all the Cisco DNA Center APIs into Python

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-6

classes and methods to make it easier for developers to

integrate with and expand the functionality of Cisco DNA

Center. Installing the SDK is as simple as issuing the

command pip install dnacentersdk from the

command prompt. At this writing, the current Cisco

DNA Center SDK version is 1.3.0. The code in Example

8-7 was developed using this version of the SDK and

Python 3.7.4. The code in Example 8-7 uses the SDK to

first authorize to the API and then retrieve a list of all the

network devices and client health statuses.

Example 8-7 Python Script That Exemplifies the Use of

the Cisco DNA Center Python SDK

Click here to view code image

#! /usr/bin/env python
from dnacentersdk import api

Create a DNACenterAPI connection object;
it uses DNA Center sandbox URL, username and
password
DNAC = api.DNACenterAPI(username="devnetuser",
 password="Cisco123!",

base_url="https://sandboxdnac2.cisco.com")

Find all devices
DEVICES = DNAC.devices.get_device_list()

Print select information about the retrieved
devices
print('{0:25s}{1:1}{2:45s}{3:1}
{4:15s}'.format("Device Name", "|", \
 "Device Type", "|", "Up Time"))
print('-'*95)
for DEVICE in DEVICES.response:
 print('{0:25s}{1:1}{2:45s}{3:1}
{4:15s}'.format(DEVICE.hostname, \
 "|", DEVICE.type, "|", DEVICE.upTime))
print('-'*95)

Get the health of all clients on Thursday,
August 22, 2019 8:41:29 PM GMT
CLIENTS =
DNAC.clients.get_overall_client_health(timestamp="
1566506489000")

Print select information about the retrieved

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-7

client health statistics
print('{0:25s}{1:1}{2:45s}{3:1}
{4:15s}'.format("Client Category", "|",\
 "Number of Clients", "|", "Clients Score"))
print('-'*95)
for CLIENT in CLIENTS.response:
 for score in CLIENT.scoreDetail:
 print('{0:25s}{1:1}{2:<45d}{3:1}{4:
<15d}'.format(
 score.scoreCategory.value, "|",
score.clientCount, "|", \
 score.scoreValue))
print('-'*95)

First, this example imports the api class from

dnacentersdk. Next, it instantiates the api class and

creates a connection to the always-on Cisco DevNet

Sandbox DNA Center instance and stores the result of

that connection in a variable called DNAC. If the

connection was successfully established, the DNAC

object has all the API endpoints mapped to methods that

are available for consumption.

DNAC.devices.get_device_list() provides a list of all

the devices in the network and stores the result in the

DEVICES dictionary. The same logic applies to the

client health status.

DNAC.clients.get_overall_client_health(timesta

mp='1566506489000') returns a dictionary of health

statuses for all the clients at that specific time, which

translates to Thursday, August 22, 2019 8:41:29 PM

GMT. When the data is extracted from the API and

stored in the variables named DEVICES for all the

network devices and CLIENTS for all the client health

statuses, a rudimentary table is displayed in the console,

with select information from both dictionaries. For the

DEVICES variable, only the device name, device type,

and device uptime are displayed, and for the CLIENTS

variable, only the client health category, number of

clients, and client score for each category are displayed.

The output of the Python script should look similar to

that in Figure 8-10.

Figure 8-10 Output of the Python Script from

Example 8-7

CISCO SD-WAN

Cisco SD-WAN (Software-Defined Wide Area Network)

is a cloud-first architecture for deploying WAN

connectivity. Wide-area networks have been deployed for

a long time, and many lessons and best practices have

been learned throughout the years. Applying all these

lessons to software-defined networking (SDN) resulted

in the creation of Cisco SD-WAN. An important feature

of SDN is the separation of the control plane from the

data plane.

The control plane includes a set of protocols and features

that a network device implements so that it can

determine which network path to use to forward data

traffic. Spanning tree protocols and routing protocols

such as OSPF (Open Shortest Path First), EIGRP

(Enhanced Interior Gateway Routing Protocol), and BGP

(Border Gateway Protocol) are some of the protocols that

make up the control plane in network devices. These

protocols help build the switching or routing tables in

network devices to enable them to determine how to

forward network traffic.

The data plane includes the protocols and features that a

network device implements to forward traffic to its

destination as quickly as possible. Cisco Express

Forwarding (CEF) is a proprietary switching mechanism

that is part of the data plane. It was developed

specifically to increase the speed with which data traffic

is forwarded through network devices. You can read

more about the control and data planes in Chapter 17,

“Networking Components.”

Historically, the control plane and data plane were part

of the network device architecture, and they worked

together to determine the path that the data traffic

should take through the network and how to move this

traffic as fast as possible from its source to its

destination. As mentioned previously, software-defined

networking (SDN) suggests a different approach.

SDN separates the functionality of the control plane and

data plane in different devices, and several benefits

result. First, the cost of the resulting network should be

lower as not all network devices have to implement

expensive software and hardware features to

accommodate both a control plane and data plane. The

expensive intelligence from the control plane is

constrained to a few devices that become the brains of

the network, and the data plane is built with cheaper

devices that implement only fast forwarding. Second, the

convergence of this new network, which is the amount of

time it takes for all devices to agree on a consistent view

of the network, should be much lower than in the case of

the non-SDN architectures of the past. In networks of

similar sizes, the ones built with network devices that

implement both the control plane and the data plane in

their architecture take much longer to exchange all the

information needed to forward data traffic than do the

networks that implement separate control and data

plane functionality in their architecture. Depending on

the size of a network, this could mean waiting for

thousands of devices to exchange information through

their control plane protocols and settle on a certain view

of the network or wait for tens of SDN controllers to

accomplish the same task; the convergence time

improvements are massive.

Cisco currently has two SD-WAN offerings. The first one,

based on the Viptela acquisition, is called Cisco SD-

WAN; the second one, based on the Meraki acquisition,

is called Meraki SD-WAN. We already covered Cisco

Meraki at the beginning of this chapter; this section

covers Cisco SD-WAN based on the Viptela acquisition.

You’ve already seen some of the advantages that SDN

brings to WAN connectivity. Based on this new

architecture and paradigm, the Cisco SD-WAN offering

contains several products that perform different

functions:

vManage: Cisco vManage is a centralized network management

system that provides a GUI and REST API interface to the SD-WAN

fabric. You can easily manage, monitor, and configure all Cisco SD-

WAN components through this single pane of glass.

vSmart: Cisco vSmart is the brains of the centralized control plane for

the overlay SD-WAN network. It maintains a centralized routing table

and centralized routing policy that it propagates to all the network Edge

devices through permanent DTLS tunnels.

vBond: Cisco vBond is the orchestrator of the fabric. It authenticates

the vSmart controllers and the vEdge devices and coordinates

connectivity between them. The vBond orchestrator is the only

component in the SD-WAN fabric that needs public IP reachability to

ensure that all devices can connect to it.

vEdge: Cisco vEdge routers, as the name implies, are Edge devices that

are located at the perimeter of the fabric, such as in remote offices, data

centers, branches, and campuses. They represent the data plane and

bring the whole fabric together and route traffic to and from their site

across the overlay network.

All the components of the Cisco SD-WAN fabric run as

virtual appliances, and the vEdges are also available as

hardware routers.

Separating the WAN fabric this way makes it more

scalable, faster to converge, and cheaper to deploy and

maintain. On top of a transport-independent underlay

that supports all types of WAN circuits (MPLS, DSL,

broadband, 4G, and so on), an overlay network is being

built that runs OMP (Overlay Management Protocol).

Much like BGP, OMP propagates throughout the

network all the routing information needed for all the

components of the fabric to be able to forward data

according to the routing policies configured in vManage.

Cisco vManage provides a REST API interface that

exposes the functionality of the Cisco SD-WAN software

and hardware features. The API resources that are

available through the REST interface are grouped in the

following collections:

Administration: For management of users, groups, and local

vManage instance

Certificate Management: For management of SSL certificates and

security keys

Configuration: For creation of feature and device configuration

templates and creation and configuration of vManage clusters

Device Inventory: For collecting device inventory information,

including system status

Monitoring: For getting access to status, statistics, and related

operational information about all the devices in the network every 10

minutes from all devices

Real-Time Monitoring: For gathering real-time monitoring

statistics and traffic information approximately once per second

Troubleshooting Tools: For API calls used in troubleshooting, such

as to determine the effects of applying a traffic policy, updating

software, or retrieving software version information

Cisco vManage exposes a self-documenting web interface

for the REST API, based on the OpenAPI specification.

This web interface is enabled by default and can be

accessed at

https://vManage_IP_or_hostname:port/apidocs.

vManage_IP_or_hostname is the IP address or

hostname of the Cisco vManage server, and the port is

8443 by default. The rest of this chapter uses the always-

on Cisco DevNet SD-WAN Sandbox, available at

https://sandboxsdwan.cisco.com. The username for this

vManage server is devnetuser, and the password is

Cisco123!. At this writing, this sandbox is running Cisco

SD-WAN version 18.3 for all components of the fabric.

Because this sandbox will be updated in time, or you

might be using a different version, you should check

https://developer.cisco.com for the latest information on

all Cisco REST APIs documentation and changes. After

you specify the credentials, the self-documenting web

interface of

https://sandboxsdwan.cisco.com:8443/apidocs looks as

shown in Figure 8-11.

Figure 8-11 Cisco SD-WAN OpenAPI Specification-

Based Interface

This web interface displays a list of all the REST API

resources available, the methods associated with each

one of them, and the model schema of the responses. The

option of trying out each API call and exploring the

returned data is also available.

https://sandboxsdwan.cisco.com/
https://developer.cisco.com/
https://sandboxsdwan.cisco.com:8443/apidocs

Let’s explore the Cisco vManage REST API next. The API

documentation can be found at https://sdwan-

docs.cisco.com/Product_Documentation/Command_Re

ference/Command_Reference/vManage_REST_APIs.

At this link, you can find all the information needed on

how to interact with the REST API, all the resources

available, and extensive explanations.

You need to establish a connection to the Cisco vManage

instance. The initial connection is established through an

authorization request to

https://sandboxsdwan.cisco.com:8443/j_security_chec

k. The information sent over this POST call is URL form

encoded and contains the username and password

mentioned previously. The curl request for this

authorization request should look as follows:

Click here to view code image

curl -c - -X POST -k \

https://sandboxsdwan.cisco.com:8443/j_security_check

 \

 -H 'Content-Type: application/x-www-form-

urlencoded' \

 -d 'j_username=devnetuser&j_password=Cisco123!'

The -c - option passed to the curl request specifies that

the returned authorization cookie should be printed to

the console. The -k option bypasses SSL certificate

verification as the certificate for this sandbox is self-

signed. The output of the command should look as

follows:

Click here to view code image

Netscape HTTP Cookie File

https://curl.haxx.se/docs/http-cookies.html

This file was generated by libcurl! Edit at your

own risk.

https://sdwan-docs.cisco.com/Product_Documentation/Command_Reference/Command_Reference/vManage_REST_APIs
https://sandboxsdwan.cisco.com:8443/j_security_check
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg204-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg204-2

#HttpOnly_sandboxsdwan.cisco.com. FALSE / TRUE

0 JSESSIONID.

v9QcTVL_ZBdIQZRsI2V95vBi7Bz47IMxRY3XAYA6.4854266f-

a8ad-4068-9651-

d4e834384f51

The long string after JSESSIONID is the value of the

authorization cookie that will be needed in all

subsequent API calls.

Figure 8-12 shows the same API call in Postman.

Figure 8-12 Cisco SD-WAN REST API Authorization

Call

The status code of the response should be 200 OK, the

body should be empty, and the JSESSIONID cookie

should be stored under the Cookies tab. The advantage

with Postman is that it automatically saves the

JSESSIONID cookie and reuses it in all API calls that

follow this initial authorization request. With curl, in

contrast, you have to pass in the cookie value manually.

To see an example, you can try to get a list of all the

devices that are part of this Cisco SD-WAN fabric.

According to the documentation, the resource that will

return this information is /dataservice/device. It will

have to be a GET call, and the JSESSIONID cookie needs

to be passed as a header in the request. The curl

command to get a list of all the devices in the fabric

should look like as follows:

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg205-2

curl -X GET -k \

https://sandboxsdwan.cisco.com:8443/dataservice/device

 \

 -H 'Cookie:

JSESSIONID=v9QcTVL_ZBdIQZRsI2V95vBi7Bz47IMxRY3XAYA6.4

 854266f-a8ad-4068-9651-d4e834384f51'

The response from the always-on Cisco DevNet vManage

server should look similar to the one in Example 8-8.

Example 8-8 List of Devices That Are Part of the Cisco

SD-WAN Fabric

Click here to view code image

{
 ... omitted output
 "data" : [
 {
 "state" : "green",
 "local-system-ip" : "4.4.4.90",
 "status" : "normal",
 "latitude" : "37.666684",
 "version" : "18.3.1.1",
 "model_sku" : "None",
 "connectedVManages" : [
 "\"4.4.4.90\""
],
 "statusOrder" : 4,
 "uuid" : "4854266f-a8ad-4068-9651-
d4e834384f51",
 "deviceId" : "4.4.4.90",
 "reachability" : "reachable",
 "device-groups" : [
 "\"No groups\""
],
 "total_cpu_count" : "2",
 "certificate-validity" : "Valid",
 "board-serial" : "01",
 "platform" : "x86_64",
 "device-os" : "next",
 "timezone" : "UTC",
 "uptime-date" : 1567111260000,
 "host-name" : "vmanage",
 "device-type" : "vmanage",
 "personality" : "vmanage",
 "domain-id" : "0",
 "isDeviceGeoData" : false,
 "lastupdated" : 1567470387553,

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-8

 "site-id" : "100",
 "controlConnections" : "5",
 "device-model" : "vmanage",
 "validity" : "valid",
 "system-ip" : "4.4.4.90",
 "state_description" : "All daemons
up",
 "max-controllers" : "0",
 "layoutLevel" : 1,
 "longitude" : "-122.777023"
 },
 ... omitted output
]
}

The output of this GET API call is too verbose to be fully

displayed. We encourage you to explore this API call and

observe the full response on your own computer.

The body of the response is in JSON format and contains

information about all the devices in the SD-WAN fabric.

As of this writing, this specific fabric contains the

following:

One Cisco vManage server

One Cisco vSmart server

One Cisco vBond server

Four Cisco vEdge routers

For each device, the response includes status, geographic

coordinates, role, device ID, uptime, site ID, SSL

certificate status, and more. You can build the same

request in Postman and send it to vManage as shown in

Figure 8-13. The body of the response is very similar to

the one received from the curl command.

Figure 8-13 Getting a List of All the Devices in the

Cisco SD-WAN Fabric

While exploring the Cisco SD-WAN REST API, let’s get a

list of all the device templates that are configured on the

Cisco DevNet vManage server. According to the API

documentation, the resource that will return this

information is /dataservice/template/device. You pass in

the JSESSIONID value in the cookie header and build

the following curl command:

Click here to view code image

curl -X GET -k \

https://sandboxsdwan.cisco.com:8443/dataservice/template/device

 \

 -H 'Cookie:

JSESSIONID=v9QcTVL_ZBdIQZRsI2V95vBi7Bz47IMxRY3XAYA6.48

 54266f-a8ad-4068-9651-d4e834384f51'

The response from the vManage server at

https://sandboxsdwan.cisco.com should look as shown

in Example 8-9.

Example 8-9 List of Device Configuration Templates

Click here to view code image

{
 "data" : [
 {

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#ppg207
https://sandboxsdwan.cisco.com/
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-9

 "templateDescription" : "VEDGE BASIC
TEMPLATE01",
 "lastUpdatedOn" : 1538865915509,
 "templateAttached" : 15,
 "deviceType" : "vedge-cloud",
 "templateId" : "72babaf2-68b6-4176-
92d5-fa8de58e19d8",
 "configType" : "template",
 "devicesAttached" : 0,
 "factoryDefault" : false,
 "templateName" :
"VEDGE_BASIC_TEMPLATE",
 "lastUpdatedBy" : "admin"
 }
],
... output omitted
}

The response contains details about the only device

template available on this vManage server. The template

is called VEDGE_BASIC_TEMPLATE, it is of type

vedge-cloud (which means it can be applied to vEdge

devices), and it currently has no devices attached to it.

The same information is returned by vManage when

using Postman to get the list of all device templates. As

before, the JSESSIONID cookie is already included with

Postman and does not need to be specified again. Figure

8-14 shows the Postman client interface with all the

parameters needed to retrieve a list of all the device

configuration templates available on a specific vManage

instance.

Figure 8-14 Getting Device Configuration Templates

Next, let’s use Python to build a script that will go

through the same steps: Log in to vManage, get a list of

all the devices in the SD-WAN fabric, and get a list of all

device templates available. No SDK will be used in this

case; this will help you see the difference between this

code and the Python code you used earlier in this

chapter. Since no SDK will be used, all the API resources,

payloads, and handling of data will have to be managed

individually.

The Python requests library will be used extensively in

this sample code. You should be familiar with this library

from Chapter 7. Example 8-10 shows a possible version

of the Python 3 script that accomplishes these tasks. The

script was developed using Python 3.7.4 and version

2.22.0 of the requests library. The json library that

comes with Python 3.7.4 was also used to deserialize and

load the data returned from the REST API into a Python

object; in this case, that object is a list. In this code, first,

the import keyword makes the two libraries requests

and json available for use within the script. Since the

connection in the script is made to an instance of

vManage that is in a sandbox environment and that uses

a self-signed SSL certificate, the third and fourth lines of

the script disable the warning messages that are

generated by the requests library when connecting to

REST API endpoints that are secured with self-signed

SSL certificates. Next, the script specifies the vManage

hostname and the username and password for this

instance; this example uses the same vManage server

used earlier in this chapter. The code then specifies the

base URL for the vManage REST API endpoint:

https://sandboxsdwan.cisco.com:8443. The code shows

the authentication resource (j_security_check) and the

login credentials, and then the login URL is built as a

combination of the base URL and the authentication API

resource. In the next line, a new request session

instance is created and stored in the SESS variable.

Example 8-10 Python Script Showcasing How to

Interact with the Cisco SD-WAN REST API

Click here to view code image

#! /usr/bin/env python
import json
import requests
from requests.packages.urllib3.exceptions
import InsecureRequestWarning
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

Specify Cisco vManage IP, username and
password
VMANAGE_IP = 'sandboxsdwan.cisco.com'
USERNAME = 'devnetuser'
PASSWORD = 'Cisco123!'

BASE_URL_STR =
'https://{}:8443/'.format(VMANAGE_IP)

Login API resource and login credentials
LOGIN_ACTION = 'j_security_check'
LOGIN_DATA = {'j_username' : USERNAME,
'j_password' : PASSWORD}
URL for posting login data
LOGIN_URL = BASE_URL_STR + LOGIN_ACTION

Establish a new session and connect to Cisco
vManage
SESS = requests.session()
LOGIN_RESPONSE = SESS.post(url=LOGIN_URL,
data=LOGIN_DATA, verify=False)

https://sandboxsdwan.cisco.com:8443/
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch08_images.xhtml#pexa8-10

Get list of devices that are part of the
fabric and display them
DEVICE_RESOURCE = 'dataservice/device'
URL for device API resource
DEVICE_URL = BASE_URL_STR + DEVICE_RESOURCE

DEVICE_RESPONSE = SESS.get(DEVICE_URL,
verify=False)
DEVICE_ITEMS =
json.loads(DEVICE_RESPONSE.content)['data']

print('{0:20s}{1:1}{2:12s}{3:1}{4:36s}{5:1}
{6:16s}{7:1}{8:7s}'\
 .format("Host-Name", "|", "Device Model",
"|", "Device ID", \
 "|", "System IP", "|", "Site ID"))
print('-'*105)

for ITEM in DEVICE_ITEMS:
 print('{0:20s}{1:1}{2:12s}{3:1}{4:36s}{5:1}
{6:16s}{7:1}{8:7s}'\
 .format(ITEM['host-name'], "|",
ITEM['device-model'], "|", \
 ITEM['uuid'], "|", ITEM['system-
ip'], "|", ITEM['site-id']))
print('-'*105)
Get list of device templates and display them
TEMPLATE_RESOURCE =
'dataservice/template/device'
URL for device template API resource
TEMPLATE_URL = BASE_URL_STR + TEMPLATE_RESOURCE

TEMPLATE_RESPONSE = SESS.get(TEMPLATE_URL,
verify=False)
TEMPLATE_ITEMS =
json.loads(TEMPLATE_RESPONSE.content)['data']

print('{0:20s}{1:1}{2:12s}{3:1}{4:36s}{5:1}
{6:16s}{7:1}{8:7s}'\
 .format("Template Name", "|", "Device
Model", "|", "Template ID", \
 "|", "Attached devices", "|", "Template
Version"))
print('-'*105)

for ITEM in TEMPLATE_ITEMS:
 print('{0:20s}{1:1}{2:12s}{3:1}{4:36s}{5:1}
{6:<16d}{7:1}{8:<7d}'\
 .format(ITEM['templateName'], "|",
ITEM['deviceType'], "|", \
 ITEM['templateId'], "|""
ITEM['devicesAttached'], "|", \
 ITEM['templateAttached']))
print('-'*105)

Using this new session, a POST request is sent to the

login URL, containing the username and password as

payload and disabling the SSL certificate authenticity

verification by specifying verify=False. At this point, a

session is established to the DevNet Sandbox vManage

instance. This session can be used to interact with the

vManage REST API by getting, creating, modifying, and

deleting data.

The code specifies the API resource that will return a list

of all the devices in the SD-WAN fabric:

dataservice/device. The complete URL to retrieve the

devices in the fabric is built on the next line by

combining the base URL with the new resource. The

DEVICE_URL variable will look like

https://sandboxsdwan.cisco.com:8443/dataservice/devi

ce. Next, the same session that was established earlier is

used to perform a GET request to the device_url

resource. The result of this request is stored in the

variable aptly named DEVICE_RESPONSE, which

contains the same JSON-formatted data that was

obtained in the previous curl and Postman requests,

with extensive information about all the devices that are

part of the SD-WAN fabric. From that JSON data, only

the list of devices that are values of the data key are

extracted and stored in the DEVICE_ITEMS variable.

Next, the header of a rudimentary table is created. This

header contains the fields Host-Name, Device Model,

Device ID, System IP, and Site ID. From the extensive

list of information contained in the DEVICE_ITEMS

variable, only these five fields will be extracted and

displayed to the console for each device in the fabric. The

code next prints a series of delimiting dashes to the

console to increase the readability of the rudimentary

table. The next line of code has a for loop that is used to

iterate over each element of the DEVICE_ITEMS list

https://sandboxsdwan.cisco.com:8443/dataservice/device

and extract the hostname, device model, device ID,

system IP address, and site ID for each device in the

fabric and then display that information to the console.

The code then prints a series of dashes for readability

purposes. Next, the same logic is applied to GET data

from the API but this time about all the device templates

that are configured on this instance of vManage. The

URL is built by concatenating the base URL with the

device template resource, dataservice/template/device.

The same session is reused once more to obtain the data

from the REST API. In the case of the device templates,

only the template name, the type of device the template

is intended for, the template ID, the number of attached

devices to each template, and the template version are

extracted and displayed to the console.

If you run this script in a Python 3.7.4 virtual

environment with the requests library version 2.22.0

installed, you get output similar to that shown in Figure

8-15.

Figure 8-15 Output of the Python Script from

Example 8-10

This chapter has explored several Cisco solutions and

their REST APIs. Authentication and authorization

methods have been explained, and basic information has

been obtained from the APIs. This chapter has provided

a basic introduction to these extensive APIs and the

features that they expose. We encourage you to continue

your exploration of these APIs and build your own use

cases, automation, and network programmability

projects.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 8-2 lists these key topics and the page number on

which each is found.

Table 8-2 Key Topics

Key Topic ElementDescriptionPage Number

L

i

s

t

Qualities of a good SDK 1

7

7

L

i

s

t

Advantages of SDKs 1

7

7

L

i

s

t

The Meraki cloud platform provides several APIs

from a programmability perspective

1

7

8

L

i

s

t

Cisco DNA Center REST APIs and SDKs 1

9

0

L

i

s

t

Cisco SD-WAN products that perform different

functions

2

0

2

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

software development kit (SDK)

Python Enhancement Proposals (PEP)

Bluetooth Low Energy (BLE)

MQ Telemetry Transport (MQTT)

Cisco Digital Network Architecture (DNA)

data as a service (DaaS)

Software Image Management (SWIM) API

Plug and Play (PnP) API

Cisco Software Defined-WAN (SD-WAN)

Open Shortest Path First (OSPF)

Enhanced Interior Gateway Routing Protocol

(EIGRP)

Border Gateway Protocol (BGP)

Cisco Express Forwarding (CEF)

software-defined networking (SDN)

Overlay Management Protocol (OMP)

Chapter 9

Cisco Data Center and Compute
Management Platforms and APIs

This chapter covers the following topics:

Cisco ACI: This section describes Cisco ACI and the APIs it exposes.

Cisco UCS Manager: This section covers Cisco UCS Manager and the

public APIs that come with it.

Cisco UCS Director: This section goes over Cisco UCS Director and

its APIs.

Cisco Intersight: This section introduces Cisco Intersight and its

REST API interface.

This chapter begins exploring Cisco data center

technologies and the SDKs and APIs that are available

with them. First, it provides an introduction to Cisco

Application Centric Infrastructure (ACI) and its

components. This chapter also looks at the Cisco ACI

REST API and the resources exposed over the API, as

well as how to use a popular Python library called

acitoolkit to extract data from the API. This chapter

examines next Cisco Unified Computing System (UCS)

and how all its components work together to offer one of

the most comprehensive and scalable data center

compute solutions available today. This chapter also

provides an overview of Cisco UCS Manager, the XML

API it provides, and how to interact with this API by

using curl commands and the Cisco UCS Manager SDK.

Cisco UCS Director takes data center automation to the

next level, and this chapter covers the tasks and

workflows that are available with it. The chapter also

discusses the Cisco UCS Director SDK and its

components and the curl commands that are used to

interact and extract data from the REST API. Finally, the

chapter covers Cisco Intersight, a software as a service

(SaaS) product that takes Cisco UCS management into

the cloud. The chapter wraps up by covering the REST

API interface of Cisco Intersight and the Python SDK

that comes with it.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 9-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 9-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Cisco ACI 1–3

Cisco UCS Manager 4–6

Cisco UCS Director 7–8

Cisco Intersight 9–10

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. On what family of switches does Cisco ACI run?

1. Cisco Catalyst 9000

2. Cisco Nexus 9000

3. Cisco Nexus 7000

4. Cisco Catalyst 6800

2. True or false: An ACI bridge domain can be

associated with multiple VRF instances.

1. True

2. False

3. What Cisco ACI REST API endpoint is used for

authentication?

1. https://APIC_IP_or_Hostname/api/aaaLogin.json

2. https://APIC_IP_or_Hostname/api/login

3. https://APIC_IP_or_Hostname/api/v1/aaaLogin

4. https://APIC_IP_or_Hostname/api/v1/login.json

4. In Cisco UCS Manager, what is the logical construct

that contains the complete configuration of a

physical server?

1. Server profile

2. Service profile

3. Template profile

4. None of the above

5. What is the Cisco UCS Manager Python SDK library

called?

1. ucsmsdk

2. ucssdk

3. ucsm

4. ciscoucsm

6. What is the managed object browser called in Cisco

UCS Manager?

1. Mobrowser

2. UCSMobrowser

3. Visore

4. UCSVisore

7. What is a Cisco UCS Director workflow?

1. The atomic unit of work in Cisco UCS Director

2. A single action with inputs and outputs

3. A collection of predefined tasks

4. A series of tasks arranged to automate a complex operation

8. What is the name of the header that contains the

Cisco UCS Director REST API access key?

1. X-Cloupia-Access-Key

2. X-Cloupia-Request-Key

3. X-Cloupia-Secret-Key

4. X-Cloupia-API-Access

9. How are the managed objects organized in Cisco

Intersight?

1. Management information table

2. Hierarchical management information tree

3. Management Information Model

4. Hierarchical Managed Objects Model

10. What does the Cisco Intersight REST API key

contain?

1. keyId and keySecret

2. token

3. accessKey and secretKey

4. cookie

FOUNDATION TOPICS

CISCO ACI

Cisco Application Centric Infrastructure (ACI) is the

SDN-based solution from Cisco for data center

deployment, management, and monitoring. The solution

is based on two components: the Cisco Nexus family of

switches and Cisco Application Policy Infrastructure

Controller (APIC).

The Cisco Nexus 9000 family of switches can run in two

separate modes of operation, depending on the software

loaded on them. The first mode is called standalone (or

NX-OS) mode, which means the switches act like regular

Layer 2/Layer 3 data center devices that are usually

managed individually. In the second mode, ACI mode,

the Cisco Nexus devices are part of an ACI fabric and are

managed in a centralized fashion. The central controller

for the ACI fabric is the Cisco Application Policy

Infrastructure Controller (APIC). This controller is the

main architectural component of the Cisco ACI solution

and provides a single point of automation and

management for the Cisco ACI fabric, policy

enforcement, and health monitoring. The Cisco APIC

was built on an API-first architecture from its inception.

On top of this API, a command-line interface (CLI) and a

graphical user interface (GUI) have been developed. The

API is exposed through a REST interface and is

accessible as a northbound interface for users and

developers to integrate and develop their own custom

solutions on top of the Cisco APIC and Cisco ACI fabric.

The Cisco APIC interacts with and manages the Cisco

Nexus switches through the OpFlex protocol, which is

exposed as a southbound interface. From an SDN

controller perspective (similar to the Cisco DNA Center

controller described in Chapter 8, “Cisco Enterprise

Networking Management Platforms and APIs”), a

northbound interface specifies the collection of protocols

that a user can use to interact with and program the

controller, while a southbound interface specifies the

protocols and interfaces that the controller uses to

interact with the devices it manages. Some of the

features and capabilities of the Cisco APIC are as follows:

Application-centric network policy for physical, virtual, and cloud

infrastructure

Data model–based declarative provisioning

Designed around open standards and open APIs

Cisco ACI fabric inventory and configuration

Software image management

Fault, event, and performance monitoring and management

Integration with third-party management systems such as VMware,

Microsoft, and OpenStack

Cloud APIC appliance for Cisco cloud ACI deployments in public cloud

environments

A minimum of three APICs in a cluster are needed for

high availability.

The Cisco ACI fabric is built in a leaf-and-spine

architecture. As the name implies, some of the Cisco

Nexus switches that are part of the ACI fabric are called

leaves and perform a function similar to that of an access

switch, to which both physical and virtual endpoint

servers are connected, and some of the switches are

called spines and perform a function similar to that of a

distribution switch to which all the access switches are

connected. Figure 9-1 provides a visual representation of

how all the Cisco ACI fabric components come together.

Figure 9-1 Cisco ACI Fabric Architecture

It is very important to choose the right switches for the

right functions as not all Cisco Nexus 9000 switches

support all functions in a leaf-and-spine architecture.

The leaf switches connect to all the spine switches and to

endpoint devices, including the Cisco APICs. The Cisco

APICs never connect to spine switches. Spine switches

can only connect to leaf switches and are never

interconnected with each other. The ACI fabric provides

consistent low-latency forwarding across high-

bandwidth links (40 Gbps, 100 Gbps, and 400 Gbps).

Data traffic with the source and destination on the same

leaf switch is handled locally. When the traffic source

and destination are on separate leaf switches, they are

always only one spine switch away. The whole ACI fabric

operates as a single Layer 3 switch, so between a data

traffic source and destination, it will always be at most

one Layer 3 hop.

The configuration of the ACI fabric is stored in the APIC

using an object-oriented schema. This configuration

represents the logical model of the fabric. The APIC

compiles the logical model and renders the policies into a

concrete model that runs in the physical infrastructure.

Figure 9-2 shows the relationship between the logical

model, the concrete model, and the operating system

running on the switches.

Figure 9-2 Relationship Between the Logical Model,

the Concrete Model, and the Operating System

Each of the switches contains a complete copy of the

concrete model. When a policy that represents a

configuration is created in the APIC, the controller

updates the logical model. It then performs the

intermediate step of creating a complete policy that it

pushes into all the switches, where the concrete model is

updated. The Cisco Nexus 9000 switches can only

execute the concrete model when running in ACI mode.

Each switch has a copy of the concrete model. If by any

chance, all the APIC controllers in a cluster go offline, the

fabric keeps functioning, but modifications to the fabric

policies are not possible.

The ACI policy model enables the specification of

application requirements. When a change is initiated to

an object in the fabric, the APIC first applies that change

to the policy model. This policy model change triggers a

change to the concrete model and the actual managed

endpoint. This management framework is called the

model-driven framework. In this model, the system

administrator defines the desired state of the fabric but

leaves the implementation up to the APIC. This means

that the data center infrastructure is no longer managed

in isolated, individual component configurations but

holistically, enabling automation and flexible workload

provisioning. In this type of infrastructure, network-

attached services can be easily deployed as the APIC

provides an automation framework to manage the

complete lifecycle of these services. As workloads move

and changes happen, the controller reconfigures the

underlying infrastructure to ensure that the policies are

still in place for the end hosts.

The Cisco ACI fabric is composed of physical and logical

components. These components are recorded in the

Management Information Model (MIM) and can be

represented in a hierarchical management information

tree (MIT). Each node in the MIT represents a managed

object (MO). An MO can represent a concrete object,

such as a switch, an adapter, a power supply, or a logical

object, such as an application profile, an endpoint group,

or an error message. All the components of the ACI

fabric can be represented as managed objects.

Figure 9-3 provides an overview of the MIT and its

elements.

Figure 9-3 Cisco ACI Management Information Tree

The MIT hierarchical structure starts at the top with the

root object and contains parent and child nodes. Each

node in the tree is an MO, and each object in the fabric

has a distinguished name (DN). The DN describes the

object and specifies its location in the tree. The following

managed objects contain the policies that control the

operation of the fabric:

APICs: These are the clustered fabric controllers that provide

management, application, and policy deployment for the fabric.

Tenants: Tenants represent containers for policies that are grouped

for a specific access domain. The following four kinds of tenants are

currently supported by the system:

User: User tenants are needed by the fabric administrator to cater

to the needs of the fabric users.

Common: The common tenant is provided by the system and can

be configured by the fabric administrator. This tenant contains

policies and resources that can be shared by all tenants. Examples

of such resources are firewalls, load balancers, and intrusion

detection systems.

Infra: The infra tenant is provided by the system and can be

configured by the fabric administrator. It contains policies that

manage the operation of infrastructure resources.

Management: The management tenant is provided by the system

and can be configured by the fabric administrator. This tenant

contains policies and resources used for in-band and out-of-band

configuration of fabric nodes.

Access policies: These policies control the operation of leaf switch

access ports, which provide fabric connectivity to resources such as

virtual machine hypervisors, compute devices, storage devices, and so

on. Several access policies come built in with the ACI fabric by default.

The fabric administrator can tweak these policies or create new ones, as

necessary.

Fabric policies: These policies control the operation of the switch

fabric ports. Configurations for time synchronization, routing

protocols, and domain name resolution are managed with these

policies.

VM domains: Virtual machine (VM) domains group virtual machine

controllers that require similar networking policy configurations. The

APIC communicates with the VM controller to push network

configurations all the way to the VM level.

Integration automation framework: The Layer 4 to Layer 7

service integration automation framework enables a system to respond

to services coming online or going offline.

AAA policies: Access, authentication, and accounting (AAA) policies

control user privileges, roles, and security domains for the ACI fabric.

The hierarchical policy model fits very well with the

REST API interface. As the ACI fabric performs its

functions, the API reads and writes to objects in the MIT.

The API resources represented by URLs map directly

into the distinguished names that identify objects in the

MIT.

Next, let’s explore the building blocks of the Cisco ACI

fabric policies.

Building Blocks of Cisco ACI Fabric Policies

Tenants are top-level MOs that identify and separate

administrative control, application policies, and failure

domains. A tenant can represent a customer in a

managed service provider environment or an

organization in an enterprise environment, or a tenant

can be a convenient grouping of objects and policies. A

tenant’s sublevel objects can be grouped into two

categories: tenant networking and tenant policy. Figure

9-4 provides a graphical representation of how a tenant

is organized and the main networking and policy

components.

Figure 9-4 Cisco ACI Tenant Components

The tenant networking objects provide Layer 2 and Layer

3 connectivity between the endpoints and consist of the

following constructs: VRF (virtual routing and

forwarding) instances, bridge domains, subnets, and

external networks. Figure 9-5 displays in more detail

how the tenant networking constructs are organized.

Figure 9-5 Cisco ACI Tenant Networking

Components

VRF instances, also called contexts and private

networks, are isolated routing tables. A VRF instance

defines a Layer 3 address domain. A tenant can contain

one or multiple VRF instances. VRF instances exist on

any leaf switch that has a host assigned to the VRF

instance. All the endpoints within a Layer 3 domain must

have unique IP addresses because traffic can flow

between these devices if allowed by the policy.

Bridge domains represent the Layer 2 forwarding

domains within the fabric and define the unique MAC

address space and flooding domain for broadcast,

unknown unicast, and multicast frames. Each bridge

domain is associated with only one VRF instance, but a

VRF instance can be associated with multiple bridge

domains. Bridge domains can contain multiple subnets,

which is different from regular VLANs, which are usually

associated with only one subnet each.

Subnets are the Layer 3 networks that provide IP address

space and gateway services for endpoints to be able to

connect to the network. Each subnet is associated with

only one bridge domain. Subnets can be the following:

Public: A subnet can be exported to a routed connection.

Private: A subnet is confined within its tenant.

Shared: A subnet can be shared and exposed in multiple VRF

instances in the same tenant or across tenants as part of a shared

service.

External bridged networks connect the ACI fabric to

legacy Layer 2/Spanning Tree Protocol networks. This is

usually needed as part of the migration process from a

traditional network infrastructure to an ACI network.

External routed networks create a Layer 3 connection

with a network outside the ACI fabric. Layer 3 external

routed networks can be configured using static routes or

routing protocols such as BGP, OSPF, and EIGRP.

The tenant policy objects are focused on the policies and

services that the endpoints receive. The tenant policy

consists of application profiles, endpoint groups (EPGs),

contracts, and filters. Figure 9-6 shows how the tenant

policy objects, application profiles, and EPGs are

organized in different bridge domains.

Figure 9-6 Cisco ACI Tenant Policy Components

An application profile defines the policies, services, and

relationships between EPGs. An application profile

contains one or more EPGs. Applications typically

contain multiple components, such as a web-based front

end, an application logic layer, and one or more

databases in the back end. The application profile

contains as many EPGs as necessary, and these EPGs are

logically related to providing the capabilities of the

application.

The EPG is the most important object in the policy

model. An EPG is a collection of endpoints that have

common policy requirements, such as security, virtual

machine mobility, QoS, or Layer 4 to Layer 7 services. In

the Cisco ACI fabric, each endpoint has an identity

represented by its address, a location, and attributes, and

it can be physical or virtual. Endpoint examples include

servers, virtual machines, clients on the internet, and

network-attached storage devices. Rather than configure

and manage endpoints individually, you can place them

in EPGs and manage them as a group. Policies apply to

EPGs and never to individual endpoints. Each EPG can

only be related to one bridge domain.

Contracts define the policies and services that get applied

to EPGs. Contracts can be used for redirecting service to

a Layer 4 to Layer 7 device, assigning QoS values, and

controlling the traffic flow between EPGs. EPGs can only

communicate with other EPGs based on contract rules.

Contracts specify the protocols and ports allowed

between EPGs. If there is no contract, inter-EPG

communication is disabled by default. For intra-EPG

communication, no contract is required as this traffic is

always allowed by default. The relationship between an

EPG and a contract can be either a consumer or a

provider. EPG providers expose contracts with which a

consumer EPG must comply. When an EPG consumes a

contract, the endpoints in the consuming EPG can

initiate communication with any endpoint from the

provider EPG. Figure 9-7 displays this contractual

relationship between providing and consuming EPGs.

Figure 9-7 Cisco ACI Application Profiles and

Contracts

Filters are the objects that define protocols and port

numbers used in contracts. Filter objects can contain

multiple protocols and ports, and contracts can consume

multiple filters.

APIC REST API

As mentioned previously, the APIC REST API is a

programmatic interface that uses the REST architecture.

The API accepts and returns HTTP or HTTPS messages

that contain JSON or XML documents. Any

programming language can be used to generate the

messages and the JSON or XML documents that contain

the API methods or managed object (MO) attributes.

Whenever information is retrieved and displayed, it is

read through the REST API, and whenever configuration

changes are made, they are written through the REST

API. The REST API also provides a way of subscribing to

push-based event notification, so that when a change

occurs in the MIT, an event can be sent through a web

socket.

The generic APIC REST API URI looks as follows:

https://APIC_Host:port/api/{mo|class}/{dn|clas

sname}.{xml|json}?[options]

Since the REST API matches one to one the MIT,

defining the URI to access a certain resource is

important. First, you need to define the protocol (http or

https) and the hostname or IP address of the APIC

instance. Next, /api indicates that the API is invoked.

After that, the next part of the URI specifies whether the

operation will be for an MO or a class. The next

component defines either the fully qualified domain

name for MO-based queries or the class name for class-

based queries. The final mandatory part of the request is

the encoding format, which can be either XML or JSON.

(The APIC ignores Content-Type and other headers, so

the method just explained is the only one accepted.) The

complete Cisco ACI REST API documentation with

information on how to use the API, all of the API

endpoints, and operations available can be found at

https://developer.cisco.com/docs/aci/.

APIC REST API username- and password-based

authentication uses a special URI, including aaaLogin,

aaaLogout, and aaaRefresh as the DN targets of a POST

https://developer.cisco.com/docs/aci/

operation. The payloads contain a simple XML or JSON

document containing the MO representation of an

aaaUser object. The following examples use the Cisco

DevNet always-on APIC instance available at

https://sandboxapicdc.cisco.com with a username value

of admin and a password of ciscopsdt to show how to

interact with an ACI fabric using the APIC REST API

interface. Using curl, the authentication API call should

look as shown in Example 9-1.

Example 9-1 curl Command for Cisco APIC

Authentication

Click here to view code image

curl -k -X POST \

https://sandboxapicdc.cisco.com/api/aaaLogin.json
 \
 -d '{
 "aaaUser" : {
 "attributes" : {
 "name" : "admin",
 "pwd" : "ciscopsdt"
 }
 }
}'

The returned information from the APIC should look as

shown in Example 9-2.

Example 9-2 Cisco APIC Authentication Response

Click here to view code image

{
 "totalCount" : "1",
 "imdata" : [
 {
 "aaaLogin" : {
 "attributes" : {
 "remoteUser" : "false",
 "firstLoginTime" : "1572128727",
 "version" : "4.1(1k)",
 "buildTime" : "Mon May 13
16:27:03 PDT 2019",

https://sandboxapicdc.cisco.com/
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-2

 "siteFingerprint" :
"Z29SSG/BAVFY04Vv",
 "guiIdleTimeoutSeconds" :
"1200",
 "firstName" : "",
 "userName" : "admin",
 "refreshTimeoutSeconds" : "600",
 "restTimeoutSeconds" : "90",
 "node" : "topology/pod-1/node-
1",
 "creationTime" : "1572128727",
 "changePassword" : "no",
 "token" :
"pRgAAAAAAAAAAAAAAAAAAGNPf39fZd71fV6DJWidJoqxJmHt1Fephm-

w6Q0I5byoafVMZ29a6pL+4u5krJ0G2Jdrvl0l2l9cMx/o0ciIbVRfFZruCEgqsPg8+dbjb8kWX02FJLcw9Qp

sg98s5QfOaMDQWHSyqwOObKOGxxglLeQbkgxM8/fgOAFZxbKHMw0+09ihdiu7jTb7AAJVZEzYzXA==",

 "unixUserId" : "15374",
 "lastName" : "",
 "sessionId" :
"1IZw4uthRVSmyWWH/+S9aA==",
 "maximumLifetimeSeconds" :
"86400"
 }
 ...omitted output
}

The response to the POST operation contains an

authentication token that will be used in subsequent API

operations as a cookie named APIC-cookie.

Next, let’s get a list of all the ACI fabrics that are being

managed by this APIC instance. The URI for this GET

operation is

https://sandboxapicdc.cisco.com/api/node/class/fabric

Pod.json, and the APIC-cookie header, are specified for

authentication purposes. The curl request should look

similar to the one shown in Example 9-3.

Example 9-3 curl Command to Get a List of All ACI

Fabrics

Click here to view code image

https://sandboxapicdc.cisco.com/api/node/class/fabricPod.json
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-3

curl -k -X GET \

https://sandboxapicdc.cisco.com/api/node/class/fabricPod.json
 \
 -H 'Cookie: APIC-
cookie=pRgAAAAAAAAAAAAAAAAAAGNPf39fZd71fV6DJWidJoqxJmHt1Fephmw6Q0

I5byoafVMZ29a6pL+4u5krJ0G2Jdrvl0l2l9cMx/o0ciIbVRfFZruCEgqsPg8+dbjb8kWX02FJLcw9Qpsg

98s5QfOaMDQWHSyqwOObKOGxxglLeQbkgxM8/fgOAFZxbKHMw0+09ihdiu7jTb7AAJVZEzYzXA=='

The response received from this instance of the APIC

should look like the one in Example 9-4.

Example 9-4 curl Command Response with a List of

All ACI Fabrics

Click here to view code image

{
 "totalCount" : "1",
 "imdata" : [
 {
 "fabricPod" : {
 "attributes" : {
 "id" : "1",
 "monPolDn" : "uni/fabric/monfab-
default",
 "dn" : "topology/pod-1",
 "status" : "",
 "childAction" : "",
 "modTs" : "2019-10-
26T18:01:13.491+00:00",
 "podType" : "physical",
 "lcOwn" : "local"
 }
 }
 }
]
}

From this response, we can see that the always-on Cisco

DevNet Sandbox APIC instance manages only one ACI

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-4

fabric, called pod-1. Next, let’s find out more information

about pod-1 and discover how many devices are part of

this fabric. The API URI link for the resource that will

return this information is

https://sandboxapicdc.cisco.com/api/node/class/topolo

gy/pod-1/topSystem.json. We specify again APIC-

cookie, and the GET request should look like the one in

Example 9-5.

Example 9-5 curl Command to Get ACI Pod

Information

Click here to view code image

curl -k -X GET \

https://sandboxapicdc.cisco.com/api/node/class/topology/pod-
1/topSystem.json \
 -H 'Cookie: APIC-
cookie=pRgAAAAAAAAAAAAAAAAAAGNPf39fZd71fV6DJWidJoqxJmHt1Fephmw6Q0

I5byoafVMZ29a6pL+4u5krJ0G2Jdrvl0l2l9cMx/o0ciIbVRfFZruCEgqsPg8+dbjb8kWX02FJLcw9Qpsg

98s5QfOaMDQWHSyqwOObKOGxxglLeQbkgxM8/fgOAFZxbKHMw0+09ihdiu7jTb7AAJVZEzYzXA=='

The redacted response from the APIC should look similar

to the one shown in Example 9-6.

Example 9-6 REST API Response Containing Details

About the Cisco ACI Pod

Click here to view code image

{
 "imdata" : [
 {
 "topSystem" : {
 "attributes" : {
 "role" : "controller",
 "name" : "apic1",
 "fabricId" : "1",
 "inbMgmtAddr" : "192.168.11.1",
 "oobMgmtAddr" : "10.10.20.14",
 "systemUpTime" :

https://sandboxapicdc.cisco.com/api/node/class/topology/pod-1/topSystem.json
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-5
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-6

"00:04:33:38.000",
 "siteId" : "0",
 "state" : "in-service",
 "fabricDomain" : "ACI Fabric1",
 "dn" : "topology/pod-1/node-
1/sys",
 "podId" : "1"
 }
 }
 },
 {
 "topSystem" : {
 "attributes" : {
 "state" : "in-service",
 "siteId" : "0",
 "address" : "10.0.80.64",
 "fabricDomain" : "ACI Fabric1",
 "dn" : "topology/pod-1/node-
101/sys",
 "id" : "101",
 "podId" : "1",
 "role" : "leaf",
 "fabricId" : "1",
 "name" : "leaf-1"
 }
 }
 },
 {
 "topSystem" : {
 "attributes" : {
 "podId" : "1",
 "id" : "102",
 "dn" : "topology/pod-1/node-
102/sys",
 "address" : "10.0.80.66",
 "fabricDomain" : "ACI Fabric1",
 "siteId" : "0",
 "state" : "in-service",
 "role" : "leaf",
 "name" : "leaf-2",
 "fabricId" : "1"
 }
 }
 },
 {
 "topSystem" : {
 "attributes" : {
 "fabricId" : "1",
 "name" : "spine-1",
 "role" : "spine",
 "podId" : "1",
 "id" : "201",
 "dn" : "topology/pod-1/node-
201/sys",

 "state" : "in-service",
 "siteId" : "0",
 "fabricDomain" : "ACI Fabric1",
 "address" : "10.0.80.65"
 }
 }
 }
],
 "totalCount" : "4"
}

From the response, we can see that this ACI fabric is

made up of four devices: an APIC, two leaf switches, and

one spine switch. Extensive information is returned

about each device in this response, but it was modified to

extract and display just a subset of that information. You

are encouraged to perform the same steps and explore

the APIC REST API either using the Cisco DevNet

sandbox resources or your own instance of APIC.

As of this writing, there are several tools and libraries

available for Cisco ACI automation. An ACI Python SDK

called Cobra can be used for advanced development. For

basic day-to-day configuration and monitoring tasks and

for getting started with ACI automation, there is also a

Python library called acitoolkit. The acitoolkit library

exposes a subset of the APIC object model that covers the

most common ACI workflows.

Next, we will use acitoolkit to build a Python script that

retrieves all the endpoints from an ACI fabric. Additional

information about the endpoints—such as the EPGs they

are members of, application profiles that are applied to

those EPGs, and tenant membership, encapsulation,

MAC, and IP addresses—will be displayed for each

endpoint. A Python script that uses acitoolkit and

accomplishes these tasks might look as the one shown in

Example 9-7.

Example 9-7 acitoolkit Example

Click here to view code image

#! /usr/bin/env python
import sys
import acitoolkit.acitoolkit as aci

APIC_URL = 'https://sandboxapicdc.cisco.com'
USERNAME = 'admin'
PASSWORD = 'ciscopsdt'

Login to APIC
SESSION = aci.Session(APIC_URL, USERNAME,
PASSWORD)
RESP = SESSION.login()
if not RESP.ok:
 print('Could not login to APIC')
 sys.exit()

ENDPOINTS = aci.Endpoint.get(SESSION)
print('{0:19s}{1:14s}{2:10s}{3:8s}{4:17s}
{5:10s}'.format(
 "MAC ADDRESS",
 "IP ADDRESS",
 "ENCAP",
 "TENANT",
 "APP PROFILE",
 "EPG"))
print('-'*80)

for EP in ENDPOINTS:
 epg = EP.get_parent()
 app_profile = epg.get_parent()
 tenant = app_profile.get_parent()
 print('{0:19s}{1:14s}{2:10s}{3:8s}{4:17s}
{5:10s}'.format(
 EP.mac,
 EP.ip,
 EP.encap,
 tenant.name,
 app_profile.name,
 epg.name))

The latest version of acitoolkit can be found at

https://github.com/datacenter/acitoolkit. Follow the

steps at this link to install acitoolkit. The acitoolkit

library supports Python 3, and version 0.4 of the library

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-7
https://github.com/datacenter/acitoolkit

is used in Example 9-7. The script was tested successfully

with Python 3.7.4.

First, the acitoolkit library is imported; it will be

referenced in the script using the short name aci. Three

variables are defined next: APIC_URL contains the

URL for the APIC instance that will be queried (in this

case, the Cisco DevNet always-on APIC sandbox), and

USERNAME and PASSWORD contain the login

credentials for the APIC instance. Next, using the

Session method of the aci class, a connection is

established with the APIC. The Session method takes as

input the three variables defined previously: the

APIC_URL, USERNAME, and PASSWORD. Next,

the success of the login action is verified. If the response

to the login action is not okay, a message is displayed to

the console (“Could not login to APIC”), and the script

execution ends. If the login was successful, all the

endpoints in the ACI fabric instance are stored in the

ENDPOINTS variable. This is done by using the get

method of the aci.Endpoint class and passing in the

current session object. Next, the headers of the table—

with the information that will be extracted—are

displayed to the console. As mentioned previously, the

MAC address, the IP address, the encapsulation, the

tenant, the application profile, and the EPG will be

retrieved from the APIC for all the endpoints in the

fabric. The for iterative loop will go over one endpoint at

a time and, using the get_parent() method, will go one

level up in the MIT and retrieve the parent MO of the

endpoint, which is the EPG. Recall that all endpoints in

an ACI fabric are organized in EPGs. The parent object

for an endpoint is hence the EPG of which that endpoint

is a member. Going one level up in the MIT, the parent

object of the EPG is the application profile, and going

one more level up, the parent object of the application

profile is the tenant object. The epg, app_profile, and

tenant variables contain the respective EPG, application

profile, and tenant values for each endpoint in the fabric.

The last line of code in the script displays to the console

the required information for each endpoint. The output

of the script should look similar to the output shown in

Figure 9-8.

Figure 9-8 Output of the Python Script from

Example 9-7

UCS MANAGER

Cisco Unified Computing System (UCS) encompasses

most of the Cisco compute products. The first UCS

products were released in 2009, and they quickly

established themselves as leaders in the data center

compute and server market. Cisco UCS provides a

unified server solution that brings together compute,

storage, and networking into one system. While initially

the UCS solution took advantage of network-attached

storage (NAS) or storage area networks (SANs) in order

to support requirements for large data stores, with the

release of Cisco HyperFlex and hyperconverged servers,

large storage data stores are now included with the UCS

solution.

Cisco UCS B-series blade servers, C-series rack servers,

S-series storage servers, UCS Mini, and Cisco HyperFlex

hyperconverged servers can all be managed through one

interface: UCS Manager. UCS Manager provides unified,

embedded management of all software and hardware

components of Cisco UCS. Cisco UCS Manager software

runs on a pair of hardware appliances called fabric

interconnects. The two fabric interconnects form an

active/standby cluster that provides high availability.

The UCS infrastructure that is being managed by UCS

Manager forms a UCS fabric that can include up to 160

servers. The system can scale to thousands of servers by

integrating individual UCS Manager instances with Cisco

UCS Central in a multidomain Cisco UCS environment.

UCS Manager participates in the complete server

lifecycle, including server provisioning, device discovery,

inventory, configuration, diagnostics, monitoring, fault

detection, and auditing and statistics collection. All

infrastructure that is being managed by UCS Manager is

either directly connected to the fabric interconnects or

connected through fabric extenders. Fabric extenders, as

the name implies, have the function of offering

additional scalability in connecting servers back to the

fabric interconnects. They are zero-management, low-

cost, and low-power devices that eliminate the need for

expensive top-of-rack Ethernet and Fibre Channel

switches. Figure 9-9 shows how all these components

connect to each other.

Figure 9-9 Cisco Unified Computing System

Connectivity

All Cisco UCS servers support Cisco SingleConnect

technology. Cisco SingleConnect is a revolutionary

technology that supports all traffic from the servers

(LAN, SAN, management, and so on) over a single

physical link. The savings that this technology brings

only as part of the cabling simplification is orders of

magnitude higher than competing products.

Cisco UCS Manager provides an HTML 5 graphical user

interface (GUI), a command-line interface (CLI), and a

comprehensive API. All Cisco UCS fabric functions and

managed objects are available over the UCS API.

Developers can take advantage of the extensive API and

can enhance the UCS platform according to their unique

requirements. Tools and software integrations with

solutions from third-party vendors like VMware,

Microsoft, and Splunk are already publicly available. We

will briefly see later in this chapter how the Cisco UCS

PowerTool for UCS Manager and the Python software

development kit (SDK) can be used to automate and

programmatically manage Cisco UCS Manager.

With Cisco UCS Manager, the data center servers can be

managed using an infrastructure-as-code framework.

This is possible through another innovation that is

included with the Cisco UCS solution: the service profile.

The service profile is a logical construct in UCS Manager

that contains the complete configuration of a physical

server. All the elements of a server configuration—

including RAID levels, BIOS settings, firmware revisions

and settings, adapter settings, network and storage

settings, and data center connectivity—are included in

the service profile. When a service profile is associated

with a server, Cisco UCS Manager automatically

configures the server, adapters, fabric extenders, and

fabric interconnects to match the configuration specified

in the service profile. With service profiles, infrastructure

can be provisioned in minutes instead of days. With

service profiles, you can even pre-provision servers and

have their configurations ready before the servers are

even connected to the network. Once the servers come

online and get discovered by UCS Manager, the service

profiles can be automatically deployed to the server.

The UCS Manager programmatic interface is the XML

API. The Cisco UCS Manager XML API accepts XML

documents over HTTP or HTTPS connections. Much as

with Cisco ACI, the configuration and state information

for Cisco UCS is stored in a hierarchical tree structure

known as the management information tree (MIT). The

MIT, which contains all the managed objects in the Cisco

UCS system, is accessible through the XML API. Any

programming language can be used to generate XML

documents that contain the API methods. One or more

managed objects can be changed with one API call.

When multiple objects are being configured, the API

operation stops if any of the MOs cannot be configured,

and a full rollback to the state of the system before the

change was initiated is done. API operations are

transactional and are done on the single data model that

represents the whole system. Cisco UCS is responsible

for all endpoint communications, making UCS Manager

the single source of truth. Users cannot communicate

directly with the endpoints, relieving developers from

administering isolated, individual component

configurations. All XML requests are asynchronous and

terminate on the active Cisco UCS Manager.

All the physical and logical components that make up

Cisco UCS are represented in a hierarchical management

information tree (MIT), also known as the Management

Information Model (MIM). Each node in the tree

represents a managed object (MO) or a group of objects

that contains its administrative and operational states.

At the top of the hierarchical structure is the sys object,

which contains all the parent and child nodes in the tree.

Each object in Cisco UCS has a unique distinguished

name that describes the object and its place in the tree.

The information model is centrally stored and managed

by a process running on the fabric interconnects that is

called the Data Management Engine (DME). When an

administrative change is initiated to a Cisco UCS

component, the DME first applies that change to the

information model and then applies the change to the

actual managed endpoint. This approach is referred to as

a model-driven framework.

A specific managed object in the MIT can be identified by

its distinguished name (DN) or by its relative name (RN).

The DN specifies the exact managed object on which the

API call is operating and consists of a series of relative

names:

DN = {RN}/{RN}/{RN}/{RN}...

A relative name identifies an object in the context of its

parent object.

The Cisco UCS Manager XML API model includes the

following programmatic entities:

Classes: Classes define the properties and states of objects in the MIT.

Methods: Methods define the actions that the API performs on one or

more objects.

Types: Types are object properties that map values to the object state.

Several types of methods are available with the XML

API:

Authentication methods: These methods, which include the

following, are used to authenticate and maintain a session:

aaaLogin: Login method

aaaRefresh: Refreshes the authentication cookie

aaaLogout: Exits the session and deactivates the corresponding

authentication cookie

Query methods: These methods, which include the following, are

used to obtain information on the current configuration state of an

object:

configResolveDn: Retrieves objects by DN

configResolveClass: Retrieves objects of a given class

configResolveParent: Retrieves the parent object of an object

Configuration methods: These methods, which include the

following, are used to make configuration changes to managed objects:

configConfMo: Affects a single MO

configConfMos: Affects multiple subtrees

Since the query methods available with the XML API can

return large sets of data, filters are supported to limit

this output to subsets of information. Four types of filters

are available:

Simple filters: These true/false filters limit the result set of objects

with the Boolean value of True or False.

Property filters: These filters use the values of an object’s properties

as the inclusion criteria in a result set (for example, equal filter, not

equal filter, greater than filter)

Composite filters: These filters are composed of two or more

component filters (for example, AND filter, OR filter)

Modifier filter: This filter changes the results of a contained filter.

Currently only the NOT filter is supported. This filter negates the result

of a contained filter.

External applications can get Cisco UCS Manager state

change information either by regular polling or by event

subscription. Full event subscription is supported with

the API and is the preferred method of notification.

Polling usually consumes a lot of resources and should

be used only in limited situations.

Cisco UCS Manager provides a managed object browser

called Visore. Visore can be accessed by navigating to

https://<UCS-Manager-IP>/visore.html. The web

interface looks as shown in Figure 9-10.

Figure 9-10 Cisco UCS Manager Visore Interface

The whole MIT tree can be explored, and also queries for

specific DNs can be run from this interface. Additional

developer resources regarding Cisco UCS Manager can

be found on the Cisco DevNet website, at

https://developer.cisco.com/site/ucs-dev-center/.

Next, let’s explore the Cisco UCS Manager XML API. The

complete documentation of the Cisco UCS Manager

information model for different releases can be found at

https://developer.cisco.com/site/ucs-mim-ref-api-

picker/. At this site, you can find all the managed objects,

https://developer.cisco.com/site/ucs-dev-center/
https://developer.cisco.com/site/ucs-mim-ref-api-picker/

all the methods, all the types, all the fault and FSM rules,

and extensive documentation for each of them.

In order for data center administrators and developers to

become more familiar with the Cisco UCS system, Cisco

has released a software emulator. Cisco UCS Platform

Emulator is the Cisco UCS Manager application bundled

into a virtual machine (VM). The VM includes software

that emulates hardware communications for the Cisco

UCS system. The Cisco UCS Platform Emulator can be

used to create and test a supported Cisco UCS

configuration or to duplicate an existing Cisco UCS

environment for troubleshooting and development

purposes. The Cisco UCS Platform Emulator is delivered

as an .ova file and can run in nearly any virtual

environment. The complete Cisco UCS Manager

information model documentation is also bundled within

the UCS Platform Emulator.

As usual, the Cisco DevNet team makes available to the

larger DevNet community a series of sandboxes for

easier product discovery and development. So far in this

chapter, we have used always-on sandboxes. In this

example, we will use a reservable sandbox. As the name

suggests, reservable sandboxes can be reserved up to 7

days and are available only to the person who makes the

reservation. At this writing, there is a Cisco UCS

Manager sandbox that can be used to explore the XML

API. It is called UCS Management and can be found at

https://developer.cisco.com/sandbox. This sandbox

takes advantage of the Cisco UCS Platform Emulator

version 3.2(2.5).

At this point, to authenticate and get an authentication

cookie, we can use the curl command as follows:

Click here to view code image

https://developer.cisco.com/sandbox
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#ppg234-1

curl -k -X POST https://10.10.20.110/nuova \

 -H 'Content-Type: application/xml' \

 -d '<aaaLogin inName="ucspe" inPassword="ucspe">

</aaaLogin>'

The IP address of the Cisco UCS Manager is

10.10.20.110, the XML API resource is /nuova, and

the authentication method used is aaaLogin. The

username and password are passed in an XML document

within the inName and inPassword variables. In this

case, both the username and password are ucspe. The

Content-Type header specifies the type of data that the

POST call will send to the XML API (which is, of course,

XML in this case).

The response should be similar to the following one:

Click here to view code image

<aaaLogin cookie="" response="yes"

outCookie="1573019916/7c901636-

c461-487e-bbd0-c74cd68c27be"

outRefreshPeriod="600"

outPriv="aaa,admin,ext-lan-config,ext-lan-

policy,ext-lan-

qos,ext-lan-security,ext-san-config,ext-san-

policy,ext-san-

security,fault,operations,pod-config,pod-

policy,pod-qos,pod-

security,read-only" outDomains="org-root"

outChannel="noencssl"

outEvtChannel="noencssl" outSessionId=""

outVersion="3.2(2.5)"

outName="" />

aaaLogin specifies the method used to log in, the "yes"

value confirms that this is a response, outCookie

provides the session cookie, outRefreshPeriod

specifies the recommended cookie refresh period (where

the default is 600 seconds), and the outPriv value

specifies the privilege level associated with the account.

Next, let’s get a list of all the objects that are part of the

compute class and are being managed by this instance of

Cisco UCS Manager. In order to accomplish this, we can

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#ppg234

use the configFindDnsByClassId method. This

method finds distinguished names and returns them

sorted by class ID. The curl command should look

similar to the following one:

Click here to view code image

curl -k -X POST https://10.10.20.110/nuova \

 -H 'Content-Type: application/xml' \

 -d '<configFindDnsByClassId

 classId="computeItem"

 cookie="1573019916/7c901636-c461-487e-bbd0-

c74cd68c27be" />'

The XML API endpoint, https://10.10.20.110/nuova,

and the Content-Type header, application/xml, stay

the same. The XML data that is being sent to the Cisco

UCS Manager server is different. First, the

configFindDnsByClassId method is specified, and

then the two mandatory variables for classId and the

cookie are passed in. The classId specifies the object

class that in this case is the computeItem class, and the

cookie is being populated with the value of the

authentication cookie obtained previously.

The response in this case, as shown in Example 9-8,

contains a complete list of all the compute items that are

being managed by the 10.10.20.110 instance of Cisco

UCS Manager.

Example 9-8 List of Compute Items That Are Being

Managed by Cisco UCS Manager

Click here to view code image

<configFindDnsByClassId
cookie="1573019916/7c901636-c461-487e-bbd0-
c74cd68c27be"
response="yes" classId="computeItem">
 <outDns>
 <dn value="sys/chassis-
4/blade-8"/>

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#ppg235
https://10.10.20.110/nuova
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-8

 <dn value="sys/chassis-
5/blade-8"/>
 <dn value="sys/chassis-
6/blade-8"/>
 <dn value="sys/chassis-
6/blade-1"/>
 <dn value="sys/chassis-
3/blade-1"/>
 ... omitted output
 <dn value="sys/rack-unit-9"/>
 <dn value="sys/rack-unit-8"/>
 <dn value="sys/rack-unit-7"/>
 <dn value="sys/rack-unit-6"/>
 <dn value="sys/rack-unit-5"/>
 <dn value="sys/rack-unit-4"/>
 <dn value="sys/rack-unit-3"/>
 <dn value="sys/rack-unit-2"/>
 <dn value="sys/rack-unit-1"/>
 </outDns>
</configFindDnsByClassId>

In our exploration of the Cisco UCS Manager XML API,

let’s now get more information about a specific compute

object. The method to retrieve a single managed object

for a specified DN is configResolveDn. The curl

command for this API request should look as shown in

Example 9-9.

Example 9-9 Using a curl Command to Retrieve

Information About a Compute Object

Click here to view code image

curl -k -X POST https://10.10.20.110/nuova \
 -H 'Content-Type: application/xml' \
 -d '<configResolveDn
 cookie="1573019916/7c901636-c461-487e-bbd0-
c74cd68c27be"
 dn="sys/chassis-4/blade-8" />'

Much as in the previous call, the API endpoint and

Content-Type header stay the same. The XML data

that is being sent with the request contains the method,

configResolveDn, the authentication cookie, and the

DN for which additional information is requested, which

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-9

in this case is the blade number 8 in chassis number 4:

sys/chassis-4/blade-8.

The response contains extensive information about the

blade server in slot 8 from the chassis with number 4, as

shown in Example 9-10.

Example 9-10 curl Command Response Containing

Information About a Compute Object

Click here to view code image

<configResolveDn dn="sys/chassis-4/blade-8"
cookie="1573019916/7c901636-c461-487e-bbd0-
c74cd68c27be" response="yes">
 <outConfig>
 <computeBlade
adminPower="policy" adminState="in-service"
assetTag=""
 assignedToDn=""
 association="none"
availability="available"
availableMemory="49152"
 chassisId="4"
 checkPoint="discovered"
connPath="A,B" connStatus="A,B" descr=""
 discovery="complete"
 discoveryStatus=""
dn="sys/chassis-4/blade-8" fltAggr="0"
fsmDescr=""
 fsmFlags=""
 fsmPrev="DiscoverSuccess"
fsmProgr="100" fsmRmtInvErrCode="none"
 fsmRmtInvErrDescr=""
 fsmRmtInvRslt=""
fsmStageDescr="" fsmStamp="2019-11-
06T04:02:03.896"
 fsmStatus="nop"
 fsmTry="0" intId="64508"
kmipFault="no" kmipFaultDescription=""
 lc="undiscovered"
 lcTs="1970-01-01T00:00:00.000"
localId="" lowVoltageMemory="not-applicable"
 managingInst="A"
memorySpeed="not-applicable" mfgTime="not-
applicable"
 model="UCSB-
 B200-M4" name=""
numOf40GAdaptorsWithOldFw="0"

numOf40GAdaptorsWithUnknownFw="0"

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-10

 numOfAdaptors="1"
numOfCores="8" numOfCoresEnabled="8"
numOfCpus="2"
 numOfEthHostIfs="0"
numOfFcHostIfs="0" numOfThreads="16"
operPower="off"
 operPwrTransSrc="unknown"
operQualifier="" operSolutionStackType="none"
 operState="unassociated"
operability="operable"
 originalUuid="1b4e28ba-2fa1-
11d2-
 0408-b9a761bde3fb"
partNumber="" policyLevel="0"
policyOwner="local"
 presence="equipped"
revision="0" scaledMode="none" serial="SRV137"
 serverId="4/8"
 slotId="8" totalMemory="49152"
usrLbl=""
 uuid="1b4e28ba-2fa1-11d2-0408-
b9a761bde3fb"
 vendor="Cisco Systems Inc"
vid=""/>
 </outConfig>
</configResolveDn>

While interacting with the Cisco UCS Manager XML API

this way is possible, you can see that it becomes

cumbersome very quickly. The preferred way of working

with the XML API is either through Cisco UCS

PowerTool suite or the Cisco UCS Python SDK.

The Cisco UCS PowerTool suite is a PowerShell module

that helps automate all aspects of Cisco UCS Manager.

The PowerTool cmdlets work on the Cisco UCS MIT. The

cmdlets can be used to execute read, create, modify, and

delete operations on all the managed objects in the MIT.

The Cisco UCS PowerTool suite enables easy integration

with existing IT management processes and tools. The

PowerTool suite can be downloaded for Windows via PS

Gallery and for Linux from

https://community.cisco.com/t5/cisco-developed-ucs-

integrations/cisco-ucs-powertool-core-suite-for-

powershell-core-modules-for/ta-p/3985798.

https://community.cisco.com/t5/cisco-developed-ucs-integrations/cisco-ucs-powertool-core-suite-for-powershell-core-modules-for/ta-p/3985798

Cisco UCS Python SDK is a Python module that helps

automate all aspects of Cisco UCS management,

including server, network, storage, and hypervisor

management. The Cisco UCS Python SDK works on the

Cisco UCS Manager MIT, performing create, read,

modify, or delete actions on the managed objects in the

tree. Python versions 2.7 and higher and version 3.5 and

higher are supported. The Cisco UCS Python module for

UCS Manager is called ucsmsdk and can be installed

using pip by issuing the following command at the

command prompt: pip install ucsmsdk. As of this

writing, the current version of the ucsmsdk module is

0.9.8.

The Cisco UCS Python SDK provides a utility called

convert_to_ucs_python that gives administrators and

developers the option of recording all the interactions

with the Cisco UCS Manager GUI and saving them into

an XML file. Running this XML file through the

convert_to_ucs_python tool automatically generates

Python code corresponding to the actions that were

performed in the GUI. Using this process, data center

automation efforts can be sped up orders of magnitude,

and simple tasks such as creating a new VLAN or

complex tasks such as configuring a service policy

template can be automated within seconds.

Next, let’s explore the Cisco UCS Python SDK and see

how to connect to a Cisco UCS Manager instance,

retrieve a list of all the compute blades in the system, and

extract specific information from the returned data. The

sample Python code is built in Python 3.7.4 using version

0.9.8 of the ucsmsdk module.

First, the UcsHandle class is imported. An instance of

this class is used to connect to Cisco UCS Manager. The

Cisco UCS Manager IP address, username, and password

are passed in as parameters to the instance of the

UcsHandle class that is called HANDLE. Several

methods are available with the UcsHandle class. In this

script only three are used:

HANDLE.login(): This method is used to log in to Cisco UCS

Manager.

HANDLE.query_classid(): This method is used to query the MIT

for objects with a specific class ID.

HANDLE.logout(): This method is used to log out from the Cisco

UCS Manager.

The BLADES variable contains a dictionary of all the

compute blades that are being managed by the

10.10.20.110 instance of Cisco UCS Manager. Within a

for loop, specific information regarding the DN, serial

number, administrative state, model number, and total

amount of memory for each blade is extracted and

displayed to the console. The Python script using the

Cisco UCS Manager SDK that accomplishes all of these

tasks looks as shown in Example 9-11.

Example 9-11 ucsmsdk Python Example

Click here to view code image

#! /usr/bin/env python
from ucsmsdk.ucshandle import UcsHandle
HANDLE = UcsHandle("10.10.20.110", "ucspe",
"ucspe")

Login into Cisco UCS Manager
HANDLE.login()

Retrieve all the compute blades
BLADES = HANDLE.query_classid("ComputeBlade")

print('{0:23s}{1:8s}{2:12s}{3:14s}
{4:6s}'.format(
 "DN",
 "SERIAL",
 "ADMIN STATE",
 "MODEL",
 "TOTAL MEMORY"))
print('-'*70)

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-11

Extract DN, serial number, admin state,
model, and total memory for each blade
for BLADE in BLADES:
 print('{0:23s}{1:8s}{2:12s}{3:14s}
{4:6s}'.format(
 BLADE.dn,
 BLADE.serial,
 BLADE.admin_state,
 BLADE.model,
 BLADE.total_memory))

HANDLE.logout()

The results of running this script look as shown in Figure

9-11.

Figure 9-11 Output of the Python Script from

Example 9-11

CISCO UCS DIRECTOR

Automation delivers the essential scale, speed, and

repeatable accuracy needed to increase productivity and

respond quickly to business requirements in a data

center environment. Cisco UCS Director replaces manual

configuration and provisioning processes with

orchestration in order to optimize and simplify delivery

of data center resources.

This open private-cloud platform delivers on-premises

infrastructure as a service (IaaS) from the core to the

edge of the data center. Automated workflows configure,

deploy, and manage infrastructure resources across

Cisco and third-party computing, network, and storage

resources and converged and hyperconverged

infrastructure solutions. Cisco UCS Director supports the

industry’s leading converged infrastructure solutions,

including NetApp FlexFod and FlexPod Express, EMC

VSPEX, EMC VPLEX, and VCE Block. It delivers unified

management and orchestration for a variety of

hypervisors across bare-metal and virtualized

environments.

A self-service portal, a modern service catalog, and more

than 2500 multivendor tasks enable on-demand access

to integrated services across data center resources. Cisco

UCS Director allows IT professionals and development

teams to order and manage infrastructure services on

demand.

Cisco UCS Director is supported by a broad ecosystem.

Third-party hardware and solution vendors can use the

southbound APIs and the SDKs provided with them to

develop integrations into the Cisco UCS Director

management model. Northbound APIs can be used by

DevOps and IT operations management tools to interact

with Cisco UCS Director and perform all the functions

provided by the solution in a programmable and

automated fashion.

Cisco UCS Director provides comprehensive visibility

and management of data center infrastructure

components. From a data center management

perspective, the following are some of the tasks that can

be performed using Cisco UCS Director:

Create, clone, and deploy service profiles and templates for all Cisco

UCS servers and compute applications.

Manage, monitor, and report on data center components such as Cisco

UCS domains or Cisco Nexus devices.

Monitor usage, trends, and capacity across a converged infrastructure

on a continuous basis.

Deploy and add capacity to converged infrastructures in a consistent,

repeatable manner.

Cisco UCS Director also enables the creation of

workflows that provide automation services. These

automation workflows can be published and made

available to the end users of the data center resources

through on-demand portals. Once built and validated,

these workflows perform the same way every time, no

matter who triggers them. A data center administrator

can run them, or role-based access control can be

implemented to enable users and customers to run these

workflows on a self-service basis. From an infrastructure

automation perspective, some of the use cases that Cisco

UCS Director can help automate include the following:

Virtual machine provisioning and lifecycle management.

Compute, network, and storage resources configuration and lifecycle

management.

Bare-metal server provisioning, including operating system

installation.

Cisco UCS Director supports Cisco ACI by offering

automation workflows that orchestrate the APIC

configuration and management tasks. It also supports

multitenancy and the ability to define contracts between

different container tiers.

Cisco UCS Director can be managed using Cisco

Intersight, which is covered later in this chapter. Cisco

UCS Director is a 64-bit appliance that uses the standard

templates Open Virtualization Format (OVF) for

VMware vSphere and Virtual Hard Disk (VHD) for

Microsoft Hyper-V and can be downloaded from

www.cisco.com.

Next, let’s go over some essential concepts needed to

understand how the Cisco UCS Director orchestrator

works. First, there is the concept of a task. A task is an

atomic unit of work in Cisco UCS Director; it cannot be

decomposed into smaller actions and represents a single

action with inputs and outputs. Cisco UCS Director has a

task library that contains hundreds of predefined tasks,

such as an SSH command task (executing a command in

a Secure Shell session), an inventory collection task

(gathering information about available devices), a new

VM provisioning task (creating a new virtual machine),

and many more. In the event that there is no suitable

predefined task, the system offers the option of creating

custom tasks, as described later in this section.

The second concept is the workflow. A workflow is a

series of tasks arranged to automate a complex

operation. The simplest workflow contains a single task,

but workflows can contain any number of tasks.

Workflows are at the heart of Cisco UCS Director

orchestration. They automate processes of any level of

complexity. Workflows are built using the Workflow

Designer, which is a drag-and-drop interface. In

Workflow Designer, the tasks are arranged in sequence

and define inputs and outputs to those tasks. Loops and

conditionals can be implemented using flow of control

tasks. Every time a workflow is executed, a service

request is generated. Workflows can be scheduled for

later execution, and Cisco UCS Director stores details of

completed service requests. A service request can have

one of several states, depending on its execution status:

scheduled, running, blocked, completed, or failed.

http://www.cisco.com/

Finally, libraries and catalogs are collections of

predefined tasks and workflows that can be used as

building blocks for more advanced workflows.

Let’s now explore the programmability and extensibility

of Cisco UCS Director. The Cisco UCS Director SDK is a

collection of technologies that enable developers to

extend the capabilities of Cisco UCS Director, access

Cisco UCS Director data, and invoke Cisco UCS

Director’s automation and orchestration operations from

any application. The Cisco UCS Director SDK includes

the Open Automation component. Scripting technologies

include the Cisco UCS Director PowerShell API, custom

tasks bundled in Cisco UCS Director script modules, and

the ability to write custom tasks using CloupiaScript, a

server-side JavaScript implementation.

The Cisco UCS Director SDK makes the following

possible:

Accessing Cisco UCS Director programmatically by using the Cisco UCS

Director REST API

Customizing Cisco UCS Director by creating custom workflow tasks

Extending Cisco UCS Director by using Cisco UCS Director Open

Automation to build connectors that support additional devices and

systems

Cisco UCS Director provides the Cisco UCS Director

Open Automation module to enable developers to

enhance the functionality of the Cisco UCS Director

appliance. Open Automation can be used to add modules

to Cisco UCS Director. A module is the topmost logical

entry point into Cisco UCS Director. In order to add or

extend the functionality of the system, a new module

must be developed and deployed on Cisco UCS Director.

A module developed using Open Automation behaves the

same way as any Cisco UCS Director built-in feature or

module. Open Automation is a Java SDK and framework

that contains all the resources needed to develop new

modules. Some of the use cases for Open Automation are

the following:

Adding the ability to control a new type of device with Cisco UCS

Director

Designing custom menus for displaying new devices or components

Taking inventory of new devices

Developing custom Cisco UCS Director reports and report actions

Developing tasks that can be used in workflows

Custom tasks enable developers to perform customized

operations on Cisco UCS Director resources. Custom

tasks are written using CloupiaScript, a language similar

to JavaScript. Custom tasks can be used like any other

task, including in workflows that orchestrate how the

system works. Script bundles are collections of custom

tasks that are included with each Cisco UCS Director

release and are used for a variety of specific applications.

Script bundles can be downloaded, and the custom tasks

that are contained in a bundle can be imported into Cisco

UCS Director. The main goal with custom tasks is to

expand the range of tasks that is available for use in

orchestration workflows.

Script modules are used to integrate third-party JARs

(Java Archives) and custom libraries with Cisco UCS

Director to add custom functionality to the Cisco UCS

Director user interface. Some script module operations

are already defined in Cisco UCS Director, such as

creating advanced controls to collect user input in

workflows and context workflow mapping, which enables

an administrator to attach workflows to custom actions

in a report in Cisco UCS Director. Script modules can be

exported and reused in different instances of Cisco UCS

Director. Script modules, although named similarly to

script bundles, have in fact a very different role. Script

bundles, as we’ve seen previously, are packaged

collections of workflow tasks that are released with Cisco

UCS Director. Script modules, on the other hand, make it

possible to add custom functionality to Cisco UCS

Director.

Cisco UCS Director PowerShell console is a Cisco-

developed application that provides a PowerShell

interface to the Cisco UCS Director REST API. The

console provides a set of PowerShell cmdlets wrapped in

a module to internally invoke the REST APIs over HTTP.

Each cmdlet performs a single operation. Cmdlets can be

chained together to accomplish more advanced

automation and data center management tasks. Figure 9-

12 shows the relationship between the PowerShell

console, Cisco UCS Director, and the infrastructure that

is being managed by it.

Figure 9-12 Cisco UCS Director PowerShell Console

Cisco UCS Director offers a REST API that enables

applications to consume or manipulate the data stored in

Cisco UCS Director. Applications use HTTP or HTTPS

requests from the REST API to perform

Create/Read/Update/Delete (CRUD) operations on

Cisco UCS Director resources. With an API call, a

developer can execute Cisco UCS Director workflows and

change the configuration of switches, adapters, policies,

and any other hardware and software components. The

API accepts and returns HTTP messages that contain

JavaScript Object Notation (JSON) or Extensible

Markup Language (XML) documents.

To access the Cisco UCS Director REST API, a valid user

account and an API access key are needed. Cisco UCS

Director uses the API access key to authenticate an API

request. The access key is a unique security access code

that is associated with a specific Cisco UCS Director user

account. In order to retrieve the API access key for a

specific user, you first log in to Cisco UCS Director with

that specific user account. Then hover the mouse over

the user icon in the top-right corner and select Edit My

Profile from the drop-down list. On the Edit My Profile

page, select Show Advanced Settings and retrieve the API

access key from the REST API Access Key area. There is

also an option to regenerate the access key, if necessary.

Within the user advanced settings is an option to enable

the developer menu. By enabling the developer menu,

access to the REST API browser and the Report

Metadata features is turned on. The REST API browser

becomes visible under the Orchestration tab of Cisco

UCS Director and provides API information and API

code generation capabilities for all available APIs. The

Report Metadata option becomes available on all the

pages of the Cisco UCS Director GUI; when selected, it

returns the API code that the GUI is using to retrieve the

information that is displayed to the user in that specific

page. This code includes a complete URL that is ready to

paste into a browser to send the request to Cisco UCS

Director. Both the REST API browser and the Report

Metadata features are extremely valuable to developers

as they provide ready-to-use sample code and API calls

to all the resources available in Cisco UCS Director.

Figure 9-13 shows the Cisco UCS Director REST API

browser web interface.

Figure 9-13 Cisco UCS Director REST API Browser

Each REST API request must be associated with an

HTTP header called X-Cloupia-Request-Key, with its

value set to the REST API access key retrieved

previously. The REST API request must contain a valid

URL of the following format:

https://Cisco_UCS_Director/app/api/rest?

formatType=json&opName=operationName&op

Data=operationData

where

Cisco_UCS_Director: This is the IP address or hostname of the

Cisco UCS Director VM.

formatType: This can be either JSON or XML; it is JSON in this case.

(Only JSON is discussed throughout the rest of this chapter.)

opName: This is the API operation name that is associated with the

request (for example, userAPIGetMyLoginProfile), as explored later in

this chapter.

opData: This contains the parameters or the arguments associated

with the operation. Cisco UCS Director uses JSON encoding for the

parameters. If an operation doesn’t require any parameters, the empty

set {} should be used. When building the URL, escape characters

should be encoded as appropriate.

Next, let’s explore the Cisco UCS Director REST API by

using curl to construct API calls. Programming guides

and complete documentation of the Cisco UCS REST API

can be found at the following link:

https://www.cisco.com/c/en/us/support/servers-

unified-computing/ucs-director/products-

programming-reference-guides-list.html. The Cisco

DevNet team makes available a reservable sandbox

called “UCS Management” for learning purposes. This

sandbox contains an installation of Cisco UCS Director

and is available at https://developer.cisco.com/sandbox.

Cisco UCS Director version 6.7 has been used in the

following interactions with the REST API. The operation

with the name userAPIGetMyLoginProfile is used to

retrieve the profile of the user with the specific access key

that is passed in the request in order to identify the

group to which the user belongs. The curl command for

this operation looks as shown in Example 9-12.

Example 9-12 curl Command to Retrieve the User

Profile in Cisco UCS Director

Click here to view code image

curl -k -L -X GET \
 -g 'https://10.10.10.66/app/api/rest?
formatType=json&opName=userAPIGetMyLoginProfi
 le&opData={}' \
 -H 'X-Cloupia-Request-Key:
8187C34017C3479089C66678F32775FE'

For this request, the -g parameter disables the curl

check for nested braces {}, the -k or -insecure

parameter allows curl to proceed and operate even if the

server uses self-signed SSL certificates, and the -L

parameter allows curl to follow the redirects sent by the

server. The URL for the request follows the requirements

discussed previously, using the /app/api/rest endpoint

https://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-programming-reference-guides-list.html
https://developer.cisco.com/sandbox
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-12

to access the REST API and then passing the

formatType, opName, and opData as parameters.

The HTTP header for authentication is named X-

Cloupia-Request-Key and contains the value of the

access key for the admin user for the Cisco UCS Director

instance that runs on the server with IP address

10.10.10.66. The response from this instance of Cisco

UCS Director looks as shown in Example 9-13.

The operation name is contained in the response and is

indeed userAPIGetMyLoginProfile, serviceName

specifies the name of the back-end service (which is in

most cases InfraMgr), serviceResult contains a set of

name/value pairs or a JSON object if the request was

successful, and serviceError contains the error

message. If the request succeeds, the serviceError

value is set to null, and if the operation fails,

serviceError contains the error message.

Example 9-13 REST API Response Containing User

Profile Information

Click here to view code image

{
 "opName" : "userAPIGetMyLoginProfile",
 "serviceName" : "InfraMgr",
 "serviceResult" : {
 "email" : null,
 "groupName" : null,
 "role" : "Admin",
 "userId" : "admin",
 "groupId" : 0,
 "firstName" : null,
 "lastName" : null
 },
 "serviceError" : null}

As mentioned previously, Cisco UCS Director tasks and

workflows can have any number of input and output

variables. In order to retrieve the inputs for a specific

workflow, the userAPIGetWorkflowInputs

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-13

operation can be used with the name of the desired

workflow in the param0 field. Cisco UCS Director

comes by default with a large number of predefined

workflows. One of them is the “VMware OVF

Deployment,” which, as the name implies, can deploy

new VMware virtual machines based on OVF images.

The curl command in Example 9-14 contains the API

call to retrieve all the inputs for this workflow.

Example 9-14 curl Command to Retrieve Workflow

Inputs in Cisco UCS Director

Click here to view code image

curl -k -L -X GET \
 -g 'http://10.10.10.66/app/api/rest?
formatType=json&opName=userAPIGetWorkflowInput
 s&opData=
{param0:%22VMware%20OVF%20Deployment%22}' \
 -H 'X-Cloupia-Request-Key:
8187C34017C3479089C66678F32775FE'

Notice that the name of the workflow is passed in the API

call in the param0 parameter and also that VMware

OVF Deployment is encoded, using single quotation

marks and spaces between the words. Example 9-15

shows a snippet of the response.

The response contains similar fields to the response in

Example 9-14. opName is confirmed as

userAPIGetWorkflowInputs, the back-end service

that responded to the request is once again InfraMgr,

serviceError is null (indicating that there were no

errors in processing the request), and serviceResult

contains a list called details, which includes all the

inputs and their properties for the VMware OVF

Deployment workflow.

Example 9-15 curl Command Response Containing

Workflow Inputs in Cisco UCS Director

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-14
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-15

{
 "serviceResult" : {
 "details" : [
 {
 "inputFieldValidator" :
"VdcValidator",
 "label" : "vDC",
 "type" : "vDC",
 "inputFieldType" : "embedded-lov",
 "catalogType" : null,
 "isOptional" : false,
 "name" : "input_0_vDC728",
 "isMultiSelect" : false,
 "description" : "",
 "isAdminInput" : false
 },
 {
 "isAdminInput" : false,
 "description" : "",
 "label" : "OVF URL",
 "type" : "gen_text_input",
 "isMultiSelect" : false,
 "isOptional" : false,
 "inputFieldType" : "text",
 "catalogType" : null,
 "name" : "input_1_OVF_URL465",
 "inputFieldValidator" : null
 },
 ...omitted output
]
 },
 "serviceName" : "InfraMgr",
 "opName" : "userAPIGetWorkflowInputs",
 "serviceError" : null}

CISCO INTERSIGHT

The Cisco Intersight platform provides intelligent cloud-

powered infrastructure management for Cisco UCS and

Cisco HyperFlex platforms. Cisco UCS and Cisco

HyperFlex use model-based management to provision

servers and the associated storage and networking

automatically. Cisco Intersight works with Cisco UCS

Manager and Cisco Integrated Management Controller

(IMC) to bring the model-based management of Cisco

compute solutions into one unified management

solution. Cisco Intersight offers flexible deployment

options either as software as a service (SaaS) on

https://intersight.com or running a Cisco Intersight

virtual appliance on premises. Some of the benefits of

using Cisco Intersight are the following:

It simplifies Cisco UCS and Cisco HyperFlex management with a single

management platform.

It makes it possible to scale across data center and remote locations

without additional complexity.

It automates the generation and forwarding of technical support files to

the Cisco Technical Assistance Center to accelerate the troubleshooting

process.

Full programmability and automation capabilities are available through

a REST API interface.

A streamlined upgrade process is available for standalone Cisco UCS

servers.

Getting started with Cisco Intersight involves the

following steps:

Step 1. Log in to https://intersight.com with a Cisco

ID account.

Step 2. Claim a device for the account. Endpoint

devices connect to the Cisco Intersight portal

through a device connector that is embedded in

the management controller of each system.

Step 3. (Optional) Add additional users to the new

account. Several roles are available, including

read-only and admin roles. Custom roles can be

created, if needed.

Cisco Intersight includes a REST API interface built on

top of the OpenAPI specification. The API

documentation, API schemas, and SDKs can be found at

https://intersight.com/apidocs. At this writing, Python

and PowerShell SDKs are available for download at the

previous link. The API accepts and returns messages that

https://intersight.com/
https://intersight.com/
https://intersight.com/apidocs

are encapsulated in JSON documents and are sent over

HTTPS. The Intersight API is a programmatic interface

to the Management Information Model that is similar to

Cisco ACI and Cisco UCS Manager. Just like Cisco ACI

and Cisco UCS Manager MIMs, the Cisco Intersight MIM

is composed of managed objects. Managed objects or

REST API resources are uniquely identified by URI

(uniform resource identifier) or, as seen earlier in this

chapter, distinguished name (DN). Example of managed

objects include Cisco UCS servers; Cisco UCS fabric

interconnects; Cisco HyperFlex nodes and clusters;

server, network, and storage policies; alarms; statistics;

users; and roles. Cisco Intersight managed objects are

represented using a class hierarchy specified in the

OpenAPI specification. All the API resources are

descendants of the mo.Mo class. Table 9-2 shows the

properties that are common to all managed objects.

Table 9-2 Common Properties for All Managed

Objects in Cisco Intersight

Property NameDescription

M

oi

d

A unique identifier of the managed object instance.

O

bj

ec

tT

yp

e

The fully qualified class name of the managed object.

Ac

co

u

nt

M

oi

d

The Intersight account ID for the managed object.

Cr

ea

te

Ti

m

e

The time when the managed object was created.

M

od

Ti

m

e

The time when the managed object was last modified.

ModTime is automatically updated whenever at least

one property of the managed object is modified.

O

w

ne

rs

An array of owners, which represents effective

ownership of the object.

Ta

gs

An array of tags that allow the addition of key/value

metadata to managed objects.

A

nc

es

to

rs

An array containing the MO references of the ancestors

in the object containment hierarchy.

Pa

re

nt

The direct ancestor of the managed object in the

containment hierarchy.

Every managed object has a unique Moid identifier

assigned when the resource is created. The Moid is used

to uniquely distinguish a Cisco Intersight resource from

all other resources. The Moid is a 12-byte string set

when a resource is created.

Each managed object can be addressed using a unique

uniform resource identifier (URI) that includes the

Moid. The URI can be used in any HTTPS request to

address the managed object. A generic Cisco Intersight

URI is of the following form:

https://intersight.com/path[?query]

The URI of a managed object includes the following:

https: The HTTPS protocol

intersight.com: The Cisco Intersight hostname

path: The path, organized in hierarchical form

query: An optional query after the question mark and typically used to

limit the output of the response to only specific parameters

For example, the URI of an object with Moid

48601f85ae74b80001aee589 could be:

https://intersight.com/api/v1/asset/DeviceRegis

trations/48601f85ae74b80001aee589

Every managed object in the Cisco Intersight

information model supports tagging. Tagging is used to

categorize objects by a certain common property, such as

owner, geographic location, or environment. Tags can be

set and queried through the Intersight API. Each tag

consists of a key and an optional value. Both the key and

the value are of type string.

Managed objects may include object relationships, which

are dynamic links to REST resources. Cisco Intersight

uses Hypermedia as the Engine of Application State

(HATEOAS) conventions to represent object

relationships. Object relationships can be links to self or

links to other managed objects, which, taken as a whole,

form a graph of objects. By using relationships as a first-

class attribute in the object model, many classes of

graphs can be represented, including trees and cyclic or

bipartite graphs.

Intersight provides a rich query language based on the

OData standard. The query language is represented

using URL query parameters for GET results. Several

types of data are supported with the Intersight queries,

including string, number, duration, data and time, and

time of day.

https://intersight.com/api/v1/asset/DeviceRegistrations/48601f85ae74b80001aee589

When a client sends an API request, the Intersight web

service must identify and authenticate the client. The

Intersight web service supports two authentication

methods:

API keys

Session cookies

An Intersight API key is composed of a keyId and a

keySecret. The API client uses the API key to

cryptographically sign each HTTP request sent to the

Intersight web service. The “signature” parameter is a

base 64–encoded digital signature of the message HTTP

headers and message content. API keys are generated in

the Settings > API section of the Intersight web interface.

As a best practice, it is recommended to generate

separate API keys for each client application that needs

access to the API.

Cookies are used primarily by the Intersight GUI client

running in a browser. When accessing the Intersight web

service, end users must first authenticate to

https://sso.cisco.com. When authentication is successful,

sso.cisco.com sends a signed SAML assertion to the

Intersight web service, and Intersight generates a session

cookie with a limited time span validity. The client must

send the session cookie in each API request.

Included with the Cisco Intersight REST API

documentation at https://intersight.com/apidocs are the

API reference documentation and an embedded REST

API client. Figure 9-14 shows the web interface for the

Cisco Intersight API reference documentation. In this

figure, the Get a list of

https://sso.cisco.com/
https://intersight.com/apidocs

‘equipmentDeviceSummary’ instances API call is

selected. The query parameters that this specific API call

supports are displayed, as are the API URI for the

endpoint that will return the list of all the devices that

are being managed by Cisco Intersight for this specific

account. Much as with Postman, if the Send button is

clicked, the API call is triggered, and the response is

displayed in the Response Text window.

Figure 9-14 Cisco Intersight REST API Reference

Documentation

Under the Downloads section of

https://intersight.com/apidocs, the Cisco Intersight

Python and PowerShell SDKs can be downloaded. The

Python SDK covers all the functionality of the REST API

and offers Python classes and methods that can be used

to simplify Cisco Intersight automation projects. The

Python sample code in Example 9-16 was developed

using the Intersight module version 1.0 and Python 3.7.4.

This Python code replicates the earlier REST API call

equipmentDeviceSummary, which returns a list of

all the devices that are being managed by Cisco

Intersight for a specific account.

Example 9-16 Intersight Python Module Example

Click here to view code image

#! /usr/bin/env python
from intersight.intersight_api_client import

https://intersight.com/apidocs
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch09_images.xhtml#pexa9-16

IntersightApiClient
from intersight.apis import
equipment_device_summary_api

Create an Intersight API Client instance
API_INSTANCE = IntersightApiClient(
 host="https://intersight.com/api/v1",\
 private_key="/Path_to/SecretKey.txt",\
 api_key_id="your_own_api_key_id")

Create an equipment device handle
D_HANDLE =
equipment_device_summary_api.EquipmentDeviceSummaryApi(API_INSTANCE)

DEVICES =
D_HANDLE.equipment_device_summaries_get().results

print('{0:35s}{1:40s}{2:13s}{3:14s}'.format(
 "DN",
 "MODEL",
 "SERIAL",
 "OBJECT TYPE"))
print('-'*105)

Loop through devices and extract data
for DEVICE in DEVICES:
 print('{0:35s}{1:40s}{2:13s}
{3:14s}'.format(
 DEVICE.dn,
 DEVICE.model,
 DEVICE.serial,
 DEVICE.source_object_type))

The first two lines of Example 9-16 use the import

keyword to bring in and make available for later

consumption the IntersightApiClient Python class

that will be used to create a connection to the Cisco

Intersight platform and the

equipment_device_summary_api file, which

contains Python objects that are useful for retrieving

equipment that is being managed by Intersight. Every

Cisco Intersight REST API endpoint has a corresponding

Python file containing classes and methods that can be

used to programmatically process those REST API

endpoints. Next, an instance of the

IntersightApiClient class is created in order to

establish a connection and have a hook back to the Cisco

Intersight platform. Three parameters need to be passed

in to instantiate the class:

host: This parameter specifies the Cisco Intersight REST API base

URI.

private_key: This parameter specifies the path to the file that

contains the keySecret of the Intersight account that will be used to sign

in.

api_key_id: This parameter contains the keyId of the same Intersight

account. As mentioned previously, both the keyId and keySecret are

generated in the Intersight web interface, under Settings > API keys.

Next, an instance of the

EquipmentDeviceSummaryApi class is created and

stored in the D_HANDLE variable. This Python class

maps into the

/api/v1/equipment/DeviceSummaries REST API

resource. The D_HANDLE variable contains the handle

to that REST API resource. The

equipment_device_summaries_get method that is

available with the EquipmentDeviceSummaryApi

class is invoked next, and the results are stored in the

DEVICES variable, which contains a complete list of all

the equipment that is being managed by Cisco Intersight

for the user account with the keyId and keySecret with

which the initial connection was established. The for

loop iterates over the devices in the list and extracts for

each one the distinguished name, model, serial number,

and object type and displays this information to the

console. The output of this Python script for a test user

account looks as shown in Figure 9-15.

Figure 9-15 Output of the Python Script from

Example 9-16

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 9-3 lists these key topics and the page number on

which each is found.

Table 9-3 Key Topics

Key Topic ElementDescriptionPage Number

Parag

raph

Cisco Nexus 9000 switches 2

1

6

Parag

raph

Cisco ACI fabric 2

1

7

Parag

raph

The configuration of the ACI fabric 2

1

8

Parag

raph

Physical and logical components of the Cisco

ACI fabric

2

1

9

Parag

raph

Cisco ACI fabric policies 2

2

0

Parag

raph

Endpoint groups (EPGs) 2

2

2

Parag

raph

The APIC REST API URI 2

2

3

Parag

raph

Tools and libraries for Cisco ACI automation 2

2

7

Parag

raph

UCS Manager and the server lifecycle 2

3

0

Parag

raph

The UCS Manager programmatic interface 2

3

1

Parag

raph

The Cisco software emulator 2

3

4

Parag

raph

The Cisco UCS Python SDK 2

3

7

Parag

raph

Cisco UCS Director 2

4

0

Parag

raph

The Cisco UCS Director orchestrator 2

4

0

Parag

raph

The programmability and extensibility of the

Cisco UCS Director

2

4

1

Parag

raph

Accessing the Cisco UCS Director REST API 2

4

2

Parag

raph

REST API requests and the X-Cloupia-

Request-Key header

2

4

3

Parag

raph

The Cisco Intersight REST API interface 2

4

7

Parag

raph

Client API requests and Intersight 2

4

9

Parag

raph

The Cisco Intersight REST API

documentation

2

4

9

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

Application Centric Infrastructure (ACI)

Application Policy Infrastructure Controller (APIC)

Management Information Model (MIM)

management information tree (MIT)

managed object (MO)

distinguished name (DN)

virtual routing and forwarding (VRF) instance

endpoint group (EPG)

Unified Computing System (UCS)

Chapter 10

Cisco Collaboration Platforms and
APIs

This chapter covers the following topics:

Introduction to the Cisco Collaboration Portfolio: This section

introduces the collaboration portfolio by functionality and provides an

overview of the product offerings.

Webex Teams API: This section introduces Webex Teams and the

rich API set for managing and creating applications, integrations, and

bots.

Cisco Finesse: This section provides an overview of Cisco Finesse and

API categories, and it provides sample code and introduces gadgets.

Webex Meetings APIs: This section provides an introduction to the

high-level API architecture of Webex Meetings along with the Meetings

XML API for creating, updating, and deleting meetings.

Webex Devices: This section provides an overview of the Webex

Devices portfolio, xAPI, and sample applications to turn on presence

detector on devices.

Cisco Unified Communications Manager: This section provides

an overview of Cisco Call Manager and Cisco Administrative XML

(AXL), and it shows sample code for using the SDK.

Every day, millions of people rely on Cisco

collaboration and Webex solutions to collaborate with

their teams, partners, and customers. These products

help them work smarter, connect across boundaries,

and drive new innovative ideas forward. Cisco

products offer secure, flexible, seamless, and

intelligent collaboration. This chapter introduces the

various products as well as how to integrate these

collaboration products via APIs. It covers the

following:

Cisco Webex Teams

Cisco Webex Devices

Cisco Unified Communications Manager

Cisco Finesse

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 10-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 10-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Introduction to the Cisco Collaboration Portfolio 1

Webex Teams API 2–4

Cisco Finesse 5, 6

Webex Meetings APIs 7

Webex Devices 8, 9

Cisco Unified Communications Manager 10

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. Which of the following are part of the Cisco

collaboration portfolio? (Choose three.)

1. Video Calling

2. Bots

3. Remote Expert

4. Connected Mobility Experience

2. How does Webex Teams allow you to access APIs?

(Choose three.)

1. Integrations

2. Bots

3. Drones

4. Personal access tokens

3. Guest users of Webex Teams authenticate with

guest tokens, which use _____.

1. Base64

2. No token

3. JWT

4. Sessions

4. Which of the following use webhooks in Webex

Teams?

1. Bots

2. Guests

3. Nobody

4. Integrations

5. True or false: The Finesse desktop application is

completely built using APIs.

1. False

2. True

6. Finesse implements the XMPP specification. The

purpose of this specification is to allow the XMPP

server (for Notification Service) to get information

published to XMPP topics and then to send XMPP

events to entities subscribed to the topic. The

Finesse Notification Service then sends XMPP over

_______ messages to agents that are subscribed to

certain XMPP nodes.

1. MQTT

2. BOSH

3. HTTP

4. None of the above

7. Which of the following enables hosts/users to

update the information for a scheduled meeting that

they are able to edit?

1. SetMeeting

2. ListMeeting

3. CreateMeeting

4. Layered systems

8. Which of the following is the application

programming interface (API) for collaboration

endpoint software?

1. MQTT

2. TAPI

3. DevNet

4. xAPI

9. xAPI on a device can be accessed via which of the

following protocol methods? (Choose all that apply.)

1. SSH

2. FTP

3. HTTP

4. Websocket

10. Which of the following provides a mechanism for

inserting, retrieving, updating, and removing data

from Cisco Unified Communications Manager?

1. Session Initiation Protocol

2. Administration XML

3. Skinny

4. REST API

FOUNDATION TOPICS

INTRODUCTION TO THE CISCO

COLLABORATION PORTFOLIO

Cisco’s collaboration portfolio is vast, but it can be

logically broken down into essentially four high-level

components:

Unified Communications Manager: This product unifies voice,

video, data, and mobile apps.

Unified Contact Center: This product provides customers with

personalized omnichannel experiences.

Cisco Webex: This conferencing solution enables teamwork with

intuitive solutions that bring people together.

Cisco collaboration endpoints: These devices provide better-than-

being-there experiences via new devices.

Figure 10-1 depicts the Cisco collaboration portfolio and

the various products that fall into each of the categories.

Figure 10-1 Rich Collaboration Portfolio

Unified Communications

People work together in different ways. And they use a

lot of collaboration tools: IP telephony for voice calling,

web and video conferencing, voicemail, mobility, desktop

sharing, instant messaging and presence, and more.

Cisco Unified Communications solutions deliver

seamless user experiences that help people work together

more effectively—anywhere and on any device. They

bring real-time communication from your phone system

and conferencing solutions together with messaging and

chat and integrate with everyday business applications

using APIs.

Unified Communications solutions are available as on-

premises software, as partner-hosted solutions, and as a

service (UCaaS) from cloud providers.

The following sections describe the products available

under the Unified Communications umbrella.

Cisco Webex Teams

Cisco Webex Teams brings people and work together in a

single reimagined workspace in and beyond the meeting.

Webex Teams allows you to connect with people (inside

and outside your organization) and places all your tools

right in the center of your workflow. It breaks down the

silos that exist for some across the collaboration

experience.

Both Webex Teams and Webex Meetings have a Join

button you can click to easily join a meeting. This helps

ensure that meetings start on time and it streamlines the

process of joining a meeting. Cisco Webex Teams also

has features that will help you make decisions on which

meetings to prioritize and when to join them:

Seeing invitee status/participants: Every invitee can see who has

accepted/declined the meeting and who’s in the meeting live before

even joining. There is no need to switch back and forth between your

calendar and the meeting application.

Instantly switching between meetings: If you need to move from

one meeting to another, simply leave the meeting with one click and

join the other one with another click.

Easily informing attendees when you are running late: In

Webex Teams, you can message people in the meeting to keep them

posted on your status. Gone are the days of sending an email that no

one will read because they are in the meeting.

Webex Teams provides a space for a team to start

working—to discuss issues and share content—before a

meeting. When the meeting starts, all the discussion and

work from before the meeting are available right there in

the meeting space. You can simply share content from

any device in the meeting—directly from the space or

from another device, wirelessly and quickly.

An added benefit of joining a meeting through Webex

Teams is that during the meeting, everyone is an equal

participant and can mute noisy participants, record the

meeting, and do other meeting management tasks

without having to disrupt the flow of the meeting.

Cisco Webex Calling

Webex Calling is a cloud-based phone system that is

optimized for midsize businesses and provides the

essential business calling capabilities you are likely to

need. With Webex Calling, there’s no need to worry

about the expense and complexity of managing phone

system infrastructure on your premises anymore. Cisco

takes care of the Webex Cloud so you can focus on what

matters most.

You can choose from a wide range of Cisco IP phones to

make and receive calls. Enjoy the calling features you are

used to from a traditional phone system to help run your

organization smoothly and never miss a call. If you are a

mobile worker, or if you are out of the office, you can

make and receive calls on your smartphone, computer,

or tablet, using the Cisco Webex Teams app.

Webex Calling seamlessly integrates with Webex Teams

and Webex Meetings, so you can take collaboration

inside and outside your organization to a new level.

Customers and business partners can make high-

definition audio and video calls from the office, from

home, or on the go. Screen sharing, file sharing, real-

time messaging, and whiteboarding can turn any call

into a productive meeting. You can also add Cisco Webex

Board, Room, or Desk Device to get the most out of

Webex Teams and Meetings and improve teamwork.

Cisco Webex Calling delivers all the features of a

traditional PBX through a monthly subscription service.

Important qualities include the following:

An advanced set of enterprise-grade PBX features

A rich user experience that includes the CiscoWebex Calling app, for

mobile and desktop users, integrated with the Cisco Webex Teams

collaboration app

Support for an integrated user experience with Cisco Webex Meetings

and Webex Devices, including Cisco IP Phones 6800, 7800, and 8800

Series desk phones and analog ATAs

Delivery from a set of regionally distributed, geo-redundant data

centers around the globe

Service that is available across a growing list of countries in every

region

Protection of existing investment in any on-premises Cisco Unified

Communications Manager (Unified CM) licenses, through Cisco

Collaboration Flex Plan

A smooth migration to the cloud at your pace, through support of cloud

and mixed cloud and on-premises deployments

Cisco Unified Communications Manager (Unified CM)

Cisco Unified CM, often informally referred to as Call

Manager, is the core of Cisco’s collaboration portfolio. It

delivers people-centric user and administrative

experiences and supports a full range of collaboration

services, including video, voice, instant messaging and

presence, messaging, and mobility on Cisco as well as

third-party devices. Unified CM is the industry leader in

enterprise call and session management platforms, with

more than 300,000 customers worldwide and more than

120 million Cisco IP phones and soft clients deployed.

Unified Contact Center

The Cisco Unified Contact Center (Unified CC), also

called Finesse, is a next-generation desktop that is

designed to provide the optimal user experience for

agents. It is 100% browser based, so agent client

machines do not need any Unified CC–specific

applications. Cisco Finesse is a next-generation agent

and supervisor desktop designed to provide a

collaborative experience for the various communities

that interact with a customer service organization. It also

helps improve the customer experience and offers a user-

centric design to enhance customer care representative

satisfaction.

Cisco Finesse provides the following:

An agent and supervisor desktop that integrates traditional contact

center functions into a thin-client desktop.

A 100% browser-based desktop implemented through a Web 2.0

interface; no client-side installations are required.

A single customizable interface that gives customer care providers

quick and easy access to multiple assets and information sources.

Open Web 2.0 APIs that simplify the development and integration of

value-added applications and minimize the need for detailed desktop

development expertise.

Cisco Webex

Cisco Webex is a conferencing solution that allows

people to collaborate more effectively with each other

anytime, anywhere, and from any device. Webex online

meetings are truly engaging with high-definition video.

Webex makes online meetings easy and productive with

features such as document, application, and desktop

sharing; integrated audio/video; active speaker

detection; recording; and machine learning features.

Cisco Collaboration Endpoints

To support and empower the modern workforce, Cisco

has a “no-compromise” collaboration solution for every

room, on every desk, in every pocket, and into every

application. Its portfolio of collaboration devices

includes everything from voice to collaboration room

devices for small businesses to very large enterprises.

The majority of the portfolio has been redesigned to

make collaboration more affordable, accessible, and easy

to use. Many Cisco collaboration endpoints have received

the Red Dot Award for excellence in design.

The Cisco collaboration endpoint portfolio includes the

following devices:

Room-based devices: These include video system or codec in the

Cisco TelePresence MX Series, SX, and DX Series.

Cisco Webex Board: Cisco Webex Board allows you to wirelessly

present whiteboard and video or audio conference for team

collaboration.

Webex Share: The new Webex Share device allows easy, one-click

wireless screen sharing from the Webex Teams software client to any

external display with an HDMI port.

Collaboration desktop video devices: A range of options are

available, from entry-level HD video up to the lifelike DX video

collaboration devices.

IP Phone portfolio: Cisco IP Phone devices deliver superior voice

communications, with select endpoints supporting HD video and a

range of options that offer choices for businesses of various sizes and

with unique needs and budgets. The complete portfolio also supports

specialty use cases, such as in-campus wireless with WLAN handsets

and an audio-conferencing endpoint for small to large conference

rooms. The goal of the IP Phone portfolio is to deliver the highest-

quality audio communications with affordable, scalable options for

desktop video that are easy to use and administer so you can

collaborate effectively and achieve your desired business results.

Cisco Headset 500 Series: These headsets deliver surprisingly

vibrant sound for open workspaces. Now users can stay focused in

noisy environments with rich sound, exceptional comfort, and proven

reliability. The headsets offer a lightweight form factor designed for

workers who spend a lot of time collaborating in contact centers and

open workspaces. With the USB headset adapter, the 500 Series

delivers an enhanced experience, including automatic software

upgrades, in-call presence indicator, and audio customizations that

allow you to adjust how you hear the far end and how they hear you.

Cisco now provides more intelligent audio, video, and

usability, offering new ways for users to bring their

personal devices, such as smartphones or tablets, into a

phone or video meeting to further enhance the

collaboration experience.

API Options in the Cisco Collaboration Portfolio

The Cisco collaboration portfolio is rich in features. APIs

are used to integrate and scale these products in building

various applications. The following sections cover four

categories of collaboration APIs:

Webex Meetings APIs

Webex Teams

Contact Center (Finesse)

Endpoints

WEBEX TEAMS API

Webex Teams makes it easy for everyone on a team to be

in sync. Conversations in Webex Teams take place in

virtual meeting rooms called spaces. Some spaces live for

a few hours, while others become permanent fixtures of a

team’s workflow. Webex Teams allows conversations to

flow seamlessly between messages, video calls, and real-

time whiteboarding sessions.

Getting started with the Webex APIs is easy. These APIs

allow developers to build integrations and bots for

Webex Teams. APIs also allow administrators to perform

administrative tasks.

Webex APIs provide applications with direct access to

the Cisco Webex platform, giving you the ability to do the

following:

Administer the Webex Teams platform for an organization, add user

accounts, and so on

Create a Webex Teams team, space, and memberships

Search for people in the company

Post messages in a Webex Teams space

Get Webex Teams space history or be notified in real time when new

messages are posted by others

Figure 10-2 shows an overall picture of how Webex

Teams is organized. Only an admin has the ability to add

a new organization or a new user account for the

organization. An organization is made up of teams, and a

team can have one or more rooms. A person is an end

user who can be added to a room. People communicate

with each other or with everyone else in a room via

messages.

Figure 10-2 Webex Teams Building Blocks:

Organizations, Teams, Rooms, People, and Messages

API Authentication

There are four ways to access the Webex Teams APIs:

Personal access tokens

Integrations

Bots

Guest issuers

The Webex Representational State Transfer (REST) API

uses the Cisco Webex Common Identity (CI) account.

Once you create an account to join Webex Teams, you

have access to the Common Identity account, which

allows you to use the APIs and SDKs.

Personal Access Tokens

When making requests to the Webex REST API, an

authentication HTTP header is used to identify the

requesting user. This header must include an access

token, which may be a personal access token from the

developer site (https://developer.Webex.com), a bot

token, or an OAuth token from an integration or a guest

issuer application. The API reference uses your personal

https://developer.webex.com/

access token, which you can use to interact with the

Webex API as yourself. This token has a short lifetime—it

lasts only 12 hours after logging in to the site—so it

shouldn't be used outside of app development. Figure 10-

3 shows the bearer token as obtained from the developer

portal.

Figure 10-3 Webex Teams: Getting a Personal

Access Token

Integrations

To perform actions on behalf of someone else, you need a

separate access token that you obtain through an OAuth

authorization grant flow. OAuth is supported directly

into the platform. With a few easy steps, you can have a

Webex Teams user grant permission to your app and

perform actions on that person’s behalf. Figure 10-4

shows how third-party apps can access the platform.

Figure 10-4 Webex Teams: Third-Party

Integrations

You use an integration to request permission to invoke

the Webex REST API on behalf of another Webex Teams

user. To provide security, the API supports the OAuth 2

standard, which allows a third-party integration to get a

temporary access token for authenticating API calls

instead of asking users for their password.

Here are a few easy steps to get started using an

integration:

Step 1. Register an integration with Webex Teams at

https://developer.Webex.com/my-apps/new.

Figure 10-5 shows the sample form on the

portal that allows you to create a new

integration.

Figure 10-5 Creating a New Integration via the

Developer Portal

Step 2. Request permission by using an OAuth grant

flow by invoking the flow via

https://webexapis.com/v1/authorize and

providing a redirect URL to come back to. After

the integration is created successfully, you see a

screen like the one in Figure 10-6, which also

shows the full authorization URL.

https://developer.webex.com/my-apps/new
https://webexapis.com/v1/authorize

Figure 10-6 Successful Integration Results in OAuth

Credentials

Step 3. On the screen shown the Figure 10-7, click

Accept to obtain the authorization code for an

access token.

Figure 10-7 Using the OAuth Credentials and

Accepting Permissions

The redirect URL contains a code parameter in the query

string like so:

https://0.0.0.0:8080/?

code=NzAwMGUyZDUtYjcxMS00YWM4LTg3ZDYtNzd

hMDhhNWRjZGY5NGFmMjA3ZjEtYzRk_PF84_1eb65f

df-9643-417f-9974-ad72cae0e10f&state=set_state_here

Access Scopes

Scopes define the level of access that an integration

requires. Each integration alerts the end user with the

scope of the integration. Scopes determine what

resources the Access Token has access to. Table 10-2 lists

and describes the scopes.

Table 10-2 Webex Teams Scopes API Definitions

ScopeDescription

permission

dialog.spark:all

Full access to your Webex Teams

account

spark:people_read Read your company directory

spark:rooms_read List the titles of rooms that you’re

in

spark:rooms_write Manage rooms on your behalf

spark:memberships_r

ead

List the people in rooms that you’re

in

spark:memberships_w

rite

Invite people to rooms on your

behalf

spark:messages_read Read the content of rooms that

you’re in

spark:messages_write Post and delete messages on your

https://0.0.0.0:8080/?code=NzAwMGUyZDUtYjcxMS00YWM4LTg3ZDYtNzdhMDhhNWRjZGY5NGFmMjA3ZjEtYzRk_PF84_1eb65fdf-9643-417f-9974-ad72cae0e10f&state=set_state_here

behalf

spark:teams_read List the teams you are a member of

spark:teams_write Manage teams on your behalf

spark:team_members

hips_read

List the people in the teams that

you are in

spark:team_members

hips_write

Add people to teams on your behalf

spark:webhooks_read See all webhooks created on your

behalf

spark:webhooks_write Modify or delete webhooks created

on your behalf

The following sections examine some of the APIs you can

use to create rooms, add people, and send messages in a

room.

Organizations API

An organization is a set of people in Webex Teams.

Organizations may manage other organizations or may

be managed themselves. The Organizations API can be

accessed only by an administrator. Table 10-3 shows the

methods used with the Organizations API to get details

about organizations.

Table 10-3 Webex Teams: Organization API

MethodAPIDescription

G

E

T

https://webexapis.com/v1/org

anizations

List all the

organizations

https://webexapis.com/v1/organizations

G

E

T

https://webexapis.com/v1/org

anizations/{orgId}

Get details about an

organization

Note

The host name https://api.ciscospark.com has now

been changed to https://webexapis.com. The old

https://api.ciscospark.com will continue to work.

Teams API

A team is a group of people with a set of rooms that is

visible to all members of that team. The Teams API is

used to manage teams—to create, delete, and rename

teams. Table 10-4 lists the various operations that can be

performed on the Teams API.

Table 10-4 Webex Teams: Teams API

MethodAPIDescription

GET https://webexapis.com/v1/

teams

List all teams

POS

T

https://webexapis.com/v1/

teams

Create a new team

GET https://webexapis.com/v1/

teams/{teamId}

Get details about a

particular team

PUT https://webexapis.com/v1/

teams/{teamId}

Update details about

a team

DEL

ETE

https://webexapis.com/v1/

teams/{teamId}

Delete a team

https://api.ciscospark.com/
https://webexapis.com/
https://api.ciscospark.com/
https://webexapis.com/v1/teams
https://webexapis.com/v1/teams

For example, say that you want to use the Teams API to

create a new team named DevNet Associate Certification

Room. To do so, you use the POST method and the API

https://webexapis.com/v1/teams.

You can use a Python request to make the REST call.

Example 10-1 shows a Python script that sends a POST

request to create a new team. It initializes variables such

as the base URL, the payload, and the headers, and it

calls the request.

Example 10-1 Python Code to Create a New Team

Click here to view code image

""" Create Webex Team """

import json
import requests

URL = "https://webexapis.com/v1/teams"
PAYLOAD = {
 "name": "DevNet Associate Certification
Team"
}
HEADERS = {
 "Authorization": "Bearer
MDA0Y2VlMzktNDc2Ni00NzI5LWFiNmYtZmNmYzM3OTkyNjMxNmI0ND-

 VmNDktNGE1_PF84_consumer",
 "Content-Type": "application/json"
}
RESPONSE = requests.request("POST", URL,
data=json.dumps(PAYLOAD), headers=HEADERS)
print(RESPONSE.text)

Rooms API

Rooms are virtual meeting places where people post

messages and collaborate to get work done. The Rooms

API is used to manage rooms—to create, delete, and

rename them. Table 10-5 lists the operations that can be

performed with the Rooms API.

Table 10-5 Webex Teams: Rooms API

https://webexapis.com/v1/teams
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-1

MethodAPIDescription

GE

T

https://webexapis.com/v1/rooms List all the

rooms

PO

ST

https://webexapis.com/v1/rooms Create a new

room

GE

T

https://webexapis.com/v1/rooms/

{roomId}

Get room

details

GE

T

https://webexapis.com/v1/rooms/

{roomId}/meetingInfo

Get room

meeting

details

PU

T

https://webexapis.com/v1/rooms/

{roomId}

Update room

details

DE

LE

TE

https://webexapis.com/v1/rooms/

{roomId}

Delete a room

You can use the Rooms API to create a room. When you

do, an authenticated user is automatically added as a

member of the room. To create a room, you can use the

POST method and the

API https://webexapis.com/v1/rooms.

Example 10-2 show Python request code that creates a

room with the name DevAsc Team Room. It initializes

variables such as the base URL, the payload, and the

headers, and it calls the request. The header consists of

the bearer token of the authenticated user or the

integration along with other parameters.

Example 10-2 Python Request to Create a New Room

Click here to view code image

https://webexapis.com/v1/rooms
https://webexapis.com/v1/rooms
https://webexapis.com/v1/rooms
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-2

""" Create Webex Room """
import json
import requests
import pprint

URL = "https://webexapis.com/v1/rooms"
PAYLOAD = {
 "title": "DevAsc Team Room"
}
HEADERS = {
 "Authorization": "Bearer
MDA0Y2VlMzktNDc2Ni00NzI5LWFiNmYtZmNmYzM3OTkyNjMxNmI0ND-

 VmNDktNGE1_PF84_consumer",
 "Content-Type": "application/json"
}
RESPONSE = requests.request("POST", URL,
data=json.dumps(PAYLOAD), headers=HEADERS)
pprint.pprint(json.loads(RESPONSE.text))

Example 10-3 shows the response to creating a room.

The response includes the creation time and owner,

along with the ID, which can be used in subsequent calls.

Example 10-3 Response to the Successful Creation of a

Room

Click here to view code image

$ python3 CreateRoom.py
{'created': '2020-02-15T23:13:35.578Z',
 'creatorId':
'Y2lzY29zcGFyazovL3VzL1BFT1BMRS8wYWZmMmFhNC1mN2IyLTQ3MWU-

 tYTIzMi0xOTEyNDgwYmDEADB',
 'id':
'Y2lzY29zcGFyazovL3VzL1JPT00vY2FhMzJiYTAtNTA0OC0xMWVhLWJiZWItYmY1MWQyNGRm

 MTU0',
 'isLocked': False,
 'lastActivity': '2020-02-15T23:13:35.578Z',
 'ownerId': 'consumer',
 'title': 'DevAsc Team Room',
 'type': 'group'}
$

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-3

You can use the Rooms API to get a list of all the rooms

that have been created. To do so, you can use the GET

method and the API https://webexapis.com/v1/rooms.

Example 10-4 shows how to use the curl command to

make the REST call. This script sends a GET request to

list all rooms that a particular user belongs to.

Example 10-4 curl Script for Getting a List of All

Rooms

Click here to view code image

$ curl -X GET \
 https://webexapis.com/v1/rooms \
 -H 'Authorization: Bearer
DeadBeefMTAtN2UzZi00YjRiLWIzMGEtMThjMzliNWQwZGEyZTljN-

 WQxZTktNTRl_PF84_1eb65fdf-9643-417f-9974-
ad72cae0e10f'

Memberships API

A membership represents a person’s relationship to a

room. You can use the Memberships API to list members

of any room that you’re in or create memberships to

invite someone to a room. Memberships can also be

updated to make someone a moderator or deleted to

remove someone from the room. Table 10-6 lists the

operations that can be performed with respect to the

Memberships API, such as listing memberships and

adding a new member.

Table 10-6 Webex Teams: Memberships API

MethodAPIDescription

GE

T

https://webexapis.com/v1/mem

berships

List

memberships

PO https://webexapis.com/v1/mem Add a new

https://webexapis.com/v1/rooms
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-4
https://webexapis.com/v1/memberships
https://webexapis.com/v1/memberships

ST berships member

GE

T

https://webexapis.com/v1/mem

berships/{membershipId}

Get details about

a member

PU

T

https://webexapis.com/v1/mem

berships/{membershipId}

Update details

about a member

DE

LE

TE

https://webexapis.com/v1/mem

berships/{membershipId}

Delete a member

You can use the Memberships API to add a new member

to a given room (that is, create a new membership) by

using the POST method and the API

https://webexapis.com/v1/memberships.

You can use Python to make a REST call. Example 10-5

shows a curl script that sends a POST request to add a

new member with email-id newUser@devasc.com to the

room.

Example 10-5 Python Script to Add a New Member to

a Room

Click here to view code image

""" Add new Member to a Webex Room """

import json
import requests
import pprint

URL = "https://webexapis.com/v1/memberships"
PAYLOAD = {
 "roomId" :
"Y2lzY29zcGFyazovL3VzL1JPT00vY2FhMzJiYTAtNTA0OC0xMWVhLWJiZ-

 WItYmY1MWQyNGRDEADB",
 "personEmail": "newUser@devasc.com",
 "personDisplayName": "Cisco DevNet",
 "isModerator": "false"
}
HEADERS = {
 "Authorization": "Bearer

https://webexapis.com/v1/memberships
https://webexapis.com/v1/memberships
mailto:newUser@devasc.com
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-5

MDA0Y2VlMzktNDc2Ni00NzI5LWFiNmYtZmNmYzM3OTkyNjMxNmI0ND-

 VmNDktNGE1_PF84_consumer",
 "Content-Type": "application/json"
}
RESPONSE = requests.request("POST", URL,
data=json.dumps(PAYLOAD), headers=HEADERS)
pprint.pprint(json.loads(RESPONSE.text))

Messages API

Messages are communications that occur in a room. In

Webex Teams, each message is displayed on its own line,

along with a timestamp and sender information. You can

use the Messages API to list, create, and delete messages.

Message can contain plaintext, rich text, and a file

attachment. Table 10-7 shows the API for sending

messages to Webex Teams.

Table 10-7 Webex Teams: Message API

MethodAPIDescription

GET https://webexapis.com/v1/mes

sages

List messages

GET https://webexapis.com/v1/mes

sages/direct

List one-to-one

message

POS

T

https://webexapis.com/v1/mes

sages

Post a new

message

GET https://webexapis.com/v1/mes

sages/{messageId}

Get details about

a message

DEL

ETE

https://webexapis.com/v1/mes

sages/{messageId}

Delete a message

https://webexapis.com/v1/messages
https://webexapis.com/v1/messages/direct
https://webexapis.com/v1/messages

You can use the Messages API to add a new member to a

given room (that is, create a new membership). To do so,

you use the POST method and the

API https://webexapis.com/v1/messages.

You can use a Python request to make a REST call.

Example 10-6 shows a curl script that sends a POST

message to add a new message to a particular room.

Example 10-6 Python Script to Add a New Message to

a Room

Click here to view code image

""" Send Webex Message """

import json
import requests
import pprint

URL = "https://webexapis.com/v1/messages"
PAYLOAD = {
 "roomId" :
"Y2lzY29zcGFyazovL3VzL1JPT00vY2FhMzJiYTAtNTA0OC0xMWVhLWJiZ-

 WItYmY1MWQyNGRmMTU0",
 "text" : "This is a test message"
}
HEADERS = {
 "Authorization": "Bearer
NDkzODZkZDUtZDExNC00ODM5LTk0YmYtZmY4NDI0ZTE5ZDA1MGI-

 5YTY3OWUtZGYy_PF84_consumer",
 "Content-Type": "application/json",
}
RESPONSE = requests.request("POST", URL,
data=json.dumps(PAYLOAD), headers=HEADERS)
pprint.pprint(json.loads(RESPONSE.text))

Bots

A bot (short for chatbot) is a piece of code or an

application that simulates a human conversation. Users

communicate with a bot via the chat interface or by

voice, just as they would talk to a real person. Bots help

https://webexapis.com/v1/messages
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-6

users automate tasks, bring external content into the

discussion, and gain efficiencies. Webex Teams has a rich

set of APIs that make it very easy and simple for any

developer to add a bot to any Teams room. In Webex,

bots are similar to regular Webex Teams users. They can

participate in one-to-one and group spaces, and users

can message them directly or add them to a group space.

A special badge is added to a bot’s avatar in the Webex

Teams clients so users know they’re interacting with a

bot instead of a human.

A bot can only access messages sent to it directly. In

group spaces, bots must be @mentioned to access a

message. In one-to-one spaces, a bot has access to all

messages from the user. Bots are typically of the three

types described in Table 10-8.

Table 10-8 Bot Types

TypeDescription

N

o

ti

fi

c

a

ti

o

n

b

o

t

Events from external services are brought in and posted

in Webex Teams. Examples of events include build

complete, retail inventory status, and temperature today.

C

o

n

tr

o

External systems that have APIs allow third-party apps

to be integrated to control them. For example, you could

control turning lights on or off by invoking a lights bot.

ll

e

r

b

o

t

A

s

si

st

a

n

t

b

o

t

Virtual assistants usually understand natural language,

so a user can ask questions of bots as they would ask

humans (for example, “@Merakibot, how many wifi

devices are currently on floor 2?”)

Bot Frameworks and Tools

There are several bot frameworks that can greatly

simplify the bot development process by abstracting

away the low-level communications with the Webex

REST API, such as creating and sending API requests

and configuring webhooks. You can focus on building the

interaction and business logic of a bot. These are two

popular bot frameworks:

Flint: Flint is an open-source bot framework with support for regex

pattern matching for messages and more.

Botkit: Botkit is a popular open-source bot framework with advanced

conversational support as well as integrations with a comprehensive

array of natural language processing and storage providers.

One of the greatest starting points for learning about and

creating your own bots for Webex Teams is the DevNet

Code Exchange, at

https://developer.cisco.com/codeexchange/github/repo

/howdyai/botkit, which is shown in Figure 10-8.

https://developer.cisco.com/codeexchange/github/repo/howdyai/botkit

Figure 10-8 DevNet Code Exchange: Building Your

First Bot

Guest Issuer

Guest issuer applications give guest users temporary

access to users within the organization. Guest issuers can

be created at https://developer.Webex.com/my-

apps/new/guest-issuer. To create a new guest issuer, the

only thing that is required is the name. A new guest

issuer ID and shared secret will be generated and can be

used subsequently. The main reason to use a guest issuer

is to interact with users who do not have a Webex Teams

account. These users might be visitors to a website who

you’d like to message with over Webex Teams. Or they

might be customers in a store with which you’d like to

have a video call. These guest users can interact with

regular Webex Teams users via tokens generated by a

guest issuer application.

Guest users of Webex Teams authenticate by using guest

tokens. Guest tokens use the JSON Web Token (JWT)

standard to create and share authentication credentials

between SDKs and widgets and the Webex REST API.

These tokens are exchanged for an access authentication

token that can be used for a limited time and limited

purpose to interact with regular Webex Teams users.

https://developer.webex.com/my-apps/new/guest-issuer

Each guest token should be associated with an individual

user of an application. The guest’s activity within Webex

Teams, such as message activity or call history, will

persist, just as it would for a regular Webex Teams user.

While guest users can interact with regular Webex Teams

users, they are not allowed to interact with other guests.

Example 10-7 shows a Python code snippet that creates a

JWT token from the guest issuer ID and secret and

passes it in the authentication headers. It is then possible

to use any of the APIs to interact with other users in the

system.

Example 10-7 Python Code to Generate a JWT Token

for a Guest Issuer

Click here to view code image

""" Generate JWT """

import base64
import time
import math
import jwt

EXPIRATION = math.floor(time.time()) + 3600 # 1
hour from now
PAYLOAD = {
 "sub": "devASC",
 "name": "devASC-guest",
 "iss": "GUEST_ISSUER_ID",
 "exp": EXPIRATION
}

SECRET = base64.b64decode('GUEST_ISSUE_SECRET')

TOKEN = jwt.encode(PAYLOAD, SECRET)

print(TOKEN.decode('utf-8'))
HEADERS = {
 'Authorization': 'Bearer ' +
TOKEN.decode('utf-8')
}

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-7

Webex Teams SDKs

As of this writing, there is a variety of SDKs available;

some of them are official Webex Teams SDKs, and others

are from the community. The following is a selection of

the Web Teams SDKs that are available:

Go (go-cisco-Webex-teams): A Go client library (by jbogarin)

Java (spark-java-sdk): A Java library for consuming the RESTful

APIs (by Cisco Webex)

Node.js (ciscospark): A collection of Node.js modules targeting the

REST API (by Cisco Webex)

PHP (SparkBundle): A Symfony bundle (by CiscoVE)

Python (Webexteamssdk): An SDK that works with the REST APIs

in native Python (by cmlccie)

The following are some advanced APIs:

SDK for Android: Integrates messaging and calling into Android

apps (by Cisco Webex)

SDK for Browsers: Integrates calling into client-side JavaScript

applications (by Cisco Webex)

SDK for iOS: Integrates messaging and calling into iOS apps (by

Cisco Webex)

SDK for Windows: Integrates messaging and calling into Windows

apps (by Cisco Webex)

Widgets: Provides components that mimic the web user experience

(by Cisco Webex)

CISCO FINESSE

The Cisco Finesse desktop is a call agent and supervisor

desktop solution designed to meet the growing needs of

agents, supervisors, and the administrators and

developers who support them. The Cisco Finesse desktop

runs in a browser, which means you install Cisco Unified

Contact Center Express (Unified CCX), and agents start

by simply typing in the URL for the Unified CCX server.

The desktop is more than an agent state and call-control

application. It is an OpenSocial gadget container, built to

include third-party applications in a single agent desktop

experience. Rather than switching between applications,

agents have easy access to all applications and tools from

a single window, which increases their efficiency. Figure

10-9 shows the architecture and high-level flow of

Finesse, which involves the following steps:

Figure 10-9 Finesse High-Level Flow

Step 1. The call arrives from either the PSTN or a VoIP

connection to the gateway.

Step 2. The gateway then hands over the call to

Unified CM, which invokes the application that

was preregistered. In this case, it is handled by

Unified CCX.

Step 3. Unified CM notifies the Unified CCX about the

incoming call via JTAPI.

Step 4. After consulting the resource manager

(routing the call to the agent based on skills,

priority, and rebalancing), Unified CCX notifies

Finesse via computer telephony integration

(CTI) connection.

Step 5. Finesse performs internal processing and then

publishes a notification to Notification Service.

Step 6. The Finesse desktop receives this notification

from Notification Service via the Bidirectional-

streams Over Synchronous HTTP (BOSH)

connection (Extensible Messaging and Presence

Protocol [XMPP]).

Step 7. The agent makes a request to perform an

operation (such as answer a call); the app

makes this HTTP (REST) request to Finesse

Web Services.

Step 8. Finesse processes the request and then, if

necessary, requests action with Unified CCE via

CTI connection. Where applicable, Unified CCE

performs/forwards the requested action.

Step 9. Unified CCE notifies Finesse via CTI

connection about whether the request was

successful or caused an error.

Step 10. Finesse processes the notification

(successful/error) and publishes the

notification to Notification Service. The agent

web browser receives this notification from

Notification Service via the BOSH connection.

The Finesse agent goes through various states that

specifically pertain to the agent workflow (see Table 10-

9).

Table 10-9 User States in Finesse

StateDescription

LO

GI

N

The agent is signing in to the system. This is an

intermediate state.

LO

GO

UT

The agent is signed off the system.

RE

AD

Y

The agent is ready to take calls.

NO

T_

RE

AD

Y

The agent is signed in but not ready to take calls. It

could be on a break, or the shift might be over, or the

agent might be in between calls.

RE

SE

RV

ED

This is a transient state, as the agent gets chosen but

has not answered the call.

TA

LK

IN

G

The agent is on a call.

H

OL

D

The agent puts the call on hold.

Cisco Finesse API

The Cisco Finesse API is a modern, open-standards-

based web API, exposed via REST. Each function

available in the Cisco Finesse user interface has a

corresponding REST API that allows all types of

integrations for developers to use. The extensibility and

ease of use of the API are unprecedented on Unified

CCX. Agents and supervisors use the Cisco Finesse

desktop APIs to communicate between the Finesse

desktop and Finesse server, and they use Unified Contact

Center Enterprise (Unified CCE) or Unified Contact

Center Express (Unified CCX) to send and receive

information.

The Finesse APIs can be broadly classified into the

following categories:

User

Dialog

Queue

Team

ClientLog

Task Routing APIs

Single Sign-On

TeamMessage

Cisco Finesse supports both HTTP and HTTP Secure

(HTTPS) requests from clients. Cisco Finesse desktop

operations can be performed using one of the many

available REST-like HTTP/HTTPS requests. Operations

on specific objects are performed using the ID of the

object in the REST URL. For example, the URL to view a

single object (HTTP) would be as follows:

http://<FQDN>:

<port>/finesse/api/<object>/<objectID>

where FQDN is the fully qualified domain name of the

Finesse server.

Finesse configuration APIs require the application user

ID and password, which are established during

installation, for authentication purposes.

Finesse APIs use the following HTTP methods to make

requests:

GET: Retrieves a single object or list of objects (for example, a single

user or list of users).

PUT: Replaces a value in an object (for example, to change the state of

a user from NOT_READY to READY).

POST: Creates a new entry in a collection (for example, to create a new

reason code or wrap-up reason).

DELETE: Removes an entry from a collection (for example, to delete a

reason code or wrap-up reason).

Finesse uses the standard HTTP status codes (for

example, 200, 400, and 500) in the response to indicate

the overall success or failure of a request.

API Authentication

All Finesse APIs use HTTP BASIC authentication, which

requires the credentials to be sent in the authorization

header. The credentials contain the username and

password, separated by a single colon (:), within a

Base64-encoded string. For example, the authorization

header would contain the following string:

Click here to view code image

"Basic ZGV2YXNjOnN0cm9uZ3Bhc3N3b3Jk"

where ZGV2YXNjOnN0cm9uZ3Bhc3N3b3Jk is the

Base64-encoded string devasc:strongpassword (where

devasc is the username, and strongpassword is the

password). Example 10-8 shows three lines of code that

do Base64 encoding in order to plug the value in the

authorization headers.

Example 10-8 Python Code to Generate Base64

Encoding

Click here to view code image

""" Generate Base64 Encoding """
import base64
ENCODED =
base64.b64encode('devasc:strongpassword'.encode('UTF-
8'))
print(ENCODED.decode('utf-8'))

With Single Sign-On mode, the authorization header

would contain the following string:

"Bearer <authtoken>"

Finesse User APIs

Table 10-10 lists the various methods and User APIs to

perform operations with the user, such as listing, logging

in, and changing properties.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#ppg276
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-8

Table 10-10 Finesse User APIs

MethodAPIDescription

G

E

T

http://<FQDN>/fine

sse/api/User/<id>

Get a copy of the user object

G

E

T

http://<FQDN>/fine

sse/api/User

Get a list of all users

P

U

T

http://<FQDN>/fine

sse/api/User/<id>

with XML body:

<User>

 <state>LOGIN</st

ate>

<extension>5250001

</extension>

</User>

Sign in to the CTI server

P

U

T

http://<FQDN>/fine

sse/api/User/<id>

with XML body:

<User>

 <state>READY</st

ate>

</User>

Set the user’s state:

READY

NOT_READY

LOGOUT

G

E

T

http://<FQDN>/fine

sse/api/User/<id>/P

honeBooks

Get a list of phone books and

the first 1500 associated

contacts for that user

A full list of all User state change APIs with details can be

found at

https://developer.cisco.com/docs/finesse/#!userchange-

agent-state/userchange-agent-state.

For example, the User—Sign in to Finesse API forces you

to sign-in. Say that you use the following information

with this API:

Finesse server FQDN: http://hq-uccx01.abc.inc

Agent name: Anthony Phyllis

Agent ID: user001

Agent password: cisco1234

Example 10-9 shows a simple call using Python requests.

The API call for user login uses the PUT request along

with an XML body that sets the state to LOGIN.

Example 10-9 Python Request: Finesse User Login

Click here to view code image

""" Finesse - User Login"""
import requests

URL = "http://hq-
uccx.abc.inc:8082/finesse/api/User/Agent001"
PAYLOAD = (
 "<User>" +
 " <state>LOGIN</state>" +
 " <extension>6001</extension>" +
 "</User>"
)

HEADERS = {
 'authorization': "Basic
QWdlbnQwMDE6Y2lzY29wc2R0",
 'content-type': "application/xml",
 }
RESPONSE = requests.request("PUT", URL,
data=PAYLOAD, headers=HEADERS)
print(RESPONSE.text)
print(RESPONSE.status_code)

https://developer.cisco.com/docs/finesse/#!userchange-agent-state/userchange-agent-state
http://hq-uccx01.abc.inc/
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-9

As another example, the User State Change API lets the

users change their state. State changes could be any one

as shown in Table 10-9. Say that you use the following

information with this API:

Finesse server FQDN: http://hq-uccx01.abc.inc

Agent name: Anthony Phyllis

Agent ID: user001

Agent password: cisco1234

The API changes the state to READY.

Example 10-10 shows a simple call using Python

requests. The API call for user login uses the PUT

request along with an XML body that sets the state to

READY.

Example 10-10 Python Request for a Finesse User

State Change

Click here to view code image

""" Finesse - User State Change"""
import requests

URL = "http://hq-
uccx.abc.inc:8082/finesse/api/User/Agent001"
PAYLOAD = (
 "<User>" +
 " <state>READY</state>" +
 "</User>"
)

HEADERS = {
 'authorization': "Basic
QWdlbnQwMDE6Y2lzY29wc2R0",
 'content-type': "application/xml",
 }
RESPONSE = requests.request("PUT", URL,
data=PAYLOAD, headers=HEADERS)
print(RESPONSE.text)
print(RESPONSE.status_code)

Finesse Team APIs

http://hq-uccx01.abc.inc/
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-10

The Team object represents a team and contains the

URI, the team name, and the users associated with the

team. Table 10-11 shows the Finesse Team APIs to access

the Team object and list all team messages.

Table 10-11 Finesse Team APIs

MethodAPIDescription

G

E

T

http://<FQDN>/finesse/api/

Team/<id>?

includeLoggedOutAgents=tru

e

Allow a user to get a

copy of the Team

object

G

E

T

http://<FQDN>/finesse/api/

Team/<teamid>/TeamMessa

ges

Get a list of all active

team messages for a

particular team

A full list of the Team APIs, with details, can be found at

https://developer.cisco.com/docs/finesse/#team-apis.

The Python script in Example 10-11 shows how to make

an API call to get details about Team ID 2.

Example 10-11 Python Request to Get Finesse Team

Details

Click here to view code image

import requests
url = "https://hq-
uccx.abc.inc:8445/finesse/api/Team/2"
headers = {
 'authorization': "Basic
QWdlbnQwMDE6Y2lzY29wc2R0",
 'cache-control': "no-cache",
 }
response = requests.request("GET", url,
headers=headers)
print(response.text)

https://developer.cisco.com/docs/finesse/#team-apis
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-11

Dialog APIs

The Dialog object represents a dialog (voice or non-

voice) between two or more users. There are many

flavors of dialog APIs. Table 10-12 shows the Finesse

dialog API, which lets two users make a call with each

other.

Table 10-12 Sample of Finesse Dialog APIs

MethodAPIDescription

P

O

S

T

http://<FQDN>/finesse/api/U

ser/<id>/Dialogs

with XML Body:

<Dialog>

 <requestedAction>MAKE_C

ALL</requestedAction>

 <fromAddress>6001</fromA

ddress>

 <toAddress>6002</toAddres

s>

</Dialog>

Allow a user to make

a call

P

U

T

http://<FQDN>/finesse/api/D

ialog/<dialogId>

with XML body:

<Dialog>

 <requestedAction>START_R

ECORDING</requestedAction

>

 <targetMediaAddress>6001<

/targetMediaAddress>

</Dialog>

Allow a user to start

recording an active

call

A full list of the Dialog APIs, with details, can be found at

https://developer.cisco.com/docs/finesse/#dialog-apis.

The Python script in Example 10-12 shows how to make

an API call to make a call between extension 6001 and

extension 6002.

Example 10-12 Python Request to Initiate a Dialog

Between Two Numbers

Click here to view code image

""" Finesse - Initiate a dialog between two
numbers """
import requests

URL = "http://hq-
uccx.abc.inc:8082/finesse/api/User/Agent001/Dialogs"

PAYLOAD = (
 "<Dialog>" +
 "
<requestedAction>MAKE_CALL</requestedAction>" +
 " <fromAddress>6001</fromAddress>" +
 " <toAddress>6002</toAddress>" +
 "</Dialog>"
)

HEADERS = {
 'authorization': "Basic
QWdlbnQwMDE6Y2lzY29wc2R0",
 'content-type': "application/xml",
 'cache-control': "no-cache",
 }
RESPONSE = requests.request("POST", URL,
data=PAYLOAD, headers=HEADERS)
print(RESPONSE.text)
print(RESPONSE.status_code)

Finesse Gadgets

As indicated earlier in this chapter, the Finesse desktop

application is an OpenSocial gadget container. This

means that an agent or anyone else can customize what

is on the desktop. Gadgets are built using HTML, CSS,

https://developer.cisco.com/docs/finesse/#dialog-apis
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-12

and JavaScript. A gadget is a simple but powerful tool

that allows an agent to quickly send one or more web

pages (carefully curated by the client teams themselves)

to their caller over Instant Messenger or via email. This

feature automates the four or five manual steps usually

associated with this task.

A gadget is defined using declarative XML syntax that is

processed by a gadget server so that it can be embedded

into the following contexts:

Standalone web pages

Web applications

Other gadgets

The Finesse JavaScript library can be found on a Finesse

server at http(s)://<FQDN>:

<port>/desktop/assets/js/doc/index.html.

Several gadgets are available at

https://developer.cisco.com/docs/finesse/#!sample-

gadgets/sample-gadgets.

WEBEX MEETINGS APIS

The Webex Meetings APIs let users incorporate Cisco

Webex meetings into their own applications:

URL API: The URL API is a convenient lightweight, HTTP/HTTPS-

based mechanism that provides browser-based external hooks into

Webex Meetings services. The URL API is typically used in enterprise

portal integrations to support basic interactions such as single sign-on

(SSO), scheduling meetings, starting and joining simple meetings, and

inviting attendees and presenters. Figure 10-10 provides a high-level

overview of where the URL API integration layer resides.

https://developer.cisco.com/docs/finesse/#!sample-gadgets/sample-gadgets

Figure 10-10 Webex Meetings API Architecture

XML API: If more advanced integration is needed than is possible

with the URL API, Cisco strongly recommends using the Webex

Meetings XML API. The XML API is a comprehensive set of services

that supports most aspects of Webex Meetings services, including

detailed user management, comprehensive scheduling features, and

attendee management and reporting. The Webex XML API uses a

service-oriented architecture (SOA) to provide comprehensive services

to external applications wishing to interact with one or more Webex

services.

Teleconference Service Provider (TSP) API: The TSP API

provides full-featured XML-based integration with audio conferencing

networks. The integration architecture supports redundancy, failover,

and load balancing, and it provides robust features that tightly integrate

audio conferencing capabilities with telephony management and

provisioning in the Webex environment.

Table 10-13 summarizes the available URL API services

and simple commands for integrating with a Webex

Meetings–hosted website.

Table 10-13 Webex Meetings Services Supported via

APIs

Service NameIntegration Usage

Managing User

Accounts

Creating a new user account

Editing an existing user account

Activating and deactivating user

accounts

Webex-hosted

website

login/logout

Using an authenticated server-to-server

connection for logging in to and out of a

Webex Meetings–hosted website

Using and

Managing

Meetings

Scheduling a meeting

Editing a meeting

Starting or deleting a host’s scheduled

meeting

Listing all scheduled meetings

Listing all open meetings

Joining an open meeting

Modifying My

Webex Meetings

page

Modifying user information on the My

Webex Meetings page

Managing a user’s My Contacts list

Using Attendee

Registration

forums

Creating a registration form

Determining the current required,

optional, or do-not-display settings for

a registration page

Adding check boxes, buttons, and drop-

down lists to a registration form

Managing

Attendee Lists

Adding attendees to a list of invited

users

Removing attendees from a list of

invited users

Playing back a

recorded event

Allowing an attendee to get a list of

recorded events for playback

Querying for

Questions and

Answers

Viewing a list of custom questions

created by the host

Viewing attendees’ answers to custom

questions

Viewing a list of standard questions

created by the host

Viewing attendees’ answers to standard

questions

Making Recording

Training Sessions

available for

viewing

Making all aspects of a previously

recorded Training Center session

available for later playback

Reporting Sending email notifications with

attendee information

Displaying reporting information about

training sessions you hosted

Viewing a list of enrollees and

attendees for events

Viewing a list of all events a specific

attendee has joined

Viewing a list of people who have

downloaded files

Authentication

There are three methods by which a user can interact

with the Webex Meetings via APIs:

Webex Meetings integration: An application can authenticate XML

API requests using OAuth 2.0 access tokens. This authentication

method does require end-user authorization and authentication and is

best used when performing API functions on behalf of the active user.

Administrative account: A system account can perform

administrative functions on behalf of host users. This method requires

the username and password to be passed via XML.

User accounts: A system account can perform functions only for its

own accounts. This method requires the username and password to be

passed via XML.

Integration API Keys

In order to use the Webex Meetings APIs, you need to

preregister an API key and then use the HM256

algorithm to generate a JWT token to access a Webex

anonymous API (e.g., GetSessionInfoAgg,

GetAllSitesByEmailAgg).

To apply for an API key, visit

https://api.Webex.com/gapi/registerapikey. After you

apply for the key, you get the API and the secret (see

Example 10-13).

Example 10-13 Webex Meeting Integration Key

Obtained via the Portal

Click here to view code image

Name: myname mylastname
Email: myname@devasc.com
New API key: deadbeaf-d1e3-4000-993f-
0d9479ab4944
New Passcode: 2BEEF
New Secret key:
DEADBEEFNYH54RP8THOJSXM8OJKOUJVHXKGK7QQZSL1KF2D967JY5XZIR64B3GY5N-

GRWMBVXG132XDGZOT5XJ62VQU4558I13J8IQ7TPEIPFB9MNG48WJM67F5C82P01VYTQTT4428T7RYQN0-

YMSHXAX8ARLVQHHPNCCH1RJZYRIUF3AI0O0A6BA3BQN54DJ9VN3V9XPKUZZM1E570X07IKTSHDVTPW8CW-

MU5Y9XZG76Z9FFA5UN1DJ7N39RXQQE99TRFA5HDBL2BJBPUOX6NMY6BDBZ4JP2IQ3RP3D6D7CUBP5U7W5EK-

BWVTRZQXBY0L4M98Y1BR9HX5FD9D9HWYA
Expiration time: 4/27/20 6:22 AM GMT

Webex XML APIs

The Webex XML model utilizes the exchange of well-

formed XML documents to deploy messages. Each of

these messages relates to a specific Webex operation. An

XML request document specifies the desired action of

the particular service’s elements. The XML response

document returned by the Webex XML server describes

the revised state of that service, as determined by the

Webex XML server.

https://api.webex.com/gapi/registerapikey
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-13

Figure 10-11 provides a simplified representation of the

architecture of the Webex model.

Figure 10-11 Webex XML Model Architecture

As shown in Figure 10-11, an application sends a request

XML document to perform a specific request—such as

creating a new meeting—to the Webex XML server. This

request XML document describes the state of the

elements associated with the operation for this request.

The Webex XML server then returns to the original

application the revised element values for this operation

via a response XML document created by the Webex

XML document processor.

The Webex XML server can be accessed at

https://api.Webex.com/WBXService/XMLService.

Creating a New Meeting

The CreateMeeting API enables users to schedule a

meeting. This API returns a unique meeting key for the

session. Table 10-14 shows the API and the XML body to

create a new meeting.

Table 10-14 Creating or Scheduling a Webex Meeting

MethodAPIDescription

P

O

https://api.Webex.com/

WBXService/XMLServic

e

Create a new meeting with

various attributes such as

https://api.webex.com/WBXService/XMLService

S

T with XML body:

<body>

 <bodyContent

xsi:type="java:com.Web

ex.service.binding.meeti

ng.CreateMeeting">

 <metaData>

 <confName>Br

anding

Meeting</confName>

 </metaData>

 <schedule>

 <startDate/>

 </schedule>

 </bodyContent>

 </body>

name, start time,

password, and attendees

Example 10-14 shows how to make an API call to create a

new meeting with a particular subject line. The response

is usually the new meeting ID.

Example 10-14 Creating a New Meeting Using the

CreateMeeting API

Click here to view code image

curl -X POST \
 https://api.Webex.com/WBXService/XMLService \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/xml' \
 -d '<?xml version="1.0" encoding="UTF-8"?>
<serv:message
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <header>
 <securityContext>
 <WebexID>devasc</WebexID>

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-14

 <password>Kc5Ac4Ml</password>
 <siteName>apidemoeu</siteName>
 </securityContext>
 </header>
 <body>
 <bodyContent
xsi:type="java:com.Webex.service.binding.meeting.

 CreateMeeting">
 <metaData>
 <confName>Branding
Meeting</confName>
 </metaData>
 <schedule>
 <startDate/>
 </schedule>
 </bodyContent>
 </body>
</serv:message>'

Listing All My Meetings Meeting

The LstsummaryMeeting API lists summary information

for scheduled meetings. This API returns a unique

meeting key for a session. Table 10-15 shows the XML

data that needs to be sent in order to list all meetings

sorted by start time.

Table 10-15 Listing All Webex Meetings That Match

Certain Criteria

MethodAPIDescription

P

O

S

T

https://api.Webex.com/WBXServi

ce/XMLService with XML body:

<body>

 <bodyContent

 xsi:type="java:com.Webex.serv

ice.binding.meeting.Lstsummary

Meeting">

 <order>

List all meetings

that meet certain

criteria

https://api.webex.com/WBXService/XMLService

 <orderBy>STARTTIME</ord

erBy>

 </order>

 </bodyContent>

</body>

Example 10-15 shows how to make an API call to list

meetings sorted by time.

Example 10-15 Listing All Meetings for a User by

Using the LstsummaryMeeting API

Click here to view code image

curl -X POST \
 https://api.Webex.com/WBXService/XMLService \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/xml' \
 -d '<serv:message
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <header>
 <securityContext>
 <WebexID>devasc</WebexID>
 <password>Kc5Ac4Ml</password>
 <siteName>apidemoeu</siteName>
 </securityContext>
 </header>
 <body>
 <bodyContent

xsi:type="java:com.Webex.service.binding.meeting.LstsummaryMeeting">

 <order>
 <orderBy>STARTTIME</orderBy>
 </order>
 </bodyContent>
 </body>
</serv:message>'

Setting or Modifying Meeting Attributes

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-15

The SetMeeting API enables hosts/users to update the

information for a scheduled meeting that they are able to

edit. Table 10-16 shows the XML data that needs to be

sent in order to modify meeting attributes.

Table 10-16 Modify Meeting Attributes

MethodAPIDescription

P

O

S

T

https://api.Webex.co

m/WBXService/XML

Service with XML

body:

<bodyContent

 xsi:type="java:co

m.Webex.service.bind

ing.meeting.SetMeeti

ng">

 <meetingkey>625

579604</meetingkey

>

 <participants>

 <attendees>

 <attendee>

 <person>

 <email>stude

nt@devasc.com</em

ail>

 </person>

 </attendee>

 </attendees>

</bodyContent>

Update meeting attributes

such as attendees, record

meeting, schedules, and

media support

https://api.webex.com/WBXService/XMLService

Example 10-16 shows how to make an API call to add a

new attendee (student@devasc.com) to the meeting and

send an email invitation to that person.

Example 10-16 Adding a New User to a Meeting by

Using the SetMeeting API

Click here to view code image

curl -X POST \
 https://api.Webex.com/WBXService/XMLService \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/xml' \
 -d '<serv:message
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <header>
 <securityContext>
 <WebexID>devasc</WebexID>
 <password>Kc5Ac4Ml</password>
 <siteName>apidemoeu</siteName>
 </securityContext>
 </header>
 <body>
 <bodyContent

xsi:type="java:com.Webex.service.binding.meeting.SetMeeting">

 <meetingkey>625579604</meetingkey>
 <participants>
 <attendees>
 <attendee>
 <person>
 <email>student@devasc.com</email>
 </person>
 </attendee>
 </attendees>
 </participants>
 <attendeeOptions>

<emailInvitations>true</emailInvitations>
 </attendeeOptions>
 <schedule>
 <openTime>300</openTime>
 </schedule>
 </bodyContent>
 </body>
</serv:message>'

mailto:student@devasc.com
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-16

Deleting a Meeting

The DelMeeting API allows hosts to delete a meeting that

is not currently in progress. The API continues to use the

POST method, but the XML data contains the operation

of deleting the meeting. Table 10-17 shows the XML data

that needs to be sent in order to delete a meeting.

Table 10-17 Deleting a Webex Meeting Using the

Meeting Key

MethodAPIDescription

P

O

S

T

https://api.Webex.com/WBXS

ervice/XMLService with XML

body:

<body>

 <bodyContent

 xsi:type="java:com.Web

ex.service.binding.meeting.Del

Meeting">

 <meetingKey>62557960

4</meetingKey>

 </bodyContent>

</body>

Delete or cancel a

meeting, given the

meeting ID

Example 10-17 shows how to make an API call to delete

the meeting with ID =625579604.

Example 10-17 Deleting a Meeting Using the

DelMeeting API

Click here to view code image

curl -X POST \
 https://api.Webex.com/WBXService/XMLService \
 -H 'cache-control: no-cache' \

https://api.webex.com/WBXService/XMLService
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-17

 -H 'content-type: application/xml' \
 -d '<serv:message
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <header>
 <securityContext>
 <WebexID>devasc</WebexID>
 <password>Kc5Ac4Ml</password>
 <siteName>apidemoeu</siteName>
 </securityContext>
 </header>
 <body>
 <bodyContent

xsi:type="java:com.Webex.service.binding.meeting.DelMeeting">

 <meetingKey>625579604</meetingKey>
 </bodyContent>
 </body>
</serv:message>'

The Meetings XML API provides a method to integrate

Webex Meetings services with your custom web portal or

application. For more details about the Webex Meetings

APIs, see https://developer.cisco.com/docs/Webex-

meetings/#!Webex-meetings.

WEBEX DEVICES

Webex Devices enables users to communicate and work

with each other in real time. The collaboration devices

can be placed in meeting rooms or at desks. Except for

the high-quality audio and video support, these devices

are fully programmable. Through embedded APIs (often

referenced as xAPI), you can extend and leverage Webex

Room and Desk device capabilities in several ways:

Create user interface components to customize the meeting experience

and control IoT devices such as lights, curtains, and projectors from the

device controls interface

Configure devices at scale via automation scripts

Initiate or respond to calls automatically

Deploy code onto the devices without needing to deploy external

control systems

https://developer.cisco.com/docs/Webex-meetings/#!Webex-meetings

Webex Devices includes the following devices, as shown

in Figure 10-12:

Webex Board: Cisco Webex Room Kit, Room Kit Plus, and Room Kit

Pro

Room Devices: Room 55, Room 70, Room 70 Dual, Board 55/55S,

Board 70/70S, Board 85S, Cisco TelePresence MX200 G2, MX300 G2,

MX700, MX800, MX800 Dual, SX10, SX20, and SX80

Webex Desk Device: Cisco Webex DX80 and DX70 Collaboration

Endpoint Software version 9

Figure 10-12 Webex Boards, Room, and Desk

Devices

xAPI

xAPI is the API for collaboration endpoint software

(Cisco CE and RoomOS) for both on-premises registered

video conferencing devices (Unified CM and VCS) and

devices registered to Cisco’s cloud service (Cisco Webex

Devices). xAPI consists of four major groups:

Commands

Configurations

Status

Events

Table 10-18 shows the high-level API categories that

xAPI supports.

Table 10-18 xAPI Categories

MethodAPIDescription

G

E

T

http://<ip-

address>/sta

tus.xml

Get the complete status of the device

G

E

T

http://<ip-

address>/co

nfiguration.x

ml

Get the complete configuration of the

device

G

E

T

http://<ip-

address>/co

mmand.xml

Get the complete command set

supported by the device

G

E

T

http://<ip-

address>/val

uespace.xml

Get an overview of all the value spaces

used in the system settings, status

information, and commands

P

O

S

T

http://<ip-

address>/pu

txml

Configure any settings on the device

xAPI Authentication

Access to xAPI requires the user to authenticate using

HTTP basic access authentication as a user with the

ADMIN role. Unauthenticated requests prompt a 401

HTTP response containing a basic access authentication

challenge.

If an application will be issuing multiple commands

through xAPI, it is recommended that you use session

authentication because the standard basic authentication

does a full re-authentication per request, which may

affect the performance of your application.

xAPI Session Authentication

Authenticating with your username and password

combination for each API request might introduce too

much latency for some use cases. To mitigate this, the

API supports a session-based authentication mechanism.

To open a session, issue a POST to http://<ip-

address>/xmlapi/session/begin with basic access

authentication. The response sets a SessionId-cookie that

can be used with subsequent requests.

Note that when using API session authentication, it is

important to explicitly close the session when you are

done. Failing to do so may cause the device to run out of

sessions, as a limited number of concurrent sessions are

available, and they do not time out automatically.

Creating a Session

You create a session by sending an xAPI session request

to the endpoint. Example 10-18 shows a simple Python

POST request, to which the server responds with the

session cookie.

Example 10-18 Python Script to Get a Session Cookie

Click here to view code image

""" Webex Devices - Get Session Cookie """
import requests
URL =
"http://10.10.20.159/xmlapi/session/begin"
HEADERS = {
 'Authorization': "Basic
ZGV2YXNjOkMxc2NvITIz"
 }

RESPONSE = requests.request("POST", URL,
headers=HEADERS)
print(RESPONSE.headers["Set-Cookie"])

The corresponding response header contains the session

cookie, as shown in Example 10-19.

Example 10-19 Response Header Containing the

Session Cookie

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-18

Click here to view code image

$ python3 sess.py
SessionId=031033bebe67130d4d94747b6b9d4e4f6bd29
65162ed542f22d32d75a9f238f9; Path=/;
HttpOnly

Getting the Current Device Status

After a session is established, the session cookie is used

in each of the interactions. Example 10-20 shows how to

use the cookie to get the current status of the device by

issuing a simple Python GET request to get the status.

Example 10-20 Python Script to Get Endpoint Status

Click here to view code image

""" Webex Device - Endpoint Status """

import requests
URL = "http://10.10.20.159/status.xml"
HEADERS = {
 'Cookie':
"SessionId=c6ca2fc23d3f211e0517d4c603fbe4205c77d13dd6913c7bc12eef4085b

7637b"
}

RESPONSE = requests.request("GET", URL,
headers=HEADERS)
print(RESPONSE.text)

Setting Device Attributes

When a session is established, the session cookie is used

in each of the interactions. Example 10-21 shows how to

use the cookie to set the camera position with certain pan

and tilt values.

Example 10-21 Python Script to Send a Command to

Set the Camera Position

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-19
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-20
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-21

""" Webex Device - Set Camera Position """

import requests

URL = "http://10.10.20.159/put.xml"

PAYLOAD = (
 '<Command>' +
 ' <Camera>' +
 ' <PositionSet command="True">' +
 ' <CameraId>1</CameraId>' +
 ' <Pan>150</Pan>' +
 ' <Tilt>150</Tilt>' +
 ' </PositionSet>' +
 ' </Camera>' +
 '</Command>'
)

HEADERS = {
 'Content-Type': "application/xml",
 'Cookie':
"SessionId=c6ca2fc23d3f211e0517d4c603fbe4205c77d13dd6913c7bc12eef4085b

7637b"
}

RESPONSE = requests.request("POST", URL,
data=PAYLOAD, headers=HEADERS)
print(RESPONSE.text)

Registering an Event Notification Webhook

You can get a device or an endpoint to post HTTP event

notifications (via webhook) on changes to the API state

(for example, statuses, events, configuration updates).

These events are sent to the specified server URL. You

can choose between events being posted in either XML

or JSON format. You can subscribe to changes on

multiple parts of the API by registering up to 15 different

feedback expressions. The command for registering is

xCommand HttpFeedback.

The HttpFeedback Register syntax is as follows:

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#ppg293

FeedbackSlot: <1..4> ServerUrl(r): <S: 1, 2048>

Format: <XML/JSON>

Expression: <S: 1, 255> Expression: <S: 1, 255>

Expression: <S: 1, 255>

Expression: <S: 1, 255> Expression: <S: 1, 255>

Expression: <S: 1, 255>

Expression: <S: 1, 255> Expression: <S: 1, 255>

Expression: <S: 1, 255>

Expression: <S: 1, 255> Expression: <S: 1, 255>

Expression: <S: 1, 255>

Expression: <S: 1, 255> Expression: <S: 1, 255>

Expression: <S: 1, 255>

Example 10-22 shows a simple Python POST to register a

webhook.

Example 10-22 Python Script to Set a Webhook to

Receive Event Notifications

Click here to view code image

""" Webex Devices - Set Webhook """

import requests
URL = "http://10.10.20.159/put.xml"

PAYLOAD = (
 '<Command>' +
 ' <HttpFeedback>' +
 ' <Register command="True">' +
 ' <FeedbackSlot>1</FeedbackSlot>' +
 ' <ServerUrl>http://127.0.0.1/devasc-
webhook</ServerUrl>' +
 ' <Format>JSON</Format>' +
 ' <Expression
item="1">/Configuration</Expression>' +
 ' <Expression
item="2">/Event/CallDisconnect</Expression>' +
 ' <Expression
item="3">/Status/Call</Expression>' +
 ' </Register>' +
 ' </HttpFeedback>' +
 '</Command>'
)

HEADERS = {
 'Content-Type': "application/xml",
 'Cookie':
"SessionId=c6ca2fc23d3f211e0517d4c603fbe4205c77d13dd6913c7bc12eef4

085b7637b,SessionId=c6ca2fc23d3f211e0517d4c603fbe4205c77d13dd6913c7bc12eef40

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-22

 85b7637b;
SessionId=c6ca2fc23d3f211e0517d4c603fbe4205c77d13dd6913c7bc12eef4085b7

 637b"
}

RESPONSE = requests.request("POST", URL,
data=PAYLOAD, headers=HEADERS)
print(RESPONSE.text)

Room Analytics People Presence Detector

People Presence shows day-to-day conference room

usage analytics and helps you find available meeting

rooms based on facial recognition and ultrasonic

technology. xAPI allows you to turn on/off the detector

via an API. Example 10-23 shows a Python script that

sets the People Presence detector on a device to ON.

Example 10-23 Python Script to Set the People

Presence Detector to ON

Click here to view code image

""" Webex Devices - Set People Presence
detector ON """

import requests

URL = "http://10.10.20.159/put.xml"

PAYLOAD = (
 '<Configuration>' +
 ' <RoomAnalytics>'
 '
<PeoplePresenceDetector>On</PeoplePresenceDetector>'
 +
 ' </RoomAnalytics>' +
 '</Configuration>'
)

HEADERS = {
 'Content-Type': "application/xml",
 'Cookie':
"SessionId=c6ca2fc23d3f211e0517d4c603fbe4205c77d13dd6913c7bc12eef4085b

7637b"
 }

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-23

RESPONSE = requests.request("POST", URL,
data=PAYLOAD, headers=HEADERS)

print(RESPONSE.text)

CISCO UNIFIED COMMUNICATIONS

MANAGER

Cisco Unified Communications Manager (Unified CM) is

the powerful call-processing component of the Cisco

Unified Communications solution. Unified CM supports

the following interface types:

Provisioning interfaces

Device monitoring and call control interfaces

Serviceability interfaces

Routing rules interfaces

Administrative XML

The Administrative XML (AXL) API provides a

mechanism for inserting, retrieving, updating, and

removing data from the Unified CM configuration

database using an Extensible Markup Language (XML)

Simple Object Access Protocol (SOAP) interface. It

allows a programmer to access Unified CM provisioning

services using XML and exchange data in XML form. The

AXL methods, referred to as requests, are performed

using a combination of HTTP and SOAP. SOAP is an

XML remote procedure call protocol. Users perform

requests by sending XML data to the Unified CM

publisher server, which then returns the AXL response,

which is also a SOAP message. For more information, see

https://developer.cisco.com/docs/axl/#!axl-developer-

guide/overview.

https://developer.cisco.com/docs/axl/#!axl-developer-guide/overview

Examples of Unified CM objects that can be provisioned

with AXL include the following:

Unified CM groups

Call park DNs

Call pickup groups

Calling search spaces

CTI route points

Device pools

Device profiles

Dial plan tags

Dial plans

Digit discard instructions

Directory numbers

Gateways (analog, T1, PRI)

Locations

MGCP devices

Phones

Process nodes

Process node services

Regions

Route filters

Route groups

Route lists

Route partitions

Service parameters

Translation patterns

Users

Voicemail ports

Cisco AXL Toolkit

You can download the AXL Toolkit from Unified CM

Administration page (https://<CUCM-

Address>/plugins/axlsqltoolkit.zip), as shown in Figure

10-13.

Figure 10-13 AXL Toolkit Zip File

When you download the AXL Toolkit and unzip the file,

the schema folder contains AXL API schema files for

supported AXL versions:

AXLAPI.wsdl: WSDL file

AXLEnums.xsd: Enum type definitions

AXLSoap.xsd: Type definitions

These XML schema files contain full details about the

AXL API format, including the request names,

fields/elements, data types used, and field validation

rules. One advantage of .xsd schema files is that they can

be used to automatically/programmatically validate a

particular XML document against the schema to ensure

that it is well formatted and valid according to the

schema specs.

Many XML editing applications and programmatic tools

and components that can use .xsd schema files to

validate XML documents and details about how to do so

may vary. The main necessary detail, however, is to

define the xsi:schemaLocation attribute with a URI

pointing to the axlsoap.xsd schema file.

Accessing the AXL SOAP API

Now let’s take a look at two different methods to access

the AXL SOAP API.

Using the Zeep Client Library

The Python script in Example 10-24 shows how to make

an API call to update a phone device and get complete

information about the phone. It uses the AXLAPI.wsdl

file downloaded with the AXL Toolkit.

Example 10-24 Full Client Code to Update and Get

Back Device Details

Click here to view code image

""" Update and Retrieve Client Details """

from zeep import Client
from zeep.cache import SqliteCache
from zeep.transports import Transport
from requests import Session
from requests.auth import HTTPBasicAuth
import urllib3
from urllib3.exceptions import
InsecureRequestWarning

urllib3.disable_warnings(InsecureRequestWarning)

USERNAME = 'administrator'
PASSWORD = 'ciscopsdt'
IP_ADDRESS = "10.10.20.1"
WSDL = 'schema//12.0//AXLAPI.wsdl'
BINDING_NAME = "
{http://www.cisco.com/AXLAPIService/}AXLAPIBinding"

ADDRESS =
"https://{ip}:8443/axl/".format(ip=IP_ADDRESS)
def update_phone_by_name(client, name,
description):
 """ Update Phone by Name """
 return client.updatePhone(**{'name': name,
'description': description})

def get_phone_by_name(client, name):
 """ Get Phone by Name """
 return client.getPhone(name=name)

def main():
 """ Main """
 session = Session()
 session.verify = False
 session.auth = HTTPBasicAuth(USERNAME,
PASSWORD)
 transport = Transport(cache=SqliteCache(),
session=session, timeout=60)
 client = Client(wsdl=WSDL,
transport=transport)
 axl = client.create_service(BINDING_NAME,

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-24

ADDRESS)

 update_phone_by_name(axl,
"SEP001122334455", "DevAsc: adding new Desc")
 print(get_phone_by_name(axl,
"SEP001122334455"))

if __name__ == '__main__':
 main()

Using the CiscoAXL SDK

The Python SDK called CiscoAXL is pretty simple to use.

As of this writing, there are other SDKs available, but we

use CiscoAXL here as an example. To start with this

SDK, you need to install it by using the pip or pip3

command:

Click here to view code image

pip install ciscoaxl or pip3 install ciscoaxl

Example 10-25 shows the simplest way to invoke the

SDK and start working with it.

Example 10-25 Using the CiscoAXL SDK to Get Phone

Information

Click here to view code image

""" Using CiscoAXL SDK to get phone info"""

from ciscoaxl import axl

CUCM = '10.10.20.1'
CUCM_USER = "administrator"
CUCM_PASSWORD = "ciscopsdt"
CUCM_VERSION = '12.0'
ucm =
axl(username=CUCM_USER,password=CUCM_PASSWORD,cucm=CUCM,cucm_version=CUCM_

VERSION)
print (ucm)
for phone in ucm.get_phones():
 print(phone.name)
for user in ucm.get_users():
 print(user.firstName)

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#ppg297
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch10_images.xhtml#pexa10-25

For more examples, see Cisco DevNet’s Code exchange at

https://developer.cisco.com/codeexchange/github/repo

/levensailor/ciscoaxl/.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 10-19 lists these key topics and the page number

on which each is found.

Table 10-19 Key Topics

Key Topic ElementDescriptionPage

Paragrap

h

Webex Teams APIs 2

6

1

Paragrap

h

Access Scope in Webex Teams 2

6

5

Table 10-

8

Bot Types 2

71

https://developer.cisco.com/codeexchange/github/repo/levensailor/ciscoaxl/

Example

10-7

Python Code to Generate a JWT Token for

a Guest Issuer

2

7

3

Figure

10-9

Finesse High-Level Flow 2

7

4

Table 10-

13

Webex Meetings Services Supported via

APIs

2

8

2

Paragrap

h

The Webex XML API 2

8

4

Paragrap

h

xAPI 2

9

0

Paragrap

h

AXML for Unified CM 2

9

4

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

Unified Communications

Finesse

JSON Web Token (JWT)

voice over IP (VoIP)

Extensible Messaging and Presence Protocol (XMPP)

Bidirectional-streams Over Synchronous HTTP

(BOSH)

computer telephony integration (CTI)

fully qualified domain name (FQDN)

Chapter 11

Cisco Security Platforms and APIs

This chapter covers the following topics:

Cisco Security Portfolio: This section introduces Cisco’s security

portfolio and describes the detect, segment, and protect mechanisms.

Cisco Umbrella: This section introduces the Cisco Umbrella product

and the relevant APIs.

Cisco Firepower: This section provides an overview of Cisco

Firepower Management Center and API categories.

Cisco Advanced Malware Protection (AMP): This section

provides information you need to understand Advanced Malware

solution.

Cisco Identity Services Engine: This section provides an overview

of Cisco Identity Services Engine (ISE) and ISE APIs.

Cisco Threat Grid: This section provides an overview of Cisco Threat

Grid and Threat Grid APIs.

Cisco has been building the backbone of the Internet

for nearly 35 years. In addition, Cisco has created

networks, big and small, and gained vast amounts of

knowledge about what happens on a network. Along

the way, Cisco has built a robust security portfolio to

keep networks and users safe. Cisco’s security portfolio

has three main pillars:

Visibility

Detection

Mitigation

A lot of organizations don’t have the visibility and the

analytics to know what’s going on across their

networks. Visibility includes understanding who is on

the network, including people and devices, who is

accessing the various servers, who is communicating

with whom, and what type of traffic is on the network.

Detecting all these activities is the second pillar. And

as they say, one cannot discover what you can’t see.

The network now needs to observe, learn, and detect

anomalies continuously. By staying ahead of

continually evolving attacks, a network senses the

critical threats by mitigating and responding with

corrective actions.

This chapter introduces various Cisco security

products as well as multiple aspects of integrating

security products via APIs. It covers the following:

Cisco Firepower

Cisco Umbrella

Cisco Advanced Malware Protection (AMP)

Cisco Identity Services Engine (ISE)

Cisco Threat Grid

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 11-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 11-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Cisco Umbrella 1, 2

Cisco Firepower 3, 4

Cisco Identity Services Engine 5, 6

Cisco Threat Grid 7, 8

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. The Umbrella ________ API provides enrichment

of security events with intelligence to SIEM or other

security visibility tool.

1. Enforcement

2. Investigate

3. Management

4. Reporting

2. The Umbrella Enforcement API involves an HTTP

______ request, which internally comprises an

_____ API to check whether the domain is safe.

1. POST, Reporting

2. GET, Investigate

3. POST, Investigate

4. GET, Reporting

3. In the Firepower Management Center API, the

token is generated and returned via ________.

1. the HTTP header X-auth-access-token

2. JSON object

3. XML object

4. JWT

4. A _______ object is a reusable configuration that

associates a name with a value.

1. simple

2. named

3. objective

4. network

5. Which of the following allows bad actors to gain

access to and control endpoint resources over an

extended period to steal valuable data without being

detected?

1. Malware

2. Medium persistent threat

3. Advanced persistent threat

4. Ransomware

6. Which of the following enables devices and users to

be identified and provisioned and enables policies to

be applied?

1. Cisco AMP

2. Cisco ISE

3. Cisco Threat Grid

4. Cisco Firepower Management Center

7. Which of the following describes Threat Grid?

1. A VPN solution from Cisco

2. A unified malware analysis and threat intelligence platform

3. A threat intelligence organization

4. An intelligence security framework

8. Which of the following are used to indicate that a

system has been affected by some form of malware?

1. IoTs

2. IOCs

3. Snort

4. Reports

FOUNDATION TOPICS

CISCO’S SECURITY PORTFOLIO

Cisco’s security portfolio is vast. This chapter provides an

introduction to some of its critical security products. In

addition, it covers the APIs that each of these products

supports.

As shown in Figure 11-1, the Cisco security portfolio

focuses on three areas: visibility, segmentation, and

protection. Visibility is essentially the ability to “see”

everything that is happening in the network.

Segmentation is the ability of the network to reduce the

surface attack to contain the spread. Protection is the

ability to stop any breaches from happening.

Figure 11-1 Cisco’s Security Portfolio: Visibility,

Segmentation, and Protection

Potential Threats and Vulnerabilities

Anything we are trying to protect against—whether it is

code or a person—is known as a threat. A threat tries to

get access to an asset in order to control or damage the

asset.

A vulnerability is a weakness or gap in protection efforts.

It can be exploited by threats to gain unauthorized access

to an asset.

Cybersecurity threats comprise a wide range of

potentially illegal activities on the Internet. At a very

high level, certain activities may be classified into two

categories:

Malicious activities that target networks or devices directly:

Examples include malware, viruses, and denial-of-service attacks.

Malicious activities aided by computer networks or devices:

Examples include fraud, identity theft, phishing scams, information

warfare, and cyberstalking.

Most Common Threats

Table 11-2 describes some of the most common threats

that can be posed to an entity due to lack of security

awareness.

Table 11-2 Common Threats

ThreatDescription

M

an

-

in

-

th

e-

m

id

dl

e

at

ta

ck

Attackers insert themselves between two endpoints

(such as a browser and a web server) and intercept or

modify communications between the two. The attackers

can then collect information as well as impersonate

either of the two agents. In addition to websites, these

attacks can target email communications, DNS lookups,

and public Wi-Fi networks.

D

en

ial

-

of

-

se

rv

ic

e

(D

oS

)

at

ta

ck

An attacker sends multiple requests that flood the

server or networks with traffic to exhaust resources and

bandwidth. As the system continues with degraded

performance, the system becomes more and more

nonresponsive, and real requests are left unfulfilled. A

DoS attack can be coordinated so that multiple devices

launch the attack at the same time. This is known as a

distributed denial-of-service (DDoS) attack.

Cr

os

s-

sit

e

sc

ri

pt

in

g

(X

SS

)

Cross-site scripting is an exploit in which the attacker

attaches code to a legitimate website that executes when

the victim loads that website. Typically, a web page is

loaded, and malicious code copies the user’s cookies.

The system then sends an HTTP request to an attacker’s

web server, with the stolen cookies in the body of the

request. The attacker can then use cookies to access

sensitive data.

P

hi

sh

in

g

This type of exploit involves using emails or web pages

to procure sensitive information, such as usernames

and passwords.

M

al

w

ar

e

Malware is a piece of malicious code, such as spyware,

ransomware, a virus, or a worm. Malware is usually

trigged when someone clicks a link or an email

attachment, which then installs malicious software.

St

ru

ct

ur

ed

Q

ue

ry

La

ng

ua

ge

(S

Q

L)

in

je

cti

on

SQL injection is a code injection technique used to

modify or retrieve data from SQL databases. By

inserting specialized SQL statements into an entry field,

an attacker can execute commands that allow for the

retrieval of data from the database.

Br

ut

e-

fo

rc

e

at

ta

ck

Brute-force methods, which involve using trial and

error to decode data, can be used to crack passwords

and crack encryption keys. Other targets include API

keys, SSH logins, and Wi-Fi passwords.

CISCO UMBRELLA

Cisco Umbrella is a cloud-based secure gateway that

helps protect and defend against threats that arise on the

Internet. Cisco Umbrella is the first line of defense for

users who may be trying to connect to the Internet from

anywhere. A device trying to connect to the Internet

needs a DNS (Domain Name System) lookup to translate

the name of the site or the service to the IP address that

it needs to connect to.

Cisco Umbrella processes billions of DNS requests per

day, analyzing and learning about various activities and

blocking requests to unwanted and malicious

destinations before a connection is even established.

Cisco Umbrella incorporates the following security

services in its offering, regardless of where the user is

located:

It blocks malware, ransomware, and phishing attempts from malicious

or fraudulent sites.

It can be integrated with Cisco AMP and other antivirus engines.

It maintains content categories and custom-defined whitelists and

blacklists to comply with any organization policy.

Understanding Umbrella

Cisco Umbrella processes DNS requests received from

users or devices on the networks. It not only works on

HTTP or HTTPS but supports other protocols as well.

Let’s look at a simple flow using the network shown in

Figure 11-2. Say that a user wants to access a site and

makes a request to the site. This results in a DNS request

being sent to Cisco Umbrella. The following steps occur:

Step 1. Umbrella analyzes the DNS request to check

whether the domain is malicious or safe.

Step 2. Umbrella checks to see if any of the policies

are triggered, such as content filtering policies

or blacklisted domains.

Step 3. If all is well, the IP address is sent to the

requesting user. In the case of stanford.edu,

Umbrella returns the correct IP address.

Step 4. When a DNS request is sent for domain.xyz,

Umbrella checks whether any polices are

triggered or whether this a known malicious

domain.

Step 5. Umbrella responds with a “blocked page”

message, informing the user that the domain is

either malicious or on the blocked list.

Figure 11-2 Cisco Umbrella: Blocking a Malicious

Domain Lookup

Cisco Umbrella APIs

Cisco Umbrella supports various APIs for different

functions. Table 11-3 describes these APIs.

Table 11-3 Umbrella APIs

APIDescription

M

a

n

a

g

This API directs customers to manage organizations,

networks, network devices, users, and roaming

computers and integrate actions in those areas into

workflows.

e

m

e

n

t

A

P

I

R

e

p

o

rt

in

g

A

P

I

This API for organizations consists of the following

endpoints:

Destinations: Most recent requests

Destinations: Top identities

Security activity report

C

o

n

s

ol

e

R

e

p

o

rt

in

g

A

P

I

This API is for managed service providers and multiple-

organization console administrators. It displays

summary information that is available only in those

consoles.

The Console Reporting API has two endpoints:

/security-summary: This is the security

summary, which provides the total requests and the

total requests blocked for all the child organizations

in aggregate, as well as the same information for

each child organization.

/detailed-summary: This is the deployment

summary, which provides the overall deployment

status for all customers of the console, as well as

deployment details about each child organization of

the console.

N

et

w

o

A network device identity is any hardware device that

can route DNS traffic to the Cisco Umbrella recursive

DNS servers. The first step is registering the device with

Cisco Umbrella. Once the traffic from a device reaches

r

k

D

e

vi

c

e

M

a

n

a

g

e

m

e

n

t

A

P

I

the DNS servers, the organization with which the device

is registered is identified, and policies for that

organization can be applied to the traffic.

E

n

fo

rc

e

m

e

n

t

A

P

I

This API enables organizations to manage security-

related blocked domain lists.

I

n

v

e

st

ig

at

e

A

P

I

The RESTful API allows the querying of the Umbrella

DNS database and to show security events and

correlations related to the domain queried.

Authentication

All Cisco Umbrella APIs use HTTP-basic authentication.

The key and secret values need to be Base64 encoded

and sent as part of a standard HTTP basic Authorization

header. API requests are sent over HTTPS. APIs require

the credentials to be sent in the Authorization header.

The credentials are the username and password,

separated by a colon (:), within a Base64-encoded string.

For example, the Authorization header would contain the

following string:

Click here to view code image

"Basic ZGV2YXNjOnN0cm9uZ3Bhc3N3b3Jk"

In this case, ZGV2YXNjOnN0cm9uZ3Bhc3N3b3Jk

is the Base64-encoded string devasc:strongpassword

(where devasc is the username, and strongpassword is

the password). Example 11-1 shows three lines of code

that do Base64 encoding to plug the value into the

Authorization header.

Example 11-1 Python Code to Generate Base64

Encoding

Click here to view code image

""" Generate Base64 encoding using the base64
library """
import base64
encoded =
base64.b64encode('devasc:strongpassword'.encode('UTF-
8')).decode('ASCII')
print(encoded)

The Management API

The Umbrella Management API enables direct

customers, service providers (SPs), managed service

providers (MSPs), and managed security service

providers (MSSPs) to manage organizations, networks,

network devices, users, and roaming computers and

integrate actions in their everyday workflows.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#ppg306-a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-1

The Management API can use the ISP and MSSP

endpoints passing the Base64-encoded authorization in

the header (see Example 11-2).

Example 11-2 Python Code to Get Customer Details

Using the Management API

Click here to view code image

""" Get Customer details given a customerID """
import requests
url =
"https://management.api.umbrella.com/v1/serviceproviders/serviceProviderId/

customers/customerId"
headers = {
 'accept': "application/json",
 'authorization': "Basic
ZGV2YXNjOnN0cm9uZ3Bhc3N3b3Jk"
 }
response = requests.request("GET", url,
headers=headers)
print(response.text
)

The management API includes the following:

ISP and MSSP endpoints: The API returns the service provider IDs

and customer IDs. These endpoints are for Internet service providers

(ISPs), managed service providers (MSPs) using the Master Service

license, managed security service providers (MSSPs), and partner

console users. To perform these queries, you must have your service

provider ID (SPId) from your console’s URL.

MSP and multiple-organization endpoints: The API creates new

MSP customers, returns MSP customer records, and updates and

deletes MSP customers. This endpoint is for MSP and multiple-

organization consoles, not for MSPs using MSLA.

Networks: The API returns network records and deletes networks.

Note that parent organizations do not have networks. To create and

manage networks on behalf of child organizations, use the

organizations/customerID/networks endpoints.

Roaming computers: The API returns roaming computer records

and updates or deletes roaming computers.

Internal networks: The API creates, updates, and deletes internal

networks and returns internal network records.

Internal domains: The API creates, updates, and deletes internal

domains and returns internal domain records.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-2

Virtual appliances: The API returns virtual appliance (VA) records

and updates or deletes VAs. Note that you cannot create a virtual

appliance through the API. A VA must be created within your

hypervisor and must be registered as an identity within Umbrella

before the API can manage it.

Umbrella sites: The API creates, updates, and deletes sites and

returns site records.

Users: The API creates and deletes users and returns user records.

Roles: The API returns a list of roles.

Destination lists: The API creates, reads, updates, and deletes

destination lists.

The Enforcement API

The Cisco Umbrella Enforcement API is designed to give

technology partners the ability to send security events

from their platform/service/appliance within a mutual

customer’s environment to the Umbrella cloud for

enforcement. With this API, you can list domains or

delete individual domains from the list.

The API is restricted to HTTPS and is hosted at

https://s-platform.api.opendns.com. A fixed UUID-v4

customer key handles customer authentication to the

API. A key must be supplied with each request to the

API. To generate or get the customer key, you have to log

in to the console and navigate to Policies > Policy

Components > Integrations.

Now let’s look at an example of enforcement. Here are

the steps involved when the customer detects a malicious

domain and wants to add it to Umbrella:

Step 1. The customer identifies malicious code or a

malicious activity as users visit a particular URL

or domain. The detection can occur with third-

party software or Cisco AMP or any other

mechanism that the customer already has in

place.

https://s-platform.api.opendns.com/

Step 2. This event is sent to the Umbrella

Enforcement API via a POST request (see

Example 11-3).

Step 3. Cisco Umbrella follows the appropriate logic

and algorithm before it adds the domain to the

blocked list. It goes through these steps:

1. Umbrella checks whether the domain exists in the Umbrella

global block list under one of the security categories.

2. It runs the Investigate API internally to decide if the domain is

benign.

3. It checks on the status of the domain (that is, uncategorized or

categorized).

4. It checks to see if the domain is already present on the

customer’s allow list within the organization.

Step 4. If all the checks are validated, Umbrella blocks

domains in that list per that customer’s

Umbrella policy security settings.

Example 11-3 Python POST Code to Add a Domain

Using the Enforcement API

Click here to view code image

""" Add domain using the Enforcement API """

import json
import requests

url = "https://s-
platform.api.opendns.com/1.0/events"

querystring = {"customerKey":"XXXXXXX-YYYY-
ZZZZ-YYYY-XXXXXXXXXXXX"}
payload = [
 {
 "alertTime": "2020-01-01T09:33:21.0Z",
 "deviceId": "deadbeaf-e692-4724-ba36-
c28132c761de",
 "deviceVersion": "13.7a",
 "dstDomain": "looksfake.com",
 "dstUrl":
"http://looksfake.com/badurl",
 "eventTime": "2020-01-01T09:33:21.0Z",
 "protocolVersion": "1.0a",
 "providerName": "Security Platform"
 }
]

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-3

headers = {
 'Content-Type': "text/plain",
 'Accept': "*/*",
 'Cache-Control': "no-cache",
 'Host': "s-platform.api.opendns.com",
 'Accept-Encoding': "gzip, deflate",
 'Connection': "keep-alive",
 'cache-control': "no-cache"
}

response = requests.request(
 "POST",
 url,
 data=json.loads(payload),
 headers=headers,
 params=querystring)

print(response.text)

Once domains are placed in the list, a customer can get

the list of the domains by using the GET method for

https://s-platform.api.opendns.com/1.0/domains

endpoint. Example 11-4 shows an example of a simple

Python requests method.

Example 11-4 Python GET Request to List Domains

Using the Enforcement API

Click here to view code image

""" List domains using the Enforcement API """

import requests
url = "https://s-
platform.api.opendns.com/1.0/domains"
querystring = {"customerKey":"XXXXXXX-YYYY-
ZZZZ-YYYY-XXXXXXXXXXXX"}
response = requests.request("POST", url,
headers=headers, params=querystring)
print(response.text)

Example 11-5 shows the response to the GET from

Example 11-4. The answer is a JSON response with a

meta tag that describes the page number, the limit, and

pointers to the previous and next pages.

https://s-platform.api.opendns.com/1.0/domains
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-4

Example 11-5 Response to the GET Request to List

Domains Using the Enforcement API

Click here to view code image

{
 "meta":{
 "page":1,
 "limit":200,
 "prev":false,
 "next":"https://s-
platform.api.opendns.com/1.0/
 domains?customerKey=XXXXXXX-YYYY-ZZZZ-
YYYY-XXXXXXXXXXXX&page=2&limit=200"

 },
 "data":[
 {
 "id":1,
 "name":"baddomain1.com"
 },
 {
 "id":2,
 "name":"looksfake.com"
 },
 {
 "id":3,
 "name":"malware.dom"
 }
]
}

The final part of the Enforcement API is the DELETE

call to delete the domain API. The API helps in

unblocking domains that were blocked because of

previously injected events. Example 11-6 shows an

example of a simple Python requests command to

delete a domain using the Enforcement API. The URL to

do this is as follows:

Click here to view code image

https://s-

platform.api.opendns.com/1.0/domains/looksfake.

com?customerKey= XXXXXXX-YYYY-ZZZZ-YYYY-

XXXXXXXXXXXX

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-5
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#ppg310-a

Example 11-6 Deleting Domains Using the

Enforcement API

Click here to view code image

""" Delete domain using the Enforcement API """

import requests

url = "https://s-
platform.api.opendns.com/1.0/domains/looksfake.com"

querystring = {"customerKey":"XXXXXXX-YYYY-
ZZZZ-YYYY-XXXXXXXXXXXX"}

response = requests.request("DELETE", url,
headers=headers, params=querystring)
print(response.text)

The Investigate API

The Cisco Umbrella Investigate API is designed to give

technology partners the ability to query security events

from their platform/service/appliance within a mutual

customer’s environment to the Umbrella cloud for

investigation purposes. The Umbrella Investigate API

empowers users to query the Umbrella database to deem

a domain safe or not safe. It goes beyond traditional DNS

results to show security events and correlations.

The following are some of the tasks that can be done via

the Umbrella Investigate REST API:

Check the security status of a domain, IP address, or subset of domains

that appears in the logs from your firewall, UTM, or other Internet

egress points.

Determine whether other related cooccurring domains were accessed at

the same time as the domain or IP address you’re looking up.

Find a historical record for this domain or IP address in the DNS

database to see what has changed.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-6

Query large numbers of domains quickly to find out whether they’re

scored as malicious and require further investigation.

The Investigate API can be accessed via an access token,

and the access token can be generated via the Umbrella

console.

Developers and customers can use and query Umbrella

data via the Investigate API. Here are a few of the

standard categories:

Categorization (shows the status and classification of the

domain): This category is often used by developers and customers as

the primary classifier to determine whether a domain/IP address is

good, bad, or unknown.

Scoring: Several scores help rate the potential risk of the domain/IP

address. For example:

SecureRank2: This score is designed to identify domains that are

requested by known infected clients but never requested by clean

clients—assuming that these domains are more likely to be bad.

Scores range from –100 (suspicious) to +100 (benign).

RIP Score: This IP reputation score is designed to rate an IP

address based on the amount of malicious activity hosted at that

address. Scores range from –100 (very suspicious) to 0.

WHOIS record data: This category includes the email address used

to register the domain, the associated name server, historical

information, and so on. It can be used to find out more about the

history of the domain and the registrant, including whether the email

address was used to register other malicious domains.

Cooccurrences: This category depicts other domains that were

queried right before or after a given domain and are likely related. The

Investigate API is often used to uncover other domains that may be

related to the same attack but are hosted on completely separate

networks.

Passive DNS: This category depicts the history of domain-to-IP

address mappings. This information is used to see if anything

suspicious happened with the domain or IP address. For example, you

might find that the IP address is continually changing or find that the

IP address has more domains than previously declared.

Malware file data: Information is gathered in the form of malware

file analysis and threat intelligence from Cisco AMP Threat Grid. This

kind of information is used to find out if there are any specific malware

files associated with a domain and also to query file hashes to see if

they’re malicious.

Now let’s look at a couple of examples of the Investigate

API. If you query the domain at

https://investigate.umbrella.com/domain-

view/name/cisco.com/view via the user interface, you

see a screen like the one shown in Figure 11-3.

Figure 11-3 Umbrella Investigate API via the UI for

cisco.com

As you can see, the domain cisco.com is classified as

being Benign, and the SecureRank score is 2. Therefore,

cisco.com is a safe domain. Now let’s look at the same

operation but via the Investigate API. The API to call is

https://investigate.api.umbrella.com/domains/categoriz

ation/cisco.com. Example 11-7 shows a Python requests

command that makes an API call with the appropriate

API key.

Example 11-7 Getting Domain Categorization by

Using the Investigate API

Click here to view code image

""" Domains categorization using the
Investigate API """

import requests
url =
"https://investigate.api.umbrella.com/domains/categorization/cisco.com"

querystring = {"showLabels":""}
headers = {
 'authorization': "Bearer deadbeef-24d7-
40e1-a5ce-3b064606166f",
 'cache-control': "no-cache",
 }
response = requests.request("GET", url,
headers=headers, params=querystring)
print(response.text)

https://investigate.umbrella.com/domain-view/name/cisco.com/view
https://investigate.api.umbrella.com/domains/categorization/cisco.com
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-7

There are three return values for the categorization:

Status: The status is -1 if the domain is believed to be malicious, 1 if

the domain is believed to be benign, or 0 if it hasn’t been classified yet.

Security: This field indicates whether there is an Umbrella domain

match or whether this domain is associated with one.

Content: This field indicates the type of domain (for example,

Ecommerce/Shopping, Business Services).

Example 11-8 shows the response to the request in

Example 11-7. Note that the query parameter

showLabels in Example 11-7 gives the more human-

readable information in the response.

Example 11-8 JSON Returned for Domain

Categorization Using the Investigate API

Click here to view code image

{
 "cisco.com": {
 "status": 1,
 "security_categories": [],
 "content_categories": [
 "Software/Technology",
 "Business Services"
]
 }
}

Table 11-4 lists other Investigate API URLs for the

cisco.com domain.

Table 11-4 Other Umbrella Investigate API

Categories

API CategoryAPI Endpoint URL

Classifiers for a

domain

https://investigate.api.umbrella.com/d

omains/categories/cisco.com.json

Cooccurrences for

a domain

https://investigate.api.umbrella.com/r

ecommendations/name/cisco.com.json

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-8
https://investigate.api.umbrella.com/domains/categories/cisco.com.json
https://investigate.api.umbrella.com/recommendations/name/cisco.com.json

Related domains

for a domain

https://investigate.api.umbrella.com/li

nks/name/cisco.com.json

Security

information for a

domain

https://investigate.api.umbrella.com/s

ecurity/name/cisco.com

Domain volume https://investigate.api.umbrella.com/d

omains/volume/cisco.com?

start=-2days&stop=now&match=comp

onent

Threat Grid

sample for a

domain, an IP

address, or a URL

https://investigate.api.umbrella.com/s

amples/cisco.com?

limit=100&sortby=score

CISCO FIREPOWER

Cisco Firepower is a next-generation firewall (NGFW).

NGFWs are part of Cisco’s leading-edge firewall

technology, which combines the traditional firewall

functionality with an application firewall using an

intrusion prevention system (IPS) with deep packet

inspection (DPI) technology.

Firepower also employs other techniques, such as

Transport Layer Security/Secure Sockets Layer

(TLS/SSL) encrypted traffic inspection, website filtering,

quality of service (QoS)/bandwidth management, and

malware inspection. It also has built-in management

integrations with Lightweight Directory Access Protocol

(LDAP), RADIUS, and Active Directory.

In the past, stateful firewalls with simple packet filtering

capabilities efficiently blocked unwanted applications

https://investigate.api.umbrella.com/links/name/cisco.com.json
https://investigate.api.umbrella.com/security/name/cisco.com
https://investigate.api.umbrella.com/domains/volume/cisco.com?start=-2days&stop=now&match=component
https://investigate.api.umbrella.com/samples/cisco.com?limit=100&sortby=score

because most applications met the port/protocol

expectations. NGFWs filter traffic based on the

applications or traffic types traversing specific ports. For

example, you could open up port 80 for only selected

HTTP traffic or for particular applications, sites, or

services that you allow. Firepower provides a

combination of firewall and QoS functions in a single

application-aware solution. Here are the characteristic

features of most NGFWs:

Standard firewall features: These include the traditional (first-

generation) firewall functionalities such as stateful port/protocol

inspection, Network Address Translation (NAT), and virtual private

network (VPN) capabilities.

Application identification and filtering: An NGFW identifies and

filters traffic based on specific applications rather than just opening

ports for all kinds of traffic. An NGFW prevents malicious apps and

activities from using nonstandard ports in order to avoid the firewall.

SSL and SSH inspection: NGFWs can inspect SSL- and SSH-

encrypted traffic. An NGFW decrypts traffic, makes sure the

applications are allowed, checks other policies, and then re-encrypts

the traffic. This provides additional protection against malicious apps

and activities that try to hide by using encryption to avoid the firewall.

Intrusion prevention: An NGFW has intelligent capabilities to

provide more in-depth traffic inspection to perform intrusion detection

and prevention.

ISE integration: NGFWs have the support of Cisco ISE. This

integration allows authorized users and devices to use specific

applications.

Malware filtering: NGFWs can provide reputation-based screening

to block applications that have bad reputations. This functionality can

check for phishing, viruses, and other malware sites and apps.

Figure 11-4 shows the components of the Firepower

solution:

Firepower Management Center (a management console that has APIs

to control and manage application control, URL filtering, AMP, and so

on)

Firepower Threat Defense

Figure 11-4 Firepower Components

Firepower Management Center provides complete and

unified management of firewalls, application control,

intrusion prevention, URL filtering, and advanced

malware protection. It can help administrators smoothly

go from managing firewalls to controlling applications to

investigating and remediating malware attacks.

Firepower Management Center APIs

DevNet has a dedicated developer center for Firepower

at https://developer.cisco.com/firepower/. This site

provides links to various Firepower technologies as well

as the DevNet sandboxes.

The Firepower Management Center REST APIs enable

you to program Firepower devices in order to

automatically provision devices, discover hosts, perform

vulnerability analysis, automate and script firewall

configurations, deploy policies and controls, and monitor

device health. Figure 11-5 provides an overview of how

Firepower Management Center connects to various

Firepower devices as well as how you can build your own

applications by using REST APIs.

https://developer.cisco.com/firepower/

Figure 11-5 Firepower Allowing Both Northbound

and Southbound APIs

Authentication

The Firepower APIs are already part of the FMC software

by default, and the only thing that is required is to enable

them via the UI. The Firepower APIs use token-based

authentication for API users. Consider the simple

example shown in Example 11-9. It uses the Python

requests command to make the REST call, the POST

method, and the API

https://fmcrestapisandbox.cisco.com/api/fmc_platform

/v1/auth/generatetoken.

Example 11-9 Python Code to Generate the Session

Token for Firepower Management Center

Click here to view code image

""" Generate the session token for FMC """
import requests
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

url =
"https://fmcrestapisandbox.cisco.com/api/fmc_platform/v1/auth/generatetoken"

headers = {
 'Content-Type': "application/xml",
 'Authorization': "Basic
YXNodXRvc2g6V0JVdkE5TXk=",
 }
response = requests.request("POST", url,
headers=headers)
print(response.headers)

The response header contains 'X-auth-access-token':

"03d91b3f-eeff-4056-a4a7-e121ddcf8910", which

needs to be used in all subsequent API calls.

System Information

https://fmcrestapisandbox.cisco.com/api/fmc_platform/v1/auth/generatetoken
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-9

By using 'X-auth-access-token' you can now make an

API call to get the server version. Example 11-10 uses the

Python requests command to make the REST call, the

GET method, and the API

https://fmcrestapisandbox.cisco.com/api/fmc_platform

/v1/info/serverversion.

Example 11-10 Python Code to Get the Server Version

via the Firepower Management Center AP

Click here to view code image

""" Get Server Version """
import requests
url =
"https://fmcrestapisandbox.cisco.com/api/fmc_platform/v1/info/serverversion"

headers = {
 'X-auth-access-token': "2abd7bdc-16f8-477f-
8022-7f193e71c847",
 }
response = requests.request("GET", url,
headers=headers, verify=False)
print(response.text)

Now that you know the basics of accessing the API, you

can explore all the APIs that Firepower Management

Center has to offer.

As indicated earlier, Cisco DevNet provides an instance

of Firepower Management Center in the sandbox. The

easiest way to figure out specific operations available

with any version is by searching for “FMC API Explorer.”

You can launch the API Explorer by using the URL

https://fmc_url/api/api-explorer/, or if you have

reserved the DevNet sandbox, you can simply use

https://fmcrestapisandbox.cisco.com/api/api-

explorer/#. Figure 11-6 shows the API Explorer, which

allows you to explore all possible FMC APIs.

https://fmcrestapisandbox.cisco.com/api/fmc_platform/v1/info/serverversion
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-10
https://fmc_url/api/api-explorer/
https://fmcrestapisandbox.cisco.com/api/api-explorer/

Figure 11-6 The API Explorer, for Trying Out the

Firepower Management Center APIs

Firepower Management Center Objects

In Firepower Management Center, a named object is a

reusable configuration that associates a name with a

value. When you want to use that value, you can use the

named object instead. Firepower Management Center

provides many predefined objects that represent

frequently used configurations. You can use objects in

policies, rules, event searches, reports, and dashboards.

The system offers many predefined objects that

represent commonly used configurations. Group objects

reference multiple objects with a single configuration.

Certain predefined objects are groupable, as shown in

Table 11-5, which explains the various object types that

are defined in Firepower Management Center.

Object Types

Table 11-5 lists the objects you can create in the

Firepower system and indicates which object types can

be grouped.

Table 11-5 Firepower Management Center Object

Types

Object TypeGroupable

Network Y

e

s

Port Y

e

s

Security zone N

o

Application filter N

o

VLAN tag Y

e

s

URL Y

e

s

Geolocation N

o

Variable set N

o

Security intelligence: Network, DNS, and URL lists and

feeds

N

o

Sinkhole N

o

File list N

o

Cipher suite list N

o

Distinguished name Y

e

s

Public key infrastructure (PKI): Internal and trusted CA

and internal and external certs

Y

e

s

Route map N

o

Community list N

o

Creating a Network

A network object represents one or more IP addresses.

We use network objects and groups in other objects,

including access control policies, network variables,

identity rules, network discovery rules, event searches,

and reports. Example 11-11 shows how to generate a

token, assign it in the header, and then create a network

object.

Note that the Firepower Management Center instance in

Example 11-11 uses the DevNet Sandbox instance

(https://fmcrestapisandbox.cisco.com/) of the FMC,

which requires reservation. If you use this example,

make sure that you modify the definition of the network

object; otherwise, the object creation may fail because

the object will be already present. Example 11-11 uses the

POST method and the

API /api/fmc_config/v1/domain/" + uuid +

"/object/networks.

Example 11-11 Generating a Session Token and

Creating a New Network Object

Click here to view code image

""" generate a session token and create a new
network object """

import json
import requests

https://fmcrestapisandbox.cisco.com/
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-11

Globals used in this file
url =
"https://fmcrestapisandbox.cisco.com/api/fmc_platform/v1/auth/generatetoken"

server = "https://fmcrestapisandbox.cisco.com"
username = "johnsmith"
password = "pwgDvQt3"
domain = "Global"
token = ""
headers = {
 'Content-Type': "application/json",
}

Definition of Lab Network (10.10.10.0)

network_lab = {
 "name": "labnetwork-1",
 "value": "10.10.10.0/24",
 "overridable": False,
 "description": "Lab Network Object",
 "type": "Network"
}

def networkOject(network, uuid):
 """ Create a new Network object """

 netpath = "/api/fmc_config/v1/domain/" +
uuid + "/object/networks"
 url = server + netpath
 print("-------------------")
 print(headers)
 try:
 response = requests.post(url,
data=json.dumps(network), headers=headers,
 verify=False)
 status_code = response.status_code
 resp = response.text
 json_response = json.loads(resp)
 print("status code is: " +
str(status_code))
 if status_code == 201 or status_code ==
202:
 print("Successfully network
created")
 else:
 response.raise_for_status()
 return json_response["name"],
json_response["id"]
 except requests.exceptions.HTTPError as
err:
 print("Reason Code: " + str(err))
 finally:
 if response:

 response.close()

def generateSessionToken():
 """ Generate a new session token using the
username and password """
 global uuid
 global headers
 tokenurl =
"/api/fmc_platform/v1/auth/generatetoken"
 url = server + tokenurl
 response = requests.request(
 "POST",
 url,
 headers=headers,

auth=requests.auth.HTTPBasicAuth(username,
password),
 verify=False
)
 print(response.headers)
 status_code = response.status_code
 if status_code == 201 or status_code ==
202:
 print("Successfully network created")
 else:
 response.raise_for_status()

 auth_headers = response.headers
 token = auth_headers.get('X-auth-access-
token', default=None)
 headers['X-auth-access-token'] = token
 domains = auth_headers.get('DOMAINS',
default=None)
 domains = json.loads("{\"domains\":" +
domains + "}")
 for item in domains["domains"]:
 if item["name"] == domain:
 uuid = item["uuid"]
 else:
 print("no UUID for the domain
found!")

 print(domains)
 print(uuid)
 print(headers)

Main - Entry point - Invoke generate token
and create network object
if __name__ == "__main__":
 generateSessionToken()
 networkOject(network_lab, uuid)

CISCO ADVANCED MALWARE

PROTECTION (AMP)

This section provides the information you need to

understand Cisco’s Advanced Malware Protection (AMP)

solution.

Malware is a broad term used to define any malicious

activity that aims to infect a network or a specific device.

Often, the goal of malware is to steal valuable

information, disrupt a user’s ability to access data, or

cause a device or network to crash. Ransomware is a

common form of malware that has become particularly

challenging for many companies. A threat actor uses

ransomware to encrypt files on an endpoint and extort

the owner of the information into paying a ransom to

receive the decryption key.

Another common form of malware is an advanced

persistent threat (APT). APTs allow threat actors to gain

access to and control endpoint resources over an

extended period in order to steal valuable data without

being detected. In the past, the malware was deployed

using malicious files to carry the payload. Today,

malware is being delivered “file-lessly,” by being

embedded in endpoint memory or operating system

functions. These new malware techniques can be difficult

to detect with traditional defense mechanisms. AMP for

Endpoints is useful with such techniques as it provides

deep visibility to identify malware in a system, context to

understand what is being affected, and control to protect

against attack. AMP for Endpoints, which is Cisco’s

endpoint protection solution, is a cloud-managed tool

delivered via the desktop client, mobile devices, and

server-based endpoints. Figure 11-7 shows how these

various endpoints connect to AMP Private Cloud, which

has been integrated into the next-generation firewall

platform and across network perimeter defense tools

such as ESA and WSA. Cisco has also incorporated this

tool into its industry-leading router platforms.

Figure 11-7 AMP Cloud and Endpoints

You can sign up for a free trial account at

https://www.cisco.com/c/en/us/products/security/amp

-for-endpoints/index.html. If you already have an

account, you can log in into the AMP Private Cloud

portal at https://amp.cisco.com.

With Cisco AMP for Endpoints, security teams leverage

an integrated solution to proactively and efficiently

combat threats in the following ways:

By streamlining incident response processes: AMP for

Endpoints allows security operations teams to have complete visibility

into the location and trajectory of malware and automates remediation

actions. It eliminates the arduous incident response processes that were

necessary in the past. The incident response typically involves lengthy

forensics to check all systems for compromise and to reimage those that

have been affected. Due to resource requirements, many companies

have to hire third-party specialists to manage incident response. AMP

for Endpoints can reduce the time and effort required for incident

response and can help companies avoid those engagements.

By consolidating endpoint security tools into a single solution

that makes it possible to visualize the environment, patch

vulnerabilities, and proactively hunt for malware: AMP for

Endpoints makes it possible to manage reputation filtering, behavior

analytics, antivirus engine, exploit prevention, traffic analytics, and

more from a single platform. The AMP for Endpoints management tool

also integrates with AMP for Networks. This integration helps facilitate

threat information sharing across network security appliances,

https://www.cisco.com/c/en/us/products/security/amp-for-endpoints/index.html
https://amp.cisco.com/

resulting in comprehensive malware protection and enabling a “see

once, block everywhere” architecture.

By automating threat detection and remediation processes:

Customers can efficiently allocate time and resources and avoid the

need to hire additional high-cost employees or sign expensive

outsourcing contracts. This automation also promotes increased job

satisfaction on security operations teams, as less time is spent on

mundane research tasks.

Automation can be achieved by using the AMP for

Endpoints API, which allows users to expedite their

investigations by identifying which endpoints have seen

a file, create custom file lists, and move endpoints in and

out of triage groups. The API also makes it possible to

collect and archive all events generated in an

environment, which in turn makes possible extended

historical data correlation. The AMP for Endpoints API

enables developers and security teams to do the

following:

Ingest events: The API stores events in third-party tools, archives

extended event histories, and correlates against other logs.

Search: The API can find where a file has been, determine if a file has

been executed, and capture command-line arguments.

Basic management: The API allows you to create groups, move

desktops or computers, and manage file lists.

AMP for Endpoints API Credentials and Authorization

The AMP for Endpoints API requires administrators to

first set up an API credential. You can do this via the

AMP Console by navigating to Accounts > API

Credentials and then completing the dialog shown in

Figure 11-8.

Figure 11-8 AMP Console: Creating API Credentials

Once this is done, an API client ID/key pair is generated.

It looks something like this:

Client ID: deadbeef123448ccc00d

Client key: XXXXXXXX-YYYY-ZZZZ-0000-e384ef2dxxxx

Using the API client ID and key, you can now make the

API calls as follows:

Click here to view code image

https://<clientID>:<clientKEY>@<api_endpoint>

Also, you can use basic HTTP authentication encoding

for the client ID and key and the Authorization header.

For the client ID and key generated, the credential is

Base64 encoded as

"ZGVhZGJlZWYxMjM0NDhjY2MwMGQ6WFhY

WFhYWFgtWVlZWS1aWlpaLTAwMDAtZTM4NG

VmMmR4eHh4", and the header looks as follows:

Click here to view code image

Authorization: Basic

ZGVhZGJlZWYxMjM0NDhjY2MwMGQ6WFhYWFhYWFgt

WVlZWS1aWlpaLTAwMDAtZTM4NGVmMmR4eHh4

Now let’s look at a couple of examples of the AMP for

Endpoints API.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#ppg322-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#ppg322-2

Listing All Computers

The API https://api.amp.cisco.com/v1/computers

fetches the list of all computers. It requires basic

authentication headers and uses the GET method.

Example 11-12 shows a Python requests command that

uses this API.

Example 11-12 Python Code to Get a List of All

Computers via API

Click here to view code image

""" GET list of all computers via API """
import requests
url = "https://api.amp.cisco.com/v1/computers"
headers = {
 'authorization': "Basic
ZGVhZGJlZWYxMjM0NDhjY2MwMGQ6WFhYWFhYWFgtWVlZWS1aWlpaL

 TAwMDAtZTM4NGVmMmR4eHh4",
 'cache-control': "no-cache",
 }
response = requests.request("GET", url,
headers=headers)
print(response.text)

Listing All Vulnerabilities

The API https://api.amp.cisco.com/v1/vulnerabilities

fetches a list of all vulnerabilities. The list can be filtered

to show only the vulnerable programs detected for a

specific time range. The start_time and end_time

parameters accept the date and time expressed according

to ISO 8601.

The list contains a summary of information such as the

following on a vulnerability:

Application name and version

SHA-256 value for the executable file

Connectors on which the vulnerable application was observed

The most recent CVSS score

https://api.amp.cisco.com/v1/computers
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-12
https://api.amp.cisco.com/v1/vulnerabilities

This API requires the basic authentication headers and

uses the GET method. Example 11-13 shows a Python

requests command that uses this API.

Example 11-13 Python Code to Get a List of All

Vulnerabilities via API

Click here to view code image

""" GET list of all vulnerabilities via API
"""
import requests
url =
"https://api.amp.cisco.com/v1/vulnerabilities"
querystring = {"offset":"0","limit":"1"}
headers = {
 'authorization': "Basic
ZGVhZGJlZWYxMjM0NDhjY2MwMGQ6WFhYWFhYWFgtWVlZWS1aWlpaL-

 TAwMDAtZTM4NGVmMmR4eHh4",
 'cache-control': "no-cache",
 }
response = requests.request("GET", url,
headers=headers, params=querystring)
print(response.text)

Example 11-14 shows a sample response to the request in

Example 11-13.

Example 11-14 JSON Response Showing

Vulnerabilities

Click here to view code image

{
 "version": "v1.2.0",
 "metadata": {
 "links": {
 "self":
"https://api.amp.cisco.com/v1/vulnerabilities?
offset=0&limit=1"
 },
 "results": {
 "total": 1,
 "current_item_count": 1,
 "index": 0,
 "items_per_page": 1
 }

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-13
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-14

 },
 "data": [
 {
 "application": "Adobe Flash Player",
 "version": "11.5.502.146",
 "file": {
 "filename": "FlashPlayerApp.exe",
 "identity": {
 "sha256":
"c1219f0799e60ff48a9705b63c14168684aed911610fec68548ea08f

 605cc42b"
 }
 },
 "cves": [
 {
 "id": "CVE-2013-3333",
 "link":
"https://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2013-3333",
 "cvss": 10
 },
 {
 "id": "CVE-2014-0502",
 "link":
"https://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2014-0502",
 "cvss": 10
 }
],
 "latest_timestamp": 1574442349,
 "latest_date": "2019-11-
22T17:05:49+00:00",
 "groups": [
 {
 "name": "Triage",
 "description": "Triage Group for
FireAMP API Docs",
 "guid": "68665863-74d5-4bc1-ac7f-
5477b2b6406e"
 }
],
 "computers_total_count": 1,
 "computers": [
 {
 "connector_guid": "17d71471-805b-
4183-9121-3924b8982fac",
 "hostname": "Demo_ZAccess",
 "active": true,
 "links": {
 "computer":
"https://api.amp.cisco.com/v1/
 computers/17d71471-805b-4183-9121-
3924b8982fac",

 "trajectory":
"https://api.amp.cisco.com/v1/
 computers/17d71471-805b-4183-9121-
3924b8982fac/trajectory",
 "group":
"https://api.amp.cisco.com/v1/
 groups/68665863-74d5-4bc1-ac7f-
5477b2b6406e"
 }
 }
]
 }

Table 11-6 shows all other APIs that AMP for Endpoints

has to offer.

Table 11-6 AMP for Endpoints APIs

MethodAPIDescription

G

E

T

https://api.amp.

cisco.com/v1/au

dit_logs

Provide audit logs based on the

filters specified in the query

parameters

G

E

T

https://api.amp.

cisco.com/v1/au

dit_log_types

Provide a list of all the audit log

types supported by the API

G

E

T

https://api.amp.

cisco.com/v1/co

mputers

Fetch the list of computers

G

E

T

https://api.amp.

cisco.com/v1/co

mputers/user_ac

tivity

Fetch the list of computers that

have observed activity by a given

username

G

E

T

https://api.amp.

cisco.com/v1/co

mputers/activity

Search all computers across the

organization for any events or

activities associated with a file or

network operation

G https://api.amp. Provide a general query interface

https://api.amp.cisco.com/v1/audit_logs
https://api.amp.cisco.com/v1/audit_log_types
https://api.amp.cisco.com/v1/computers
https://api.amp.cisco.com/v1/computers/user_activity
https://api.amp.cisco.com/v1/computers/activity
https://api.amp.cisco.com/v1/events

E

T

cisco.com/v1/eve

nts

for events

G

E

T

https://api.amp.

cisco.com/v1/eve

nt_types

Identify and filter events by a

unique ID

P

O

S

T

https://api.amp.

cisco.com/v1/eve

nt_streams

Create a new Advanced Messaging

Queue Protocol (AMQP) messaging

resource for events information

G

E

T

https://api.amp.

cisco.com/v1/file

_lists/applicatio

n_blocking

Return a list of application-

blocking file lists

G

E

T

/

P

O

S

T

https://api.amp.

cisco.com/v1/gro

ups

Provide basic information about

groups in the organization

G

E

T

https://api.amp.

cisco.com/v1/pol

icies

Return a list of policies

G

E

T

https://api.amp.

cisco.com/v1/ver

sion

Fetch the list of versions

G

E

T

https://api.amp.

cisco.com/v1/vul

nerabilities

Provide a general query interface

for vulnerabilities

CISCO IDENTITY SERVICES ENGINE

(ISE)

https://api.amp.cisco.com/v1/events
https://api.amp.cisco.com/v1/event_types
https://api.amp.cisco.com/v1/event_streams
https://api.amp.cisco.com/v1/file_lists/application_blocking
https://api.amp.cisco.com/v1/groups
https://api.amp.cisco.com/v1/policies
https://api.amp.cisco.com/v1/version
https://api.amp.cisco.com/v1/vulnerabilities

Cisco Identity Services Engine (ISE) is a network access

control and policy enforcement platform. Cisco ISE

simplifies the delivery of secure access control across

wired and wireless multivendor networks and remote

VPN connections. With intelligent sensor and profiling

capabilities, ISE penetrates deep to deliver visibility into

who and what is accessing your networks and resources.

Cisco ISE provides the following benefits:

It identifies every device and every user ID across the network.

It enables simple provisioning for devices.

It is a simple policy management engine that is centralized and can

grant user access.

It enables flexible integration with other solutions to speed threat

detection, containment, and remediation.

Identification is required in order to access any network

resources. Identification involves using credentials.

Credentials are of the form passwords, certificates,

tokens, or at the least the endpoint’s MAC address.

Credentials reach Cisco ISE in a process called

authentication. An enterprise can use various

authentication protocols, depending on the type of

network and the type of endpoints. With authentication,

you basically tell Cisco ISE who you are.

Authentication typically results in authorization. After

you reveal your identity to Cisco ISE, Cisco ISE

determines your level of access. The moment an

endpoint accesses the network access, the network

devices generate a session ID and share it with Cisco ISE.

Cisco ISE centrally knows what all the endpoints in the

network are and where they are connected.

Today, enterprises already have some kind of identity

services such as Microsoft Active Directory or LDAP; in

addition, there could be other ODBC servers hosting

some user and device accounts. A PKI infrastructure may

already exist to manage certificates, and there might be

some mobile device managers and identity providers for

single sign-on. ISE can seamlessly integrate with all such

external identity stores and deliver network access

control.

Figure 11-9 shows how Cisco ISE integrates with

endpoints, networking devices, and external services.

Figure 11-9 ISE: Components and Deployment

Once a profile gets associated, various policies can be

enforced. These policies could be the following:

Time-based: Policies can allow specific devices only at particular

times.

Location-based: Each network element has a piece of location

information, and devices connected have specific policies attached.

Compliance based: Policies can ensure that endpoints have all

software patches before they are granted full access.

ISE REST APIs

The Cisco DevNet site

https://developer.cisco.com/site/security/ provides

details of all API docs located at

https://developer.cisco.com/docs/identity-services-

engine/. In addition, you can find other resources within

the DevNet Sandbox, and you can reserve and use Cisco

ISE there.

https://developer.cisco.com/site/security/
https://developer.cisco.com/docs/identity-services-engine/

Cisco ISE has two APIs:

Session API: This API allows developers to gather session- and node-

specific information by using Cisco ISE to monitor nodes.

External RESTful Services (ERS) API: This API enables

developers to perform operations on the following types of ISE

resources:

Endpoints

Endpoint identity groups

Guest users and internal users

Identity groups

Portals

Profiler policies

Network devices

Network device groups

Security groups

The Cisco ISE administrator must assign special

privileges to a user to perform operations using the ERS

API. The Cisco ISE administrator can assign the

following two roles to deliver services using the ERS API

(see Figure 11-10):

External RESTful Services Admin: For full access to all ERS

methods (GET, POST, DELETE, PUT).

External RESTful Services Operator: For read-only access (GET

requests only).

Figure 11-10 ISE ERS: Enabling API Access

ERS API Authentication

The ISE ERS API uses HTTP basic authentication, which

requires the credentials to be sent in the Authorization

header. The credentials are the username and password,

separated by a colon (:), within a Base64-encoded string.

For example, the Authorization header would contain the

following string:

Click here to view code image

"Basic ZGV2YXNjOnN0cm9uZ3Bhc3N3b3Jk"

In this case, ZGV2YXNjOnN0cm9uZ3Bhc3N3b3Jk

is the Base64-encoded string devasc:strongpassword

(where devasc is the username and strongpassword is

the password). Example 11-15 shows three lines of code

that do Base64 encoding to plug the value into the

Authorization headers.

Example 11-15 Python Code to Generate Base64

Encoding

Click here to view code image

import base64
encoded =
base64.b64encode('devasc:strongpassword'.encode('UTF-
8')).decode('ASCII')
print(encoded)

All ERS API calls are made to the URL https://<IP-of-

ISE>:9060/.

Now let’s look at a couple examples of ISE ERS endpoint

APIs.

Creating an Endpoint Group

The API posts the data to create a new endpoint group. It

uses the POST method and requires basic authentication

headers. The following shows the payload that is needed

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#ppg328-a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-15

to create an Endpoint Group called ‘DevNet Associate

Group’:

Click here to view code image

Data - {

 "EndPointGroup" : {

 "name" : "DevNet Associate Group",

 "description" : "DevNet Associate Group"

 }

}

Example 11-16 shows a Python requests command

using this API.

Example 11-16 Python POST Code to Create a New

Endpoint Group

Click here to view code image

""" create a new endpointgroup """
import json
import requests
url =
"https://ise.devnetsandbox.com/ers/config/endpointgroup"

payload = {
 "EndPointGroup": {
 "name": "DevNet Associate Group",
 "description": "DevNet Associate Group"
 }
}
headers = {
 'content-type': "application/json",
 'accept': "application/json",
 'authorization': "Basic
ZGV2YXNjOnN0cm9uZ3Bhc3N3b3JkJw==",
 'cache-control': "no-cache",
}
response = requests.request(
 "POST",
 url,
 data=json.dumps(payload),
 headers=headers
)
print(response.text)

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#ppg329-a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-16

The response header contains the newly created group

ID:

Click here to view code image

Location:

https://ise.devnetsandbox.com:9060/ers/config/endpoint

group/00000000-1111-2222-3333-444444444444

Creating an Endpoint and Adding It to a Group

The API

https://ise.devnetsandbox.com:9060/ers/config/endpoi

nt posts the data to create a new endpoint. It uses the

POST method. The following shows the payload that is

needed to create an Endpoint called ‘DevNet Endpoint’

with a specified groupId.

Method: POST

URL:

Click here to view code image

Data - {

 "ERSEndPoint" : {

 "name" : "DevNet_Endpoint",

 "description" : "DevNet Endpoint-1",

 "mac" : "FF:EE:DD:03:04:05",

 "groupId" : " 00000000-1111-2222-3333-

444444444444",

 "staticGroupAssignment" : true

 }

}

This API uses the group ID from the header and requires

basic authentication headers. Example 11-17 shows a

Python requests script.

Example 11-17 Python POST Code to Create a New

Endpoint

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#ppg330a
https://ise.devnetsandbox.com:9060/ers/config/endpoint
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#ppg330b

Click here to view code image

""" create a new endpoint """
import json
import requests
url =
"https://ise.devnetsandbox.com/ers/config/endpoint"

payload = {
 "ERSEndPoint": {
 "name": "DevNet_Endpoint",
 "description": "DevNet Endpoint-1",
 "mac": "FF:EE:DD:03:04:05",
 "groupId": " 00000000-1111-2222-3333-
444444444444",
 "staticGroupAssignment": True
 }
}
headers = {
 'content-type': "application/json",
 'accept': "application/json",
 'authorization': "Basic
ZGV2YXNjOnN0cm9uZ3Bhc3N3b3JkJw==",
 'cache-control': "no-cache",
}
response = requests.request(
 "POST",
 url,
 data=json.dumps(payload),
 headers=headers
)
print(response.text)

The response header contains the newly created

endpoint ID:

Click here to view code image

Location:

https://ise.devnetsandbox.com:9060/ers/config/endpoint/

deadbeef-1111-2222-3333-444444444444

Other ISE APIs

For a complete list of all Cisco ISE APIs, see

https://developer.cisco.com/docs/identity-services-

engine/.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-17
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#ppg331a
https://developer.cisco.com/docs/identity-services-engine/

CISCO THREAT GRID

Threat Grid is Cisco’s unified malware analysis and

threat intelligence platform. The idea behind Threat Grid

is to present a combined analysis engine that can

leverage and unify multiple capabilities and multiple

infrastructures within an organization. It does this by

performing static and dynamic analysis and producing

reports and indicators that are human readable. File

records are uploaded typically via the portal or API, and

the output or results are usually consumed also via

content-rich threat intelligence feeds. Figure 11-11 shows

the various functions that Cisco Threat Grid performs.

Figure 11-11 Threat Grid in a Nutshell

Threat Grid integrates real-time behavioral analysis and

up-to-the-minute threat intelligence feeds with existing

security technologies to protect a network from both

known and unknown attacks. Threat Grid analyzes

suspicious files against more than 1000 behavioral

indicators and a malware knowledge base sourced from

around the world to provide more accurate, context-rich

threat analytics than ever before.

Figure 11-12 shows the Cisco Threat Grid solution

architecture.

Figure 11-12 Threat Grid Solution Architecture

On the left side of Figure 11-12 is the Cisco portfolio, and

on the right are the non-Cisco or integration partners.

The numbers in the figure correspond with the following

details:

1. The solution can be integrated across the Cisco security portfolio,

including AMP for Endpoints, AMP for Networks, ASA with

Firepower, ESA, WSA, and Meraki.

2. Threat Grid can be deployed as either a cloud-based software-as-a-

service product or an on-premises appliance.

3. A subscription to Threat Grid provides threat intelligence through

the API.

4. Threat intelligence is automatically delivered to security-

monitoring platforms.

5. Third-party integrations automatically submit samples and

consume threat intelligence.

6. Context-rich analysis empowers junior analysts to make more

accurate decisions more quickly.

Threat Grid APIs

The Threat Grid APIs offer a broad range of

functionality, including user and organization account

management, samples (file/malware/signature

management), sample analysis data collection, and

threat intelligence harvesting. The Cisco DevNet site

https://developer.cisco.com/threat-grid/provides

details, API documentation, and a lot of other

information. You can sign up for a free trial account at

https://www.cisco.com/c/en/us/products/security/pro

motions-free-trials.html#~trials. Once you have access,

you can download all the APIs.

https://developer.cisco.com/threat-grid/provides
https://www.cisco.com/c/en/us/products/security/promotions-free-trials.html#~trials

Threat Grid API Format

All Threat Grid API calls are made to the URL

https://panacea.threatgrid.com/api/. The format of the

API is as follows:

https://panacea.threatgrid.com/api/<ver>/<api-

endpoint>?q=<query>&api_key=apikey

where <ver> could be “v2” or “v3”, <api-endpoint> is the

actual API and the apikey is the key associated with the

account.

API Keys

To get the API key from the Threat Grid portal UI, follow

these steps:

Step 1. Go to the Threat Grid portal UI.

Step 2. From the Welcome menu in the upper-right

corner of the navigation bar, select Manage

Users.

Step 3. Navigate (use Search if necessary) to the User

Details page for the integration’s user account

and copy the API key.

This API key is used in every API call that is made to

Threat Grid.

The following sections provide some examples of

working with the Threat Grid APIs.

Who Am I

To see if the API key is working, you can use the GET

method and the API

https://panacea.threatgrid.com/api/v3/session/whoami

. You need to pass the API key as a query parameter, as

shown in Example 11-18.

Example 11-18 Threat Grid: Who Am I

Click here to view code image

https://panacea.threatgrid.com/api/
https://panacea.threatgrid.com/api/v3/session/whoami
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-18

""" Threat Grid - who am I """
import requests
url =
"https://panacea.threatgrid.com/api/v3/session/whoami"

querystring =
{"api_key":"deadbeefelcpgib9ec0909"}
headers = {
 'cache-control': "no-cache",
}
response = requests.request(
"GET",
url,
headers=headers,
params=querystring
)
print(response.text)

Example 11-19 shows the JSON response to the request

in Example 11-18.

Example 11-19 Threat Grid Response

Click here to view code image

{
 "api_version": 3,
 "id": 1234567,
 "data": {
 "role": "user",
 "properties": {},
 "integration_id": "z1ci",
 "email": "devasc@student.com",
 "organization_id": 666777,
 "name": "devasc",
 "login": "devasc",
 "title": "DevNet Associate",
 "api_key": " deadbeefelcpgib9ec0909",
 "device": false
 }
}

The Data, Sample, and IOC APIs

The Data API allows developers to search observables by

specific criteria. You can do an entity search by using the

/search/ endpoint. You can pivot the Threat Grid data by

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-19

using the entity lookups /domains/, /urls/, /paths/, and

so on.

The Sample API allows developers to submit and retrieve

data for analysis. You can get the raw observable feeds by

using the /samples/feeds/ endpoint. The data is usually

harvested from all sample activity, suspicious or not, and

therefore has a very large footprint. You can use this API

to query feeds to look at the sample for your organization

only.

The Indicator of Compromise (IOC) API feeds can be

accessed via the /iocs/feeds endpoint. With this API, you

can see observables in conjunction with behavior

indicators. Usually, if an item shows up in this feed, it

means that there is at least some degree of suspicious

behavior associated with the item. Also, filters can be

applied to see only samples from your organization.

Let’s look at an example. In this example, we will search

for all records that have a sha1 value equal to

"8fbb3bd96b80e28ea41107728ce8c073cbadb0dd

". To do so, we use the GET method and the API

https://panacea.threatgrid.com/api/v2/search/submissi

ons, and we need to pass the API key as a query

parameter. Example 11-20 shows the Python requests

scripts to use in this case.

Example 11-20 Threat Grid: Searching Submissions

Click here to view code image

""" Threat Grid - search submissions API """
import requests
url =
"https://panacea.threatgrid.com/api/v2/search/submissions"

querystring = {
"q":
"8fbb3bd96b80e28ea41107728ce8c073cbadb0dd",
"api_key": "deadbeefelcpgib9ec0909"
}
headers = {
 'cache-control': "no-cache",

https://panacea.threatgrid.com/api/v2/search/submissions
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-20

}
response = requests.request(
 "GET",
 url,
 headers=headers,
 params=querystring
)
print(response.text)

Example 11-21 shows the JSON response to the request

in Example 11-20.

Example 11-21 Threat Grid Search Response

Click here to view code image

{
 "api_version": 2,
 "id": 4482656,
 "data": {
 "index": 0,
 "total": 1,
 "took": 3956,
 "timed_out": false,
 "items_per_page": 100,
 "current_item_count": 1,
 "items": [
 {
 "item": {
 "properties": {
 "metadata": null
 },
 "tags": [],
 "vm_runtime": 300,
 "md5":
"b5c26cab57c41208bd6bf92d495ee1f0",
 "state": "succ",
 "sha1":
"8fbb3bd96b80e28ea41107728ce8c073cbadb0dd",
 "sample":
"b7d3dd2a6d47ea640f719cc76c2122f8",
 "filename":
"FlashPlayer.exe",
....cut

Feeds

Threat Grid supports three different types of feeds:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-21

Sample feeds: These are all observables seen.

Indicator of Compromise (IOC) feeds: These are observables seen

via business intelligence. IOCs are used to indicate that the system has

been affected by some form of malware.

Curated feeds: These are highly curated and high-confidence feeds.

Table 11-7 shows the differences between these feeds.

Table 11-7 Threat Grid Feeds

Sample FeedsIOC FeedsCurated Feeds

Version /v2 /v2 /v3

Endpoi

nt

/sam

ples/f

eeds/

/iocs/fee

ds/

/feeds/

Content All

obser

vables

are

seen

Observa

bles are

seen in

all BIs

Observables are seen as

part of a trusted high-

confidence BI triggering

Pre-

whitelis

ted

No No Yes

Filterab

le to

only

you/org

?

Yes Yes No

Output

Format

s

JSON JSON JSON/CSV/Snort/STIX

Say that you want to retrieve all the curated feeds via

API. The curated feed types are shown in Table 11-8.

Table 11-8 Curated Feed Types

Feed NameDescription

autorun-

registry

Registry entry data derived from querying

registry changes known for persistence

banking-

dns

Banking Trojan network communications

dga-dns DGA domains with pseudo-randomly generated

names

dll-

hijacking

- dns

Domains communicated to by samples

leveraging DLL sideloading and hijacking

techniques

doc-net-

com-dns

Document (PDF, Office) network

communications

downloa

ded- pe-

dns

Samples downloading executables network

communications

dynamic-

dns

Samples leveraging dynamic DNS providers

irc-dns Internet Relay Chat (IRC) network

communications

modified

-hosts-

dns

Modified Windows hosts file network

communications

parked-

dns

Parked domains resolving to RFC 1918 localhost

and broadcast addresses

public-

ip-check-

dns

Public IP address network communications

ransomw

are-dns

Samples communicating with ransomware

servers

rat-dns Remote Access Trojan (RAT) network

communications

schedule

d-tasks

Scheduled task data observed during sample

execution

sinkhole

d-ip-dns

DNS entries for samples communicating with a

known DNS sinkhole

stolen-

cert-dns

DNS entries observed from samples signed with

a stolen certificate

Now let’s look at an example of going through all the feed

types and printing out the feed if any data exists. In this

case, you can use the GET method and the API

https://panacea.threatgrid.com/api/v2/search/submissi

ons. The API key must be passed as a query parameter.

Example 11-22 show the Python requests script you use

in this case.

Example 11-22 Threat Grid: Listing Details for Each

Curated Feed Type

Click here to view code image

""" Threat Grid - List details for each curated
feed type """
import requests
FEED_URL =
"https://panacea.threatgrid.com/api/v3/feeds"
FEEDS_NAME = {
 "autorun-registry": "Autorun Registry
Malware",
 "banking-dns": "Banking Trojans",
 "dga-dns": "Domain Generation Algorithm
Destinations",
 "dll-hijacking-dns": "DLL Hijackers /
Sideloaders",
 "doc-net-com-dns": "Document File Network
Communication",
 "downloaded-pe-dns": "Dropper
Communication",
 "dynamic-dns": "Dynamic DNS Communication",
 "irc-dns": "IRC Communication",
 "modified-hosts-dns": "Modified HOSTS File

https://panacea.threatgrid.com/api/v2/search/submissions
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch11_images.xhtml#pexa11-22

Communication",
 "public-ip-check-dns": "Public IP
Checkers",
 "ransomware-dns": "Ransomware
Communication",
 "rat-dns": "Remote Access Trojans",
 "scheduled-tasks": "Scheduled Task
Communication",
 "sinkholed-ip-dns": "Sinkholed IPs",
 "stolen-cert-dns": "Stolen Certificates",
}
for name, desc in FEEDS_NAME.items():
 url = "{}/{}.json".format(FEED_URL, name)
 querystring =
{"api_key":"2kdn3muq7uafelcpgib9eccua7"}

 headers = {
 'cache-control': "no-cache",
 'Content-type': 'application/json',
 'Accept': 'application/json'
 }

 response = requests.request("GET", url,
headers=headers, params=querystring)

 print(response.text)

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 11-9 lists these key topics and the page number on

which each is found.

Table 11-9 Key Topics

Key Topic ElementDescriptionPage

Paragrap

h

Cisco Umbrella 30

4

Paragrap

h

Enforcement APIs 30

8

Paragrap

h

Investigate APIs 311

Paragrap

h

Cisco Firepower 314

Paragrap

h

Cisco Advanced Malware Protection

(AMP)

32

0

Paragrap

h

Cisco Identity Services Engine (ISE) 326

Paragrap

h

Cisco Threat Grid 331

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

threat

vulnerability

phishing

managed security service provider (MSSP)

next-generation firewall (NGFW)

advanced persistent threat (APT)

Chapter 12

Model-Driven Programmability

This chapter covers the following topics:

NETCONF: This section introduces NETCONF—what it is, why it has

been developed, and how to use it.

YANG: This section covers YANG, YANG data models, and how these

data models apply to networking.

RESTCONF: This section covers RESTCONF, how it compares to

NETCONF, and how to use it.

Model-Driven Telemetry: This section provides a brief introduction

to model-driven telemetry.

This chapter introduces the concepts of model-driven

programmability. It discusses what led to the

implementation of data models in networking and the

advantages data models bring to network

configuration and monitoring. This chapter begins by

introducing the network programmability interfaces

that network operating systems from Cisco are

exposing. It then takes an in-depth look at NETCONF,

why was it necessary to come up with yet another

network configuration protocol, and the drawbacks

and limitations that it addresses compared to similar

protocols. It is difficult to talk about NETCONF

without also talking about YANG, and this chapter

therefore covers network data modeling. The chapter

also includes sections on RESTCONF and model-

driven telemetry. You will find peppered throughout

this chapter examples of YANG data models and tools

and libraries to interact with these models (for

example, pyang and ncclient). This chapter gives

special focus to Cisco IOS XE and Cisco NX-OS and

their implementations of model-driven

programmability. It looks at using Postman to explore

RESTCONF with a hands-on, real-life interaction with

the protocol and the data models it supports.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 12-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 12-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

NETCONF 1–3

YANG 4–6

RESTCONF 7–9

Model-Driven Telemetry 10

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. What network protocols support model-driven

programmability? (Choose three.)

1. NETCONF

2. RESTCONF

3. SSH

4. gRPC

2. What is the default port on which the NETCONF

protocol runs?

1. TCP 22

2. TCP 830

3. UDP 161

4. UDP 69

3. What framework does NETCONF use to exchange

messages between the client and the server?

1. REST

2. gRPC

3. Apache Avro

4. RPCs

4. Which data type is not a YANG base data type?

1. Binary

2. Enumeration

3. Percent

4. Empty

5. Which component of a YANG module header

uniquely identifies a module?

1. Prefix

2. Notification

3. Namespace

4. Organization name

6. Which of the following is a popular Python library

used to interact with NETCONF servers?

1. requests

2. ncclient

3. json

4. pyang

7. Which of the following are used for data

encapsulation in RESTCONF messages? (Choose

two.)

1. XML

2. YANG

3. YAML

4. JSON

8. What NETCONF operation is the equivalent of the

RESTCONF PATCH method?

1. <edit-config> (operation=”merge”)

2. <edit-config> (operation=”create/replace”)

3. <edit-config> (operation=”patch”)

4. <patch-config>

9. What RESTCONF resource allows for automatic

discovery of the API root?

1. /discover/restconf

2. /.well-known/restconf

3. /.well-known/host-meta

4. /discover/root

10. What types of subscriptions are supported by

model-driven telemetry? (Choose two.)

1. Static

2. Dynamic

3. Configured

4. Hard-coded

FOUNDATION TOPICS

Traditionally, network devices were managed almost

exclusively through command-line interfaces (CLIs). For

network monitoring, Simple Network Management

Protocol (SNMP) is still widely used. While CLIs are

extremely powerful, they are also highly proprietary—

different from vendor to vendor—and human

intervention is required to understand and interpret

their output. Also, they do not scale for large network

environments. SNMP also has limitations, as discussed

later in this chapter. A common standard way of

managing and monitoring network devices was needed.

Data modeling is replacing manual configuration as it

provides a standards-based, programmatic method of

writing configuration data and gathering statistics and

operational data from devices. YANG data models have

been developed specifically to address the need for

standardization and commonality in network

management. Model-driven programmability enables

you to automate the configuration and control of

network devices.

Cisco IOS XE, a network operating system for

enterprises, Cisco NX-OS, a network operating system

for data centers, and Cisco IOS XR, a network operating

system for service providers, support three standards-

based programmable interfaces for operating on the

YANG data models: NETCONF, RESTCONF, and gRPC.

When a client request is received via NETCONF,

RESTCONF, or gRPC, it is first converted into an

abstract message object. Based on the namespace in the

request, the message object is delivered to the underlying

model infrastructure, where it is processed and executed

on the device data store. The results are returned to the

client through the agent on which the request was

received. gRPC is an open-source project started by

Google to provide a modern remote procedure call (RPC)

framework that can be used in any environment—not

just for network configuration. More details about it can

be found at grpc.io. NETCONF and RESTCONF are

discussed in detail in this chapter. Figure 12-1 shows all

the protocols that Cisco devices support for model-driven

programmability.

Figure 12-1 Model-Driven Programmability on

Cisco Devices

NETCONF

In an effort to better address the concerns of network

operators, the Internet Engineering Task Force (IETF)

and the Internet Architecture Board (IAB) set up a

workshop on network management in 2002. Several

network operators were invited, and workshop

participants had a frank discussion about the status of

the network management industry as a whole. The

conclusions and results of that workshop were captured

in RFC 3535. Up to that point the industry had been

extensively using Simple Network Management Protocol

(SNMP) for network management. SNMP is discussed in

more detail in Chapter 18, “IP Services,” but for the

purposes of this chapter, you just need to know that

SNMP is a network management protocol that was

initially developed in the late 1980s. The intention with

SNMP was to create a protocol to help with both

configuration and monitoring of network devices.

Several iterations of the protocol have been developed

through the years, and version 3 is the latest one. SNMP

has been extensively implemented by network vendors in

their devices and used by network operators. By the

middle of 2002, when the IETF/IAB workshop took

place, the advantages and shortcomings of SNMP were

clear. SNMP had proved to work reasonably well for

monitoring devices, especially when small amounts of

information needed to be retrieved. For configuration

purposes, however, the protocol had pretty much failed

for a variety of reasons, including lack of writable MIBs,

security concerns, and scaling constraints. By comparing

SNMP with other network management options, such as

CLIs, HTTP, and XML, network operators came up with

a list of requirements for the network management

technology of the future. Some of these requirements are

summarized in the following list:

This new network management technology should be easy to use.

There should be a clear distinction between configuration data and

operational data.

It should be possible to configure extensive network services as a whole

(such as IPTV and Layer 3 VPNs) instead of just configuring a network

device by device.

Configuration transactions and easy rollback in the event of failure

should be supported.

There should be a standard and consistent representation of the

network configuration commands between different vendors.

A distinction between candidate and active configurations should exist,

meaning that devices should be able to hold multiple configurations

and activate them as needed.

Based on these requirements, the IETF developed

Network Configuration Protocol (NETCONF). The

NETCONF protocol specifies the means of opening a

secure management session with a network device,

includes a set of operations to manipulate the

configuration data and retrieve the operational state, and

describes a mechanism to send out notifications.

NETCONF was initially defined in 2006 in RFC 4741 and

updated in 2011 with RFC 6241. While the NETCONF

protocol specifies the mechanism to establish a

connection and exchange data between a network

administrator and a device, it does not define the actual

format of the data. This is the role of the YANG (Yet

Another Next Generation) data modeling language,

which was defined by the IETF in 2010 in RFC 6020

specifically to be used with NETCONF.

YANG proved to be so successful and powerful that it has

evolved to be used as a general-purpose data modeling

language in different programming environments. A data

model is simply a well-understood and agreed upon

method to describe something. As an example, let’s

consider a simple data model for a person. A person can

be classified based on gender (male, female, other),

height (feet/inches, meters/centimeters), weight

(pounds, kilograms), hair color (brown, blond, black,

bald, other), and eye color (brown, blue, green, other)—

to name just a few characteristics. Using this generic data

model for a person, you can describe an individual in a

way that is easy for others to understand. If I tell you

Amy is a woman who is 5'8'' and 160 pounds with blond

hair and blue eyes, you can very easily interpret and

understand this data model information for a person.

The NETCONF protocol defines transport over SSH and

includes operations and configuration data stores that

allow for the management of network devices.

NETCONF authentication options are the same as for

any SSH communication. Username and password as

well as SSL certificates can be used, just as SSH is used

with CLI commands.

NETCONF uses a client/server communication model.

The server side is implemented on the network device

through a NETCONF agent that acts as a northbound

API. Clients connecting to the agent send partial or

complete configuration data and receive state and

operational data from the device. Any system that

implements the protocol can be a client; some common

ones are Cisco NSO and the ncclient Python library.

Figure 12-2 shows the NETCONF architecture stack and

the relationship with YANG.

Figure 12-2 NETCONF

The main purpose of NETCONF is to transport data

payloads between client and server. The data payloads

can be configuration data, operational and status data,

and notifications. NETCONF supports notifications,

which are similar to SNMP traps.

Messages sent with NETCONF use remote procedure

calls (RPCs), a standard framework for clients to send a

request to a server to perform an action and return the

results. The client or the manager application sends its

XML-formatted message to the server, nesting the

request within an <rpc> XML element, and the server

returns results within an <rpc-reply> element.

As previously mentioned, the first version of NETCONF

was defined in 2006, but YANG was not defined until

2010. So what was used as a payload with the first

version of NETCONF? Configuration payloads in those

days defaulted to CLI commands. This was an advantage

as new features exposed with new CLI commands were

available over NETCONF right away; at the same time,

this brought all the drawbacks of CLI to network

automation, including unstructured data and vendor-

specific and proprietary CLI commands. YANG was

created as a standard way to define common data models

for NETCONF.

NETCONF provides a set of operations to manage device

configurations and retrieve status information. These

operations include retrieving, configuring, copying, and

deleting configuration data stores and retrieving

operational data. Depending on the NETCONF

capabilities that are advertised by a device, additional

operations can be supported. Table 12-2 shows a

common set of NETCONF operations.

Table 12-2 NETCONF Operations

OperationDescription

<get> Retrieve running configuration and device state

information

<get-

config>

Retrieve all or part of the specified

configuration data store

<edit-

config>

Load all or part of a configuration to the

specified configuration data store

<copy-

config>

Replace an entire configuration data store with

another

<delete-

config>

Delete a configuration data store

<commit> Copy the candidate data store to the running

data store

<lock> /

<unlock>

Lock or unlock the entire configuration data

store system

<close-

session>

Gracefully terminate the NETCONF session

<kill-

session>

Forcibly terminate the NETCONF session

The NETCONF <edit-config> operation supports several

attributes:

merge: When this attribute is specified, the configuration data is

merged with the configuration at the corresponding level in the

configuration data store. This is the default behavior.

replace: The configuration data replaces any related configuration in

the configuration data store. Only the configuration that is present in

the config parameter is affected.

create: The configuration data is added to the configuration only if the

configuration data does not exist on the device. If the configuration

already exists, an <rpc-error> message is returned with the <error-tag>

value data-exists.

delete: When this attribute is specified, the configuration data is

deleted from the configuration data store.

NETCONF defines the existence of one or more

configuration data stores and allows configuration

operations on these data stores. A configuration data

store is a set of configuration data that is needed to get

the device from its default initial state into a desired

operational state. The configuration data stores do not

contain operational data. Three types of configuration

data stores are defined in NETCONF:

running: This data store holds the complete configuration currently

active on the network device. Only one running data store can exist on a

device, and it is always present. NETCONF protocol operations refer to

this data store with the <running> XML element.

candidate: This data store acts as a workplace for creating and

manipulating configuration data. A <commit> operation causes the

configuration data contained in it to be applied to the running data

store.

startup: This data store contains the configuration data that is loaded

when the device boots up and comes online. An explicit <copy-config>

operation from the <running> data store into the <startup> data store

is needed to update the startup configuration with the contents of the

running configuration.

The existence of these data stores is advertised by the

NETCONF device through capabilities. When opening a

new session with a NETCONF server, the first message

that is sent by the server contains a list of all the

capabilities that the server supports.

The information that can be retrieved from a NETCONF

server is separated into two classes: configuration data

and state data or operational data. Configuration data is

the set of writable data that starts the system operations;

operational data, also known as the read-only status

data, is the non-configuration data of the system (for

example, interface traffic statistics, power supply status).

YANG

As mentioned in RFC 6020, YANG is “a data modeling

language used to model configuration and state data

manipulated by the Network Configuration Protocol

(NETCONF), NETCONF remote procedure calls, and

NETCONF notifications.” The main motivation behind

YANG was to provide a standard way to model

configuration and operational data so that network

devices can be configured and monitored in a standard

and common way. While CLI configuration and

monitoring of network devices is user friendly, it is not

necessarily network automation friendly. Different

network vendors have different CLIs with different

features and capabilities. Trying to find a standard way

to automate the configuration and monitoring of a

heterogenous network with devices from different

vendors was almost impossible before NETCONF and

YANG data models were created.

YANG is a language used to model data for the

NETCONF protocol. A YANG module defines a hierarchy

of data that can be used for NETCONF-based operations.

It allows a complete description of all data sent between

a NETCONF client and server. YANG models the

hierarchical organization of data as a tree in which each

node has a name and either a value or a set of child

nodes. YANG provides clear and concise descriptions of

the nodes, as well as the interaction between those

nodes.

YANG strikes a balance between high-level data

modeling and low-level bits-on-the-wire encoding. The

reader of a YANG module can see the high-level view of

the data model and understand how the data will be

encoded in NETCONF operations.

YANG structures data models into modules and

submodules. A module can import data from other

external modules, and it can include data from

submodules. The hierarchy can be augmented, allowing

one module to add data nodes to the hierarchy defined in

another module.

A YANG module contains three types of statements:

Module-header statements describe the module and give information

about it.

Revision statements provide information about the history of the

module.

Definition statements are the body of the module, where the data model

is defined.

A NETCONF server may implement a number of

modules, which is the most common implementation for

the Cisco devices that support NETCONF, or it might

implement only one module that defines all the available

data.

YANG is expressed in XML, meaning that an instance of

a YANG model is an XML document.

YANG defines a set of built-in types and has a

mechanism through which additional types can be

defined. There are more than 20 base types to start with,

including the ones in Table 12-3.

Table 12-3 YANG Built-in Data Types

Data TypeDescription

binary Binary data

bits Set of bits

boolean True or false

decimal64 64-bit signed decimal number

empty No value

enumeration Enumerated strings

int8/16/32/64 Integer

uint8/16/32/64 Unsigned integer

string Unicode string

The typedef YANG statement can be used to define

derived types from base types. In the following example,

a new data type called percent is created by limiting a

16-bit unsigned integer value to a range from 0 to 100:

Click here to view code image

typedef percent {

 type uint16 {

 range "0 .. 100";

}

Description "Percentage":

}

This new type of data can then be used when building the

YANG models. It is common practice to have definitions

of new types of data contained in a YANG submodule

that will then be imported in the main YANG module.

IETF has also defined in RFC 6021 a large number of

YANG types that are commonly used in networking.

These data types are organized in the inet-yang-types

module. The following are some of the many data types

defined in this RFC:

ipv4-address

ipv6-address

ip-prefix

domain-name

uri

mac-address

port-number

ip-version

phys-address

timestamp

date-and-time

flow-label

counter32/64

gauge32/64

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#ppg348a

When building YANG models, the import statement can

be used to make all these data types available in the new

model:

import "ietf-yang-types" {

 prefix yang;

}

When importing an external YANG module, the prefix

statement defines the prefix that will be used when

accessing definitions inside the imported module. For

example, in order to reference the IPv4 address data type

from the newly imported ietf-yang-types module, you

can use the following statement:

type yang:ipv4-address;

YANG defines four types of nodes for data modeling:

Leaf nodes

Leaf-list nodes

Container nodes

List nodes

The simplest component of a YANG module is the leaf

node. A leaf node has one value of a specific type. The

following definition of an interface name is an example

of a leaf node:

Click here to view code image

leaf intf-name {

 type string;

 description "The name of the interface";

}

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#ppg349a

The instantiation of this leaf node—also known as the

wire representation—in a NETCONF message includes

only the XML element and its value:

<intf-name>GigabitEthernet0/0</intf-name>

A leaf-list is a series of leaf nodes of a specific type. The

following list of trunk interfaces is an example of a leaf-

list:

Click here to view code image

leaf-list trunk-interfaces {

 type string;

 description "List of trunk interfaces";

}

The NETCONF XML instantiation of this model on the

wire would look like this:

Click here to view code image

<trunk-interfaces>TenGigabitEthernet0/1</trunk-

interfaces>

<trunk-interfaces>TenGigabitEthernet0/2</trunk-

interfaces>

<trunk-interfaces>TenGigabitEthernet0/3</trunk-

interfaces>

<trunk-interfaces>TenGigabitEthernet0/4</trunk-

interfaces>

A container is used to group related nodes within a

subtree. It has only child nodes and no value. A container

can contain any number of child nodes of any type.

Example 12-1 shows a container called statistics that

contains four leaf nodes of different types:

Example 12-1 YANG Container Example

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#ppg350a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#ppg350b
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-1

container statistics {
 description "A collection of interface
statistics.";
 leaf in-octets {
 type yang:counter64;
 description "The total number of
octets received on the interface.";
 }
 leaf in-errors {
 type yang:counter32;
 description "Number of inbound
packets that contained errors.";
 }
 leaf out-octets {
 type yang:counter64;
 description "The total number of
octets sent out on the interface.";
 }
 leaf out-errors {
 type yang:counter32;
 description "Number of outbound
packets that contained errors.";
 }
}

The XML instantiation of this model is the following:

Click here to view code image

<statistics>

 <in-octets>5983247896</in-octets>

 <in-errors>2578</in-errors>

 <out-octets>678845633</out-octets>

 <out-errors>0</out-errors>

</statistics>

The last type of node that is used for data modeling in

YANG is the list. A list defines a sequence of list entries.

Each entry is a record instance and is uniquely identified

by the values of its key leaves. A list can be thought of as

a table organized around the key leaf with all the leaves

as rows in that table. For example, the user list in

Example 12-2 can be defined as having three leaves

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#ppg351a

called name, uid, and full-name, with the name leaf

being defined as the key leaf.

Example 12-2 YANG List Example

list user {
 key name;
 leaf name {
 type string;
 }
 leaf uid {
 type uint32;
 }
 leaf full-name {
 type string;
 }
}

An instantiation of this data model on the wire might

look in this case as shown in Example 12-3.

Example 12-3 Instantiation of the YANG List

Click here to view code image

<user>
 <name>john</name>
 <uid>1000</uid>
 <full-name>John Doe</full-name>
</user>
<user>
 <name>jeanne</name>
 <uid>1001</uid>
 <full-name>Jeanne Doe</full-name>
</user>

We could combine all the nodes discussed so far to create

a rudimentary YANG data model. Let’s call this module

bogus-interfaces. The data model defined in this

module will be saved in a file that has to match the

module name. In this case, the file that will contain the

module will have to be called bogus-interfaces.yang.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-3

There are several components that go into building the

YANG data model, as shown in Figure 12-3.

Figure 12-3 YANG Module Components

The YANG header contains the namespace for the

module. The namespace is used to uniquely identify each

module on a system that implements NETCONF. Next,

the prefix is used as short notation for the module, so

that it can be more easily referenced, if needed. The

namespace and prefix statements in YANG have exactly

the same role as in XML documents. (Keep in mind that

YANG is an XML schema definition language.) The

header also includes identifying information such as the

name of the organization that created the module,

contact information, a short description, and revision

information. Revision information is particularly of

interest; as the model evolves, the revision information

will change. This way, a user can distinguish between

different versions of the data model.

A section of imports and includes follows the header. In

this section of the module, information contained in

additional modules and submodules is included, if

needed. import is used to refer to definitions in another

YANG module. It pulls references from the YANG

module but does not actually pull in the body of the file

that’s being imported. It’s very common to have

definitions of data types and groupings defined in a

module that are imported and used in several other

modules. The include statement is used to pull a

submodule into a main module. A module does not have

to be contained in a single file. It can easily be split into

several submodules for maintenance purposes and for

easier separation of content. The include statement

completely pulls the submodule into the main module.

After the import and include sections of the data

model, an optional section of data type definitions

follows. This is where any extra data types that are

needed to build the module are defined. The next section

is where the actual data model is built. All the

configuration and operational data declarations are in

this part. An optional section at the end is used to define

custom RPCs and notifications.

A YANG data model can be defined by combining all the

data nodes discussed earlier in this chapter. Example 12-

4 shows this in a YANG data model example.

Example 12-4 YANG Data Model Example

Click here to view code image

// Contents of "bogus-interfaces.yang"
module bogus-interfaces {
 namespace
"http://bogus.example.com/interfaces";
 prefix "bogus";

 import "ietf-yang-types" {
 prefix yang;
 }

 organization "Bogus Inc.";
 contact "john@bogus.example.com";
 description

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-4

 "The module for entities implementing
the Bogus interfaces .";

 revision 2020-01-06 {
 description "Initial revision.";
 }
 container interfaces {
 leaf intf-name {
 type string;
 description "The name of the
interface";
 }

 leaf-list trunk-interfaces {
 type string;
 description "List of trunk
interfaces";
 }

 container statistics {
 description "A collection of
interface statistics.";
 leaf in-octets {
 type yang:counter64;
 description "Total
number of octets received on the
 interface.";
 }

 leaf in-errors {
 type yang:counter32;
 description "Number of
inbound packets that contained
 errors.";
 }

 leaf out-octets {
 type yang:counter64;
 description "Total
number of octets sent out on the
 interface.";
 }

 leaf out-errors {
 type yang:counter32;
 description "Number of
outbound packets that contained
 errors.";
 }
 }
 list user {
 key name;
 leaf name {
 type string;

 }
 leaf uid {
 type uint32;
 }
 leaf full-name {
 type string;
 }
 }
 }
}

The IETF and other standards-setting groups have

defined several YANG models. The following are some of

the IETF YANG models:

RFC 7224: IANA Interface Type YANG Module

RFC 7317: A YANG Data Model for System Management

RFC 7407: A YANG Data Model for SNMP Configuration

RFC 8299: YANG Data Model for L3VPN Service Delivery

RFC 8343: A YANG Data Model for Interface Management

RFC 8344: A YANG Data Model for IP Management

For an up-to-date and complete collection of YANG

modules, see https://github.com/YangModels/yang.

Anyone can create YANG data models. In most cases,

though, they are created by network equipment vendors,

the IETF, and OpenConfig. OpenConfig is a group of

network operators, including AT&T, Google, Microsoft,

Facebook, and Apple, that was created to define

standards intended to make networks more open and

programmable. Because OpenConfig is not a formal

standards body, the OpenConfig data models change

rapidly. The data models released by the IETF are also

called open data models. Open data models provide a

common interface across multiple platforms, acting as

the lowest common denominator for data models. Native

data models are specific for each network vendor and

each network operating system. Native models are

https://github.com/YangModels/yang

usually not interoperable with other platforms; they

closely mirror the structure of the CLI and define extra

features that are specific to each vendor.

YANG is an extensible language, allowing extension

statements to be defined by standards bodies, vendors,

and individuals. The statement syntax allows these

extensions to coexist with standard YANG statements in

a natural way. YANG allows a module to augment a data

model by inserting additional YANG nodes into the

model. This allows vendors to add vendor-specific

parameters to standard data models in an interoperable

way. The augment statement allows a module to add

data to the schema tree. As an example, let’s consider the

statistics container as being part of the interfaces-

statistics module. The statistics container looks as

shown in Example 12-5.

Example 12-5 YANG Data Model Augmentation

Click here to view code image

container statistics {
 description "A collection of interface
statistics.";
 leaf in-octets {
 type yang:counter64;
 description "The total number of
octets received on the interface.";
 }
 leaf in-errors {
 type yang:counter32;
 description "Number of inbound
packets that contained errors.";
 }
 leaf out-octets {
 type yang:counter64;
 description "The total number of
octets sent out on the interface.";
 }
 leaf out-errors {
 type yang:counter32;
 description "Number of outbound
packets that contained errors.";
 }
}

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-5

In order to augment the module, the "augment"
statement is used as follows:

import interface-statistics {
 prefix "intf-stats";
 }
 augment "/intf-stats:statistics" {
 leaf in-unicast-pkts {
 type yang:counter64;
 description "Number of unicast
packets received on the interface.";
 }
 leaf out-unicast-pkts {
 type yang:counter64;
 description "Number of unicast
packets sent out the interface.";
 }
 }

Notice in Example 12-5 that the augment statement

takes as input the relative path for the statistics object

in the intf-stats module. Two new leaves are added to

the model: in-unicast-pkts for inbound unicast data

packets on an interface and out-unicast-pkts for

outbound unicast data packets on the interface.

YANG supports the definition of NETCONF RPCs. This

means that in addition to the predefined NETCONF

operations (get, get-config, and edit-config),

additional operations can be defined in YANG. This is

done through the rpc declaration. It’s a common

occurrence to have several different operating system

images stored in the flash memory of networking

devices, including the current running image, the

previous image, and an image for upgrade. Upgrading

software packages and operating system images is a

common operational requirement for network

administrators. NETCONF does not support this

common operational task by default. Example 12-6

shows the YANG definition of a new NETCONF action to

activate a specific software image on the device that

implements this action.

The RPC definition contains inputs and outputs. In this

case, the input leaf specifies the binary of the image that

will be activated, and the output leaf contains the status

of the RPC action. Keep in mind that the additional RPCs

are defined through YANG models and available on the

server side on the device. The client or the management

system interacting with the server would also have to be

able to interpret the output and execute the custom RPC

action.

Example 12-6 NETCONF RPC Action Definition

Click here to view code image

rpc activate-software-image {
 input {
 leaf image {
 type binary;
 }
 }
 output {
 leaf status {
 type string;
 }
 }
}

NETCONF supports notification messages, which are

similar to SNMP traps. The notification statement is

used to define NETCONF notifications. It takes only one

argument, which is the identifier, followed by a block of

data statements that contain the detailed notification

information. Example 12-7 shows a simple NETCONF

notification for a configuration change.

Example 12-7 NETCONF Notification Definition

Click here to view code image

notification config-change {
 description "The configuration change.";
 leaf operator-name {
 type string;
 }

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-6
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-7

 leaf-list change {
 type instance-identifier;
 }
}

The notification in Example 12-7 has two nodes: one for

the name of the operator that performed the change and

one for the list of changes performed during the

configuration session.

Reading a YANG data model straight from an RFC

specification can be a daunting task, especially when

you’re new to data models. pyang is a Python program

that has been developed to validate and convert YANG

models to more user-friendly and readable formats.

pyang can be downloaded from

https://github.com/mbj4668/pyang. To see how pyang

version 2.1.1 works, consider the ietf-interfaces YANG

model defined in RFC 8343 and downloaded from

https://github.com/YangModels/yang. This data model

follows the structure discussed in this chapter, and

Example 12-8 shows what the ietf-interfaces.yang file

looks like.

Example 12-8 ietf-interfaces YANG Data Model

Snippet

Click here to view code image

module ietf-interfaces {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-
interfaces";
 prefix if;

 import ietf-yang-types {
 prefix yang;
 }

 organization
 "IETF NETMOD (Network Modeling) Working
Group";

 contact

https://github.com/mbj4668/pyang
https://github.com/YangModels/yang
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-8

 "WG Web:
<https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>";
 description
 "This module contains a collection of YANG
definitions for
 managing network interfaces.+

 Copyright (c) 2018 IETF Trust and the
persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and
binary forms, with or
 without modification, is permitted
pursuant to, and subject
 to the license terms contained in, the
Simplified BSD License
 set forth in Section 4.c of the IETF
Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part
of RFC 8343; see
 the RFC itself for full legal notices.";

 revision 2018-02-20 {
 description
 "Updated to support NMDA.";
... omitted output

You can run this YANG model through pyang and specify

the tree format by using the command pyang -f tree

ietf-interfaces.yang. This results in the output shown

in Example 12-9.

Example 12-9 pyang Output for ietf-

interfaces.yang

Click here to view code image

module: ietf-interfaces
 +--rw interfaces
 | +--rw interface* [name]
 | +--rw name

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-9

string
 | +--rw description?
string
 | +--rw type
identityref
 | +--rw enabled?
boolean
 | +--rw link-up-down-trap-enable?
enumeration {if-mib}?
 | +--ro admin-status
enumeration {if-mib}?
 | +--ro oper-status
enumeration
 | +--ro last-change?
yang:date-and-time
 | +--ro if-index int32
{if-mib}?
 | +--ro phys-address?
yang:phys-address
 | +--ro higher-layer-if*
interface-ref
 | +--ro lower-layer-if*
interface-ref
 | +--ro speed?
yang:gauge64
 | +--ro statistics
 | +--ro discontinuity-time
yang:date-and-time
 | +--ro in-octets?
yang:counter64
 | +--ro in-unicast-pkts?
yang:counter64
 | +--ro in-broadcast-pkts?
yang:counter64
 | +--ro in-multicast-pkts?
yang:counter64
 | +--ro in-discards?
yang:counter32
 | +--ro in-errors?
yang:counter32
 | +--ro in-unknown-protos?
yang:counter32
 | +--ro out-octets?
yang:counter64
 | +--ro out-unicast-pkts?
yang:counter64
 | +--ro out-broadcast-pkts?
yang:counter64
 | +--ro out-multicast-pkts?
yang:counter64
 | +--ro out-discards?
yang:counter32
 | +--ro out-errors?
yang:counter32

 x--ro interfaces-state
 x--ro interface* [name]
 x--ro name string
 x--ro type identityref
 x--ro admin-status enumeration
{if-mib}?
 x--ro oper-status enumeration
 x--ro last-change? yang:date-and-
time
 x--ro if-index int32 {if-
mib}?
 x--ro phys-address? yang:phys-
address
 x--ro higher-layer-if* interface-
state-ref
 x--ro lower-layer-if* interface-
state-ref
 x--ro speed? yang:gauge64
 x--ro statistics
 x--ro discontinuity-time
yang:date-and-time
 x--ro in-octets?
yang:counter64
 x--ro in-unicast-pkts?
yang:counter64
 x--ro in-broadcast-pkts?
yang:counter64
 x--ro in-multicast-pkts?
yang:counter64
 x--ro in-discards?
yang:counter32
 x--ro in-errors?
yang:counter32
 x--ro in-unknown-protos?
yang:counter32
 x--ro out-octets?
yang:counter64
 x--ro out-unicast-pkts?
yang:counter64
 x--ro out-broadcast-pkts?
yang:counter64
 x--ro out-multicast-pkts?
yang:counter64
 x--ro out-discards?
yang:counter32
 x--ro out-errors?
yang:counter32

Example 12-9 shows a compressed version of a YANG

data model that is 1123 lines long, with only the critical

information left. The clear separation between

configuration (rw, which means read/write) and state

(ro, which means read-only) data can be observed right

away. All the leafs and groupings in the model and their

types are also displayed. pyang is extremely versatile and

useful as it validates the correctness of YANG models

and also converts them into several formats, including

yin, dsdl, tree, jstree, uml, and jsonxsl.

Let’s now explore the NETCONF interface that is

provided by the Cisco IOS XE operating system. Cisco

IOS XE is a network operating system for enterprise

switching, routing, wired, and wireless access. The

following examples use Cisco IOS XE 16.6.3 running on a

Cisco CSR1000V device with NETCONF enabled.

Enabling NETCONF on the Cisco CSR1000V running

Cisco IOS XE version 16.6.3 is extremely simple: Just

issue the netconf-yang command in the configuration

mode of the device. By default, the NETCONF server on

the device runs on TCP port 830 and uses the SSH

process for transport. A NETCONF session can be

established by using an SSH client and specifying port

830 when connecting to the device. When establishing a

NETCONF session with a device, a complete list of all the

capabilities and YANG modules supported by the device

is exchanged with the client. An example of this exchange

can be observed in Example 12-10.

Example 12-10 Capabilities Exchanged When

Establishing a NETCONF Session

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<hello
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>

<capability>urn:ietf:params:netconf:base:1.1</capability>

<capability>urn:ietf:params:netconf:capability:writable-
running:1.0</capability>

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-10

<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>

<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>

<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>

<capability>urn:ietf:params:netconf:capability:rollback-
on-error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:notification:1.0</capability>

<capability>urn:ietf:params:netconf:capability:interleave:1.0</capability>

<capability>urn:ietf:params:netconf:capability:with-
defaults:1.0?basic-Ω
<capability>urn:ietf:params:netconf:capability:yang-
library:1.0?revision=2016-06-21
&module-set-
id=0de3f66ee656759ede57b7f3b6cd310d</capability>

<capability>http://tail-
f.com/ns/netconf/actions/1.0</capability>
<capability>http://tail-
f.com/ns/netconf/extensions</capability>
<capability>http://cisco.com/ns/cisco-xe-ietf-
ip-deviation?module=cisco-
xe-ietf-ip-deviation&revision=2016-08-
10</capability>
<capability>http://cisco.com/ns/cisco-xe-ietf-
ipv4-unicast-routing-
deviation?module=cisco-xe-ietf-ipv4-unicast-
routing-deviation&revis
ion=2015-09-11</capability>
<capability>http://cisco.com/ns/cisco-xe-ietf-
ipv6-unicast-routing-
deviation?module=cisco-xe-ietf-ipv6-unicast-
routing-deviation&revis
ion=2015-09-11</capability>
<capability>http://cisco.com/ns/cisco-xe-ietf-
ospf-
deviation?module=cisco-xe-ietf-ospf-
deviation&revision=2015-09-11</
capability>
<capability>http://cisco.com/ns/cisco-xe-ietf-
routing-deviation?module=cisco-xe-ietf-routing-
deviation&revision=2016-07-09</
capability>
<capability>http://cisco.com/ns/cisco-xe-
openconfig-acl-
deviation?module=cisco-xe-openconfig-acl-
deviation&revision=2017-08-21</
capability>
<capability>http://cisco.com/ns/mpls-static/
devs?module=common-mpls-static-
devs&revision=2015-09-11</capability>

<capability>http://cisco.com/ns/nvo/devs?
module=nvo-devs&revision=2015-09-11</
capability>
<capability>http://cisco.com/ns/yang/Cisco-IOS-
XE-aaa?module=Cisco-IOS-XE-
aaa&revision=2017-09-05</capability>
<capability>http://cisco.com/ns/yang/Cisco-IOS-
XE-acl?module=Cisco-IOS-XE-
acl&revision=2017-08-01</capability>
<capability>http://cisco.com/ns/yang/Cisco-IOS-
XE-acl-
oper?module=Cisco-IOS-XE-acl-
oper&revision=2017-02-07</
capability>
...
</capabilities>
<session-id>5546</session-id></hello>]]>]]>

All the YANG models supported by the device are

included in the HELLO message, and so is a session ID.

This version of Cisco IOS XE supports both NETCONF

1.0 and 1.1 as well as the writable-running capability

(which makes it possible to write directly to the running

configuration of the device), the rollback-on-error 1.0

capability, and the notification 1.0 capability. These

capabilities translate into YANG models defined by the

IETF, as you can see in their XPath definition:

urn:ietf:params:netconf:

The delimiter string]]>]]> at the end of the response

signifies the end of the message. Next, the client needs to

respond to the hello message with a list of capabilities

that it supports. The simplest response that a client can

send is the following:

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<hello

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#ppg361a

<capability>urn:ietf:params:netconf:base:1.0</capability>

</capabilities>

</hello>]]>]]>

There is no reply from the device to the client’s initial

hello message, which is expected behavior; however, an

active NETCONF connection to the device is now

established. In order to retrieve the running

configuration of the device, the following XML message

is sent next:

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<rpc message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:

base:1.0">

 <get-config>

 <source>

 <running/>

 </source>

 </get-config>

</rpc>]]>]]>

This example shows a NETCONF RPC message with an

ID of 101 defined by the base IETF NETCONF 1.0

namespace. The message ID is used to keep track of the

response received from the device. The operation within

the message is get-config, with the target data source of

the configuration that is stored in the running data

store. The response contains the running configuration

of the device enclosed in an <rpc-reply> XML element

and is displayed in Example 12-11.

Example 12-11 Snippet of the NETCONF get-config

Operation for the Running Configuration

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#ppg362a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-11

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="101">
 <data>
 <native
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-
native">
 <version>16.6</version>
 <boot-start-marker />
 <boot-end-marker />
 <service>
 <timestamps>
 <debug>
 <datetime>
 <msec />
 </datetime>
 </debug>
 <log>
 <datetime>
 <msec />
 </datetime>
 </log>
 </timestamps>
 </service>
 <platform>
 <console
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-
platform">
 <output>serial</output>
 </console>
 </platform>
 <hostname>csr1kv</hostname>
 <enable>
 <password>
 <secret>cisco</secret>
 </password>
 <secret>
 <type>5</type>

<secret>1A1eZ$Vp95LGeOXX3CfOKO5K5Nf1</secret>
 </secret>
 </enable>
... omitted output
 </data>
</rpc-reply>

While interacting with a NETCONF server this way is

possible, it is very cumbersome and error prone. Several

publicly available NETCONF tools and clients make it

much easier to interact with a NETCONF server. One

popular NETCONF client is the Python 3 ncclient

library. Next, let’s use ncclient to explore the Cisco NX-

OS NETCONF interface.

Cisco NX-OS is the network operating system that

powers Cisco Nexus switches in data centers around the

world. Built on top of Linux, Cisco NX-OS, also known as

Open NX-OS, exposes the full power of Linux, with rich

programmable interfaces and a diverse set of automation

tools. The following examples use Cisco NX-OS version

9.2.3, ncclient version 0.6.7, and Python 3.7.4. You

enable NETCONF on Cisco NX-OS version 9.2.3 by

issuing the feature netconf command in configuration

mode. Much as with Cisco IOS XE, the NETCONF server

is running by default on TCP port 830 and uses the SSH

protocol as transport.

The manager module within the ncclient library

handles all NETCONF RPC connections between the

client and the server. By using the connect method

available with the manager module, it is very easy to

establish a connection to a NETCONF server. The

connect method takes as input parameters the

hostname or the IP address of the NETCONF server, the

port on which the server is running, the username and

password that are used to connect, and the

hostkey_verify parameter, which specifies whether the

script should look for hostkey verification information in

the ~/.ssh/known_hosts location on the server on which

the script is run. Example 12-12 shows a simple Python 3

script that retrieves the capabilities of the NETCONF

server and displays them to the console.

Example 12-12 Python Script to Retrieve and Print

NETCONF Capabilities

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-12

#!/usr/bin/env python
""" Get the capabilities of a remote device
with NETCONF """

from ncclient import manager

NXOS_HOST = "10.10.10.10"
NETCONF_PORT = "830"
USERNAME = "admin"
PASSWORD = "password"

create a get_capabilities() method
def get_capabilities():
 """
 Method that prints NETCONF capabilities of
remote device.
 """
 with manager.connect(
 host=NXOS_HOST,
 port=NETCONF_PORT,
 username=USERNAME,
 password=PASSWORD,
 hostkey_verify=False
) as device:

 # print all NETCONF capabilities
 print('\n***NETCONF Capabilities for
device {}***\n'.format(NXOS_HOST))
 for capability in
device.server_capabilities:
 print(capability)

if __name__ == '__main__':
 get_capabilities()

After importing the manager module from ncclient, the

NETCONF server IP address, port number, username,

and password are defined. The get_capabilities()

function establishes a connection to the NETCONF

server, retrieves the server capabilities with

device.server_capabilities(), iterates with a for loop

over each capability, and displays the capabilities to the

console. Example 12-13 shows the result of running this

script on a Cisco Nexus 9000 switch running Cisco NX-

OS 9.2.3 with NETCONF enabled.

Example 12-13 Output of the Python Script from

Example 12-12

Click here to view code image

***NETCONF Capabilities for device
10.10.10.10***

urn:ietf:params:netconf:base:1.0
urn:ietf:params:netconf:base:1.1
urn:ietf:params:netconf:capability:writable-
running:1.0
urn:ietf:params:netconf:capability:rollback-on-
error:1.0
urn:ietf:params:netconf:capability:candidate:1.0

urn:ietf:params:netconf:capability:validate:1.1
urn:ietf:params:netconf:capability:confirmed-
commit:1.1
http://cisco.com/ns/yang/cisco-nx-os-device?
revision=2019-02-17&module=Cisco-NX-OS-
device&deviations=Cisco-NX-OS-device-deviations

At this writing, Cisco NX-OS by default implements the

base NETCONF capabilities for version 1.0 and 1.1 as

well as the YANG models for writable running

configuration, rollback-on-error, candidate data store,

and others. Additional YANG models are supported and

can be installed manually.

In order to perform changes on the NETCONF server,

the edit_config method available with the manager

module can be used. In Example 12-14, a new loopback

interface is created, the administrative state is switched

to up, and an IP address is configured on the newly

created interface.

Example 12-14 Python Script to Create a New

Loopback Interface

Click here to view code image

#!/usr/bin/env python
""" Add a loopback interface to a device with
NETCONF """

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-13
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#pexa12-14

from ncclient import manager

NXOS_HOST = "10.10.10.10"
NETCONF_PORT = "830"
USERNAME = "admin"
PASSWORD = "password"
LOOPBACK_ID = "01"
LOOPBACK_IP = "1.1.1.1/32"

create add_loopback() method
def add_loopback():
 """
 Method that adds loopback interface and
configures IP address
 """

 add_loop_interface = """<config>
 <System
xmlns="http://cisco.com/ns/yang/cisco-nx-os-
device">
 <intf-items>
 <lb-items>
 <LbRtdIf-list>
 <id>lo{id}</id>
 <adminSt>up</adminSt>
 <descr>Intf configured via
NETCONF</descr>
 </LbRtdIf-list>
 </lb-items>
 </intf-items>
 <ipv4-items>
 <inst-items>
 <dom-items>
 <Dom-list>
 <name>default</name>
 <if-items>
 <If-list>
 <id>lo{id}</id>
 <addr-items>
 <Addr-list>
 <addr>
{ip}</addr>
 </Addr-
list>
 </addr-items>
 </If-list>
 </if-items>
 </Dom-list>
 </dom-items>
 </inst-items>
 </ipv4-items>
 </System>
 </config>""".format(id=LOOPBACK_ID,
ip=LOOPBACK_IP)

 with manager.connect(
 host=NXOS_HOST,
 port=NETCONF_PORT,
 username=USERNAME,
 password=PASSWORD,
 hostkey_verify=False
) as device:

 # Add loopback interface
 print("\n Adding Loopback {} with IP
address {} to device {}...\n".\
 format(LOOPBACK_ID, LOOPBACK_IP,
NXOS_HOST))
 netconf_response =
device.edit_config(target='running',
 config=add_loop_interface)
 # Print the XML response
 print(netconf_response)

if __name__ == '__main__':
 add_loopback()

After importing the manager module from the ncclient

library, the connection details for the NETCONF server

are specified. The loopback interface ID and IP address

that will be created are also defined at this point in the

script. The add_loopback() function contains the XML

document that specifies the NETCONF configuration

information in the add_loop_interface variable. The

YANG model that is used in this case is specified through

the XPath value,

xmlns=“http://cisco.com/ns/yang/cisco-nx-os-

device”. Recall that this YANG data model is included

by default in Cisco NX-OS. The actual path in the treelike

YANG model where the configuration changes are going

to be performed is also included in the XML document.

This XML document matches one to one the YANG data

model cisco-nx-os-device. The script uses the

connect method next to establish a connection to the

NETCONF server and then send the XML configuration

document to the running data store. The response

received is displayed to the console using the print

function. The result of successfully running this script

looks similar to the following one:

Click here to view code image

Adding Loopback 01 with IP address 1.1.1.1/32 to

device

10.10.10.10...

<?xml version="1.0" encoding="UTF-8"?>

<rpc-reply message-id="urn:uuid:6de4444b-9193-

4b74-837b-

e3994d75a319"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <ok/>

</rpc-reply>

RESTCONF

According to RFC 8040, RESTCONF is “an HTTP-based

protocol that provides a programmatic interface for

accessing data defined in YANG, using the datastore

concepts defined in the Network Configuration Protocol

(NETCONF).” Basically, RESTCONF provides a REST-

like interface to the NETCONF/YANG interface model.

Although NETCONF provides significant improvements

over SNMP, it doesn’t provide network interfaces with a

good REST API interface. Rather than developing an

entirely new protocol and data model, the IETF extended

NETCONF into RESTCONF. RESTCONF is not a

replacement for NETCONF. Rather, RESTCONF

provides an API that aligns with other web application

APIs to provide an easy entry point for developers.

Like other REST APIs, RESTCONF uses the HTTPS

protocol to encapsulate and send messages.

Authentication is accomplished using typical HTTP

authentication models, such as basic authentication,

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch12_images.xhtml#ppg367a

where usernames and passwords are Base64 encoded

and transmitted from the client to the server via an

Authentication header. Figure 12-4 shows the

RESTCONF protocol stack.

Figure 12-4 RESTCONF Protocol Stack

REST APIs typically implement CRUD (create, retrieve,

update, and delete) operations, leveraging HTTP

methods. RESTCONF maps the NETCONF operations

into HTTP methods as shown in Table 12-4.

Table 12-4 RESTCONF HTTP Methods and Their

Corresponding NETCONF Operations

RESTCONFNETCONF

GET <get>, <get-config>

POST <edit-config> (operation=“create”)

PUT <edit-config> (operation=“create/replace”)

PATCH <edit-config> (operation=“merge”)

DELETE <edit-config> (operation=“delete”)

The available RESTCONF methods and their

corresponding NETCONF operations are as follows:

The HTTP GET method is sent in the RESTCONF request by the client

to retrieve data and metadata for a specific resource. It translates into

the NETCONF <get> and <get-config> operations. The GET method is

supported for all resource types except operation resources.

The HTTP POST method is used for NETCONF RPCs and to create a

data resource. It represents the same semantics as the NETCONF

<edit-config> operation with operation= “create”.

The PUT method is used to create or replace the contents of the target

resource. It is the equivalent of the NETCONF <edit-config> operation

with operation=“create/replace”.

The PATCH method provides the framework for resource patching

mechanism. It is the equivalent of the NETCONF <edit-config>

operation with operation=“merge”.

The HTTP DELETE method is used to delete the target resource and is

the equivalent of the NETCONF <edit-config> with operation=“delete”.

RESTCONF data is encoded with either XML or JSON.

Compared with NETCONF, RESTCONF has added

support for the JSON encoding. There are two new

media types defined for RESTCONF:

application/yang.api+xml for XML-encoded payloads

application/yang.api+json for JSON-encoded data

With all REST APIs, including RESTCONF APIs, the URI

is important in identifying the data being requested or

configured. A unique characteristic of RESTCONF is that

it lacks any true API documentation that a developer

would use to learn how to use it. Rather, the YANG

models themselves are the API documentation.

All RESTCONF URIs use the following format:

https://<ADDRESS>/<ROOT>/data/<[YANG_M

ODULE:]CONTAINER>/ <LEAF>[?<OPTIONS>]

where

ADDRESS is the IP address or the hostname and port number where

the RESTCONF agent is available.

ROOT is the main entry point for RESTCONF requests. Before

connecting to a RESTCONF server, the root must be determined. Per

the RESTCONF standard, devices implementing the RESTCONF

protocol should expose a resource called /.well-known/host-meta to

enable discovery of ROOT programmatically.

data is the RESTCONF API resource type for data. The operations

resource type is also available for access to RPC operations.

[YANG_MODULE:]CONTAINER is the base mode container being

used.

LEAF is an individual element from within the container.

[?<OPTIONS>] are the options that some network devices may support

that are sent as query parameters that impact the returned results.

These options are optional and can be omitted. The following are some

examples of possible options:

depth = unbounded: If nothing is specified, this option is the

default. It indicates that the returned data should follow the nested

models to the end. Integer values specifying the depth of the data

to be returned are also supported.

content = [all, config, nonconfig]: This query option controls

the type of data returned. If nothing is specified, the default value,

all, is used.

fields = expr: This option limits what leafs are returned in the

response.

Consider the ietf-interfaces YANG model defined in

RFC 8343 and partially presented in Figure 12-5. Using

the data model details, the URIs for RESTCONF requests

can be easily constructed. Generating the code to support

RESTCONF APIs and the mapping of those API calls into

NETCONF can be automated because the mapping from

a YANG data model to a RESTCONF URI is known and

well defined.

Figure 12-5 Mapping Between the YANG Model and

RESTCONF URI

RESTCONF helps support a common, REST-based

programming model for network automation in general.

Enabling RESTCONF on Cisco IOS XE is simple and

straightforward. First, RESTCONF runs over HTTPS, so

a secure HTTP server is enabled on the device by issuing

ip http secure-server in configuration mode. Next,

RESTCONF is enabled with the restconf command in

configuration mode. Once these two commands are

entered and a network administrator account exists on

the device, RESTCONF is ready to be accessed. Cisco IOS

XE 16.6.3 and Postman 7.13 are used in the following

examples.

Devices that implement the RESTCONF protocol should

expose a resource called /.well-known/host-meta in

order to enable the discovery of the REST API root

resource programmatically. Using Postman to perform a

GET request on the https://{{host}}:{{port}}/.well-

known/host-meta endpoint results in the output shown

in Figure 12-6.

Figure 12-6 Getting the REST API Root Resource

The href attribute in the response contains the path to

the REST API root resource: /restconf. Exploring the

API further and performing a GET request on

https://{{host}}:{{port}}/restconf will expose the top-

level resources available in RESTCONF: data and

operations, as shown in Figure 12-7.

Figure 12-7 Top-Level Resource Available in

RESTCONF

To explore further down the API tree and into the YANG

model and retrieve a complete list of all the interfaces,

their status, and traffic statistics through the RESTCONF

interface, you can perform a GET request on the

https://{{host}}:{{port}}/restconf/data/ietf-

interfaces:interfaces-state/ endpoint. The response

received back from the API should look similar to the one

in Figure 12-8.

Figure 12-8 Getting Interface Statistics with

RESTCONF

MODEL-DRIVEN TELEMETRY

Timely collection of network statistics is critical to

ensuring that a network performs as expected and

foreseeing and preventing any problems that could arise.

Technologies such as SNMP, syslog, and the CLI have

historically been used to gather this state information

from the network. Using a pull model to gather the data,

in which the request for network data originates from the

client, does not scale and restricts automation efforts.

With such a model, the network device sends data only

when the client manually requests it. A push model

continuously streams data from the network device to

the client. Telemetry enables the push model, providing

near instantaneous access to operational data. Clients

can subscribe to specific data they need by using

standard-based YANG data models delivered over

NETCONF.

There are two types of telemetry subscriptions:

Dynamic: The subscriber sends a request, usually via the ietf-

yangpush.yang data model. The device approves the request, replies

with a subscription ID, and begins streaming telemetry data. Dynamic

subscriptions cannot be changed but can be terminated at any time,

usually by closing the NETCONF session.

Configured: The subscription is configured via the CLI, NETCONF, or

RESTCONF and is persistent between reboots. Configured

subscriptions can be modified and terminated at any point and can be

used to stream data to more than one receiver.

A subscription can specify how notifications are sent to

the receivers:

Periodic notifications: These notifications are sent with a fixed rate

defined in the telemetry subscription. This data is ideal for device

counters or measures such as CPU utilization or interface statistics

because of their dynamic, always-changing nature.

On-change notifications: These notifications are sent only when the

data changes. These types of notifications might be sent, for example,

for faults, new neighbors being detected, and thresholds being crossed.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 12-5 lists these key topics and the page number on

which each is found.

Table 12-5 Key Topics

Key Topic ElementDescriptionPage Number

Para

grap

h

Yang data models: NETCONF, RESTCONF, and

gRPC

3

4

3

Para

grap

h

NETCONF protocol specification 3

4

4

Figu

re

12-2

NETCONF 3

4

5

Para

grap

h

NETCONF operations to manage device

configurations and retrieve status information

3

4

6

Para

grap

h

NETCONF configuration data stores 3

4

6

Para

grap

h

YANG and NETCONF 3

4

7

Para

grap

h

YANG nodes for data modeling 3

4

9

Figu

re

12-3

YANG module components 3

5

2

Para

grap

h

YANG modules 3

5

4

Para

grap

h

RESTCONF 3

6

7

Para

grap

h

RESTCONF URIs 3

6

8

Para

grap

h

Telemetry subscription types 3

7

1

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

Network Configuration Protocol (NETCONF)

Yet Another Next Generation (YANG)

remote procedure call (RPC)

gRPC

RESTCONF

Chapter 13

Deploying Applications

This chapter covers the following topics:

Application Deployment Models: This section discusses the

public, private, hybrid, and edge cloud application deployment models.

Application Deployment Methods: This section discusses bare-

metal virtual machines, containers, and serverless deployments.

DevOps: This section provides an overview of the DevOps operational

model.

Docker: This section discusses Docker containers and the basic

operation of Docker.

In the past, deployment options for getting an

application up and running were fairly simple: You

bought a server, fed it hundreds of CD-ROMs, and 12

hours later, you had your application ready to start

configuring and inputting data. Thanks to the

evolution of application architectures and microservice

design patterns, new technologies support the new

breed of applications. You now have numerous ways to

deploy applications, including automated and flexible

ways to get your applications up and providing value

to your business. This chapter explores some of the

core technologies and operating models that are in use

today.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 13-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 13-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Application Deployment Models 1, 2

Application Deployment Methods 3, 4

DevOps 5, 6

Docker 7, 8

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. Which characteristic matches an SaaS deployment

model?

1. Provider deploys your software customizations.

2. Any update to the software requires a new license.

3. You can recommend tweaks to the underlying infrastructure.

4. None of the above

2. Which is a good deployment model for real-time

IoT sensors?

1. SaaS model

2. Edge computing model

3. Private cloud model

4. Hybrid cloud model

3. In which of the following ways are containers

different from virtual machines? (Choose two.)

1. Containers have less storage requirements than VMs.

2. VMs can run any operating system, but containers run only on

Linux.

3. Containers start in 500 ms, and VMs start in minutes.

4. VMs are better if you have a microservice architecture.

4. Which deployment method is best for processes

that are run periodically?

1. Serverless

2. Containers

3. Virtual machines

4. All of the above

5. What is the second way of DevOps?

1. Automation

2. Continuous learning and experimentation

3. Culture

4. Feedback loop

6. What is continuous integration?

1. Automated software delivery and deployment

2. An Agile software development technique

3. The process of merging development work with the code base for

automated testing

4. None of the above

7. A Docker images uses what type of file system?

1. Layered file system

2. NFS

3. XFS

4. Union file system

8. What command do you use to launch an nginx

container on port 80 of the host file system?

1. docker image build -p 80 nginx

2. docker start -it -d nginx -p 80|80

3. docker container run -p 80:80 -d nginx

4. None of the above

FOUNDATION TOPICS

APPLICATION DEPLOYMENT MODELS

The concept of cloud has wormed its way into almost

every facet of modern life. It has become central to how

we interact with our friends, buy things, watch TV and

movies, and run our businesses. So what is it really?

Well, that is a very subjective question that has to take

into account your own personal perspective. If you asked

five people what cloud is, you would probably get eight

different answers. Nearly half of all business meetings

about cloud, when it was in its infancy, were spent on

determining what it was and how it could be used. Is it a

service? Is it a product? Is it something magical that will

solve all business problems?

The biggest issue with this line of thinking is trying to

call cloud a “thing” in the first place. The key value of

cloud is that it gives you a new way of operating IT—

allowing it to be fast, agile, and able to align better to the

goals of the business. From this perspective, cloud can

help transform manual and inefficient processes into

something the business can use as a competitive

advantage and a way to better serve customers. The

strength of cloud is realized in the speed and agility it

affords as an operational model to get applications

deployed and providing value more quickly. Cloud has

fundamentally changed how we think about building and

operationalizing applications.

Today Amazon, Google, Microsoft, Cisco, and others

offer cloud services. Many startups are building their

applications and services completely in the cloud. Uber,

for example, has completely transformed the

transportation industry through a cloud-based

application that allows us to easily find someone willing

to pick us up and take us where we want to go. Square

has transformed credit card processing by allowing

anyone with a smartphone and an inexpensive hardware

add-on to take credit card payments. The growth of cloud

services like these will continue at a steady pace, forcing

businesses to rethink how they engage with their

customers and operate business-critical services.

NIST DEFINITION

To define cloud, we need a common taxonomy, and for

that we can turn to the National Institute of Standards

and Technology, a U.S. government agency responsible

for standardizing weights, measurements, and

technology standards and practices. NIST Special

Publication (SP) 800-145 was written to solve the “what

is cloud” dilemma. While SP 800-145 is a rather short

document, it hits on the major aspects of cloud and is

therefore useful as a framework for understanding

application deployment options and prepping for the

200-901 DevNet Associate DEVASC exam. In SP 800-

145, NIST defines cloud through three primary lenses:

essential characteristics, service models, and deployment

models (see Figure 13-1).

Figure 13-1 NIST Cloud Computing Definition

Essential Characteristics

According to SP 800-145, the essential characteristics

describe the core requirements of any cloud and are the

differentiators that determine whether a service can be

classified as being a cloud offering. SP 800-145 defines

the essential characteristics as follows:

Broad network access: Services are available over the network and

accessed via standard protocols and communications technologies on

any type of client device (mobile phone, tablet, desktop, and so on).

Rapid elasticity: Capacity can be automatically provisioned and

decommissioned to scale the service to demand.

Measured service: Cloud systems measure resource utilization

(compute, storage, and network) and charge for those services

accordingly. Utilization is monitored, controlled, and reported on,

allowing transparency for the service provider and customer.

On-demand self-service: The cloud consumer can provision

compute, storage, and network as needed, without human interaction,

through automation or self-service portals.

Resource pooling: The infrastructure is a common pool of resources

that can serve multiple customers at the same time. The customer does

not interact with the underlying hardware, and workloads can be

moved within the cloud environment based on demand without the end

user knowing or needing to be involved.

Service Models

The cloud service models mainly differ in terms of how

much control/administration the cloud customer has to

perform. Figure 13-2 shows the following service models:

Figure 13-2 Cloud Service Models

Software as a service (SaaS): A service provider hosts, manages,

and controls an application and offers it to the customer to use. The

customer does not interact at all with the underlying infrastructure,

operating systems, storage, or network. There may be some

customization capabilities, but they are usually limited to application-

specific configuration. What you see is what you get.

Platform as a service (PaaS): A PaaS provider supplies a fully

integrated service/software suite, and customers can deploy their

applications on top of this suite with a predefined set of application

programing interfaces, libraries, software development kits, and/or

other tools and services. Customers can program the application in any

way they choose and can customize it directly to their own workflow, as

long as the customization is within the parameters of the service

provider’s offering. Customers do not have to worry about integration

of the underlying infrastructure components, and in the case of a

managed PaaS service, have no management responsibilities for the

underlying infrastructure.

Infrastructure as a service (IaaS): A provider enables the

customer to provision compute, storage, and networking to run any

combination of software and operating systems. While customers have

no control of the underlying infrastructure hardware platform, they

have full control over the software and services they deploy within the

cloud service. The customer is also responsible for the maintenance of

the software they deploy, including patching and upgrading.

APPLICATION DEPLOYMENT OPTIONS

Cloud can be deployed in a number of ways. The

deployment model chosen depends on whether you want

to own your own infrastructure, rent your infrastructure,

or have a mixture of both. There are a multitude of

reasons you might choose one option over the others.

Factors such as protecting sensitive data, economics, and

speed all need to be weighed in making choices between

deployment models.

Private Cloud

A private cloud is provisioned for a single organization

that may have multiple service consumers within its

business units or groups (see Figure 13-3). The

organization may own the private cloud or lease it from

another entity. It also does not have to reside on the

organization’s premises and may be in another facility

owned and operated by a third party. The following are

the key characteristics of a private cloud:

A private cloud has dedicated resources for a single organization.

Connectivity can occur through the Internet, fiber, or a private network.

A private cloud may be on premises or off premises.

Applications are deployed within a private cloud, and the organization

has complete control and responsibility for their maintenance and

upkeep.

Figure 13-3 Private Cloud

Public Cloud

A public cloud is provisioned for open utilization by the

public at large (see Figure 13-4). Anyone with a credit

card can gain access to a public cloud offering. A public

cloud exists solely on the premises of the cloud provider.

The key characteristics of a public cloud are as follows:

Resources are publicly shared.

A public cloud supports multiple customers.

Connectivity occurs through the Internet or virtual private connections.

Use of a public cloud is billed based on usage.

Applications are deployed on the infrastructure hardware and services

offered by the cloud provider. The user is responsible for security and

application operations but not responsible for hardware maintenance.

Figure 13-4 Public Cloud

Hybrid Cloud

A hybrid cloud is composed of one or more cloud

deployment models (private and public, for example)

and is used to extend capabilities or reach and/or to

augment capacity during peak demand periods (see

Figure 13-5). The key characteristics of a hybrid cloud are

as follows:

A hybrid cloud is a combination of public and private models.

A hybrid cloud has on-premises and off-premise resources.

Orchestration between the parts of a hybrid cloud is the responsibility

of the application owner.

Applications are deployed in a distributed fashion, with some services

and components residing on premises and others (such as client access)

in the cloud provider’s environment.

Figure 13-5 Hybrid Cloud

Community Cloud

A community cloud, as shown in Figure 13-6, is unique

in that it is provisioned for the sole utilization of a

specific community of customers, such as a school

district or multiple government agencies. Basically any

group of entities that have a common policy, security,

compliance, or mission can join together and implement

a community cloud. The key characteristics are as

follows:

A community cloud is a collaborative cloud effort that shares

infrastructure between several similar organizations with common

needs.

A community cloud can be owned, managed, and operated by one or

more members of the community or a third party.

A community cloud may reside on premises or off premises.

Applications are deployed in a shared fashion and operated by the

community for the use of all community members. This can be similar

to a hybrid model but with a focus on resource sharing.

Figure 13-6 Community Cloud

Edge and Fog Computing

With the increase in IoT applications, devices, and

sensors, the various deployment models covered so far

are just not up to the task of handling the sheer volume

of data being created and needing to be processed. Self-

driving cars, robotics, computer video processing, and

many other use cases can produce gigabytes of data in

real time. This sea of data cannot be consumed and

processed by a centralized cloud application, given the

cost of transporting the data and the latency involved in

receiving information back to do anything with it. Your

self-driving car would run into a ditch before a cloud

service could detect and respond.

These constraints required engineers to think differently

about use cases requiring intelligence at the edge. A new

class of application deployment was created, called fog

computing (because fog is basically a cloud on the

ground).The idea behind fog is to leverage the scale and

capabilities of cloud models to handle the control and

deployment of applications at the edge. With edge

computing, you let local processing of data occur closer

to the actual sensors and devices where it can be acted on

more quickly. Think of fog as a framework and structure

that enables edge computing. Figure 13-7 shows how

edge and fog work together.

Figure 13-7 Edge and Fog Computing

APPLICATION DEPLOYMENT

METHODS

What is IT’s value to the business if you boil it down to

the simplest aspect? IT is charged with supporting and

maintaining applications that the business relies on. No

one builds a network first and then looks for applications

to stick on it. Instead, a network is built to connect

applications to employees and customers. The

importance of the application and its evolution have

driven many of the advances we have seen in cloud.

BARE-METAL APPLICATION

DEPLOYMENT

The traditional application stack, or bare-metal,

deployment is fairly well known. It’s how the vast

majority of applications have been deployed over the

past 40 years. As Figure 13-8 shows, one server is

devoted to the task of running a single application. This

one-to-one relationship means the application has access

to all of the resources the server has available to it. If you

need more memory or CPU, however, you have to

physically add new memory or a new processor, or you

can transfer the application to a different server.

Figure 13-8 Bare-Metal Application Stack

While bare-metal application deployment is an effective

way to isolate applications and get consistent

performance characteristics, it’s very inefficient. In fact,

many of these traditional server deployment models

result in enormous amounts of waste in regard to power

and cooling of servers when they are not under load. It’s

not uncommon to find a server during non-peak hours

using less than 10% of its capacity, which is not very cost-

effective.

Some applications, however, really need a dedicated

server. Big data applications benefit greatly from a

dedicated server environment; most Hadoop clusters

consist of numerous one-rack-unit servers all running in

parallel. These workloads consume 100% of the

resources of the server, making them poor candidates for

virtualization.

VIRTUALIZED APPLICATIONS

Virtualization was created to address the problems of

traditional bare-metal server deployments where the

server capacity was poorly utilized. The idea with

virtualization is to build one large server and run more

than one application on it. Sounds simple, right? Many

of the techniques mentioned earlier, from the days of the

mainframe, were leveraged to create an environment

where the underlying server hardware could be

virtualized. The hypervisor was created to handle all of

the time slicing and hardware simulation. This made it

possible to run various applications and operating

systems at the same time and reap the benefit of better

utilization of resources. Figure 13-9 shows this concept.

Figure 13-9 Virtualized Application Stack

Virtualizing hardware had other benefits, too. The ability

to make applications portable and not tied to a single

server allows for mobility in the data center. If a server

needs to be worked on, you simply move the running

virtual machine to another server and never need to take

down the application. You can also create common

deployment packages for new virtual machines and

applications; this gives administrators the ability to

quickly provision a new server in a consistent and secure

manner.

The virtualized application is a key aspect of cloud, but

virtualization and cloud are not synonymous. A cloud

environment could easily be configured to deploy a

physical server as well as a virtual machine. Conversely,

just because you have a virtualized infrastructure doesn’t

mean you have a cloud; the big difference is in the

operational model.

CLOUD-NATIVE APPLICATIONS

Cloud-native, or microservice, applications represent the

further intersection and evolution of virtualization and a

cloud environment. As virtualization became popular,

application developers started to ask themselves why

they needed a heavy operating system to run their

applications. All the patching, drivers, and configuration

requirements don’t go away just because you load a

virtual machine. All that work still needs to be done.

What if applications could be decoupled and written as

simpler packages that do not need a hypervisor or full-

blown operating system in order to function? That’s

exactly what happened. As Figure 13-10 shows, cloud-

native applications run on multiple servers in parallel

with each other.

Figure 13-10 Cloud-Native Applications

If a server goes bad in a cloud-native application

environment, no one cares because the application is

distributed across many servers in the data center, and

the application was written from the beginning to handle

failures and redirect work to working nodes. If you need

more capacity, just plug in a new server, and it is added

to the server pool automatically. The infrastructure

deploys the application onto the new server, and capacity

has instantly increased. If load decreases, the application

can shut down unused nodes automatically to save

money. Large-scale cloud applications such as Facebook

and Twitter operate in this fashion, which is why they

appear to have infinite capacity from a user perspective.

CONTAINERIZED APPLICATIONS

The evolution of applications to leverage microservices

architectures was a very important change that provided

developers with new ways to build massively scaled

applications with tremendous improvements in terms of

availability and fault tolerance. Microservices made

available small custom-built components, but they didn’t

address the need for an efficient infrastructure that could

support them and their dynamic nature. Containers

became a very popular way to provide an easier way to

get application components deployed in a consistent

way. Imagine being able to have all of the components

and dependencies of your application loaded in an

interchangeable format that you can simply hand off to

operations to deploy. This was what containers offer.

Google created Kubernetes and made it open source to

provide an orchestration and automation framework that

can be used to operationalize this new application

deployment model.

The benefits of containers are as follows:

Consistency for deployment automation

Simplified lightweight image files measured in megabytes (whereas VM

files are measured in gigabytes)

Providing only what the app needs and nothing else

Ability to work the same in production as on a developer’s laptop

Open community-built best-of-breed containers for faster innovation

Ability to deploy applications in seconds

Deploying applications in a container decouples parts of

the application. Consider a traditional application stack

like LAMP (Linux, Apache, MySQL, Perl/Python/PHP).

This was the foundation for many websites over the

years. To deploy a LAMP stack in a virtual environment,

you load an operating system and application on top of a

hypervisor and then repeat this process for however

many virtual machines you need to support the number

of users you expect. Include a load balancer in front of

these virtual machines, and you can add capacity as

needed. The problem with this design is that the virtual

machines run full operating systems, replicated a

number of times. You also have to maintain the virtual

machines the same as you would as if they were physical

servers. Capacity is handled manually, and you can easily

run out of resources if your website receives more

visitors than you planned for. Figure 13-11 shows a

LAMP deployment on virtual machines.

Figure 13-11 LAMP Stack on a Virtual Machine

Infrastructure

Now consider what happens if you deploy that same

application stack in a container infrastructure. You

decouple the components of the stack and deploy them

separately. So instead of everything being loaded on a

single virtual machine, you break off the Apache web

server and PHP code from the MySQL database. By

themselves, they are much smaller in size and resource

utilization and can be scaled independently of each

other. Instead of having a gigabyte or more being taken

up for an operating system and hardware virtualization

of memory and other parts of virtualization, the

container simply shares the kernel of the underlying

operating system of the server it is running on. The

container is treated like an application and is run in an

isolated space within the operating system. Any binaries

and libraries needed to run the container are

prepackaged, which means you don’t have to touch the

container host server. Figure 13-12 shows a containerized

LAMP stack.

Figure 13-12 Containerized LAMP Stack

SERVERLESS

Serverless is one of the silliest names in the industry. Of

course, there is a server involved! However, this type of

application deployment mechanism is intended to make

it even easier to get an application up and running, and

the term serverless conveys this idea. You simply copy

and paste your code into a serverless instance, and the

infrastructure runs your code without any further

configuration. This type of deployment is also referred to

as function as a service, and it works best for applications

that run periodically or that are part of batch processes.

When writing code, you create a function that you call

repeatedly at different places in the code to make it more

efficient. Serverless deployment uses the same write

once/use may times concept: You write some code and

then call it remotely through your application.

Serverless applications typically execute some type of

application logic but do not store data. Your calling

application is expected to handle that part of it. For

example, say you want to create a function that converts

images you receive to a universal size and shape. You can

then load this function into a serverless offering from

AWS, and any time you receive a new picture, it is sent to

the function and returned in the correct format (see

Figure 13-13).

Figure 13-13 Serverless Image Resizing Example

The whole idea behind serverless and why a customer

may want to use it is that it doesn’t require dedicated

hardware or resources to be set aside for these periodic

processes. The customer pays for the resources used, and

then the services are shut down until needed again; this

is a better cost model. The following are some of the

advantages of serverless deployment:

Cost: Serverless can be significantly cheaper than prepaying for

infrastructure that is underutilized. The pay-as-you-go computing

model means you are not charged for time your service is not being

used.

Scalability: Developers don’t need to build in their own autoscaling

policies or technologies. The provider is responsible for adding more

capacity on demand.

Easier to use and write code for: Small teams of developers can

use serverless deployment without needing to involve infrastructure

teams or acquire advanced skills.

The following are some of the disadvantages of serverless

deployment:

Latency: Spin-up time from idle for the function can cause significant

delays that must be accounted for in application design.

Resource constraints: Some workloads need more resources than

the service may typically be allocated for, causing heavy charges, which

may make it cheaper to dedicate infrastructure.

Monitoring and debugging: There is limited visibility into the

underlying infrastructure, which makes it difficult to troubleshoot

performance issues with the application. You are often limited to the

tools provided by the service provider, which are likely to be

proprietary.

Security and privacy: Most providers are built on proprietary

offerings and use shared resources. Misconfiguration can result in

compromises and data loss, just as with any other cloud service. There

are on-premises options for serverless that can give businesses more

control over their data and security posture.

Vendor lock-in: This is a big one. Each provider has its own tools and

frameworks, which makes it very difficult to switch providers if costs go

up or if services are not working as planned. Migration between

providers is not trivial.

DEVOPS

Agile has dramatically changed the software

development landscape by introducing a more efficient

and faster way of delivering software and value to the

business. Much of the improvement in the development

process has been focused on delivery speed. You can

have as much Agile development as you want, but if you

can’t get the software deployed in a timely manner, you

can’t take advantage of its capabilities. Software was

traditionally built and tested by developers, and if it

worked on their laptops or test systems, it was pitched

over the fence to IT operations for deployment. When

things did not go as smoothly as planned, a significant

amount of finger-pointing would ensue. Developers

would claim that the software worked fine in testing on

their laptops, so the infrastructure must be broken. The

operations teams would say that the buggy and poorly

written software was stressing their environment and

creating all kinds of extra work. These two groups were

in need of some serious marriage counseling.

Developers and operations teams often have very

different expectations and metrics for success.

Developers care about functional code, APIs, libraries,

services, and Agile sprints. Success to them means

software works on their laptops and in testing, and they

finish their latest sprints in time. Operations, on the

other hand, cares about the environment being stable,

standards, templates, and not getting awakened at 2 a.m.

to go fix a problem. Success to operations means

software and applications are stable, backup and restore

processes work, and all systems are operating within

defined thresholds. Developers are all about creating

new features and capabilities in their software; change is

a constant in their world. Operations folks are looking to

maintain stability in their environment. The two could

not be further apart.

If you take a calendar view of the two organizations, it

becomes very apparent where the challenge is (see Figure

13-14). How can you possibly deploy new features and

capabilities added every 2 weeks as part of an Agile

sprint when your operational maintenance window is

only open every 6 months?

Figure 13-14 Dev and Ops Calendars

Traditional IT service delivery is slow, manual, and often

prone to errors (see Figure 13-15). The infrastructure is a

shared resource, and one change can have a ripple effect

that could break other unrelated systems. The fragile

nature of the infrastructure makes it very hard to

anticipate issues that can arise. To combat this, many IT

organizations create layers upon layers of approval

processes. While this sounds like a rational way to

protect the business from downtime, the net effect is to

slow new deployments to a crawl. For these reasons and

many others, DevOps was created.

Figure 13-15 Traditional Sequential Approach to

Operations

WHAT IS DEVOPS?

In 2009 two employees from Flickr (an image sharing

site), John Allspaw and Paul Hammond, presented a talk

titled “10+ Deploys per Day: Dev and Ops Cooperation at

Flickr” to a bunch of developers at the O’Reilly Velocity

conference. In this talk, Allspaw and Hammond said that

the only way to build, test, and deploy software is for

development and operations to be integrated together.

The shear audacity of being able to deploy new software

so quickly was the carrot that fueled the launch of the

DevOps concept. Over the years since then, DevOps has

moved from being revered by a small group of zealots

and counterculture types to being a very real and

quantifiable way to operate the machinery of software

creation and release. The vast majority of companies that

do software development are looking for ways to capture

the efficiencies of this model to gain a competitive edge

and be better able to adapt to change from customer and

industry perspectives.

In a nutshell, DevOps is a culture of sharing in which

developers and operations folks are one unit that can rise

and fall together. It is a practical application of Lean and

Agile. The goal of DevOps is to be a real-time business

enabler by removing wasted effort and bureaucracy from

getting in the way of better addressing the needs of the

customer. DevOps has five guiding principles:

Culture: For DevOps to work, organizational culture must change.

This is by far one of the most difficult aspects to embrace, but it is the

single most important factor for success. DevOps requires a culture of

sharing.

Automation: While DevOps is more than just a set of software tools,

automation is the most easily identifiable benefit. Automation

techniques greatly speed up the deployment process, enable defects to

be caught and corrected earlier, and eliminate the need for human

intervention in repetitive tasks.

Lean: Reducing wasted efforts and streamlining the process are the

goals of Lean. It’s a management philosophy of continuous

improvement and learning.

Measurement: Unless you measure your results, you can never

improve. Success with DevOps requires the measurement of

performance, process, and people metrics as often as is feasible.

Sharing: DevOps requires a culture of feedback and sharing. Breaking

down silos and creating an inclusive shared fate environment is the

ultimate goal.

Figure 13-16 shows the core components of DevOps and

how they are interrelated.

Figure 13-16 DevOps

PUTTING DEVOPS INTO PRACTICE:

THE THREE WAYS

When discussing DevOps, it’s hard not to mention two

very important books on the subject. The first of these

books, The Phoenix Project, by Gene Kim, Kevin Behr,

and George Spafford, set the stage for understanding the

benefits of DevOps practices through a story that builds

on the experiences of the authors and contributors and

shows how a fictional company moves from being almost

out of business to a rising star outpacing its competition.

The interesting thing about the book is that you can find

many examples of your everyday life and practices

outlined in it. While it probably won’t be made into a

blockbuster movie anytime soon, it is a quick read that

easily shows the benefits of DevOps practices. The

second important DevOps book is DevOps Handbook:

How to Create World-Class Agility, Reliability, and

Security in Technology Organizations, written by Gene

Kim, Jez Humble, Patrick Debois, and John Willis. This

book is a more practical view of the subject and provides

insight into the “Three Ways” of DevOps (discussed in

the following sections), offering a framework for

implementation in your own organization. If you want to

know more about DevOps, you should certainly pick up

these two books.

First Way: Systems and Flow

A highway system at full capacity is basically a parking

lot, where no one is moving. We have all had to spend

time staring at brake lights in traffic. For a technologist,

an equivalent work scenario featuring overtime and

missed family dinners occurs all too commonly. Many

problems occur because of the ripple effect of not

knowing how everything flows and not being able to

visualize all work moving through the system. Having a

bird’s-eye view of how work flows from development to

production is essential to figuring out optimal ways to

get to the end goal of a working application that provides

value. Many teams use kanban boards to visualize work,

whether through an application like Jira or by simply

putting sticky notes with the workflow on a whiteboard

so that everyone can see what is being done and what

needs to be done. Using a kanban board can help a team

be more rational in what it expects to accomplish in a

given period of time. Figure 13-17 shows the first way of

DevOps, which is focused on systems and flow.

Figure 13-17 First Way: Systems and Flow

To accomplish work goals, you have to reduce work

units, or batches of work, so that they are more

streamlined to prevent workload traffic jams. In an Agile

sprint, it is common to work on a small set of features

during a two-week period to reduce how much is being

worked in a given interval of time. This allows developers

time to build the capability without being overwhelmed

or pulled in multiple directions. This also applies to the

operations side, as both sides are integral to success.

Developers can’t just rain app updates on their

operations teams without having a solid view of how

each update gets deployed and the operations teams

have to build a system that is able to handle the speed

and agility developers need. By having both developers

and operations work together to understand where

constraints are, you can optimize the system and move

faster.

Quality is not a bolt-on at the end of the development

and deployment process. It has to be integrated into the

whole system. Waiting for a problem to be found in Q&A

will create compounded issues that can make things

much worse. The earlier you address a challenging

situation, the more your overall work effort will be

reduced. This equates to saving money and time. The

whole point is to reduce wasted time on rework.

You have to continually optimize the system to make it

more efficient. Nothing is ever perfect with DevOps; you

are in a constant state of removing inefficiencies. You

must be able to adapt to business needs and your

customers’ ever-changing requirements.

The following are the key characteristics of the first way:

Make work visible

Reduce batch sizes

Reduce intervals of work

Build in quality by preventing defects from being passed downstream

Constantly optimize for business goals

Second Way: Feedback Loop

One of the things you will see repeatedly in DevOps is

analogies to manufacturing. Since so much of this

management philosophy is derived from Lean and the

Toyota Production System, concepts like defect

prevention are front and center in the approach. The idea

of a feedback loop is to provide guidance and direction

on what is working and what is not working. If

something isn’t working, you have to make sure that it

doesn’t happen again so you don’t end up on a hamster

wheel of pain. DevOps requires that you take feedback as

the gift that it is and make corrections. Figure 13-18

shows the second way of DevOps, which is focused on the

feedback loop.

Figure 13-18 Second Way: Feedback Loop

The more you sample feedback, the faster you can detect

issues and recover from them. In the Toyota Production

System, the manufacturing line has something called an

Andon Cord, which can be pulled by anyone at any time

to halt the production line. This form of feedback is

immediate and highly visible. It also kicks off the process

of swarming a problem until it is fixed, where everyone

in the area focuses on solving the issue before the line is

restarted. In DevOps, this type of empowerment means

that when problems with software are detected, the

whole team pitches in to fix the underlying cause.

Once a problem has been overcome, it is not just time to

have a party; it is time to document and improve the

processes that led up to the issue at hand: Learn from

your mistakes so you can move on.

The following are the key characteristics of the second

way:

Amplify feedback to prevent problems from happening again

Enable faster detection and recovery

See problems as they occur and swarm them until they are fixed

Maximize opportunities to learn and improve

Third Way: Continuous Experimentation and

Learning

How do you foster innovation? Create a culture of trust

where your people are allowed to try new things and fail.

That doesn’t mean that you are just rolling the dice on

crackpot ideas; rather, it means having a dynamic and

disciplined approach to experimentation and risk taking.

It’s very rare that success happens on the first try. When

problems occur, avoid pointing fingers and blaming

people; instead, figure out what went wrong and what

could be improved to make it better. Figure 13-19 shows

the third way of DevOps, which focuses on continuous

experimentation and learning.

Figure 13-19 Third Way: Continuous

Experimentation and Learning

DevOps talks a lot about continuous improvement and

fixing issues to make the system perform better. It’s a

noble goal, but when do you find time? The simple

answer is that you need to make time. In other words,

you schedule time to get people focused on improving

the system and try new methods and technologies.

Finally, you must build a culture of sharing and learning.

A simple method to accomplish this is to create shared

code repositories and get those treasure troves of

information off individual laptops and available to the

rest of the organization.

The following are the key characteristics of the third way:

Conduct dynamic, disciplined experimentation and risk taking

Define time to fix issues and make the system better

When things go wrong, don’t point fingers

Create shared code repositories

DEVOPS IMPLEMENTATION

Implementing DevOps technical practices within an

organization typically involves three stages. These stages

follow a natural progression that leads to a fully

automated code-to-deployment operational model:

Continuous integration: This stage involves merging development

work with the code base constantly so that automated testing can catch

problems early.

Continuous delivery: This stage involves a software package delivery

mechanism for releasing code to staging for review and inspection.

Continuous deployment: This stage relies on continuous

integration and continuous delivery to automatically release code into

production as soon as it is ready.

A vast number of technical tools can be used to automate

a DevOps environment, from commercial applications to

bleeding-edge open-source projects. You need to be

aware of this DevOps tool chain if you are asked to

administer a DevOps environment. XebiaLabs is a

company that specializes in DevOps and continuous

delivery, and it is a great resource for understanding the

various tools in a DevOps pipeline. The company’s

DevOps periodic chart provides an interactive view of

these tools and provides links and descriptions of the

tools and technologies you might encounter (see Figure

13-20). You can go to https://xebialabs.com/periodic-

table-of-devops-tools/ to get access and download your

own copy.

https://xebialabs.com/periodic-table-of-devops-tools/

Figure 13-20 XebiaLabs Periodic Table of DevOps

Tools (Source: https://xebialabs.com/periodic-table-

of-devops-tools/)

If you are not interested in the do-it-yourself nature of

connecting and configuring open-source tools, you might

be better off looking to a vendor that offers a platform as

a service or one that will build your DevOps pipeline for

you and also offer support with maintenance and

upgrades. Regardless of the DevOps platforms or tools

you use or whether you build your own or buy them,

there are some commonalities for all DevOps pipelines.

It’s easiest to understand the workings of a DevOps

pipeline by seeing it in action. Figure 13-21 is a graphical

representation of what happens at each step of a sample

DevOps pipeline.

Figure 13-21 DevOps Pipeline in Action

Here is how the pipeline works:

https://xebialabs.com/periodic-table-of-devops-tools/

Step 1. The developer pulls the latest code from the

version control system with Git. This ensures

that the developer has the most recent changes

and is not working with an old version.

Step 2. The developer makes changes to the code,

adding new features or fixing bugs. The

developer also writes test cases that will be used

to automatically test the new code to software

functional requirements. The developer

eventually stages the changes in Git for

submission.

Step 3. The developer uses Git to push the code and

tests to the version control system (for example,

GitHub), synchronizing the local version with

the remote code repository stored in the version

control system.

Step 4. The continuous integration server, such as

Jenkins, has a login that monitors GitHub for

new code submissions. When Jenkins sees a

new commit, it is able to pull the latest version

and starts an automated build process using the

test cases.

Step 5. Jenkins kicks off the automated build of a

testing environment for the new software build.

It is possible to use Python scripts, Ansible, or

other infrastructure automation tools to build

the testing environment as close to production

as possible.

Step 6. Jenkins executes various automated testing,

including unit testing, integration testing,

smoke testing (stress testing), and security

testing. When all the tests are finished, the

results are sent back to Jenkins for compilation.

Step 7. Jenkins sends the test results to the developer

for review. They can be sent via email, but a

more modern way of alerting the developer is

through a collaboration tool such as Webex

Teams. Jenkins has plug-ins for all major team

management tools and allows for easy

integration. If the build fails, the developer can

use links to the information on what failed and

why, make changes to the code, and restart the

process.

Step 8. If the build process is successful and all of the

tests pass, Jenkins can deploy the new code to

an artifact repository (just a fancy name for the

place finished software is stored). The software

is not able to be deployed in production.

Step 9. Jenkins signals the infrastructure that an

updated version of software is ready. For

example, there may be a new container ready to

be deployed into a Kubernetes platform. The

updated container replaces the existing

containers with the new code fully tested and

ready to go. Now the application is updated

with minimal (or no) disruption.

The nuts and bolts of building a DevOps pipeline are

beyond of the scope of the 200-901 DevNet Associate

DEVASC exam. There are simply more tools than grains

of sand at the beach, and luckily you are not going to be

tested on all of them. For technologists, it’s easy to focus

on the tools and technology, but honestly that’s the easy

part of DevOps. Changing culture and implementing

Lean methodologies are where many companies have

struggled. Focus on streamlining your processes and

implement technologies that help accelerate your efforts.

DOCKER

Some of the best innovations come from reusing older

technologies and bringing them forward in a new way.

That’s exactly what Solomon Hykes and Sebastien Pahl

did back in 2010 when they started a small platform as a

service (PaaS) company called dotCloud. They were

looking for a way to make it easier to create applications

and deploy them in an automated fashion into their

service. They started an internal project to explore the

use of some interesting UNIX technologies that were

initially developed in the 1970s to enable process

isolation at the kernel level. What would eventually

become Docker started as a project to use these

capabilities to grow the PaaS business. In 2013, the

world was introduced to Docker, which represented a

new paradigm in application packaging and deployment

that took off exponentially. While dotCloud eventually

went away, Docker has grown into the leading container

platform. Luckily for us, it was open source from the very

beginning, and the container runtime itself is hosted by

the Cloud Native Computing Foundation. While there

are other container runtimes, such as like Rocket and

Linux Containers, none of them are as popular or as

widely deployed as Docker.

UNDERSTANDING DOCKER

Docker containers use two capabilities in the Linux

kernel: namespaces, which provide isolation for running

processes, and cgroups, which make it possible to place

resource limits on what a process can access. These

features allow you to run a Linux system within another

Linux system but without needing to use virtualization

technologies to make it work. From the host operating

system’s perspective, you are just running another

application, but the application thinks it is the only

application that is running. Instead of needing to

virtualize hardware, you just share the kernel; you don’t

need to load a full operating system, drivers, and

memory management processes each time you want to

run an application.

Namespaces

Namespaces are essential for providing isolation for

containers. Six namespaces are used for this purpose:

mnt (mountpoints): This namespace is used for mapping access to

host operating system storage resources to the container process.

pid (processes): This namespace is used to create a new process ID

for an application.

net (networks): This namespace is responsible for network access

and mapping communication ports.

ipc (System V IPC): Inter-process communication controls how the

application can access shared memory locations between applications

within containers.

uts (hostname): This namespace controls host and domain names,

allowing unique values per process.

user (UIDs): This namespace is used to map unique user rights to

processes.

Figure 13-22 shows a Linux host using namespaces to

isolate three different containers.

Figure 13-22 Linux Namespace Isolation for

Containers

Cgroups

Cgroups, or control groups, are used to manage the

resource consumption of each container process. You can

set how much CPU and RAM are allocated as well as

network and storage I/O. Each parameter can be

managed to tweak what the container sees and uses.

These limits are enforced by cgroups through the native

Linux scheduler and function to restrict hardware-level

resources. Figure 13-23 shows an example of a cgroup

that allocates a maximum of 25% of the various

hardware resources of the container host.

Figure 13-23 Control Group in Action

Union File System

The Union File System is a foundational building block

for a container. It is a file system service that was

developed for Linux to allow different file systems to be

layered on top of each other to create a combination, or

union, of the various files to create a single merged

representation of the contents. If you have ever worked

with photo editing software, this will probably make

sense to you. Say you want to remove someone or

something from a picture (like that ex you never speak

of). You take the base picture and then add layers on top

of it, and you add or remove pixels until you have a

whole new picture. If you want to remove layers you

created, you simply peel them back to expose the

previous image. Every layer you add on top takes

precedence over all the layers below it. In essence, this is

how a union file system works, and it is one of the main

reasons such a file system is so efficient at storage. Each

layer includes only what is new, and nothing is

duplicated from a previous layer. The layers are read-

only, which means they are locked in place. There is a

read/write layer that sits on top that you can use to

interact with the file system, but nothing you do will be

maintained unless you save your changes. If you want to

make your changes permanent, you have to put another

layer on top of the union file system. This is called a

copy-on-write operation. Figure 13-24 shows an example

of a container image and its layers.

Figure 13-24 Container Image Layers Using a

Union File System

This read-only aspect of a container is crucial to

understand. You may also hear the term immutable used

to describe the container file system; it simply means

unchanging over time. In other words, a container

doesn’t get patched; rather, it gets re-created with new

layers added. In Figure 13-24 you can see a Ubuntu

Linux base image layer that has OpenSSL added on top

of it via another layer. Above that is the Apache web

server. Think of these layers as simply running the apt-

get command and adding a new software package. What

happens if you need to update the OpenSSL layer

because of a vulnerability? You simply rebuild the

container with the latest versions of software. There is no

patching with a container; you destroy the old one and

re-create a new one with updated code. Later on in this

section, you will learn how this works through a

Dockerfile, which is how Docker builds container images.

DOCKER ARCHITECTURE

Just like your engine in a car, the Docker Engine is the

central component of the Docker architecture. Docker is

a client/server application that installs on top of a Linux,

Mac, or Windows operating system and provides all the

tools to manage a container environment. It consists of

the Docker daemon and the Docker client. Docker allows

you to package up an application with all of its

dependent parts (binaries, libraries, and code) into a

standardized package for software development.

The Docker architecture consists of three primary parts:

the client, the Docker host, and the docker registry (see

Figure 13-25).

Figure 13-25 Docker Architecture

The Docker client is a command-line utility (run with the

docker command) that talks to the REST API of the

Docker daemon so that the administrator can issue

commands for the operations and management of

Docker containers. The client can communicate to a local

or remote Docker instance.

The Docker host is where the Docker daemon resides.

The Docker daemon (dockerd) is a service that runs on

the host operating system and interfaces with the

operating system kernel to allow containers to function.

The client communicates with the Docker daemon

through the REST API. The Docker host houses running

containers and also interfaces with the registry to pull

container images housed there. When containers are

launched, the daemon looks in its local images, and if the

appropriate image is there, it launches the container; if

the image is not there, the daemon asks the registry for

the image file and then stores it locally.

The registry is a place to store container images; it is also

known as the repository for the container infrastructure.

You can pull images from a registry to run or push new

images you create yourself to the registry for storage.

Then other hosts in your container environment can

make use of your new container image. A registry can be

private, for the sole use of a single organization, or

public, as in the case of Docker Hub.

USING DOCKER

The best way to get familiar with Docker is to use it.

Download the appropriate version of Docker for your

computer and launch its containers. It is available for

both macOS, Windows, and Linux allowing you to install

the Docker engine and command-line tools directly on

your local machine.

Note

As of version 1.13, Docker has changed the command

line to include a more logical grouping for people just

getting started. If you are familiar with the old-style

command line, fear not, those commands still work.

The additions of the management command syntax

just add a hierarchy that will differentiate what you are

working on instead of everything being lumped

together. This book uses the new Docker command

structure. If you were to get a question on the exam

that uses the old command line, you could simply omit

the first command after docker. For example, the

command docker container ps would be shortened

to docker ps.

The command docker runs the client process, which

communicates to the Docker daemon. When you type

docker and press Enter, you see a long list of available

commands. Example 13-1 displays a shortened version of

this list.

Example 13-1 Docker Command List

Click here to view code image

$ docker

Usage: docker [OPTIONS] COMMAND

A self-sufficient runtime for containers
<cut for brevity>
Management Commands:
 builder Manage builds
 checkpoint Manage checkpoints
 config Manage Docker configs
 container Manage containers
 context Manage contexts
 image Manage images
 network Manage networks
 node Manage Swarm nodes
 plugin Manage plugins
 secret Manage Docker secrets
 service Manage services
 stack Manage Docker stacks
 swarm Manage Swarm
 system Manage Docker
 trust Manage trust on Docker images
 volume Manage volumes
<cut for brevity>

Run 'docker COMMAND --help' for more
information on a command.

In Example 13-1, notice the list of management

commands. These represent the new hierarchy into

which Docker groups subcommands. For commands that

operate on containers, you can enter docker container

and then the operation you wish to perform. At any time,

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#pexa13-1

you can type --help to get more details on what

commands are available, as shown in Example 13-2.

Example 13-2 Docker Container Help

Click here to view code image

$ docker container --help

Usage: docker container COMMAND

Manage containers

Commands:
 attach Attach local standard input,
output, and error streams to a running
 container
 commit Create a new image from a
container's changes
 cp Copy files/folders between a
container and the local filesystem
 create Create a new container
 diff Inspect changes to files or
directories on a container's filesystem
 exec Run a command in a running
container
 export Export a container's filesystem
as a tar archive
 inspect Display detailed information on
one or more containers
 kill Kill one or more running
containers
 logs Fetch the logs of a container
 ls List containers
 pause Pause all processes within one or
more containers
 port List port mappings or a specific
mapping for the container
 prune Remove all stopped containers
 rename Rename a container
 restart Restart one or more containers
 rm Remove one or more containers
 run Run a command in a new container
 start Start one or more stopped
containers
 stats Display a live stream of
container(s) resource usage statistics
 stop Stop one or more running
containers
 top Display the running processes of
a container
 unpause Unpause all processes within one

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#pexa13-2

or more containers
 update Update configuration of one or
more containers
 wait Block until one or more
containers stop, then print their exit codes

You can run the command docker container

COMMAND --help for more information on a

command.

For the purposes of the 200-901 DevNet Associate

DEVASC exam, you are expected to know how to use

Docker images in a local developer environment. This

means you are not expected to be an expert on all things

Docker, but you do need to know how to build, launch,

and manage containers on your local machine. The

management commands you will use the most for

launching and working with Docker are within the

container and image categories. If you are working

with a container image, you use the commands under

image, and if you want to run or stop a container, you

use the commands under container. As long as you

know what you want to work on, mapping it to the

command is fairly straightforward.

Working with Containers

When working with containers, the key commands are as

follows:

create: Create a container from an image.

start: Start an existing container.

run: Create a new container and start it.

ls: List running containers.

inspect: Get detailed information regarding the container.

logs: Print run logs from the container’s execution.

stop: Gracefully stop running the container.

kill: Stop the main process in the container abruptly.

rm: Delete a stopped container.

There are a few ways to launch a container. You may

have noticed that the create, start, and run commands

seem very similar. The create command is used to

instantiate a container from an image but does not start

the container. Think of it as preloading a container that

you can run later. The start command starts up the

loaded container and allows it to execute. The run

command, on the other hand, creates and starts the

container as a single command. Example 13-3 provides a

quick example of how to launch a sample container with

the run command.

Example 13-3 Docker Hello World

Click here to view code image

$ docker run hello-world
Unable to find image 'hello-world:latest'
locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest:
sha256:4df8ca8a7e309c256d60d7971ea14c27672fc0d10c5f303856d7bc48f8cc17ff

Status: Downloaded newer image for hello-
world:latest

Hello from Docker!
This message shows that your installation
appears to be working correctly.

To generate this message, Docker took the
following steps:
 1. The Docker client contacted the Docker
daemon.
 2. The Docker daemon pulled the "hello-world"
image from the Docker Hub.
 (amd64)
 3. The Docker daemon created a new container
from that image which runs the
 executable that produces the output you are
currently reading.
 4. The Docker daemon streamed that output to
the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an
Ubuntu container with:
 $ docker run -it ubuntu bash

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#pexa13-3

Share images, automate workflows, and more with
a free Docker ID:
 https://hub.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/get-started/

In Example 13-3, Docker looks for the container image

hello-world and can’t find it in the local image store.

Since it has never downloaded it before, it defaults to the

Docker Hub registry, does a lookup, finds the image, and

then downloads (or pulls, in Docker speak) the latest

one. It then starts the container and prints to the console

a message saying that the Docker installation is working

as expected. Since you now have a container that has

been executed, you can use the subcommand ls to see

what is running:

Click here to view code image

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

Unfortunately, you don’t see any active containers. That

is because the one that was launched ran, printed the

message, and then ended. To see containers that have

been run but are now stopped, you have to add the -a

flag to ls:

Click here to view code image

$ docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

bac0c2a2cca8 hello-world "/hello" 43 minutes
ago Exited(0) 43 minutes ago

Now you can see the container ID, the image name, the

command that was issued, and its current status, which

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg405a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg405b

in this case is exited. You also see any ports or names

that were assigned to the container.

Note

The older syntax for Docker used the ps command

instead of ls (for example, docker ps -a). You can still

type docker container ps -a and get exactly the

same output as the previous example, even though the

ps command doesn’t appear in the menu. This is for

legacy compatibility.

Launching a container and interacting with it requires a

few more commands. Example 13-4 runs a Ubuntu

container image (ubuntu) in interactive mode and

connects the local terminal to the containers terminal

and launches the bash shell (bash). (The options -i and -

t can be presented separately or together, as -it.)

Example 13-4 docker run output Command

Click here to view code image

$ docker container run -it ubuntu bash
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
7ddbc47eeb70: Pull complete
c1bbdc448b72: Pull complete
8c3b70e39044: Pull complete
45d437916d57: Pull complete
Digest:
sha256:6e9f67fa63b0323e9a1e587fd71c561ba48a034504fb804fd26fd8800039835d

Status: Downloaded newer image for
ubuntu:latest
root@a583eac3cadb:/#

Since this container hasn’t been loaded locally before,

Docker pulls the image from Docker Hub, layer by layer.

It executes a Dockerfile hosted on the repository and

pulls the very latest version of a base Ubuntu container.

Once it is pulled down, the container is started, and the

bash shell is executed. The terminal now shows that you

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#pexa13-4

are connected to the container as root (in the container’s

namespace). If you execute the bash ps command, you

can see that there are only two things: the bash shell and

the ps command that you just ran. This highlights the

container’s isolation from the host OS:

root@a583eac3cadb:/# ps

 PID TTY TIME CMD

 1 pts/0 00:00:00 bash

 11 pts/0 00:00:00 ps

To disconnect from the container, you can type exit, but

that would stop the container. If you want to leave it

running, you can hold down Ctrl and press P and then

while still holding Ctrl press Q. This sequence drops you

back to the host OS and leaves the container running.

From the host OS, you can type docker container ls to

see that your container is actively running:

Click here to view code image

$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

a583eac3cadb ubuntu "bash" About a minute ago
Up About a minute musing_bartik

If you want to reconnect to the container, you can use the

container ID or the assigned name to attach to the

container and interact with it again:

Click here to view code image

$ docker container attach a583eac3cadb

root@a583eac3cadb:/#

The inspect and logs commands are two very useful

commands for troubleshooting a container. inspect

generates a ton of information—pretty much everything

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg406b
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg406c

having to do with the creation of your container, such as

network and runtime environment, mappings, and so on

(as shown in Example 13-5). Be warned: Reading the

output is like reading a container’s DNA.

Example 13-5 docker container inspect Command

Click here to view code image

$ docker container inspect a583eac3cadb
[
 {
 "Id":
"a583eac3cadbafca855bec9b57901e1325659f76b37705922db67ebf22fdd925",

 "Created": "2019-11-
27T23:35:12.537810374Z",
 "Path": "bash",
 "Args": [],
 "State": {
 "Status": "exited",
 "Running": false,
 "Paused": false,
 "Restarting": false,
 "OOMKilled": false,
 "Dead": false,
 "Pid": 0,
 "ExitCode": 127,
 "Error": "",
 "StartedAt": "2019-11-
27T23:35:13.185535918Z",
 "FinishedAt": "2019-11-
27T23:53:15.898516767Z"
 },
 "Image":
"sha256:775349758637aff77bf85e2ff0597e86e3e859183ef0baba8b3e8fc8d3c

 ba51c",
 "ResolvConfPath":
"/var/lib/docker/containers/a583eac3cadbafca
855bec9b57901e1325659f76b37705922db67ebf22fdd925/resolv.conf"

<cut for brevity>

The logs command details everything the container

recorded as output and is super helpful for catching error

messages:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#pexa13-5

Click here to view code image

$ docker container logs a583eac3cadb

root@a583eac3cadb:/# ps

 PID TTY TIME CMD

 1 pts/0 00:00:00 bash

 11 pts/0 00:00:00 ps

root@a583eac3cadb:/# uname

Linux

Now that you know the basics on launching a container,

the next step is to make it accessible to the rest of the

world. To do this, you can start by pulling an nginx web

server container and assigning it ports to use with the -p

flag. This flag requires that you map the container port to

a free port on the Docker host. If you don’t assign one to

your local host, Docker will pick a random port above

32700. In addition, you want to make your nginx

container stay running in the background instead of just

quitting after you launch it. By using the -d flag, you can

detach the container and leave it running in the

background. The last thing you can try is to give the

container a name with the --name flag. This way, you

can refer to it by name instead of by using the random

one Docker assigns or the container ID:

Click here to view code image

$ docker container run --name test-nginx -p 80:80

-d nginx

dfe3a47945d2aa1cdc170ebf0220fe8e4784c9287eb84ab0bab7048307b602b9

After the container is launched, you can see it running by

using the ls command, get information on what port it is

using (port 80), and see that the container is mapped to

the local host IP address (referenced by 0.0.0.0):

Click here to view code image

$ docker container ls

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg407a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg407b
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg408a

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES

dfe3a47945d2 nginx "nginx -g 'daemon of..." 21
seconds ago Up 20 seconds 0.0.0.0: test-nginx

80->80/tcp

You can also use docker container port test-nginx

to list just the port mapping.

If you open a web browser and point it to http://0.0.0.0,

your nginx server should show you a default HTML page

(see Figure 13-26).

Figure 13-26 nginx in a Docker Container

A web server with default content is not very useful.

Containers are meant to be read-only, but there are a

couple ways to add your own content. There is the cp

command, which allows you to copy files from your local

host to the container when it is up and running; however,

in order to save those changes, you would have to store

another layer on top of your container and then push

that new container to your repository. This would have to

be done every time a change is made. A better way is to

mount the content directly to the container when it boots

up so that it can share the content. This way, if you need

to update anything, you just change the files in one

directory, and those changes are automatically shared to

any container using them. A quick example of this using

the nginx server should make this process clearer.

We can start with some HTML files that nginx can

display. I have a simple HTML file in a directory called

html under Documents on my local laptop running

Docker; in macOS, the path is ~/Documents/html. There

is a default directory where nginx looks for HTML files to

display to users connecting to the service:

/usr/share/nginx/html. You have to supply this mapping

with the -v or --volume flag when you launch your

container using the previous example. Here is what it

looks like:

Click here to view code image

$ docker container run --name test-nginx -p 80:80

-d -v

~/Documents/html:/usr/share/nginx/html nginx

d0d5c5ac86a2994ea1037bd9005cc8d6bb3970bf998e5867fe392c2f35d8bc1a

After you enter this long command, when you connect to

http://0.0.0.0, you see your own HTML content. The -v

flag maps your local directory to the shared directory on

the container, and from the container’s perspective,

those files are in /usr/share/nginx/html. Figure 13-27

shows the results of this container mapping to the

container host’s file system.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg409a

Figure 13-27 Custom Content Shared from the Local

Host

To stop running a container, you use the stop or kill

command. The difference between the two is pretty

obvious. stop tries to allow the container time to finish

any final work in a graceful way. Using kill, on the other

hand, is like pulling the plug. For most situations, you

want to use stop:

Click here to view code image

$ docker container stop test-nginx

test-nginx

stop and kill both halt the container but don’t remove it

from memory. If you type docker container ls -a, you

will still see it listed. When you want to remove the

container from memory, you can use the rm command.

You can also use the very handy command prune to

remove all halted containers from memory. This is useful

on a laptop when you’re testing containers and want to

free up memory without having to individually remove

multiple containers. Just be careful not to get rid of any

container you might actually want to start back up

because prune will get rid of every inactive container.

Here is an example of prune in action:

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg409-1

Click here to view code image

$ docker container rm test-nginx

test-nginx

$ docker container prune

WARNING! This will remove all stopped containers.

Are you sure you want to continue? [y/N] y

Deleted Containers:

a583eac3cadbafca855bec9b57901e1325659f76b37705922db67ebf22fdd925

Dockerfiles

A Dockerfile is a script that is used to create a container

image to your specifications. It is an enormous time

saver and provides a ready-made system for replicating

and automating container deployments. Once you have

built a Dockerfile, you can create an infinite number of

the same images without having to manually edit or

install software. A Dockerfile is simply a text file with a

structured set of commands that Docker executes while

building the image. Some of the most common

commands are as follows:

FROM: Selects the base image used to start the build process or can be

set to scratch to build a totally new image.

MAINTAINER: Lets you select a name and email address for the

image creator.

RUN: Creates image layers and executes commands within a

container.

CMD: Executes a single command within a container. Only one can

exist in a Dockerfile.

WORKDIR: Sets the path where the command defined with CMD is

to be executed.

ENTRYPOINT: Executes a default application every time a container

is created with the image.

ADD: Copies the files from the local host or remotely via a URL into

the container’s file system.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg410a

ENV: Sets environment variables within the container.

EXPOSE: Associates a specific port for networking binding.

USER: Sets the UID (or username) of the user that is to run the

container.

VOLUME: Sets up a sharable directory that can be mapped to a local

host directory.

LABEL: Provides a label to identify the created Docker image.

Creating a Dockerfile starts with creating a text file. The

file must be named Dockerfile, and you place it in the

working directory where you want to create an image.

Once you have opened your favorite editor, the syntax is

straightforward. Docker reads the file and operates on it

line by line, so the order in which you build your

Dockerfile should follow the steps you would perform

manually to load your software and configure it. First,

you need to select your foundation. This can be any

container, but in this instance, you can use Ubuntu as the

foundation. If you don’t select a specific version, Docker

defaults to the latest version. You should also provide

details on who created the image with a full name and

email address. Here is an example:

Click here to view code image

FROM ubuntu:16.04

MAINTAINER Cisco Champion (user@domain.com)

Next, you need to specify the software you want to load

and what components should be added. Just as when

loading software on a Linux server, you first need to run

apt-get update. For this container, you install nginx

and any dependencies:

Click here to view code image

RUN apt-get update && apt-get upgrade -y

RUN apt-get install nginx -y

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg411a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg411b

Now you need to tell Docker what port to expose for

networking. In this case, you would expose ports 80 and

443:

EXPOSE 80 443

Next, you create a sharepoint for HTML files in nginx so

that you can give it access to your web files:

VOLUME /usr/share/nginx/html

Finally, set the container to run nginx on launch:

Click here to view code image

CMD ["nginx", "-g", "daemon off;"]

FROM ubuntu:latest

MAINTAINER Cisco Champion (user@domain.com)

RUN apt-get update && apt-get upgrade -y

RUN apt-get install nginx -y

EXPOSE 80 443

VOLUME /usr/share/nginx/html

CMD ["nginx", "-g", "daemon off;"]

Now that you have a Dockerfile, it’s time to build an

image.

Docker Images

When working with Docker images, you primarily use

the following commands:

build: Builds an image from a Dockerfile.

push: Pushes a local image to a remote registry for storage and

sharing.

ls: List images stored locally.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg411c

history: Shows the creation and build process for an image.

inspect: Provides detailed information on all aspects of an image,

including layer detail.

rm: Deletes an image from local storage.

In the previous example, you built a Dockerfile using the

latest Ubuntu base and then updated and upgraded the

Ubuntu base so that its packages are current. You then

installed nginx, shared a mount point, and exposed ports

to access the new web server. The next step is to kick off

the build process with Docker. While in the directory

where you created your Dockerfile, execute the build

process as shown in Example 13-6.

Example 13-6 Building a Container from a Dockerfile

Click here to view code image

$ docker build -t myimage:latest .
Sending build context to Docker daemon 2.048kB
Step 1/8 : FROM ubuntu:latest
 ---> 775349758637
Step 2/8 : MAINTAINER Cisco Champion
(user@domain.com)
 ---> Using cache
 ---> f83e0f07db18
Step 3/8 : RUN apt-get update
 ---> Using cache
 ---> 646cc0e9f256
Step 4/8 : RUN apt-get upgrade -y
 ---> Using cache
 ---> c2701f555b0f
Step 5/8 : RUN apt-get install nginx -y
 ---> Using cache
 ---> 4abf50fd4a02
Step 6/8 : EXPOSE 80 443
 ---> Using cache
 ---> a9a1533064b2
Step 7/8 : VOLUME /usr/share/nginx/html
 ---> Using cache
 ---> 2ecd13c5af2b
Step 8/8 : CMD ["nginx", "-g", "daemon off;"]
 ---> Running in e03bd2387319
Removing intermediate container e03bd2387319
 ---> 04ae8c714993
Successfully built 04ae8c714993
Successfully tagged myimage:latest

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#pexa13-6

The build is successful. You can see that with the -t flag,

you can set a name that can be used to call the image

more easily. The . at the end of the command tells

Docker to look for the Dockerfile in the local directory.

You could also use the -f flag with a path to the location

of Dockerfile file, if it is not in your current directory.

Docker also accepts a URL to the Dockerfile, such as at

GitHub. As shown in this example, the name Dockerfile

must be capitalized and one word.

When an image is built, you can use docker image ls to

see it in local storage:

Click here to view code image

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED

SIZE

myimage latest 04ae8c714993 48 minutes

ago 154MB

You can use a number of commands to get information

from your images. The first is inspect. Entering docker

image inspect myimage, as shown in Example 13-7,

gets all the details about the image, including its layer

structure.

Example 13-7 docker image inspect Command

Click here to view code image

$ docker image inspect myimage
[
 {
 "Id":
"sha256:04ae8c7149937b2ce8b8963d6c34810d8dc53607c9a97064e1f3c85cdc3

 abb46",
 "RepoTags": [
 "myimage:latest"
],
 "RepoDigests": [],
 "Parent":
"sha256:2ecd13c5af2b41349b58f2397cbbbc70f5c1c604262113bae443f1f6fc

 3758cc",
 "Comment": "",

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg413a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#pexa13-7

 "Created": "2019-11-
28T05:53:37.794817007Z",
 "Container":
"e03bd238731932ca2cab6c8b7fa1346105b839ce2a8604c0c7d

 34352b907a4af",
 "ContainerConfig": {
 "Hostname": "e03bd2387319",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "ExposedPorts": {
 "443/tcp": {},
 "80/tcp": {}
 },
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

<Cut for brevity>

The image history command shows you the creation of

the image and all the steps that were taken to build the

image, as shown in Example 13-8. This can be very useful

in troubleshooting an image build.

Example 13-8 docker image history Command

Click here to view code image

$ docker image history myimage
IMAGE CREATED CREATED BY
SIZE COMMENT
04ae8c714993 56 minutes ago /bin/sh -c #
(nop) CMD ["nginx" "-g" "daemon… 0B
2ecd13c5af2b 57 minutes ago /bin/sh -c #
(nop) VOLUME [/usr/share/nginx/… 0B
a9a1533064b2 57 minutes ago /bin/sh -c #
(nop) EXPOSE 443 80 0B
4abf50fd4a02 57 minutes ago /bin/sh -c apt-
get install nginx -y 60.2MB
c2701f555b0f 58 minutes ago /bin/sh -c apt-
get upgrade -y 1.55MB
646cc0e9f256 58 minutes ago /bin/sh -c apt-
get update 27.6MB

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#pexa13-8

f83e0f07db18 58 minutes ago /bin/sh -c #
(nop) MAINTAINER Cisco Champion… 0B
775349758637 3 weeks ago /bin/sh -c #
(nop) CMD ["/bin/bash"] 0B
<missing> 3 weeks ago /bin/sh -c mkdir
-p /run/systemd && echo 'do… 7B
<missing> 3 weeks ago /bin/sh -c set -
xe && echo '#!/bin/sh' > /… 745B
<missing> 3 weeks ago /bin/sh -c [-z
"$(apt-get indextargets)"] 987kB
<missing> 3 weeks ago /bin/sh -c #
(nop) ADD file:a48a5dc1b9dbfc632… 63.2MB

You probably noticed the missing image IDs at the

bottom of the history. The build process uses something

called intermediate layers to execute commands. These

layers are like temporary storage that gets rolled up into

the next layer when each stage is finished, and then the

intermediate layer is deleted.

When the image is built and ready to go, you can run it

by using the following command:

Click here to view code image

$ docker container run -p 80:80 -p 443:443 -d

myimage

bf0889f6b27b034427211f105e86cc1bfeae8c3b5ab279ccaf08c114e6794d94

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

bf0889f6b27b myimage "nginx -g 7 seconds

ago Up 6 seconds 0.0.0.0:80->80/tcp,

elastic_maxwell

 'daemon of..."

0.0.0.0:443->443/tcp

You can use the docker image rm command to remove

an image from storage. This command needs the

container ID or a name to select the appropriate

container.

DOCKER HUB

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg414a

Docker Hub is a free service that Docker offers to the

community to house and share prebuilt container

images. It is the world’s largest repository for containers,

with more than 100,000 prebuilt container applications.

Chances are that if you are looking to build a container,

someone has already put together one that would work

for you. Many software vendors also publish official

images that have been validated by the vendor and

Docker; when you use such an image, you can be

confident that the container you are using has been

tested and is malware free. While anyone can sign up for

a free account, Docker makes money by offering, for a

fee, private container repositories suitable for individuals

and businesses. Docker Hub is a cloud-only service, so if

you want to run a private container registry in your data

center, you have to deploy Docker Enterprise software or

another container registry system on premises.

Docker Hub has a slick web interface that makes it easy

to set up a repository and secure it. It also integrates with

GitHub and Bitbucket to enable automated container

creation from source code stored in your version control

system. It’s a great way to start building a CI/CD pipeline

as it is free to get started. If you set up a free account, you

can take advantage of Docker Hub’s capabilities

immediately. Figure 13-28 shows Docker Hub signup

page.

Figure 13-28 Signing Up for Docker Hub

Once you have an account, you can search through the

many containers available and can filter on operating

system, category, and whether or not the image is an

official Docker certified image, verified by the publisher,

or an official image published by Docker itself. Figure 13-

29 shows the image search function.

Figure 13-29 Docker Hub Image Search

Docker ships a GUI application called Kitematic for

interacting with containers on your local host as well as

Docker Hub. This free app can download and launch

containers with a simple point and click. It’s great for

people who are struggling with all of the command-line

options that the typical Docker client requires. But be

warned: With Kitematic you don’t have as much direct

control as you do with the Docker client. Download it

and give it a try. Figure 13-30 shows Kitematic in action.

Figure 13-30 Kitematic

After you build a container, as you did in the previous

example, you need to push it to a repository. Since you

can use Docker Hub for free, you can set up a private

repository to store this container. If you wanted to share

with the world the container you created, you could do so

by simply making the repository public. A private

repository is always a good bet for code that is just for

your organization. Figure 13-31 shows how to set up a

private repo in Docker Hub named newrepo that you can

push your new container to.

Figure 13-31 Docker Hub Repository Setup

Once your repository is set up, you need to tag your

image to be pushed to Docker Hub. Use docker image

ls to list your images and take note of the image ID:

Click here to view code image

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED

SIZE

myimage latest 04ae8c714993 About an

hour ago 154MB

Next, you need to issue the docker image tag

command with the image ID of your image and assign it

to username/newrepo:firsttry. newrepo simply identifies

the repo you want to place the image in, and the tag after

the : allows you to differentiate this particular image

from any other in the repository (in this instance, it is

named firsttry):

Click here to view code image

$ docker image tag 04ae8c714993

chrijack/newrepo:firsttry

Now you are ready to issue the push command, as

shown in Example 13-9, and you see Docker start to push

the layers of your container image to the repository.

Example 13-9 docker image push Command

Click here to view code image

$ docker image push chrijack/newrepo:firsttry
The push refers to repository
[docker.io/chrijack/newrepo]
3e92d80e0ac4: Pushed
a87bf84680fc: Pushed
02d0765ebf97: Pushed
e0b3afb09dc3: Pushed
6c01b5a53aac: Pushed
2c6ac8e5063e: Pushed

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg417a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#ppg417-1
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch13_images.xhtml#pexa13-9

cc967c529ced: Pushed
firsttry: digest:
sha256:01cf95854003cd1312fb09286d41bc6bfd9fe3fb82f63e66e5060c7fd5a

6230a size: 1786

You can now check back with Docker Hub and see that

the image is now hosted in your private repository (see

Figure 13-32).

Figure 13-32 Docker Hub Pushed Image

After this, any time you want to retrieve the image, you

can type docker image pull

username/newrepo:firsttry, and Docker will load it in

your local image storage.

There is quite a bit more that you can do with Docker,

but this section should get you started and focused on

what you need to know for the 200-901 DevNet

Associate DEVASC exam. Make sure that to review the

Docker documentation and try these examples on your

own computer. Nothing beats practical experience.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, "Final

Preparation," and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 13-2 lists these key topics and the page number on

which each is found.

Table 13-2 Key Topics

Key Topic ElementDescriptionPage Number

Paragraph NIST definitions of cloud 376

Paragraph Cloud deployment models 379

Paragraph Edge computing model 381

Paragraph Application deployment methods 382

Paragraph The three ways of DevOps 391

Paragraph Implementing DevOps 394

Paragraph Docker architecture 400

Note Command line change 401

Paragraph Dockerfiles 410

List Docker images 411

Paragraph Docker Hub 414

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

software as a service (SaaS)

private cloud

public cloud

hybrid cloud

edge computing

container

DevOps

registry

artifact repository

Docker

Docker daemon

continuous integration/continuous deployment

(CI/CD)

Docker Hub

ADDITIONAL RESOURCES

Periodic Chart of DevOps:

https://xebialabs.com/periodic-table-of-devops-tools/

15 Docker Commands You Should Know:

https://towardsdatascience.com/15-docker-

commands-you-should-know-970ea5203421

Docker Basics: How to Use Dockerfiles:

https://thenewstack.io/docker-basics-how-to-use-

dockerfiles/

https://xebialabs.com/periodic-table-of-devops-tools/
https://towardsdatascience.com/15-docker-commands-you-should-know-970ea5203421
https://thenewstack.io/docker-basics-how-to-use-dockerfiles/

Chapter 14

Application Security

This chapter covers the following topics:

Identifying Potential Risks: This section introduces some of the

concepts involved in application security and shows how to identify

potential risks in applications.

Protecting Applications: This section shows how to protect an

application from various vulnerabilities using various frameworks and

also by leveraging firewalls, IDSs, and IPSs.

Application security involves making applications

more secure by proactively finding, fixing, and

enhancing the safety of applications. Much of what

happens during the development phase includes tools

and methods to protect apps once they are deployed.

Today, application security is paramount. Through the

years, many tools have emerged to secure networks,

storage, and even code. Various coding tools and

methodologies can be used to access inadvertent code

threats.

In this chapter, you will learn about application

security issues and how applications can be secured

using modern networking components. This chapter

also provides an overview of the Open Web

Application Security Project (OWASP) and what it

brings to the table for application developers.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 14-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 14-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Identifying Potential Risks 1–4

Protecting Applications 5–8

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. A vulnerability is a _______ in protection efforts.

It can be exploited by threats to gain unauthorized

access to an asset.

1. strength

2. weakness

3. neutral condition

4. side effect

2. Which of the following are threats? (Choose two.)

1. Phishing

2. Man-in-the-middle

3. JWT token

4. Brute force

3. What type of test is used to identify the possible

weak spots in applications, servers, or networks?

1. Pen

2. White box

3. Eraser

4. Unit

4. Which of the following is a tool that can be used for

network discovery and security auditing?

1. Nslookup

2. Nmap

3. ps

4. curl

5. What is the minimum number of identity

components MFA uses to authenticate a user’s

identity?

1. One

2. Two

3. Three

4. Four

6. Which of the following is used for fingerprinting of

data to detect whether the data has been modified?

1. Private key

2. Public key

3. One-way hash

4. Certificate

7. Data needs to be secured in multiple locations.

Which of the following are the correct locations?

1. Memory, storage, and network

2. Flash, wire, and optics

3. Hard disk, database, and analytics

4. AWS, Google Cloud, and Azure

8. Which modes best describe IDSs and IPSs,

respectively?

1. Passive, passive

2. Passive, active

3. Active, passive

4. Active, active

FOUNDATION TOPICS

IDENTIFYING POTENTIAL RISKS

The National Institute of Standards and Technology

(NIST) defines a framework called the Cybersecurity

Framework that is shown in Figure 14-1. The framework

organizes necessary cybersecurity activities into the

following functions:

Identify: An organization needs to understand what kinds of

cybersecurity risks can affect daily modes of operation. Areas such as

data theft, network breaches, and employee information are some of

the risks that need to be identified.

Protect: An organization needs to understand what it can do to

prevent attacks. Protection could include deploying proper networking

elements such as firewalls and tools for better software development.

Protection helps minimize the impact of any attack.

Detect: It is important to install tools that detect any data breaches or

attacks in a time-sensitive manner or while attacks are happening.

Respond: An organization needs to have a plan in place to deal with

an attack. It needs to know what procedures need to be followed and

what can be done to minimize the impact of an attack.

Recover: An organization needs to be able to quickly resolve any

services or systems that have been affected.

Figure 14-1 NIST Cybersecurity Framework

For more details about the Cybersecurity Framework,

visit https://www.nist.gov/cyberframework/online-

learning/components-framework.

https://www.nist.gov/cyberframework/online-learning/components-framework

Application security, as explained in this chapter, uses

the Cybersecurity Framework as a substratum to

understand some of the key concepts. To ensure

application security, it is important to identify threats

and what they affect.

Before we talk about the potential risks, it is essential to

understand some key terms and their relationships. The

following are some commonly misunderstood terms:

Asset: An asset is something you’re trying to protect. It could be

information, data, people, or physical property. Assets are of two types:

tangible and intangible. Information and data may include databases,

software code, and critical company records. People include employees

and customers. Intangible assets include reputation and proprietary

information.

Threat: Anything you are trying to protect against is known as a

threat. A threat is any code or person that can exploit a vulnerability

when it has access to an asset and can control or damage the asset.

Vulnerability: A vulnerability is a weakness or gap in protection

efforts. It can be exploited by threats to gain unauthorized access to an

asset.

Risk: Risk is the intersection of assets, threats, and vulnerabilities.

Certain risks can potentially compensate for loss, damage, or

destruction of an asset as a result of a threat exploiting a vulnerability.

Threats can always exist, but if vulnerabilities don’t exist, then there is

little or no risk. Similarly, you can have a weakness, but if you have no

threat, then you have little or no risk.

Common Threats and Mitigations

In this section, we examine the most common threats.

Table 14-2 describes some of the dangers to application

and some mitigation tips for each one of them.

Table 14-2 Threats and Sample Mitigation Options

ThreatWhat It DoesMitigation OptionsThreatWhat It DoesMitigation Options

B

u

f

f

e

r

o

v

e

r

fl

o

w

An attacker uses a program to try to cause

an application to store that input in a buffer

that isn’t large enough. The attacker’s data

overwrites portions of memory connected to

the buffer space. Attackers can use a buffer

overflow to modify a computer’s memory

and undermine or take control of program

execution.

Sep

ara

te

exe

cut

abl

e

me

mo

ry

fro

m

no

n-

exe

cut

abl

e

me

mo

ry.

Ra

nd

om

ize

ad

dre

ss

spa

ces

for

dat

a.

Us

e

the

bui

lt-

in

pro

tect

ion

opt

ion

s in

ne

wer

soft

wa

re

OS

s

an

d

lan

gua

ges

.

M

a

n

-

i

n

-

t

h

e

-

m

i

d

d

l

e

Attackers insert themselves between two

endpoints (such as a browser and a web

server) and intercept or modify

communications between the two. The

attackers can then collect information as

well as impersonate either of the two agents.

In addition to targeting websites, these

attacks can target email communications,

DNS lookups, and public Wi-Fi networks.

Ad

opt

a

Sec

ure

Soc

ket

s

Lay

er

(SS

L)/

Tra

nsp

ort

Lay

er

Sec

urit

y

(TL

S)

str

ate

gy

for

bot

h

we

b

an

d

em

ail.

Av

oid

sen

siti

ve

dat

a in

pu

blic

Wi-

Fi

or

co

mp

ute

rs.

D

e

n

i

a

l

-

o

f

-

s

e

r

v

i

c

e

(

D

o

S

)

a

t

t

a

c

k

A threat actor sends multiple requests that

flood the server or networks with traffic to

exhaust resources and bandwidth. As the

system performance degrades, the system

becomes more and more nonresponsive, and

legitimate requests are left unfulfilled. These

kinds of attacks can be coordinated, with

multiple devices launching attacks at the

same time. Such an attack is known as a

distributed denial-of-service (DDoS) attack.

Us

e

spe

cial

ly

des

ign

ed

pro

tect

ion

ser

vic

es

(cl

ou

d

or

net

wo

rk).

C

r

o

s

An attacker attaches to a legitimate website

code that will execute when the victim loads

that website. This is the typical process:
Val

ida

te

s

-

s

i

t

e

s

c

r

i

p

t

i

n

g

(

X

S

S

)

1. The webpage is loaded, and the

malicious code copies the user’s

cookies.

2. The system sends an HTTP

request to an attacker’s web server

with the stolen cookies in the body

of the request.

3. The attacker can then use cookies

to access sensitive data.

an

d

san

itiz

e

inp

ut

dat

a.

Em

plo

y

coo

kie

sec

urit

y,

suc

h

as

tim

eou

ts,

enc

odi

ng

the

clie

nt

IP

ad

dre

ss,

an

d

so

on.

P

h

i

s

h

i

n

g

A threat actor procures sensitive

information—typically usernames,

passwords, and so on—from emails or web

pages.

Ed

uca

te

use

rs

to

avo

id

fall

ing

for

the

bai

t.

Det

ect

an

d

ma

rk

em

ails

an

d

site

s as

spa

m.

M

a

l

w

a

r

e

Malware is a piece of malicious code such as

spyware, ransomware, a virus, or a worm.

Malware is usually trigged when someone

clicks a link or an email attachment and

inadvertently installs malicious software.

De

plo

y

tec

hn

olo

gie

s

tha

t

con

tin

ual

ly

mo

nit

or

an

d

det

ect

ma

lwa

re

tha

t

has

eva

ded

per

im

ete

r

def

ens

es.

S

Q

L

i

n

j

e

c

t

i

o

n

Structured Query Language (SQL) injection

is a code injection technique used to modify

or retrieve data from SQL databases. By

inserting specialized SQL statements into an

entry field, an attacker can execute

commands that allow for the retrieval of

data from the database.

Us

e

cha

rac

ter

esc

api

ng.

Us

e

sto

red

pro

ced

ure

s as

op

pos

ed

to

que

ries

.En

for

ce

pri

vile

ges

.

B

r

u

t

e

f

o

r

A threat actor may use trial and error to

decode data. Brute-force methods can be

used to crack passwords and crack

encryption keys. Other targets include API

keys, SSH logins, and Wi-Fi passwords.

Loc

k

the

sys

te

m

c

e

aft

er a

spe

cifi

ed

nu

mb

er

of

att

em

pts.

Us

e

two

-

fact

or

aut

hor

izat

ion

.

Open Web Application Security Project

The goal of a penetration (pen) test is to identify the

possible weak links in applications, servers, or networks

that could be used to gain sensitive information or

privileged access for an attacker. It is important to detect

such vulnerabilities not only to know that they exist and

calculate the risk attached to them but also to make an

effort to mitigate them or reduce them to the minimum

risk level.

The Open Web Application Security Project (OWASP) is

a community that produces and articulates various

reports, tools, methodologies, and technologies for web

application security. OWASP classifies and defines many

application security vulnerabilities.

OWASP has defined a list of security risks called the

OWASP Top 10, which can be found at

https://owasp.org/www-project-top-ten/.

This is the current OWASP Top 10 list:

1. Injection

2. Broken authentication

3. Sensitive data exposure

4. XML external entities

5. Broken access control

6. Security misconfiguration

7. Cross-site scripting

8. Insecure deserialization

9. Using components with known vulnerabilities

10. Insufficient logging and monitoring

The CVE (which stands for Common Vulnerabilities and

Exposures) is a list of publicly disclosed computer

security vulnerabilities. When someone refers to a CVE,

he or she usually means the CVE ID number assigned to

a security defect. Security advisories issued by vendors

and researchers almost always mention at least one CVE

ID. CVEs help IT professionals coordinate their efforts to

prioritize and address these vulnerabilities to make

computer systems more secure. CVEs are supervised by

the MITRE Corporation, with funding from the

Cybersecurity and Infrastructure Security Agency, part of

the U.S. Department of Homeland Security. A CVE

record usually provides a short one-line description.

Details are usually available on sites such the U.S.

National Vulnerability Database NVD;

(https://nvd.nist.gov/) and the CERT/CC Vulnerability

Notes Database (https://www.kb.cert.org/vuls/), as well

as the sites of prominent vendors in the industry.

A CVE record consists of the following:

ID

Description

https://owasp.org/www-project-top-ten/
https://nvd.nist.gov/
https://www.kb.cert.org/vuls/

Impact (low/moderate/important/critical)

Date published

A CVE record would look something like this:

ID: CVE-2020-5313

Description: An out-of-bounds read was discovered in python-pillow in

the way it decodes FLI images. An application that uses python-pillow

to load untrusted images may be vulnerable to this flaw, which can

allow attackers to read the memory of the application they should be

not allowed to read.

Impact: Moderate

Date: January 3, 2020

Using Nmap for Vulnerability Scanning

Nmap, which is short for Network Mapper, is a free

open-source utility for network discovery and security

auditing. Nmap is commonly used for network scanning

or vulnerability scanning. Target users for this tool are

pen testers, security professionals, and system

administrators. Nmap provides detailed and real-time

snapshot information of the devices or hosts on a

network. Nmap primarily provides three functionalities.

It gives detailed information on every IP active on a network, and each

IP address can then be scanned for more details, if needed.

It provides a list of live hosts and open ports and identifies the OS of

every connected device. This makes Nmap an excellent system-

monitoring and pen-testing tool.

It helps identify security vulnerabilities to protect against attacks.

The best way to get familiar with Nmap is to use it. Nmap

is available with macOS and Linux by default. Example

14-1 shows some of the command-line options available.

Example 14-1 Using Nmap for Network and

Vulnerability Scanning

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch14_images.xhtml#pexa14-1

$ nmap --help
Nmap 7.80 (https://nmap.org)
Usage: nmap [Scan Type(s)] [Options] {target
specification}
TARGET SPECIFICATION:
 Can pass hostnames, IP addresses, networks,
etc.
 Ex: scanme.nmap.org, microsoft.com/24,
192.168.0.1; 10.0.0-255.1-254
 -iL <inputfilename>: Input from list of
hosts/networks
 -iR <num hosts>: Choose random targets
 --exclude <host1[,host2][,host3],...>:
Exclude hosts/networks
 --excludefile <exclude_file>: Exclude list
from file
HOST DISCOVERY:
 -sL: List Scan - simply list targets to scan
 -sn: Ping Scan - disable port scan
 -Pn: Treat all hosts as online -- skip host
discovery
 -PS/PA/PU/PY[portlist]: TCP SYN/ACK, UDP or
SCTP discovery to given ports
 -PE/PP/PM: ICMP echo, timestamp, and netmask
request discovery probes
 -PO[protocol list]: IP Protocol Ping
 -n/-R: Never do DNS resolution/Always resolve
[default: sometimes]
 --dns-servers <serv1[,serv2],...>: Specify
custom DNS servers
 --system-dns: Use OS's DNS resolver
 --traceroute: Trace hop path to each host

<cut for brevity>

Basic Nmap Scan Against an IP Address or a Host

Many switch options can be used with Nmap, and here

we focus on a practical one. To run Nmap against an IP

address or a host, you can scan the hostname with the

nmap hostname command, as shown in Example 14-2.

(In this example, hostname is www.google.com, but you

can replace it with any IP address or hostname, including

localhost.) Use the -vv option as shown in this example

to see a more verbose output.

http://www.google.com/

Example 14-2 Using Nmap to Get Details About a

Host or an IP Address

Click here to view code image

$ nmap -vv www.google.com
Starting Nmap 7.80 (https://nmap.org) at
2019-12-08 22:10 PST
Warning: Hostname www.google.com resolves to 2
IPs. Using 216.58.194.196.
Initiating Ping Scan at 22:10
Scanning www.google.com (216.58.194.196) [2
ports]
Completed Ping Scan at 22:10, 0.02s elapsed (1
total hosts)
Initiating Parallel DNS resolution of 1 host.
at 22:10
Completed Parallel DNS resolution of 1 host. at
22:10, 0.06s elapsed
Initiating Connect Scan at 22:10
Scanning www.google.com (216.58.194.196) [1000
ports]
Discovered open port 443/tcp on 216.58.194.196
Discovered open port 80/tcp on 216.58.194.196
Completed Connect Scan at 22:10, 8.49s elapsed
(1000 total ports)
Nmap scan report for www.google.com
(216.58.194.196)
Host is up, received syn-ack (0.025s latency).
Other addresses for www.google.com (not
scanned): 2607:f8b0:4005:804::2004
rDNS record for 216.58.194.196: sfo03s01-in-
f196.1e100.net
Scanned at 2019-12-08 22:10:05 PST for 9s
Not shown: 998 filtered ports
Reason: 998 no-responses
PORT STATE SERVICE REASON
80/tcp open http syn-ack
443/tcp open https syn-ack

CVE Detection Using Nmap

One of Nmap’s most magnificent features for finding

vulnerabilities is called the Nmap Scripting Engine

(NSE). The NSE allows you to use a predefined script or

even write your own by using Lua programming

language.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch14_images.xhtml#pexa14-2

Using NSE is a crucial part of automating system and

vulnerability scans. It requires the following syntax:

nmap -Pn --script vuln hostname

Example 14-3 shows an example of a vulnerability scan

for a device on my home network.

Example 14-3 Using the Nmap Scripting Engine

Click here to view code image

$ nmap -Pn --script vuln 10.168.243.179
Starting Nmap 7.80 (https://nmap.org) at
2019-12-08 22:18 PST
Pre-scan script results:
| broadcast-avahi-dos:
| Discovered hosts:
| 224.0.0.251
| After NULL UDP avahi packet DoS (CVE-2011-
1002).
|_ Hosts are all up (not vulnerable).
Illegal character(s) in hostname -- replacing
with '*'
Nmap scan report for RX-
V677*B9772F.hsd1.ca.domain.net (10.168.243.179)
Host is up (0.029s latency).
Not shown: 995 closed ports
PORT STATE SERVICE
80/tcp open http
|_clamav-exec: ERROR: Script execution failed
(use -d to debug)
| http-csrf:
| Spidering limited to: maxdepth=3;
maxpagecount=20; withinhost=RX-
V677*B9772F.hsd1.ca.domain.net
| Found the following possible CSRF
vulnerabilities:
|
| Path: http://RX-
V677*B9772F.hsd1.ca.domain.net:80/
| Form id: recoveryform
|_ Form action: /Config/avr_recovery.cgi
|_http-dombased-xss: Couldn't find any DOM
based XSS.
| http-fileupload-exploiter:
|
| Couldn't find a file-type field.
|
| Couldn't find a file-type field.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch14_images.xhtml#pexa14-3

|
| Couldn't find a file-type field.
|
| Couldn't find a file-type field.
|
| Couldn't find a file-type field.
|
| Couldn't find a file-type field.
|
| Couldn't find a file-type field.
|
| Failed to upload and execute a payload.
|
| Failed to upload and execute a payload.
|
| Failed to upload and execute a payload.
|
| Failed to upload and execute a payload.
|
|_ Failed to upload and execute a payload.
|_http-stored-xss: Couldn't find any stored XSS
vulnerabilities.
1029/tcp open ms-lsa
|_clamav-exec: ERROR: Script execution failed
(use -d to debug)
1900/tcp open upnp
|_clamav-exec: ERROR: Script execution failed
(use -d to debug)
8080/tcp open http-proxy
|_clamav-exec: ERROR: Script execution failed
(use -d to debug)
|_http-aspnet-debug: ERROR: Script execution
failed (use -d to debug)
| http-enum:
|_ /test.html: Test page
| http-slowloris-check:
| VULNERABLE:
| Slowloris DOS attack
| State: LIKELY VULNERABLE
| IDs: CVE:CVE-2007-6750
| Slowloris tries to keep many
connections to the target web server open and
 hold
| them open as long as possible. It
accomplishes this by opening connections
 to
| the target web server and sending a
partial request. By doing so, it starves
| the http server's resources causing
Denial Of Service.
|
| Disclosure date: 2009-09-17
| References:
| https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2007-6750
|_ http://ha.ckers.org/slowloris/
50000/tcp open ibm-db2
|_clamav-exec: ERROR: Script execution failed
(use -d to debug)

Nmap done: 1 IP address (1 host up) scanned in
130.29 seconds

PROTECTING APPLICATIONS

An important step in protecting applications is to

recognize the risks. Before we talk about the potential

risks, it is essential to understand some key terms and

their relationships:

Hacker or attacker: These terms are applied to the people who seek

to exploit weaknesses in software and computer systems for gain. The

majority of the time, hackers have benign intentions and are simply

motivated by curiosity; however, their actions may violate the intended

use of the systems they are exploiting. The results can range from mere

mischief (such as creating a virus with no intentionally negative impact)

to malicious activity (such as stealing or altering information).

Malicious code: Malicious code is unwanted files or programs that

can cause harm to a computer or compromise data stored on a

computer. Malicious code includes viruses, worms, and Trojan horses.

Tiers of Securing and Protecting

Enterprises depend on applications to run their

businesses. Apps not only help customers and partners

connect with the enterprise, but a lot of times they enable

employees to get their jobs done as well. Unfortunately,

applications remain one of the most commonly exploited

threat vectors. An enterprise needs to secure and protect

web, mobile, and API applications from being

compromised and preventing data breaches. As

mentioned earlier, application security is a framework

that involves making applications more secure and,

therefore, an end-to-end approach is needed.

The multilayered software architecture is one of the most

famous architectural patterns. Figure 14-2 shows a

simple three-tier application architecture that has the

following foundations:

Tier 1 (Presentation): This tier presents content to the end user

through a web user interface or a mobile app or via APIs. To present the

content, it is essential for this tier to interact with the other tiers. From

a security standpoint, it is very important that access be authorized,

timed, and encrypted and that the attack surface be minimized.

Tier 2 (Application): This is the middle tier of the architecture, and

it is where the business logic of the application runs. The components

of this tier typically run on one or more application servers; hence,

from a security standpoint, load balancing, limiting access, and

proxying help.

Tier 3 (Data): This is the lowest tier of this architecture, and it is

mainly concerned with the storage and retrieval of application data.

The application data is typically stored in a database server, a file

server, or any other device or media that supports data access logic and

provides the necessary steps to ensure that only the data is exposed,

without providing any access to the data storage and retrieval

mechanisms.

Figure 14-2 Three-Tier Approach to Application

Security

To minimize risks, the following are some of the best

practices in the industry:

Keep software up-to-date: Install software patches so that attackers

cannot take advantage of known problems or vulnerabilities. Many

operating systems offer automatic updates.

Install end-user or device security: Install endpoint security

software on an end user’s device so that viruses and malware are kept

as far away as possible.

Use strong passwords: Using a strong password ensures that only

authorized users can access resources. With strong passwords, it

becomes hard to guess and hence decreases security risk.

Implement multifactor authentication (MFA): Authentication is

a process used to validate a user’s identity. Attackers commonly exploit

weak authentication processes. MFA uses at least two identity

components to authenticate a user’s identity, minimizing the risk of a

cyberattacker gaining access to an account by knowing the username

and password.

Install a firewall: Firewalls may be able to prevent some types of

attack vectors by blocking malicious traffic before it can enter a

computer system and by restricting unnecessary outbound

communications.

Encrypt data: Ensure that data cannot be accessed even if storage can

be reached.

Encryption Fundamentals

Cryptography is the science of transmitting information

securely against potential third-party adversaries. The

main objectives of cryptography are the following:

Confidentiality: Guaranteeing that the information exchanged

between two parties is confidential between them and is not visible to

anyone else

Integrity: Ensuring that the integrity of a message is not changed

while the message is in transit

Availability: Ensuring that systems are available to fulfill requests all

the time

Encryption is an operation that involves applying an

encryption key to plaintext by using an encryption

algorithm. Encryption turns the plaintext into ciphertext.

Decryption is the inverse operation: The decryption key

is applied to the ciphertext, and the result is the original

plaintext. Encryption and decryption both involve

symmetric keys or public/private key pairs.

Public Key Encryption

Public key encryption is a method of encrypting data that

involves a pair of keys known as a public key and a

private key (or a public/private key pair). The public key

is usually published, and the corresponding private key is

kept secret. Data that is encrypted with the public key

can be decrypted only with the corresponding private

key. Figure 14-3 illustrates a very simplified way to

understand public key encryption.

Figure 14-3 Simple Public Key Encryption

Public key encryption is used to establish secure

communications over the Internet (via HTTPS). A

website’s SSL/TLS certificate, which is shared publicly,

contains the public key, and the private key is installed

on the web server.

A TLS handshake uses a public key to authenticate the

identity of the origin server and to exchange data that is

used for generating the session keys. A key exchange

algorithm, such as Rivest–Shamir–Adleman (RSA), uses

the public/private key pair to agree on session keys,

which are used for symmetric encryption when the

handshake is complete. Clients and servers can agree on

new session keys for each communication session, so

that bad actors are unable to decrypt communications

even if they identify or steal one of the session keys.

Data Integrity (One-Way Hash)

As data and documents move across networks or storage

devices, it is crucial to ensure that this data is identically

maintained during any operation.

In the case of data transfer, data flowing between

applications in a public network environment can flow

across many network elements, each of which can “see”

the data. Encryption ensures that even though these

elements can see the data, they cannot understand the

data. But because the data can flow across nodes that you

do not control, there is a risk that a node in the network

could alter the data before it reaches the destination.

You cannot prevent the data from being altered by

someone on the network, so the receiving element

(destination) must be able to detect whether data has

been modified and, if so, not pass the corrupted data to

the application. A one-way hash is used for this purpose.

The message hash is a fingerprint of the data. If the data

changes, the fingerprint (that is, the message digest or

hash) changes as well. Someone who alters the data

would have no idea what the corresponding digest will be

for the modified data. The content of the hashed data

cannot be determined from the hash. This is why it is

called a one-way hash.

Digital Signatures

You can use a private key for encryption and your public

key for decryption. Rather than encrypting the data

itself, you can create a one-way hash of the data and then

use the private key to encrypt the hash. The encrypted

hash, along with other information, such as the hashing

algorithm, is known as a digital signature. Figure 14-4

illustrates the use of a digital signature to validate the

integrity of signed data. The data and the digital

signature are sent across the network. On the receiving

end, two hashes are calculated: one from the received

data and the other by decrypting the digital signature

using the public key. If the two hashes match, you know

that the private and public keys match, and the identity

of the sender is verified.

Figure 14-4 Digitally Signed Data

Data Security

Today, all our interactions with the world involve online

systems in some way, and all these systems deal with

data. Data is typically an organization’s most valuable

asset, and it is very often sensitive. Data security is the

process of securing data and protecting it from

unauthorized access. As data traverses various points of

interaction, it needs to be secured at all these various

places. Data needs to be protected in three places, as

shown in Figure 14-5:

Network (data in motion)

Storage (data at rest)

Memory (data in use)

Figure 14-5 Data Security

Table 14-3 shows each of these types of security and

describes some ways to secure or protect each type.

Table 14-3 Data Security Types

Data TypeDescriptionExamples

D

a

t

a

i

n

Data travels across various networks and

entities. It is prone to be inspected, and data

can be stolen.

Transport Layer Security (TLS) is a widely

adopted security protocol designed to

facilitate privacy and data security for

communication over the Internet. A primary

H

T

T

PS

m

o

t

i

o

n

(

n

e

t

w

o

r

k

)

use case of TLS is encrypting the

communication between web applications

and servers, such as web browsers loading a

website.

Fi

re

w

all

s

D

a

t

a

a

t

r

e

s

t

(

s

t

o

r

a

g

e

)

Any data that is stored can be accessed

digitally or physically.

Encrypting data at rest protects it against

physical theft of the file system storage

devices, protects against unauthorized access

to data, and satisfies information security or

regulatory requirements.

Fu

ll

di

sk

en

cr

yp

tio

n

Fil

e

sy

st

e

m

en

cr

yp

tio

n

D

at

ab

as

e

en

cr

yp

tio

n

D

a

t

a

i

n

u

s

e

(

m

e

m

o

r

y

)

When a running application is processing

data, the data is in memory (or in use). All

open files are considered data in use by

operating systems. When an encrypted file is

unencrypted in memory, it is vulnerable to

being stolen, or “scraped.”

Fu

ll

m

e

m

or

y

en

cr

yp

tio

n

C

P

U-

ba

se

d

ke

y

st

or

ag

e

(k

ey

s

st

or

ed

in

C

P

U

re

gi

st

er

s)

E

nc

la

ve

s,

w

hi

ch

ar

e

gu

ar

de

d

an

d

se

cu

re

m

e

m

or

y

se

g

m

en

ts

Secure Development Methods

As mentioned earlier in this chapter, the application

security process starts during the development phase.

Instead of trying to bring in security at the end of the

development process, secure development needs to be

baked in from the start. Addressing security issues from

the very beginning saves a company time and money in

the long run.

It is a common practice for corporations to use some

type of software development lifecycle (SDLC). Best

practices in secure software development suggest

integrating security aspects into each phase of the SDLC.

Figure 14-6 show the various aspects of the SDLC.

Figure 14-6 Secure Development

As you can see in the figure, the SDLC includes these

steps:

Training: Training helps get everyone on the project teams into a

security frame of mind. Teach and train developers on the team to

analyze the business application attack surface as well as the associated

potential threats. Not just developers but all team members should

understand the exposure points of their applications (user inputs,

front-facing code, exposed function calls, and so on) and take steps to

design more secure systems wherever possible.

Threat modeling: For every component and module in a system, ask

the “what-how-what” questions: What can go wrong? How can

someone try to hack into it? What can we do to prevent this from

happening? Various frameworks for threat modeling are available,

including the following:

STRIDE (Spoofing, Tampering, Repudiation, Information Leak,

DoS, Elevation of Privilege)

PASTA (Process for Attack Simulation and Threat Analysis)

VAST (Visual, Agile, and Simple Threat Modeling)

Secure coding: Build and use code libraries that are already secured

or approved by an official committee. The industry has several

guidelines for secure coding, and we have listed some of the standard

ones here:

Validating inputs

Encoding output

Ensuring authentication and credential management

Managing sessions

Using access control lists

Monitoring error handling and logging

Protecting data, including files, databases, and memory

Code review: Code review is one of the most essential steps in

securing an application. Usually, the rule that you have to keep in mind

is that pen testing and other forms of testing should not be discovering

new vulnerabilities. Code review has to be a way to make sure that an

application is self-defending. Also, it should be conducted using a

combination of tools and human effort. It is important to designate a

security lead who can help review code from a security point of view.

Secure tooling: Static analysis helps catch vulnerabilities. Static

analysis tools detect errors or potential errors in the structure of a

program and can be useful for documentation or understanding a

program. Static analysis is a very cost-effective way of discovering

errors. Data flow analysis is a form of static analysis that concentrates

on the use of data by programs and detects some data flow anomalies.

Dlint (see https://github.com/duo-labs/dlint) is a tool from Duo Labs

(Cisco) that defines and checks for common best practices when it

comes to writing secure Python. To evaluate a variety of rules over a

code base, Dlint leverages Flake8. Flake8 does the heavy lifting of

parsing Python’s AST, allowing you to focus on writing robust rule sets.

Testing: Testing includes penetration (pen) testing and system testing,

black box testing, and white box testing. Black box testing is a method

used to test software without knowing the internal structure of the code

or program. Testing teams usually do this type of testing, and

programming knowledge is not required. Black box testing includes

functional testing, behavior testing, and closed box testing. White box

testing, on the other hand, is a software testing method in which

internal structure is known to the tester who is testing the software.

Generally, this type of testing is carried out by software developers.

Programming knowledge is usually required for white box testing.

White box testing includes structural testing, logic testing, path testing,

loop testing, code coverage testing, and open box testing.

Testing involves the following steps:

Intelligence gathering: Define the goals, understand what’s

included in the application, and identify potential areas of

vulnerabilities.

Scanning: Understand both running and non-running behaviors.

Static analysis tools enable developers and testers to see faults

without actually running an application. These tools can save a lot

of time and effort in the long run, and the more errors and defects

found here, the better. Dynamic analysis, on the other hand,

involves actually running the application in a real or virtual

environment. Usually, a lot of external services and interactions

are exercised here.

https://github.com/duo-labs/dlint

Access: Use various methods to try to hack the application, such

as testing the app for SQL injection, back doors, traffic

interception, and so on. Long-term access testing looks at the kinds

of vulnerabilities exposed when a system is exploited for a long

time.

Reporting: Include all details on the vulnerabilities and sensitive data

exposed, as well as the amount of time the system remained unhacked.

Securing Network Devices

Network devices are the components of a network that

transport communications needed for data, applications,

services, and multimedia. These devices include routers,

firewalls, switches, servers, load balancers, intrusion

detection systems, Domain Name System servers, and

storage area networks. These devices are ideal targets for

malicious actors because most or all organizational and

customer traffic must pass through them.

Firewalls

A firewall is a barrier that’s put in place to limit damage.

A firewall can be either hardware or software that’s

installed to limit damage from external and internal

cyberattacks. It monitors and controls network traffic

based on a set of security rules. Figure 14-7 shows how

firewalls can monitor and control network traffic as it

flows between a local-area network (LAN) and the

Internet (WAN).

Figure 14-7 Firewall

The primary function of all firewalls is to screen network

traffic and prevent unauthorized access between two

network entities. There are several types of firewalls:

Packet filtering firewalls: Individual packets are examined,

although the firewall does not know the contents of a packet. These

firewalls provide this security by filtering the packets of incoming traffic

and distinguishing between TCP/UDP traffic and port numbers. The

packets are either allowed entry onto the network or denied access,

based on either their source or destination address or some other static

information, such as the traffic type. Figure 14-8 shows an example of a

stateless firewall that has a very simple rules engine and shows which

traffic is allowed and which is denied.

Figure 14-8 Stateless Firewall (Packet Filtering)

Stateful inspection firewalls: Packets are examined with other

packets in the flow. Such firewalls monitor the state of active

connections and use this information to determine which network

packets to allow. Stateful firewalls are advanced compared to stateless

packet filtering firewalls. They continuously keep track of the state of

the network and the active connections it has, such as TCP streams or

User Datagram Protocol (UDP) communication. The ability to

acknowledge and use the contents of incoming traffic and data packets

is one of the principal advantages of stateful firewalls, as it enables

these firewalls to tell the difference between legitimate and malicious

traffic or packets. This ultimately makes stateful firewalls one of the

most powerful security tools in modern policies that protect network

connections through the implementation of additional security

procedures for new or ongoing/active links. Figure 14-9 shows an

example of a stateful firewall that keeps track of the data from User1

and allows it to flow to the email and web server.

Figure 14-9 Stateful Firewall (Context Aware)

Application-level or proxy firewall: This type of firewall protects

network resources by filtering messages at the application layer. In

addition to determining which traffic is allowed and which is denied, a

proxy firewall uses stateful inspection and deep packet inspection to

analyze incoming traffic for signs of attack. The key benefit of

application-layer filtering is the ability to block specific content, such as

known malware or content from individual websites. A proxy firewall

can recognize when particular applications and protocols, such as

Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and

Domain Name System (DNS), are being misused. As the firewall sees

incoming packets, it inspects each protocol in the stack, noting the

various states. At Layer 7 (the application layer), the firewall looks up

the rules and applies them to incoming packets. Based on the system

rules, it may perform other functions, such as URL filtering, data

modification, logging, and object caching.

Next-generation firewall: Some standard features of next-

generation firewall architectures include deep-packet inspection

(checking the actual contents of the data packet), TCP handshake

checks, and surface-level packet inspection. Next-generation firewalls

may include other technologies as well, such as intrusion prevention to

stop attacks against a network automatically.

Intrusion Detection Systems (IDSs)

An intrusion detection system (IDS), as shown in Figure

14-10, is a passive system that monitors network traffic.

The traffic in this case is a copy of the traffic as the

network sees it. In a typical network scenario, packets or

flows are replicated in hardware and sent to the IDS. The

IDS processes the packets and detects malicious

signatures. In this case, the IDS cannot detect any

suspicious activity in real time; it has to let a few packets

pass before it can initiate any action. An IDS usually has

to rely on other networking elements, such as routers or

switches, to take any corrective measures to stop

suspicious traffic from passing through. One of the most

significant disadvantages of an IDS is that a single packet

attack is almost always successful, which means it is hard

to prevent these attacks.

Figure 14-10 IDS Receiving a Copy of the Packets

Intrusion Prevention Systems (IPSs)

An intrusion prevention system (IPS), as shown in

Figure 14-11, works in real time and in an inline manner.

Usually, an IPS is collocated with a network element

such as a router or switch. Like an IDS, an IPS does

deep-packet inspection of packets; however, an IPS takes

action immediately if it determines that a packet is

vulnerable. Therefore, only trusted packets are allowed

into the enterprise network.

Figure 14-11 IPS Inline with Traffic

Domain Name System (DNS)

You probably don’t remember a lot of phone numbers

but instead record them in your contacts so that you can

look up a name of a person you want to call. Domain

Name System works quite similarly: It keeps a mapping

of domain names and the IP addresses of the servers

where the domains can be reached. Each device on the

Internet has a unique IP address, and DNS eliminates

the need to memorize any IP addresses that it uses.

Figure 14-12 shows how a client request gets to the DNS

resolver, which in turn gets to the primary DNS server.

Figure 14-12 DNS Operation

To understand how DNS works, the following steps walk

through how a client, such as a web browser, asks for a

new website:

Step 1. The user clicks on a link or types a URL for a

site to visit (for example,

https://developer.cisco.com).

Step 2. The browser looks in the local cache to see if

the name can be resolved locally on the client.

Step 3. The browser sends a query to the DNS

recursive resolver in an attempt to resolve the

name. The DNS recursive resolver usually

resides with the Internet service provider, and it

can reply if it has the IP address or pass on the

query to the next resolver in the chain. (There

are public name resolvers, such as Cisco

Umbrella and Google.) Eventually, one of the

resolvers may respond with the IP address.

Step 4. If the DNS resolvers cannot find the IP

address, the browser tries the root name

servers, which in turn forward the query to top-

https://developer.cisco.com/

level domain (TLD) servers and eventually

authoritative servers, until results are achieved.

Step 5. When the client has the IP address for the

domain, it gives the IP address to the browser.

Nslookup (Name Server Lookup) is an excellent utility

that most operating systems can use to get details about

a particular host or domain from a DNS server. The

syntax for the command is as follows:

Click here to view code image

nslookup [-option] [name | -] [server]

Examples 14-4 and 14-5 show examples of using

Nslookup.

Example 14-4 Using Nslookup for a Simple Host

Lookup

Click here to view code image

nslookup stanford.edu :
nslookup with a simple domain name will return
the IP address of the stanford.edu

$ nslookup standford.edu
Server: 2601:647:5500:1ea:9610:3eff:fe18:22a5
Address:
2601:647:5500:1ea:9610:3eff:fe18:22a5#53

** server can't find standford.edu: NXDOMAIN

$ nslookup stanford.edu
Server: 2601:647:5500:1ea:9610:3eff:fe18:22a5
Address:
2601:647:5500:1ea:9610:3eff:fe18:22a5#53

Non-authoritative answer:
Name: stanford.edu
Address: 171.67.215.200

Example 14-5 Using Nslookup to Get Information

About a Domain

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch14_images.xhtml#ppg442
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch14_images.xhtml#pexa14-4
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch14_images.xhtml#pexa14-5

nslookup -type=any stanford.edu :
The -type=any parameter allows us to get all
the DNS records for that domain,
including the mail servers, etc.

$ nslookup -type=any stanford.edu
;; Truncated, retrying in TCP mode.
Server: 10.168.243.90
Address: 10.168.243.90#53

Non-authoritative answer:
stanford.edu mail exchanger = 10 mxa-
00000d03.gslb.pphosted.com.
stanford.edu mail exchanger = 10 mxb-
00000d03.gslb.pphosted.com.
stanford.edu nameserver = ns5.dnsmadeeasy.com.
stanford.edu nameserver = ns6.dnsmadeeasy.com.
stanford.edu nameserver = ns7.dnsmadeeasy.com.
stanford.edu nameserver = argus.stanford.edu.
stanford.edu nameserver =
atalante.stanford.edu.
stanford.edu nameserver =
avallone.stanford.edu.
stanford.edu
 origin = argus.stanford.edu
 mail addr = hostmaster.stanford.edu
 serial = 2019138199
 refresh = 1200
 retry = 600
 expire = 1296000
 minimum = 1800

Load Balancing

Load balancing is the process of distributing user

requests across multiple servers. The goal is to ensure

that no single server bears too much demand. In essence,

load balancers are like virtual servers, receiving all user

requests and forwarding these requests based on the load

balancer’s policy to one of the servers that host the

website. The load balancer attempts to ensure that each

server receives a similar number of requests. Many load

balancers are capable of monitoring servers and

compensating for any servers that become unavailable.

By spreading the work evenly, load balancing improves

application responsiveness.

Figure 14-13 shows how requests coming in from various

clients can be load balanced (or distributed) to various

servers.

Figure 14-13 Load Balancing

Load balancing uses algorithms such as the following:

Round-robin: Selects servers in turn

Least connected: Selects the server with the lowest number of

connections; this is recommended for more extended sessions

Source/IP-hash: Chooses a server based on a hash of the source IP

Cookie marking: Adds a field in the HTTP cookies, which could be

used for decision making

Consistent IP-hash: Adds and removes servers without alarming

cached items or session persistence

A reverse proxy accepts a request from a user, forwards it

to a server that can fulfill it, and returns the server’s

response to the client. A reverse proxy can include some

or all of the following functionality:

Security: The web servers or application servers are not visible from

the external network, so malicious clients cannot access them directly

to exploit any vulnerabilities. Many reverse proxy servers include

features that help protect backend servers from distributed denial-of-

service (DDoS) attacks—for example, by rejecting traffic from particular

client IP addresses (blacklisting) or limiting the number of connections

accepted from each client.

Scalability and flexibility: Clients see only the reverse proxy’s IP

address. This is particularly useful in a load-balanced environment,

where you can scale the number of servers up and down to match

fluctuations in traffic volume.

Web acceleration: Acceleration in this case means reducing the time

it takes to generate a response and return it to the client. Some of the

techniques for web acceleration include the following:

Compression: Compressing server responses before returning

them to the client (for instance, with gzip) reduces the amount of

bandwidth they require, which speeds their transit over the

network.

SSL termination: Encrypting the traffic between clients and

servers protects it as it crosses a public network such as the

Internet. However, decryption and encryption can be

computationally expensive. By decrypting incoming requests and

encrypting server responses, the reverse proxy frees up resources

on backend servers, which the servers can then devote to their

primary purpose—serving content.

Caching: Before returning the backend server’s response to the

client, the reverse proxy stores a copy of it locally. When the client

(or any other client) makes the same request, the reverse proxy can

provide the response itself from the cache instead of forwarding

the request to the backend server. This both decreases response

time to the client and reduces the load on the backend server. This

works great for “static” content, but there are new techniques that

can be used for “dynamic” content as well.

Content filtering: This involves monitoring traffic to and from the

web server for potentially sensitive or inappropriate data and taking

action as necessary.

Authentication: The reverse proxy authenticates users via a variety of

mechanisms and controls access to URLs hosted on the web server.

Figure 14-14 shows how requests come in from various

clients. The reverse proxy can terminate an SSL

connection or even inspect incoming traffic.

Figure 14-14 Reverse Proxy

Figure 14-15 illustrates the concept of a reverse proxy

with a user requesting a web page from

https://server.com. In this case, server.com is the

reverse proxy, which first terminates SSL and then

translates the request and issues a new request to the

images.server.com server. The images server then

responds to the request, gathering and translating the

response and sending it back to the client. The

translation could mean applying compression (gzip) to

the response.

Figure 14-15 Reverse Proxy Flow Diagram

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, "Final

https://server.com/

Preparation," and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 14-4 lists these key topics and the page number on

which each is found.

Table 14-4 Key Topics

Key Topic ElementDescriptionPage

List Assets, threats, vulnerabilities, and risks 42

3

Table 14-

2

Threats and mitigation 42

3

Paragrap

h

Open Web Application Security Project

(OWASP)

42

5

Paragrap

h

Nmap 42

6

Figure

14-5

Data security 43

3

Paragrap

h

Firewalls 43

7

Paragrap

h

Intrusion detection system 43

9

Paragrap

h

Domain Name System 44

0

List Reverse proxy 44

4

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

Secure Sockets Layer (SSL)

Transport Layer Security (TLS)

Open Web Application Security Project (OWASP)

OWASP Top 10

Nmap

multifactor authentication (MFA)

cryptography

Rivest–Shamir–Adleman (RSA)

software development lifecycle (SDLC)

Dlint

Domain Name System (DNS)

intrusion detection system (IDS)

intrusion prevention system (IPS)

Domain Name System (DNS)

Chapter 15

Infrastructure Automation

This chapter covers the following topics:

Controller Versus Device-Level Management: This section

compares and contrasts the two network device management options

currently available: controller-based and device-level management.

Infrastructure as Code: This section introduces the concepts of

infrastructure as code.

Continuous Integration/Continuous Delivery Pipelines: This

section examines CI/CD pipelines, why they are used, the problems

they address, and how they can be applied to infrastructure

automation.

Automation Tools: This section covers popular automation tools that

are used for configuration management and network automation.

Cisco Network Services Orchestrator (NSO): This section

provides an introduction to Cisco NSO.

Cisco Modeling Labs/Cisco Virtual Internet Routing

Laboratory (CML/VIRL): Cisco Modeling Labs (CML) is the new

name for VIRL and we will use it interchangeably (CML/VIRL). This

section explains what Cisco CML/VIRL is and how it can be used to

build network simulations.

Python Automated Test System (pyATS): This section examines

pyATS, including the components that make up the testing solution and

how it can be used to automate network testing.

This chapter covers infrastructure automation

concepts. It starts with a comparison of management

of infrastructure on a device-by-device basis or using a

central controller. Thanks to virtual devices and public

cloud technologies, infrastructure can be created,

modified, and decommissioned dynamically by using

the concept of infrastructure as code. This chapter

introduces infrastructure as code and the problems it

solves. This chapter also covers continuous

integration/continuous delivery (CI/CD) pipelines and

their importance in the software development lifecycle.

The chapter also covers automation tools and

introduces the popular configuration management

tools Ansible, Puppet, and Chef. This chapter discusses

Ansible concepts such as control nodes, playbooks,

and modules; Puppet concepts such as Puppet Master,

manifests, and Puppet modules; and Chef concepts

such as Chef Infra Server and cookbooks. This chapter

also covers Cisco NSO, including the architecture of

the platform, common use cases, the network

simulation feature, and using tools such as curl and

Postman. Finally, the chapter provides overviews of

Cisco CML/VIRL and pyATS.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 15-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 15-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Controller Versus Device-Level Management 1,

2

Infrastructure as Code 3,

4

Continuous Integration/Continuous Delivery Pipelines 5,

6

Automation Tools 7

–

9

Cisco Network Services Orchestrator (NSO) 10

Cisco Modeling Labs/Virtual Internet Routing

Laboratory (CML/VIRL)

11

Python Automated Test System (pyATS) 12

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. What protocols were historically used to manage

network devices? (Choose two.)

1. SMTP

2. SSH

3. TFTP

4. Telnet

5. SNNP

2. Which of the following is an example of a central

network controller?

1. Nagios

2. Grafana

3. Cisco DNA Center

4. Prometheus

3. What are two common approaches to infrastructure

as code?

1. Subjective

2. Declarative

3. Imperative

4. Objective

4. Which of the following are issues with deploying

infrastructure that are being addressed with

infrastructure as code? (Choose two.)

1. The amount of time needed to deploy new infrastructure

2. Maintaining code across different versions

3. Troubleshooting issues

4. Lack of code documentation

5. What is a key component of a continuous

integration pipeline?

1. Integration server

2. Delivery server

3. File server

4. Build server

6. What are the four steps in a CI/CD pipeline?

1. Code, test, build, deploy

2. Source, build, test, deploy

3. Source, test, deploy, monetize

4. Build, test, deploy, monetize

7. What command is used to run Ansible playbooks?

1. ansible

2. ansible-playbook

3. ansible-playbooks

4. ansible-plays

8. What language are Puppet manifests written in?

1. Puppet Domain Specific Language

2. Puppet Python

3. YAML

4. Java

9. What language are Chef recipes written in?

1. Python

2. Java

3. Ruby

4. Go

10. What Cisco NSO component manages the YANG

data models that get sent to a device?

1. Service Manager

2. Device Manager

3. Core Engine

4. CDB

11. What language are Cisco CML/VIRL topology files

written in?

1. JSON

2. CSV

3. YAML

4. XML

12. What are the two main components of pyATS?

1. pyATS test framework

2. pyATS repo

3. pyATS testbed

4. pyATS library

FOUNDATION TOPICS

CONTROLLER VERSUS DEVICE-LEVEL

MANAGEMENT

Historically, network devices were managed through

command-line interfaces (CLIs) by using protocols such

as Telnet and Secure Shell (SSH). The network

administrator would connect to the CLI of a network

device using a software client that implements these

protocols and perform the configuration changes needed

for the device to function as expected. On a small- to

medium-sized network, this approach might still work,

but as networks keep growing bigger and more and more

devices become connected, managing networks in a

device-by-device manner becomes time-consuming and

prone to errors. Combine this with the needs for

automation, network programmability, and reductions in

operational costs, and you can see that a new way of

managing networks is needed.

Network controllers are a possible solution to the

challenges of managing networks in a device-by-device

manner. A network controller is a centralized software

platform dedicated to managing the configuration and

operational data of network devices. Controllers take

over the management of network devices, meaning that

all interactions with the devices have to go through the

controller. They provide an abstraction layer between the

administrators of the network and network devices.

Network controllers usually expose a northbound REST

API interface for management and integration with

third-party systems and one or several southbound

interfaces through which they connect and manage the

network devices. Typical southbound interfaces are CLI-

based interfaces that use Telnet and SSH, OpenFlow,

SNMP, NETCONF, RESTCONF, and so on. In most

situations, the network controller manages different

network devices running different network operating

systems with different versions and different features; by

abstracting the underlying network capabilities, the

controller exposes only a subset of the network

functions. This minimal loss of network functionality is

an assumed risk when choosing to go the network

controller route for managing a network.

On one side is the controller-based management of

networks supporting a subset of network functions, and

on the other side is direct access to the devices with full

access to all network features. Network administrators

have to choose between these two options, keeping in

mind the requirements of the network and which option

works best for each situation.

There are several other considerations to keep in mind

when integrating controllers into a network. Support for

atomic network configuration is one of them. Atomicity

in the case of network configuration means that either

the intended configuration has been applied to all

network elements without error or, to deal with potential

errors, there is a rollback mechanism in place to ensure

that the partial configuration is removed and the devices

are brought back to the initial state before there is any

attempt to change the configuration. Atomicity is very

important to ensure a holistic and uniform view of the

network and to make sure that partial and incomplete

configurations do not negatively affect the functionality

of the network.

Another consideration with network controllers involves

auditing and managing the configuration drift of the

network elements. Configuration drift happens when the

configuration of a network device has changed from its

intended state, which means the configuration of the

device in the network controller is different from the

configuration of the device itself. This situation can easily

lead to inconsistencies and unexpected network

behavior. A good controller has built-in mechanisms to

address configuration drift; in some instances these

mechanisms go as far as limiting or even blocking device

configuration changes.

The main advantage provided by network controllers is

that the abstraction and central administration of

individual network devices eliminate the need for device-

by-device configuration, management, and monitoring,

as shown in Figure 15-1.

Figure 15-1 Network Managed Through a Network

Controller

Direct device configuration allows access to the full

feature set of a device, but it can be time-consuming and

prone to errors—especially in large networks. The scale

of a network is certainly a limiting factor when

performing configuration and management tasks on a

device-by-device basis. As you’ve seen in Chapter 12,

“Model-Driven Programmability,” historically, there has

been an evolution from custom CLIs to standard data

models and network configuration protocols such as

NETCONF and RESTCONF. Having custom-built

protocols for network configuration as well as standard

data models is definitely helping with the network

automation efforts and the scale limitations.

Configuration changes made on a single device can be

replicated across an entire network. Device-by-device

configuration is illustrated in Figure 15-2.

Figure 15-2 Network Managed on a Device-by-

Device Basis

Using a controller for network management and device-

by-device configuration are not mutually exclusive. A

controller can be used to globally configure devices,

while direct connection to devices can be helpful for

monitoring and ensuring that the changes made by the

controller do not create undesired behavior.

Chapter 8, “Cisco Enterprise Networking Management

Platforms and APIs,” provides an example of a network

controller with Cisco DNA Center. Cisco DNA Center can

be used to completely configure, manage, and monitor

networks. It can also be used to deploy SD-Access

fabrics. It is possible to deploy SD-Access by using

automation tools and connecting to each device using

NETCONF, the CLI, or even SNMP. This gives the

network administrator more granular control but at the

same time requires more work and time to define

configuration parameters and data models and to ensure

that the correct configuration gets applied to all the

devices in a unified manner. Cisco DNA Center performs

all these tasks automatically, and automation scripts can

be used to collect operational data and ensure that the

network performs within optimal parameters.

INFRASTRUCTURE AS CODE

Inspired by software development practices,

infrastructure as code is a new approach to

infrastructure automation that focuses on consistent,

repeatable steps for provisioning, configuring, and

managing infrastructure. For a long time, infrastructure

has been provisioned and configured in a manual

fashion. Deploying a new application on a network used

to take anywhere from weeks to months to even years in

some situations. During that time, the IT team would try

to size the hardware requirements for the new

application, go through the approval process to purchase

the new hardware, order the hardware, wait for it to be

delivered, rack it up, and start the provisioning and

configuration steps. The provisioning and configuration

of the new hardware was in most cases a manual process:

installing the operating system one step at a time

following guided instructions and then finally installing

and configuring the new application. At best,

technologies like PXE booting and installation scripts

would be used to try to automate the arduous process of

provisioning new hardware and installing new

applications. This resulted in one-of-a-kind, or

“snowflake,” environments in which each application ran

on different hardware, with different options and

features enabled; supporting and maintaining such

environments was incredibly challenging. A new

paradigm for deploying and managing infrastructure was

needed.

The IT infrastructure of the past had a number of

limitations, including high deployment and maintenance

costs, long waiting times for new infrastructure to be

ready for production (slowing down new application

deployments and hampering innovation and fast

prototyping), and difficulty in troubleshooting since each

environment was slightly different. Several technologies

have evolved to address these limitations. The one that

has had the biggest impact is public cloud computing.

Besides making infrastructure available almost

instantaneously and reducing the costs associated with

purchasing hardware, cloud computing has also changed

the way IT infrastructure is being provisioned,

configured, and consumed. With the advent of APIs,

public cloud infrastructure can more easily be

automated, and cookie-cutter templates can be created

for easy and fast deployment of new infrastructure.

Infrastructure as code is all about the representation of

infrastructure through machine-readable files that can

be reproduced for an unlimited amount of time. It is a

common practice to store these files in a version control

system like Git and then use them to instantiate new

infrastructure—whether servers, virtual machines, or

network devices. In this way, infrastructure can be

treated as source code, with versioning, history, and easy

rollback to previous versions, if needed. Being able to

spin up new infrastructure in a repeatable, consistent

fashion becomes extremely useful, for example, in cases

in which there is a spike in traffic and in the number of

application requests for a certain period of time. In such

cases, new servers, load balancers, firewalls, switches,

and so on can be dynamically provisioned within seconds

to address the additional load. Once the traffic subsides

and the need for higher capacity subsides, the

infrastructure can be scaled down by dynamically

decommissioning servers, load balancers, and so on to

save on costs. This elasticity of the infrastructure is

another of the benefits of defining all infrastructure as

code.

By defining infrastructure through code, the

infrastructure becomes transparent in the sense that it is

enough to read the code in the document to know all the

characteristics and features that will be instantiated

when it gets provisioned. Other people can review the

code, make improvements, have the changes tracked

through version control, and make sure the code is in

compliance with the security requirements of the

company.

While change was frowned upon in the infrastructure of

the past, and a limited number of strict change windows

were provided through the year, with infrastructure as

code, change is welcomed and even desired. With

infrastructure as code, change is a catalyst to improve the

reliability and the performance of the infrastructure as a

whole. Just as source code goes through multiple

versions and becomes better with each new release,

infrastructure becomes more resilient and reliable with

each new version.

By using infrastructure as code, it is possible to have

identical environments for testing, integration, and

production. This leads to significantly fewer

troubleshooting steps needed to repair and maintain the

infrastructure and the applications running on top of it.

There are usually two types of approaches to

infrastructure as code:

Declarative: With the declarative approach, the desired state of the

system is defined and then the system executes all the steps that need

to happen in order to attain the desired state.

Imperative: The imperative approach defines a set of commands that

have to be executed in a certain order for the system to achieve the

desired state.

A popular infrastructure as code solution is Terraform

from HashiCorp. Infrastructure as code integrates very

well in the continuous integration/continuous delivery

pipelines discussed next.

CONTINUOUS

INTEGRATION/CONTINUOUS

DELIVERY PIPELINES

Software is quickly becoming pervasive in all aspects of

our lives. From smartphones to smart cars and smart

homes, we interact with software hundreds or even

thousands of times each day. Under the DevOps

umbrella, there have been several efforts to improve

software development processes in order to increase the

speed, reliability, and accuracy of software development.

Continuous integration/continuous delivery (CI/CD)

pipelines address all these requirements and more. All

the software development processes—from writing code

to building, testing, and deploying—were manually

performed for years, but CI/CD pipelines can be used to

automate these steps. Based on specific requirements for

each company, different tools and different solutions are

used to implement these pipelines. Some companies

implement only continuous integration solutions, and

others take advantage of the whole CI/CD pipeline,

automating their entire software development process.

CI/CD is a series of automated steps that code goes

through from the IDE of the individual developer,

through building, testing, and finally deployment to

staging and production environments. Although usually

used together, continuous integration and continuous

delivery are two separate concepts that can be addressed

separately.

Continuous integration is a software development

practice in which developers commit their code to a

central repository that is part of a version control system

on an hourly, daily, or weekly basis or at some other

frequency that is agreed upon within the team. As

developers commit their code to the central repository, it

is important to verify that the code integrates well with

the full code base.

As new code is written, it is critically important to run

code base tests against the new changes in the code base

in a fast, automated fashion. Continuous integration

tools accomplish exactly this task. As the code gets

committed to a central repository—in most cases, to a

Git-style version control system—a webhook gets

triggered that starts the whole automated testing phase

of the pipeline. Common triggers at this stage include

automatic integrations with tools such as Cisco Webex

Teams for immediate notifications on the status of the

tests. In the event that a test fails, the developer is

notified and can correct the issues that caused the test to

fail very early in the development process. If all the tests

pass, the code moves on to the next stage of the pipeline.

A key component of any CI pipeline is the build server.

The role of the build server is to react to developers

committing their code to the central repository and to

start the initial tests on the new code features. Most

version control systems support webhook mechanisms to

automatically notify the build server when pull requests

are opened and code is committed. Popular build servers

include Jenkins, Travis CI, and Drone CI. Table 15-2

compares development environments that have

implemented CI pipelines and the ones that have not.

Table 15-2 Development Environments With and

Without CI

Development Without CIDevelopment With CI

Increased number

of bugs

Fewer bugs

Insufficient testing Automated builds, tests,

documentation, and reports

Few releases per

year

Multiple releases per day

Lack of integration

testing

Dedicated build and test servers

Project delays Frequent commits

Fewer features More features

Instability Stability

Continuous delivery adds on top of continuous

integration all the remaining steps needed to automate

the entire software release cycle, from building to testing

to deployment (see Figure 15-3).

Figure 15-3 Complete CI/CD Pipeline

In the building phase, the code is compiled for languages

such as Java, C/C++, or Go; for code written in

interpreted languages such as Ruby or Python, the

compilation step can be ignored. Regardless of the

language the code is written in, in most cases, the output

of the building phase is a Docker image that contains all

the code, all required dependencies, and startup scripts

to ensure that the application runs consistently,

whatever the destination environment might be.

During the testing phase, automated tests are run to

ensure correct behavior of the product. In an effort to

catch software bugs as soon as possible, tests are

developed at this stage to make sure the new code

follows the expected requirements. Several types of tests

are run at this stage, from unit and smoke tests that

perform quick sanity checks, to integration, code

coverage, code standards, and end-to-end tests that try

to mimic the way users interact with the software as

closely as possible. Developers follow the results of the

tests, and if any of the tests fail, the developers can

immediately address the problems and fix the code and

restart the pipeline until all tests pass.

The next phase in the CI/CD pipeline is the deployment

phase. By this stage, the software has been packaged and

tested and is ready to be deployed for consumption.

Before containers, in most cases, this meant installing

the new binaries in new servers, either physical or

virtual, and reconfiguring the load balancers to point to

the new servers and monitor the environment to ensure

that the new version worked as expected. With the

advent of Docker and similar container technologies, the

deployment phase has become much easier to

implement. Containers can be destroyed and restarted

with the new version of code within seconds. Container

orchestrator solutions, such as Kubernetes, DC/OS, and

Docker Datacenter, can be used to simplify this process

even further. By using the container orchestrator APIs, a

call can be made to roll out the new Docker containers

with the new features—and there is zero downtime.

Several strategies can be used to ensure zero downtime

while deploying containers; changing only one container

at a time from a pool of many instances is one of them.

In most situations, there are several environments

available at the deployment stage of the pipeline, but at

least two are present in all cases: staging and production.

In the staging environment, final preparations and

manual testing by the product team takes places to

ensure that everything functions as expected. Approved

changes in the staging environment automatically get

deployed into the production environment.

The CI/CD pipelines described so far can be adapted for

network management and configuration. Taking

advantage of infrastructure as code, network

configurations can be stored in version control systems,

and build servers can be used to integrate with solutions

such as Cisco CML/VIRL (Virtual Internet Routing Lab)

to dynamically instantiate virtual networks, test the

configuration changes in the virtual network, and, if the

tests pass, use automation solutions such as Ansible to

perform the desired changes in the production network.

A working network management CI/CD pipeline could

include the following:

Github.com as a cloud-based version control system or Gogs as a self-

hosted Git option could be used to store the configurations.

Travis CI as a cloud-based build server or Drone as a self-hosted build

server could be used to orchestrate the whole CI/CD pipeline.

Cisco CML/VIRL could be used to create a test network and verify the

impact of the configuration changes in the network.

Ansible could be used to automate the configuration of all the elements

in the network.

CI/CD pipelines are used by more and more companies

to speed up and increase the reliability and accuracy of

their software development processes. Companies that

have adopted CI/CD pipelines as part of their

development processes release hundreds of software

features every week.

AUTOMATION TOOLS

It is common practice for network administrators to

perform configuration, monitoring, and maintenance

activities every day on all the devices in a network or at

least a subset of them. These changes were traditionally

deployed manually: The network administrator would

connect to each network device individually and perform

the changes. The changes could be anything, from adding

a new access VLAN throughout the network, to updating

entries in an access control list, to changing SNMP

communities’ names. Where there is a manual task that

is being performed, there is an opportunity to improve

the process by automating that task. Open-source tools

such as Ansible, Puppet, and Chef can dramatically

reduce the number of manual interactions with a

network. These tools enable automation at scale for

application deployment, infrastructure management,

and network configurations. The following sections

discuss each of them in turn.

Ansible

Ansible is a configuration management and

orchestration tool that can be used for a variety of

purposes. It can be used to configure and monitor

servers and network devices, install software, and

perform more advanced tasks such as continuous

deployments and zero-downtime upgrades. It was

created in 2012 and acquired by RedHat in 2015. Ansible

is appropriate for both small and large environments and

can be used for managing a handful of servers and

network devices or for managing thousands of devices. It

is agentless, meaning there is no software or service that

needs to be installed on the managed device. Ansible

connects to managed devices just as a regular system or

network administrator would connect for management

purposes—in most cases over SSH, but NETCONF and

REST API interfaces are also supported. Ansible is open

source and was developed using Python. There is also a

commercial offering available, called Ansible Tower,

which includes a web user interface, a northbound REST

API, role-based access control, statistics, and much

more.

Several Ansible concepts need to be discussed before we

go further:

Control node: The control node is any machine that has Ansible

installed. All flavors of Linux and BSD operating systems are supported

for the control node. Any computer, laptop, virtual machine, or server

with Python installed can be an Ansible control node. The exception to

this rule is that Microsoft Windows machines currently cannot be used

as control nodes. Multiple control nodes can run at the same time in the

same environment. It is a best practice to place the control nodes close

to the systems that are being managed by Ansible to avoid network

delays.

Managed node: The managed nodes in the Ansible taxonomy are the

network devices or servers that are being managed by Ansible. They are

also called hosts and do not need to have Ansible installed on them or

even Python, as discussed later in this chapter.

Task: Ansible tasks are the units of action. You can run them as ad hoc

commands by invoking them as follows:

Click here to view code image

$ ansible [pattern] -m [module] -a "[module

options]"

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#ppg458a

Playbook: An Ansible playbook is a file that contains an ordered set of

tasks that will be run in the order in which they are defined and as

many times as needed. Playbooks are written in YAML, which makes

them easy to read, write, and share. It is common (but not mandatory)

to name the main playbook site.yml.

Inventory file: The inventory file is a list of all the managed nodes.

Also called the hostfile, it contains a list of IP addresses or hostnames

for all the managed nodes as well as credentials and variables that can

be referenced in playbooks. Managed devices can be grouped together

by function or location or based on some other feature. As the hostfile

grows larger in a bigger environment, it is a best practice to move the

variables to dedicated files in group_vars/ and host_vars/ folders.

The group_vars folder would contain files with definitions for variables

related to groups of devices, and the host_vars folder would contain

files with definitions of variables related to individual hosts. Variables

can define anything of interest for the specific environment: TCP/UDP

port numbers, custom proxy configurations, timer values, and so on.

Inventory files are created in either INI or YAML format. INI is a file

format commonly used for configuration files of software platforms. It

was extensively used in older versions of Microsoft Windows to

configure the operating system. INI files are simple text files composed

of basic structures such as sections, properties, and values.

Module: Ansible modules are units of parameterized Python code that

get executed by Ansible. Every module in Ansible has a specific use.

There are modules, for example, for installing server packages, for

managing users, for configuring NTP servers on Cisco NX-OS switches,

and for performing show commands on Cisco IOS devices. An

individual module is invoked through an Ansible task, or multiple

modules can be invoked through an Ansible playbook.

Ansible can be installed in several different ways:

Using the operating system package manager:. For example, on

RedHat and CentOS Linux, it can be installed with the following

command:

sudo yum install ansible

Using the Python package manager: The command for installing

using the Python package manager is pip install ansible. As always,

it is recommended to use a virtual environment when working with

Python. Some dependencies might need to be installed before you can

install Ansible. Always check the latest release notes at

https://docs.ansible.com.

Using the development version: You can clone the developer

repository and issue the source command from a bash terminal.

When automating server configurations, Ansible uses

SSH to log in to the server, copies the Python code, and

runs that code on the server. There is no need to have

https://docs.ansible.com/

any Ansible component installed on the managed

servers, as the implementation is agentless. For network

devices, because there is limited Python support on the

devices themselves, the Python code that represents the

Ansible jobs runs locally on the control host. The control

host still uses SSH or NETCONF, RESTCONF, SNMP,

and other interfaces to connect to the network devices

and perform the desired configuration changes. Ansible

has a large number of modules that support several Cisco

operating systems, including IOS, IOS XE, IOS XR, and

NX-OS. Some of the most popular Ansible modules that

are used with Cisco devices are the following:

ios_command to send mostly show commands to devices running

IOS and IOS XE operating systems

ios_config to send configuration commands to IOS and IOS XE

devices

nxos_command and nxos_config to interact with devices running

the NX-OS operating system

Next, let’s explore a sample Ansible project. Two files are

required in order to get started with Ansible playbook

projects: an inventory file and a playbook. In the

following Ansible project, the inventory file is called

hosts, and the playbook file is called site.yml:

$ tree.

├── hosts

└── site.yml

0 directories, 2 files

The hosts file contains an inventory of all the devices that

will be managed by Ansible. For example, the hosts file

can look like this:

Click here to view code image

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#ppg460a

$ cat hosts

[iosxe]

10.10.30.171

[iosxe:vars]

ansible_network_os=ios

ansible_connection=network_cli

The brackets are used to define group names. Groups are

used to classify hosts that share a common characteristic,

such as function, operating system, or location. In this

case, the [iosxe] group of devices contains only one

entry: the management IP address of a Cisco CSR1000v

router. The vars keyword is used to define variables. In

this example, two variables are defined for the iosxe

group. The ansible_network_os variable specifies

that the type of operating system for this group of

devices is IOS, and the ansible_connection variable

specifies that Ansible should connect to the devices in

this group by using network_cli, which means SSH.

Variables can be referenced in playbooks; as mentioned

previously, as the inventory files become larger, it is a

good idea to separate the variables’ definitions into

separate files.

The site.yml file in this example uses the

ios_command Ansible module to send two commands

to the iosxe group of devices: show version and show

ip interface brief. The YAML definition of the

playbook looks as shown in Example 15-1.

Example 15-1 Ansible Playbook Example

Click here to view code image

$ cat site.yml

- name: Test Ansible ios_command on Cisco IOS
XE
 hosts: iosxe

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#pexa15-1

 tasks:
 - name: show version and ip interface brief
 ios_command:
 commands:
 - show version
 - show ip interface brief

YAML files start with --- (and so do Ansible playbooks).

A playbook contains one or multiple plays. The plays are

logical groupings of tasks and modules. The playbook in

this example contains only one play that is marked by the

hyphen (-) character at the leftmost position. The name

of the play is optional, but it should contain an arbitrary

string describing the actions that the play will perform.

The name is displayed on the screen when the playbook

is executed. The hosts keyword specifies which hosts or

machines the play will be executed against. In Example

15-1, the play is executed against the iosxe group of

devices. The value for the hosts parameter in the

playbook must match the names of the groups, as

defined in the inventory file. Tasks are executed on the

hosts that are defined in the play definition. For each

task, a name value should contain an arbitrary

description of the task. Like the name of the play, the

name of the task is optional, but it should contain

pertinent description text, as it is displayed to the screen

when the playbook is executed. ios_command is the

name of the Ansible module that is part of the task in this

example. The ios_command module takes in multiple

parameters, but only one of them is mandatory: the

actual commands that will be sent to the IOS device. The

two commands that will be sent to the [iosxe] device are

show version and show ip interface brief.

Some of the other optional parameters for the

ios_command module are the following:

interval: Specifies the interval of time, in seconds, to wait between

retries of the command.

retries: Configures the number of retries for a command before it is

considered failed.

wait_for: Specifies a list of conditions that have to be evaluated

against the output of the command. In this example, it could be defined

as wait_for: result[0] contains IOS-XE, which verifies that the

output of the show version command contains the value IOS-XE

before going further with the execution of the playbook.

The playbook can be run from a terminal with the

following command:

Click here to view code image

$ ansible-playbook -i hosts site.yml -u admin -k

The -i option specifies the name of the inventory file, the

-u option specifies the username that will be used to

connect to the device, and the -k option specifies that the

user should be asked for the connection password when

the playbook is executed. Connection credentials can also

be included in the inventory file but in this example they

are passed in as parameters of the ansible-playbook

command. The output of this command looks as shown

in Example 15-2.

Example 15-2 Output of ansible-playbook

Command

Click here to view code image

$ ansible-playbook -i hosts site.yml -u admin -
k
SSH password:

PLAY [Test Ansible ios_command on Cisco IOS XE]

**

TASK [show version and ip interface brief]

ok: [10.10.30.171]

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#ppg461
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#pexa15-2

PLAY RECAP

10.10.30.171 : ok=1 changed=0
unreachable=0 failed=0
 skipped=0
rescued=0 ignored=0

The names of the play and the task are displayed to the

screen, as are a play recap and color-coded output based

on the status of the playbook execution. In this case, the

playbook ran successfully, as indicated by the value 1 for

the ok status. You can reuse the output of the two show

commands in the playbook to build custom automation

logic, or you can display it to the screen in JSON format

by using the -v option with the ansible-playbook

command.

Puppet

Puppet is a configuration management tool used to

automate configuration of servers and network devices.

Puppet was founded in 2005, making it one of the most

venerable automation tools on the market today. It was

created as an open-source project—and it still is today,

but it is also available as a commercial offering called

Puppet Enterprise that was created by Puppet Labs in

2011. It is written in Ruby and defines its automation

instructions in files called Puppet manifests. Whereas

Ansible is agentless, Puppet is agent based. This means

that a software agent needs to be installed on each device

that is to be managed with Puppet. This is a drawback for

Puppet as there are instances of network devices in

which third-party software agents cannot be easily

installed. Proxy devices can be used in these situations,

but the process is less than ideal and means Puppet has a

greater barrier to entry than other automation tools.

Puppet is architected in a client/server manner, with the

client being the software agent running on the managed

devices and the server being the main Puppet server,

referred to as the Puppet Master. By default, agents

check their configuration every 30 minutes and ensure

that a match exists between the expected configuration

and the local configuration. There are software agents for

Linux and Windows hosts, as well as for various network

devices, including Cisco NX-OS and IOS XR.

Puppet manages systems in a declarative manner,

meaning that the administrator defines the state the

target system should be in without worrying about how

the system gets to that state. Puppet models the desired

system state, enforces that state, and reports any

differences between the desired state and the current

state of the system for tracking purposes. In order to

model the system states, Puppet uses a declarative

resource-based language called Puppet Domain Specific

Language (DSL). The desired state of the system is

defined in this language, and Puppet converges the

infrastructure to the desired state. The communication

between the Puppet Master and the agents is over an

encrypted SSL connection.

Several components make up the Puppet architecture, as

shown in Figure 15-4.

Figure 15-4 Puppet Architecture

The central control server, the Puppet Master, provides

features such as reporting, web user interface, security,

and more. The software agents run on the target node

that will be monitored by Puppet. The agents connect to

the Master and retrieve the correct configuration for the

device they are running on. Puppet Forge is a

community-based central repository where people can

share their Puppet manifests and modules.

There are currently two separate versions of Puppet:

Open source: This community-driven version is a collection of

smaller projects and binaries, including the main Puppet agent

binaries, mcollective and facter. mcollective provides orchestration

capabilities, and facter is a separate binary that resides on the

monitored devices and gathers facts about them.

Enterprise: This version streamlines the installation process and the

use of the various software packages required. For example, a single

agent package that contains both the agent software and facter is

available with the Puppet Enterprise offering. Enterprise Console, a

single-pane-of-glass solution that presents a simplified view of all the

facts collected by the agents, is also available with the Enterprise

offering.

For a system administrator or network administrator

using Puppet as a configuration management solution,

the first step is to define—using Puppet DSL—what the

desired state of the infrastructure needs to be. These

definitions are captured in text files called Puppet

manifests. Some examples of desired states at this stage

could be the existence of a certain VLAN on all switches

in the network or maybe just a subset of devices, how

and which interfaces should be configured on border

routers, and which NTP servers to use for time

synchronization.

Once the desired state is defined, Puppet offers the

option to simulate the changes needed to reach that state

and see what would happen if the changes were applied.

This gives the administrator a chance to dry run the

Puppet manifests and take note of what changes would

actually get applied to the devices.

If the changes to be performed to reach the desired state

are in line with expectations, the manifests can be

executed, and the changes can be enforced. The Puppet

agents report back to the Master with the status of the

tasks that are being executed.

The Puppet software agent running on the managed

devices is the enforcing element of the solution. The

other component that is usually installed on the

managed device is facter, which has the role of gathering

facts about the managed device and reporting them back

to the Master control server. facter reports to the control

node facts such as operating system, hardware

configuration, and number and type of interfaces.

The Puppet Master analyzes the facts, compares them to

its database, and builds a catalog that describes how the

managed device should be configured. The device-

specific catalog is then pushed back to the device. The

device receives the catalog and compares the policy with

its current state, and if they are different, it applies the

changes specified in the catalog. If the new policy and the

current state of the device match, no change is made. A

report is sent back to the Master after the agent performs

these functions.

The Puppet manifests are standard text files that contain

Puppet DSL code and have the .pp extension. They

contain declarative configuration and are descriptive and

easy to read. The following is an example of a manifest

used to ensure that the interface Ethernet 1/3 is in Layer

2, or switching, mode:

Click here to view code image

Configuring the interface using Puppet

cisco_interface { "Ethernet1/3" :

 switchport_mode => enabled,

}

Puppet Forge is a cloud-based repository that contain

manifests and modules contributed by the community.

Puppet modules are collections of files and directories

that contain Puppet manifests. When you download

modules from Puppet Forge, with each module you get a

group of subdirectories that have in them all the

components that are needed to specify the desired state.

Chef

Chef is another popular open-source configuration

management solution that is similar to Puppet. It is

written in Ruby, uses a declarative model, is agent based,

and refers to its automation instructions as recipes and

cookbooks. Several components are part of the Chef Infra

offering, as shown in Figure 15-5.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#ppg464a

Figure 15-5 Chef Architecture

A Chef workstation is an administrator computer used to

manage the network. One or more workstations can exist

in an environment, depending on the size and

complexity. A Chef workstation contains all the tools

necessary for developing and testing the infrastructure

automation tasks that are captured in documents called

recipes. A Chef workstation has an instance of Chef Infra

Client and can run command-line tools such as chef and

knife as well as testing tools such as Test Kitchen,

ChefSpec, and Cookstyle. A workstation computer

also includes chef-repo, the central repository in which

recipes and cookbooks are created, tested, and

maintained. Chef cookbooks contain recipes, attributes,

libraries, files, templates, tests, custom resources, and

metadata. chef-repo should be managed with a version

control system such as Git. Recipes are authored in

Ruby, and most of them contain simple configuration

patterns that get enforced through the Chef client.

Cookbooks are uploaded from the workstation to Chef

Infra Server.

Chef Infra Server acts as the main hub for all the

configuration information. Chef Infra Client, which is

installed on each managed device, connects to Chef Infra

Server to retrieve the configuration data that will be

enforced on the managed client device. After each Chef

Infra Client run finishes, the run data is uploaded to Chef

Infra Server for troubleshooting and historical purposes.

The actual managed device configuration work is done as

much as possible through Chef Infra Client on the

managed device; offloading these tasks from Infra Server

makes the Chef solution more scalable. Infra Server also

indexes all the infrastructure data, including

environments, nodes, and roles, making them available

for searching. The Chef management console is a web-

based interface through which users can manage nodes,

cookbooks and recipes, policies, roles, and so on.

Cookbooks are the fundamental building blocks for

configuration and policy distribution with Chef. A

cookbook defines a scenario and contains everything

needed to support that scenario: recipes that specify the

resources to use, templates, attribute values, tests,

metadata, file distributions, and custom resources and

libraries. A large set of resources to support the most

common infrastructure automation requirements comes

built in with Chef Infra Client. As Chef is written in Ruby,

additional resources and capabilities can easily be

created, if necessary.

A Chef node is any device that has the Chef Infra Client

software installed, which means it is managed by Chef

Infra. A large variety of nodes are supported by Chef

Infra, including virtual and physical servers; cloud-based

nodes running in public and private clouds; network

devices from vendors such as Cisco, Arista, F5, and

others; and container environments. The main roles of

Chef Infra Client are to register the node and

authenticate to Chef Infra Server using RSA public key

pairs, synchronize cookbooks, configure the node to

match the desired state specified in the cookbooks, and

report back to Infra Server with status reports. Chef has a

tool built in to the Infra Client called ohai that is used to

collect system information such as the operating system,

network, memory, disk, CPU, and other data; ohai is

similar to facter in Puppet.

Much like the Puppet Forge, Chef Supermarket is a

community-maintained central location where

cookbooks are created and shared between the members

of the community.

The following is a sample Chef cookbook used for

configuring an interface on a Cisco Nexus switch:

Click here to view code image

cisco_interface 'Ethernet1/3' do

 action :create

 ipv4_address '10.1.1.1'

 ipv4_netmask_length 24

 ipv4_proxy_arp true

 ipv4_redirects true

 shutdown false

 switchport_mode 'disabled'

 end

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#ppg466a

CISCO NETWORK SERVICES

ORCHESTRATOR (NSO)

Cisco Network Services Orchestrator (NSO) is a network

services orchestration platform that enables end-to-end

service deployment across multivendor physical and

virtual infrastructure. NSO can also be considered a

multivendor service-layer SDN controller for data center,

enterprise, and service provider networks. It takes full

advantage of NETCONF and YANG data models to

provide a single API and a single user interface to the

network that it manages. Cisco NSO is the single source

of truth in a network, constantly maintaining the current

state of all the devices in its database. It ensures that the

configuration database is synchronized with all the

network devices at all times.

The main components of Cisco NSO are as follows (see

Figure 15-6):

Service manager

Device manager

Mapping logic

Configuration database

Figure 15-6 Cisco NSO Architecture

The two primary technologies that are being used with

Cisco NSO are the following:

NETCONF: Used for standard and efficient automation of

configuration

YANG: Used for services and device configuration data modeling

One of the main advantages of Cisco NSO is the model-

to-model mapping capability. A network administrator

can define the data models for the end-to-end services

that need to be implemented in the network (for

example, Layer 3 MPLS VPNs, IPTV), and NSO maps

those service models into device models for various

vendor devices. Because a large number of devices do not

fully support NETCONF and YANG data models, NSO

uses Network Element Drivers (NEDs) to model native

device CLIs into YANG models. NSO offers a level of

abstraction that makes network devices transparent to

the service management of the network. This way,

complex services can be described and implemented in

simple ways and pushed to the devices no matter the

device vendor, configuration semantics, and so on.

NSO provides several northbound interfaces for service

and platform management, including NETCONF,

RESTCONF, JSON/RPC, a CLI, a web user interface, and

SNMP. The NSO CLI and web user interface are usually

used for human interaction with the platform, SNMP

and NETCONF are used for monitoring, and the

NETCONF, RESTCONF, and JSON/RPC interfaces are

used for automation integration. The NSO CLI has two

modes of operation: operational mode, used primarily to

monitor and maintain the platform, and configuration

mode, used to configure the services, the devices, and the

NSO server. Two CLI styles are offered to NSO operators:

Cisco style, which is identical to the Cisco CLI, and

Juniper style, which is identical to the Juniper CLI. CLI

users can easily switch between them by using the

switch cli command.

The southbound communication with the network

devices is done through components called Network

Element Drivers (NEDs), which implement a large set of

southbound interfaces, including NETCONF, the CLI,

SNMP, and OpenFlow.

The logical architecture of Cisco NSO is a dual-layered

approach: a device manager component that handles the

device configuration scenarios and a service manager

component that provides an interface for the

administrator to define the services that need to be

implemented in the network. The configuration data

store, called the Configuration Database (CDB), is in

sync with all the devices in the network and contains all

the devices and services configurations. A dedicated

mapping layer manages the correspondence between the

service models and the device models.

The Cisco NSO Core Engine manages critical operational

functions such as transactions, high-availability

replication, upgrades and downgrades, role-based access

control, and rollback management. All operations in

NSO are handled by the transaction manager. The Core

Engine connects all the other NSO components together;

it is the communication backbone for all other

components and is the process that reads the initial

configuration defined in the ncs.conf file.

The CDB stores all the platform data in a RAM database,

including the NSO configuration, the configurations of

all services and all managed devices, and all NSO

operational data. The CDB is stored in RAM for

increased speed and quick response, and a persistent

version of it is stored on the disk drive of the server. The

CDB is a hierarchical database organized in a tree-like

structure, and although other database solutions can be

used with NSO, it is recommended to use CDB as it has

been optimized for NSO and the transactional nature of

the solution.

With the Cisco NSO service manager, users develop

YANG models of the services they want deployed in the

network, such as IPTV or MPLS VPNs. At this stage, the

service model also has to be mapped to the

corresponding device configuration model. This is done

either through configuration templates that map service

parameters into device configuration parameters or

programmatically by building the mapping logic with

Java or Python code. The lifecycle of the services defined

in NSO is managed by a FASTMAP algorithm. As

services get created, modified, and deleted, FASTMAP

dynamically reacts and adjusts the configuration of the

devices in the network to reflect the status of the service

models. In addition, FASTMAP enables the following

functions:

Service dry-run: NSO calculates what the device changes would be if

the service model were to be pushed on the devices in the network.

Service check-sync: The service configuration is verified to be in

sync with the actual device configuration. Device configuration drift can

be detected this way.

Service re-deploy: Device configurations can be redeployed to

restore a service on the network.

The NSO device manager manages the network devices

by using YANG data models and NETCONF. For devices

that natively implement NETCONF and YANG models,

the device manager is automatic; devices that do not

support NETCONF are integrated in the platform with

NEDs. NEDs that support different vendor CLIs as well

as SNMP configuration and hundreds of other

southbound management options come with Cisco NSO

by default. If needed, custom NEDs can be developed to

address any device management protocol that is not

already included with the default installation.

Distributed atomic transactions are used for all

configuration changes on all the devices in the network.

If applying the configuration changes fails on any of the

devices in the service path, a rollback mechanism can be

used to revert all the changes and return the network

devices to their initial status before the service

deployment was attempted. Configuration templates can

be used at this stage to easily and quickly provision new

devices.

As of this writing, an educational version of Cisco NSO

can be downloaded from Cisco DevNet at

https://developer.cisco.com/site/nso/. Installation steps

can also be found there. The following examples use

Cisco NSO version 5.1 running locally on macOS

Catalina.

Cisco NSO provides a network simulation tool called

ncs-netsim. This tool makes it very easy to test NSO

packages against simulated devices and to learn how to

use the platform without any hardware needed. The

same YANG models are used for both real and NetSim

simulated devices. Several options are available with ncs-

netsim, as shown in Example 15-3.

Example 15-3 ncs-netsim Options

Click here to view code image

$ ncs-netsim --help
Usage ncs-netsim [--dir <NetsimDir>]
 create-network <NcsPackage>
<NumDevices> <Prefix> |
 create-device <NcsPackage>
<DeviceName> |
 add-to-network <NcsPackage>
<NumDevices> <Prefix> |
 add-device <NcsPackage>
<DeviceName> |
 delete-network
|
 [-a | --async] start
[devname] |
 [-a | --async] stop
[devname] |
 [-a | --async] reset
[devname] |

https://developer.cisco.com/site/nso/
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#pexa15-3

 [-a | --async] restart
[devname] |
 list |
 is-alive [devname] |
 status [devname] |
 whichdir |
 ncs-xml-init [devname] |
 ncs-xml-init-remote
<RemoteNodeName> [devname] |
 [--force-generic]
|
 packages |
 netconf-console devname
[XpathFilter] |
 [-w | --window] [cli | cli-c
| cli-i] devname |
 get-port devname [ipc |
netconf | cli | snmp]
See manpage for ncs-netsim for more info.
NetsimDir is optional and defaults to
./netsim, any netsim directory above in the
path, or $NETSIM_DIR if set.

In order to create a new network simulation, the create-

network option is used with the following parameters:

Click here to view code image

ncs-netsim create-network <NCS package> <#N

devices> <PrefixY>

<NCS package> contains the path to where the NCS

packages were installed. By default, this is

$NCS_DIR/packages/neds, and it contains NCS

packages for Cisco IOS, Cisco IOS XR, Cisco NX-OS,

Juniper JunOS, and so on. The <#N devices> parameter

specifies the number of devices that will be created, and

<PrefixY> defines the prefix that will be used to name

the devices. For example, the following command would

be used to create a network simulation with three Cisco

IOS devices named ios0, ios1, and ios2:

Click here to view code image

$ ncs-netsim create-network

$NCS_DIR/packages/neds/cisco-

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#ppg470a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#ppg470b

ios-cli-3.8 3 ios

DEVICE ios0 CREATED

DEVICE ios1 CREATED

DEVICE ios2 CREATED

After the virtual devices are created, the simulation can

be started with the start command:

$ ncs-netsim start

DEVICE ios0 OK STARTED

DEVICE ios1 OK STARTED

DEVICE ios2 OK STARTED

An ordered list of all the devices that are running at any

point on the NSO server can be obtained by using the list

option for ncs-netsim, as shown in the following output:

Click here to view code image

$ ncs-netsim list

ncs-netsim list for $NCS_DIR/nso-run/netsim

name=ios0 netconf=12022 snmp=11022 ipc=5010

cli=10022 dir=$NCS_DIR/

nso-run/netsim/ios/ios0

name=ios1 netconf=12023 snmp=11023 ipc=5011

cli=10023 dir=$NCS_DIR

/nso-run/netsim/ios/ios1

name=ios2 netconf=12024 snmp=11024 ipc=5012

cli=10024 dir=$NCS_DIR

/nso-run/netsim/ios/ios2

Access to the console ports of all the simulated devices is

possible by using the cli-i option followed by the name of

the device, as in Example 15-4, which demonstrates

console access to the ios0 device.

Example 15-4 CLI Access to a Simulated Device

Click here to view code image

$ ncs-netsim cli-i ios0

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#ppg471a
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#pexa15-4

admin connected from 127.0.0.1 using console on
*
ios0> en
ios0# show running-config
no service pad
no ip domain-lookup
no ip http server
no ip http secure-server
ip routing
ip source-route
ip vrf my-forward
 bgp next-hop Loopback 1
!

The simulated devices implement all control plane

functions of the original operating system, but they do

not have the data plane implemented, so they do not

forward data traffic. Even with this limitation, ncs-

netsim network simulations are used extensively for

testing and learning.

As mentioned previously, Cisco NSO exposes a

RESTCONF northbound interface for automation and

integration purposes. Before simulated devices are

accessible over this interface, they have to be onboarded

within Cisco NSO. Devices can be onboarded through

any of the northbound interfaces that Cisco NSO

exposes, but in this example, the NSO CLI was chosen.

First, access to the NSO Cisco version (-C parameter) of

the CLI for the admin user is obtained by issuing the

ncs_cli -C -u admin command. The default password

is also admin. Once access to the NSO CLI is granted, all

the simulated Cisco IOS devices need to be added in the

configuration of the Cisco NSO server. Example 15-5

shows the configuration for ios0.

Example 15-5 Onboarding Simulated Devices in Cisco

NSO

Click here to view code image

$ ncs_cli -C -u admin

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#pexa15-4a

admin connected from 127.0.0.1 using console on
*
admin@ncs# config term
Entering configuration mode terminal
admin@ncs(config)# devices device ios0
admin@ncs(config-device-ios0)# address
127.0.0.1
admin@ncs(config-device-ios0)# port 10022
admin@ncs(config-device-ios0)# authgroup
default
admin@ncs(config-device-ios0)# device-type cli
ned-id cisco-ios-cli-3.8
admin@ncs(config-device-ios0)# state admin-
state unlocked
admin@ncs(config-device-ios0)# exit

When all three simulated IOS devices are onboarded and

the configuration changes are committed, the devices can

be displayed through a GET call over the RESTCONF

interface. Cisco NSO exposes its full functionality over

this RESTCONF interface that is available by default

starting at

http://<NSO_Server_IP>:8080/restconf/ root. A

list of all the devices that have been onboarded can be

obtained by performing a GET call on the following

RESTCONF URI resource:

http://<NSO_Server_IP>:8080/restconf/data/tailf-

ncs:devices/device. The curl command to test this GET

call looks as follows:

Click here to view code image

$ curl --request GET

'http://localhost:8080/restconf/data/tailf-

ncs:devices/device' \

--header 'Content-Type: application/yang-

data+json' \

--header 'Authorization: Basic YWRtaW46YWRtaW4='

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#ppg472a

The Content-Type header needs to be

application/yang-data+json because JSON-

formatted YANG data models are exchanged over the

RESTCONF interface. The authorization header contains

the basic authentication Base64 encoded for the admin

username and the admin password. A snippet of the

response is shown in Example 15-6.

Example 15-6 Output of the RESTCONF GET Devices

API Call

Click here to view code image

{
 "tailf-ncs:device": [
 {
 "name": "ios0",
 "address": "127.0.0.1",
 "port": 10022,
 "authgroup": "default",
 "device-type": {
 "cli": {
 "ned-id": "cisco-ios-cli-3.8:cisco-
ios-cli-3.8"
 }
 },
 "commit-queue": {
 "queue-length": 0
 },
 "active-settings": {
 "connect-timeout": 20,
 "read-timeout": 20,
 "write-timeout": 20,
 "ssh-keep-alive": {
 "interval": 20,
 "count": 3
 },
 "ned-keep-alive": {
 "count": 3
 },
... omitted output
}

The Cisco NSO RESTCONF interface can also be

explored by using Postman. For example, we can get the

configuration of the ios1 simulated device from the NSO

RESTCONF interface by using Postman instead of curl.

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#pexa15-6

The URI that returns this information is very similar to

the one explored previously, with one difference:

http://localhost:8080/restconf/data/tailf-

ncs:devices/device=ios1. device=ios1 is used to indicate

that the API should return only data specific to the

device ios1. The same headers for Content-Type,

application/yang-data+json, Authorization, and Basic

Auth with username admin and password admin need

to be included. Figure 15-7 shows the response from the

NSO server after the Send button is pressed.

Figure 15-7 RESTCONF GET Device API Call in

Postman

Cisco Modeling Labs/Cisco Virtual Internet Routing

Laboratory (CML/VIRL)

For a long time, building and maintaining infrastructure

laboratories for testing and learning was time-consuming

and required a lot of hardware, which needed space,

power, and cooling; these labs were therefore very

expensive and in reach of only a few companies. With the

advent of Network Function Virtualization (NFV) and

Cisco Modeling Labs/Cisco Virtual Internet Routing

Laboratory (CML/VIRL), it has finally become easy and

cost-effective to build infrastructure laboratories for all

types of purposes.

NFV is meant to decouple the hardware and software

requirements that are typical for network devices and

enable the software component or the network operating

system to run on commodity hardware as a virtual

machine, in a container, or on bare-metal servers. While

in most cases this leads to a loss of performance as

custom hardware components such as Application

Specific Integrated Circuits (ASICs) are not used with

NFV offerings, it is usually considered an acceptable

trade-off and offers a cost-effective way to take

advantage of the software features that come with the

network operating system. If maximum performance is

required, then a combination of dedicated custom

hardware and software can be used to ensure guaranteed

performance. If the performance requirement is not as

stringent, then an NFV alternative that includes just the

software network operating system running on off-the-

shelf hardware can be considered. For example, Cisco

offers the enterprise-grade network operating system

Cisco IOS XE as a downloadable virtual machine in the

form of a Cisco CSR1000v router for an NFV offering

covering enterprise routing and switching capabilities,

and it also offers IOS XE as a combination of hardware

and software with the Cisco Catalyst 9000 Series of

switches that offer 100Gbps interfaces and guaranteed

hardware routing and switching forwarding

performance. There is a virtual option for almost all

Cisco operating systems currently available, including

Cisco IOS XE with Cisco CSR1000v, Cisco IOS XR with

Cisco IOS XRv, and Cisco NX-OS with Cisco NX-OSv

9000. These virtual instances can be run on x86

commodity hardware on premises or in private and

public cloud environments.

Cisco CML/VIRL is a powerful network simulation

platform that is meant to be a flexible, all-in-one virtual

networking lab. With Cisco CML/VIRL and virtual

instances of network operating systems from Cisco, it is

possible to build entire network simulations. The

CML/VIRL version 2 web interface looks as shown in

Figure 15-8.

Figure 15-8 CML/VIRL 2 Web Interface

Cisco CML/VIRL provides several interfaces: a CLI

interface, a powerful web user interface (refer to Figure

15-8), and a REST API for automation and integration.

Multiple virtual instances of operating systems and

solutions—including Cisco SD-WAN (Cisco vManage,

Cisco vSmart, Cisco vBond, Cisco vEdge), Cisco

CSR1000v, Cisco NX-OS, Cisco IOS XRv, Ubuntu,

CoreOS, and TRex—are included with CML/VIRL by

default, and it is possible to add other third-party virtual

instances as well. While the software features in the

virtual instances of the Cisco network operating systems

are in most cases on parity with the binary files installed

on Cisco routers and switches, there are limitations in

regard to the data plane implementation. There are no

switching backplanes and no ASIC modules with the

virtual nodes in CML/VIRL, so throughput performance

cannot be tested accurately in most cases.

Using an external connector, a simulation running in

Cisco CML/VIRL can be connected to the external world

and the Internet. This is done through the network

interface on the server that Cisco CML/VIRL is installed

on. Cisco CML/VIRL comes as on OVA file that can be

deployed on virtual machine hypervisors such as

VMware ESXi or on bare-metal servers. For details on

where to download CML/VIRL, installation steps, and

licensing, see http://virl.cisco.com.

Several lab simulations can be run at the same time.

Going back to the web user interface from Figure 15-8,

under the Lab Manager tab, new labs can be created,

modified, or deleted. A lab in CML/VIRL is a logical

construct used to organize and separate network

topologies into separate environments. Once a lab is

created, a network topology can be built with the nodes

and virtual instances that are available in CML/VIRL.

Network interfaces can be dynamically added and

removed from CML/VIRL nodes and can be easily

interconnected by simply hovering the mouse over the

devices, selecting the network connection option, and

then dragging the virtual network cable between the

devices that need to be connected. Direct access to the

console of the nodes is also managed through

CML/VIRL. In the case of servers, VNC connections are

also supported. Startup configurations for network

devices can be specified prior to starting a simulation.

Network topologies are stored as YAML files and can be

easily modified and shared. Example 15-7 shows a

snippet of a CML/VIRL network topology file.

Example 15-7 CML/VIRL Topology File Example

Click here to view code image

lab:
 description: ''
 notes: ''
 timestamp: 1581966586.8872395
 title: DEVASC official guide
 version: 0.0.3
nodes:
 - id: n0
 label: iosv-0
 node_definition: iosv

http://virl.cisco.com/
file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#pexa15-7

 x: -500
 y: 50
 configuration: ''
 image_definition: iosv-158-3
 tags: []
 interfaces:
 - id: i0
 label: Loopback0
 type: loopback
 - id: i1
 slot: 0
 label: GigabitEthernet0/0
 type: physical
 - id: n1
 label: csr1000v-0
 node_definition: csr1000v
...omitted output

Downloading and uploading CML/VIRL network

topology YAML files is easy and straightforward, and

CML/VIRL users can easily share topologies and also

store them in version control systems such as Git.

CML/VIRL can be part of a CI/CD pipeline for network

configuration changes. An example of such a pipeline

could contain the following components and processes:

CML/VIRL topology files could be stored together with automation

scripts, device configuration files, and possibly Ansible playbooks in a

version control system.

Whenever a change is made to any of these files, a build automation

tool such as Jenkins or Drone can be used to monitor and detect the

change in version and initiate the automation processes.

A complete automated process can create a test environment using the

CML/VIRL REST APIs, build application servers, and deploy them in

the test environment.

The network configuration changes can be tested in this CML/VIRL

virtual environment and a pass or fail criterion can be set based on the

expectations of the administrator.

If the tests pass, a configuration automation solution like Ansible could

use playbooks and automation scripts to apply the tested configuration

changes in the production network.

Python Automated Test System (pyATS)

pyATS and the pyATS library together form the Cisco test

and automation solution, a vibrant ecosystem that aims

to standardize how automated network tests are set up

and run. pyATS was developed by Cisco in 2014 and is

used extensively internally by thousands of engineers to

run unit tests, regression tests, and end-to-end and

integration tests for a large number of Cisco products.

The solution is completely developed in Python3, making

it easy to work with, scalable, and extensible. Millions of

pyATS tests are run every month internally at Cisco.

pyATS tests provide sanity, feature, solution, system, and

scale checks for any type of physical or virtual device,

including routers, switches, access points, and firewalls.

The solution has two main components: the pyATS test

framework and the pyATS library, which used to be

called Genie but was renamed in an effort to simplify the

nomenclature of the product. The pyATS test framework

provides ways to define how the network topologies are

created and modeled, how to connect to devices through

connection libraries, and how to actually perform the

tests and generate reports. The pyATS library builds on

this infrastructure framework and provides easy-to-use

libraries that implement pyATS features, parsers to

interpret the data received from the devices, a

mechanism for modeling network device configurations

for both Cisco and third-party vendors, reusable test

cases in the form of triggers and verifications, and the

ability to build test suites through YAML-based text files.

In the rest of this chapter, when pyATS is mentioned,

assume that we are referring to the product as a whole,

unless otherwise specified. Figure 15-9 shows the

components of the pyATS solution.

Figure 15-9 pyATS Architecture

pyATS fits very well in infrastructure automation use

cases, especially around configuration change validation.

As discussed earlier in this chapter, tools like Ansible,

Puppet, and Chef are great at infrastructure

configuration automation, but they do not have great

change validation options. pyATS can be easily

integrated in day-to-day DevOps activities and CI/CD

automation pipelines. Some of the most common use

cases for pyATS are as follows:

Profiling the current status of a network and taking a

snapshot of both the configuration status as well as the

operational data of the network: This can be done before and after

a configuration change or a software upgrade/downgrade is performed

to ensure that the network still performs within desired parameters.

For example, a snapshot of the network is taken with pyATS before a

software upgrade is performed, and key metrics are noted, such as

number of BGP sessions in the established state or the number and

type of routing table entries or any other metric that is considered

critical for that environment. The software upgrade is completed, and

then a new pyATS snapshot is taken to ensure that those critical metrics

have values within expected parameters. pyATS offers all the tooling to

be able to automatically perform the network snapshots, compare key

metric values, set pass/fail criteria, and even generate reports.

Automating configuration changes and monitoring of

devices: By using the Conf module within the pyATS library,

configuration changes can be performed in a uniform fashion across

different devices from different vendors. Together with the profiling

capabilities, pyATS offers a full set of capabilities for infrastructure

automation, including creating a snapshot of the network pre-change,

performing the changes, taking another snapshot post-change, and

continuously monitoring for any performance outliers.

pyATS offers an abstraction layer and programmatically

stores device configuration and operational data in

Python objects such as dictionaries and lists. It is not

necessary to screen scrape and parse different

proprietary CLI outputs, as pyATS automatically

accomplishes this through its extensive collection of

parsers and outputs the data into standard formats that

can be easily consumed. The platform is easily extensible

and customizable with scripts and test cases that pertain

to various environments. A pyATS CLI is also available

for network testers who are not comfortable with Python.

pyATS supports several options to connect to devices:

Telnet, SSH, REST, NETCONF, and RESTCONF.

pyATS can be installed through pip by issuing the

following command:

pip install pyats[full]

Different options are available:

pyats[full] installs all pyATS components, the pyATS library

framework, and optional extras.

pyats[library] installs all the pyATS components without the optional

extras.

pyats without any options installs just the pyATS test infrastructure

framework.

As of this writing, pyATS version 20.1 is the current

version, and it is only available for Linux and macOS.

Microsoft Windows is not directly supported, but

Windows Subsystem for Linux (WSL) can be used to run

pyATS on Windows 10. As usual, it is recommended to

install pyATS in its own virtual environment. A prebuilt

Docker container with pyATS already installed can be

found at https://hub.docker.com. More up-to-date

information on pyATS versions, documentation, and

installation steps can be found online at

https://developer.cisco.com/pyats/.

In order to start working with pyATS, a testbed YAML

file needs to be created. This file contains the

connectivity details for all the devices in the testbed.

https://hub.docker.com/
https://developer.cisco.com/pyats/

Example 15-8 shows an example of a YAML file with only

one device.

Example 15-8 pyATS Testbed File

Click here to view code image

devices:
 csr1000v-1:
 type: 'router'
 os: 'iosxe'
 platform: asr1k
 alias: 'uut'
 credentials:
 default:
 username: vagrant
 password: vagrant
 connections:
 cli:
 protocol: ssh
 port: 2222
 ip: "127.0.0.1"

Most of the options, while defining devices in a testbed,

should be self-explanatory. There are just a few options

that need to be explained in more detail. First, the

hostname—which is csr1000v-1 in Example 15-8—has to

match the configured hostname of the device. Second,

the alias is used to identify the device during script

execution. The test script can be reused on a different

testbed as long as the aliases stay the same. A complete

list of values for the type, operating system, and platform

is available with the pyATS documentation. Say that you

save this file and call it testbed.yaml.

Example 15-9 shows a simple Python script that uses the

pyATS library and loads the testbed.yaml file, searches in

that file for a device with alias uut, connects to that

device, runs the show version command, and extracts

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#pexa15-8

the Cisco IOS XE version number and prints it to the

screen.

Example 15-9 pyATS Test

Click here to view code image

#! /usr/bin/env python
from genie.testbed import load

Load the testbed
tb = load('testbed.yaml')

Find the device with alias uut
dev = tb.devices['uut']

Connect to the device
dev.connect()

Parse the output of the show version command
output = dev.parse('show version')

Extract the version number and print it to
the screen
print('IOS-XE version number: ' +
output['version']['version'])

The output variable is a Python dictionary that contains

the JSON standardized data returned by the show

version command. This makes it very easy to parse and

extract the needed data from the output of the show

command.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

file:///tmp/calibre_4.23.0_tmp_FIbjS1/AxvRxd_pdf_out/OEBPS/Images/ch15_images.xhtml#pexa15-9

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 15-3 lists these key topics and the page number on

which each is found.

Table 15-3 Key Topics

Key Topic ElementDescriptionPage Number

Parag

raph

Network controllers 4

5

1

Parag

raph

Direct device configuration 4

5

3

Parag

raph

Infrastructure as code 4

5

4

List Two approaches to infrastructure as code:

declarative and imperative

4

5

5

Parag

raph

Continuous integration/continuous delivery 4

5

5

Parag

raph

Build server 4

5

6

Parag

raph

CI/CD pipelines 4

5

7

List Ansible concepts 4

5

8

Parag

raph

Sample Ansible project 4

6

0

Parag

raph

Ansible playbooks 4

6

1

Parag

raph

Puppet 4

6

2

Parag

raph

Puppet manifests 4

6

4

Parag

raph

Chef workstation 4

6

6

Parag

raph

Chef cookbook 4

6

6

List Main components of Cisco NSO 4

6

7

Parag

raph

Logical architecture of Cisco NSO 4

6

8

Parag

raph

GET call over the RESTCONF interface 4

7

2

Parag

raph

Cisco CML/VIRL 4

7

4

Parag

raph

pyATS test framework and pyATS library 4

7

7

Parag

raph

Testbed YAML file for pyATS 4

7

8

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

continuous integration/continuous delivery (CI/CD)

pipeline

Network Services Orchestrator (NSO)

Configuration Database (CDB)

Cisco Modeling Labs/Cisco Virtual Internet Routing

Laboratory (CML/VIRL)

Python Automated Test System (pyATS)

Chapter 16

Network Fundamentals

This chapter covers the following topics:

Network Reference Models: This section covers

the two most popular networking reference models:

the OSI model and the TCP/IP model.

Switching Concepts: This section introduces Layer

2 switching concepts such as Ethernet, MAC

addresses, and VLANs.

Routing Concepts: This section delves into Layer 3

routing concepts and introduces IP addressing.

This chapter covers network fundamentals. It starts

with a short introduction to what networking is and

how it has evolved over the years. It also takes an in-

depth look at the two most popular networking

reference models: the OSI model and the TCP/IP

model. This chapter also explores critical Layer 2

technologies, including Ethernet, which has become

the de facto protocol for local-area networks (LANs),

MAC addresses, virtual local-area network (VLANs),

switching, and switching tables. Internet Protocol (IP)

is the Layer 3 protocol that the Internet is built on.

This chapter explores both IP version 4 and version 6,

as well as what routing is, how routing tables are built,

and how data packets are forwarded over networks.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 16-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 16-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Network Reference Models 1–4

Switching Concepts 5–7

Routing Concepts 8–10

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. Which OSI layer is responsible for establishing an

end-to-end connection between the sender and the

receiver?

1. Network layer

2. Transport layer

3. Session layer

4. Presentation layer

2. What layer of the TCP/IP reference model is the

equivalent of the network layer in the OSI model?

1. Physical layer

2. Data link layer

3. Internet layer

4. Transport layer

3. Which of the following are examples of application

layer protocols in the TCP/IP reference model?

(Choose two.)

1. TCP

2. HTTP

3. BGP

4. FTP

4. What is the transport layer PDU called in the

TCP/IP reference model?

1. Data

2. Frame

3. Packet

4. Segment

5. What is the role of the Preamble field in the

Ethernet header?

1. It is used as padding data to ensure that the frame has at least the

minimum number of bytes for transmission.

2. It is used as padding data to ensure that the frame has 1500 bytes

for transmission.

3. It is used to ensure that the frame was transmitted without data

corruption.

4. It is used to synchronize the signal between the sender and receiver.

6. How many bits are in a MAC address?

1. 24 bits

2. 48 bits

3. 32 bits

4. 64 bits

7. What happens to a data frame for which a switch

doesn’t have the destination MAC address in its

switching table?

1. It gets discarded.

2. It gets transformed into a broadcast data frame.

3. It gets sent back to the sender as it cannot be switched.

4. It gets flooded out all the ports except the port on which it was

received.

8. What is the bit pattern in the first byte for Class C

IPv4 addresses?

1. 110xxxxx

2. 11110xxx

3. 10xxxxxx

4. 1110xxxx

9. What is the broadcast address for the

192.168.0.96/27 network?

1. 192.168.0.191

2. 192.168.0.159

3. 192.168.0.127

4. 192.168.0.255

10. What are some of the characteristics of IPv6

addresses? (Choose three.)

1. They are 128 bits long.

2. Colons separate 16-bit hexadecimal fields.

3. Hexadecimal characters are case sensitive.

4. Successive fields of zero can be represented as ::.

FOUNDATION TOPICS

Networks of devices have been built for more than 50

years now. The term device is used here to mean any

piece of electronic equipment that has a network

interface card of some sort. End-user devices or

consumer devices such as personal computers, laptops,

smartphones, tablets, and printers as well as

infrastructure devices such as switches, routers,

firewalls, and load balancers have been interconnected in

both private and public networks for many years. What

started as islands of disparate devices connected on

university campuses in the 1960s and then connected

directly with each other on ARPANET has evolved to

become the Internet, where everyone and everything is

interconnected. This chapter discusses the fundamentals

of networking.

NETWORK REFERENCE MODELS

Several network reference models have been developed

through the years, some of them proprietary and some

open. Two reference models stand out from the crowd

for their importance and longevity: the OSI model and

the TCP/IP reference model.

The OSI Model

In the late 1970s, as computing devices became more and

more popular, a need to connect them in a manner in

which they would be able to exchange data between them

arose. The old sneakernet—which involved physically

copying data that needed to be transferred between

devices on a floppy disk and delivering it on foot—was no

longer appropriate for the amounts of data that needed

to be exchanged. Disparate proprietary solutions such as

System Network Architecture (SNA) from IBM and

DECnet from Digital Equipment Corporation (DEC)

existed for this purpose, but there was a need to have a

standard, interoperable, and common way to do

networking. The International Organization for

Standardization (ISO) took on this challenge and came

up with the Open Systems Interconnection (OSI) model.

Although it has not been implemented in production

systems, the OSI model is still extensively used especially

from an educational perspective. The simpler TCP/IP

(Transport Control Protocol/Internet Protocol) model

has had much more success in real life and is covered in

more detail later in this chapter.

The main idea with developing networking models based

on different layers that interact with each other was

inspired by the computer science mantra of splitting a

difficult problem into smaller more manageable

problems. Following this philosophy, the OSI model

splits the data transmission processes needed to transfer

data between two or more devices into seven layers. An

advantage with a layered approach is that there can be

different vendors at different layers implementing the

specific functionality required by each layer. There are

network equipment vendors that focus on developing

devices that operate at Layer 2 of the OSI model, called

switches, and devices that operate at Layer 3 of the

model, called routers, and so on. But probably the

biggest advantage of layering is the level of innovation

that this model allows at each layer. As long as the

functionality provided by each layer stays consistent with

the expectations of the layer above, protocols, hardware,

and software can be developed and improved. Take, for

example, the way the Ethernet protocol and

specifications have evolved over the years from transfer

rates of 10 Mbps in the early days of the protocol to 400

Gbps today. This improvement of several orders of

magnitude has been possible because of the layering

philosophy. As long as the data transmission layer

provides a set of primitives to the layer above, it can

freely innovate and improve.

In the layered approach, each layer provides a set of

functionality and features to the layer above it and

consumes the features of the layer below it. The OSI

model defines seven layers for exchanging data between

networked devices (see Figure 16-1). Two or more

devices that would exchange data with each other using

the OSI model need to implement all seven layers.

Figure 16-1 OSI Model Layers

Applications that need to transmit data over the network

start at the application layer, gathering the data that

needs to be transmitted. This data makes its way down

the transmission model and gets processed at each layer

by being split into smaller chunks, with header and

footer information added, and then being encoded on the

physical medium. As the bits arrive at the destination,

the reverse process takes place: As the data moves up the

layers at the receiver, headers and footers are removed,

and data is recombined into bigger chunks and made

available to the receiving application. This is similar in a

way to how postal mail works. When sending out

heartwarming holiday wishes via snail mail, first you

need to put your message on a piece of paper. This is the

equivalent of the application layer at the sender. Then

you put the paper with the message in an envelope, seal

the envelope, write down the sender and receiver

information, and drop the envelope in a mailbox or at the

post office. The postal service plays the role of the

physical layer in this case, as it sorts through the mail

and delivers each piece to its destination. The person

receiving the mail makes sure that the envelope is meant

for him or her and then goes ahead and reverses part of

the process you went through, removing the paper from

the envelope and reading the message. The message is

successfully delivered from source to destination in both

cases—on a network and via snail mail—but it takes a

fraction of a second for data to get anywhere on planet

Earth on a network, whereas it might take days or weeks

for snail mail to reach a recipient, depending on how far

the recipient is from the sender.

Data transmission protocols have been developed at each

layer of the OSI model to perform the functionality

required by that layer. Each layer is supposed to perform

specific tasks and provide specific functionality to the

layers above it.

The physical layer is tasked with the transmission and

reception of raw bit streams. At this layer, specifications

about the voltage levels, pinouts for the connectors,

physical transmission data rates, modulation schemes,

and so on are defined. This is where the proverbial

rubber meets the road, and data to be transmitted is

converted into electrical, optical, or radio signals.

Protocols such as Ethernet and Bluetooth have

specifications at the physical layer.

The data link layer provides device-to-device data

transfer on a local-area network. It defines how data is

formatted for transmission and how access to the

physical medium is controlled. Errors that might have

happened in transit on the physical layer are corrected at

the data link layer. Bridges and switches are devices that

operate at the data link layer. The IEEE has several

protocols defined for the data link layer, organized into

the IEEE 802 family of protocols. According to the

specifications in these protocols, the data link layer is

further subdivided into two sublayers:

The Media Access Control (MAC) layer provides specifications on how

devices gain access to the transmission medium.

The Logical Link Control (LLC) layer is responsible for encapsulating

network layer data and frame synchronization.

The network layer provides connectivity between

devices that are connected to separate networks.

Whereas the data link layer ensures communication

between directly connected devices on a local network,

the network layer enables communication between

devices that are in geographically separate locations.

Logical addressing of all the devices on the network and

routing of data packets on the best path between a

sender and a receiver are also specified at the network

layer. Routers are devices that operate at the network

layer. If the data that needs to be transmitted over the

data link layer is too large to be sent at once, the network

layer has the capability to fragment the data into smaller

pieces. As the name indicates, the process of

fragmentation consists of splitting the data into smaller

pieces, sending those pieces on the network, and then

reassembling them when they arrive at another device on

the network. Fragmentation should be avoided as much

as possible as it slows down the transmission of data

considerably. This slowdown occurs because of how

modern routers forward data packets and the

mechanism they implement to accomplish this as fast as

possible. Most modern routers perform data routing in

hardware using specialized integrated circuits called

ASICs. When data becomes fragmented, instead of being

forwarded in hardware using the ASICs, the packets get

process switched, which means they are forwarded based

on an interrupt system using the regular CPU on the

router. Data delivery at the network layer is best effort,

as reliable transmission is not required at this layer. As

we’ll see shortly, reliable transmission is handled at the

next higher layer, the transport layer.

The transport layer, as the name suggests, is

responsible for end-to-end transport of data from the

source to the destination of the data traffic. It segments

data that it receives from the layer above and

reassembles it into a stream of data on the receiving

device. This layer specifies several mechanisms so that

data is reliably transmitted between devices. Error

detection and recovery mechanisms and information

flow control ensure reliable service. This is also where

the delineation between the application and the network

is usually done. The transport layer and the network,

data link, and physical layers make up the data transport

layers. The main purpose of these layers is to reliably

transfer the data from the sending device to the receiving

device. The layers on top of the transport layer—the

session, presentation, and application layers—as you will

soon see, are concerned more with application issues and

making sure data is formatted the right way. Two types

of protocols are defined at this layer: connection-

oriented and connectionless protocols.

A connection-oriented protocol establishes an end-to-

end connection between the sender and the receiver,

keeps track of all the segments that are being

transmitted, and has a retransmission mechanism in

place. Retransmissions happen in cases in which some of

the segments that are sent are lost on the way and don’t

get to their destination or become corrupted and cannot

be recovered at the receiver. A system of

acknowledgments is in place to signal successfully

receiving the data and availability to receive additional

data. A sliding window mechanism dynamically adjusts

the amount of data that is transmitted on the wire before

the sender is waiting for an acknowledgment from the

receiver. Large data transfers, SSH terminal sessions,

and World Wide Web and email sessions use connection-

oriented protocols at the transport layer. Although not

defined with the OSI specification, Transmission Control

Protocol (TCP) is the most common connection-oriented

protocol at the transport layer.

A connectionless protocol does not establish an end-to-

end connection between the sender and the receiver.

This type of data transmission is mostly used for real-

time traffic such as voice and video, in which it is better

to ignore the data segments that are lost or corrupted on

the way than to stop the transfer of data and ask for

retransmission. For example, in the case of a voice over

IP (VoIP) call, the end-user experience is much better if

the network just ignores a few milliseconds of lost data

that the human ear can compensate for anyway than if

the network stops the flow of data, queues the data

already received at the receiver, retransmits the missing

few milliseconds, replays the message, and then

dequeues the data that was waiting for playback at the

receiver. User Datagram Protocol (UDP) is the most

common connectionless protocol used at the transport

layer.

The session layer establishes, manages, and terminates

sessions between two communicating devices. On top of

the end-to-end communication channel that the

transport layer establishes, the session layer has the role

of keeping track of whose turn is to transmit data, and it

ensures that the same operation is not performed at the

same time by different clients or even by resuming failed

transmissions. Applications that implement the Remote

Procedure Call (RPC) framework use the session layer

extensively.

The presentation layer ensures that the information

from the application layer of the sending device is

readable and interpretable by the application layer of the

receiving device. The presentation layer is not focused on

the moving of bits between devices as much as it is

focused on how the data being transferred is organized

and the syntax and semantics used for this data. For

example, if different encodings for text-based exchange

of information are used on the sending and receiving

devices (for example, ASCII versus EBCDIC), the

presentation layer uses a common encoding format for

translating between the two encodings and makes sure

data at the application layer is displayed correctly on

both systems. Also at this layer, the data is differentiated

and encoded based on the type of information it

contains, such as text files, video files, binary files, and so

on.

The application layer is the OSI layer that is closest to

the user and contains all the applications and protocols

that the users are interacting with, such as email, file

transfer, and video streaming. One application layer

protocol that is extensively used is Hypertext Transfer

Protocol (HTTP), which is at the heart of the World Wide

Web. Whenever a website is accessed on a web server,

the data between the client browser and the web server is

carried over HTTP.

The OSI model didn’t find much success when it was

initially developed, and it was not adopted by most

network equipment vendors at the time, but it is still

used for education purposes and to emphasize the

importance of separating data transmission in computer

networks into layers with specific functions.

The TCP/IP Model

A much more successful implementation of the layered

architecture to data transmission and device networking

is the TCP/IP (Transmission Control Protocol/Internet

Protocol) reference model, also referred to as the

Internet Protocol suite. Created around the same time as

the OSI model, the TCP/IP reference model was adopted

and implemented by most networking vendors back in

those days and has over time become the reference

model for the Internet.

The Internet Protocol suite and the main protocols that

make up the model, TCP and IP, started as a research

project by the U.S. Department of Defense through a

program called Defense Advanced Research Projects

Agency (DARPA) in the 1960s. It was the middle of the

Cold War, and the main purpose of the project was to

build a telecommunications network that would be able

to withstand a nuclear attack and still be able to function

if any of the devices making up the network were

destroyed or disabled.

Much like the OSI model, the TCP/IP reference model

uses a layered approach (see Figure 16-2). Each layer

provides the functionality and features specified in the

reference model and serves the layer above it.

Figure 16-2 TCP/IP Reference Model Layers

The network access layer in the TCP/IP model

corresponds to the physical and data link layers in the

OSI model, and it provides the same services to the layer

above. It deals with moving data packets between the

Internet layer interfaces of two devices connected on the

same link. It specifies the physical characteristics of

serial lines, Ethernet, and wireless links, such as voltage

levels, data transmission rates, maximum transmission

distance, and physical connectors. The network layer

defines how data is formatted for transmission on the

physical link, how the data packet is received from the

Internet layer for transmission by adding a header and

footer, how the data frames are transmitted over the

physical medium, how access to the network is

controlled, and which device can transmit at which point.

Switching and switches, as described later in this

chapter, operate at the network access layer.

The Internet layer of the TCP/IP reference model

corresponds to the network layer of the OSI model in

terms of functions and characteristics. It is responsible

for transmitting data across disparate and distant

networks in a process called data routing. Routers are

devices that operate at the Internet layer and perform the

routing function. As you might have guessed from the

name of the reference model, Internet Protocol (IP) is

the main protocol operating at the Internet layer. The IP

protocol performs two basic functions:

Device addressing and identification

Data packet routing

Devices connected to a TCP/IP network are identified by

their IP addresses. Two addressing solutions are

currently supported on the Internet: IP version 4 (IPv4)

and IP version 6 (IPv6). IPv4 uses addressing based on

32 bits, which means that approximately 4 billion devices

can be uniquely identified on the network. As you can

imagine, there are more than 4 billion endpoints

connected to the Internet today. Temporary solutions to

address the lack of IPv4 addresses have been developed

over the years, including private IP address subnets and

Network Address Translation (NAT), both of which are

discussed later in this chapter. The permanent fix to this

problem was the development and standardization in

1998 of IPv6, which uses 128-bit addresses and is able to

provide unique addresses for a gigantic number of

endpoints and devices. Both IPv4- and IPv6-addressed

devices are currently supported and connected to the

Internet, but IPv4 is slowly being phased out.

The second function of the Internet layer is data packet

routing. Routing packets means forwarding data from its

source toward the destination through a network of

interconnected routers. Through this functionality, the

Internet layer makes possible internetworking and the

connection of different IP networks, essentially

establishing the Internet. The packet forwarding at the

Internet layer is best effort and unreliable, and any error

correction and retransmission mechanisms required

have to be implemented at higher layers. The Internet

layer is agnostic to the data structures and the operations

that the layer above it is implementing. If we go back to

the postal mail analogy, the Internet layer acts as the

postal service infrastructure and the mail carriers who

deliver the letters and packages without knowing what

they actually contain. In the same way, the Internet layer

receives data segments from the transport layer and

carries them all the way to the destination without

knowing what the actual data is.

The transport layer is at the core of the TCP/IP reference

model. It establishes end-to-end data channels over

which applications exchange data, regardless of the

structure of the user data and the underlying network.

Since the Internet layer is best effort, the protocols at the

transport layer provide flow control, congestion control,

segmentation, and error control. Differentiating between

different applications running on the same host occurs at

the transport layer through port numbers. The transport

layer port is a 16-bit logical construct allocated for each

of the communications channels an application requires.

The ports in the range 0 to 1023, called well-known

ports or system ports, are used for system processes that

provide widely used types of network services. For

example, web servers that implement HTTP are by

default listening for connections on port 80 for regular

HTTP traffic or on port 443 for secure HTTP traffic via

HTTP Secure (HTTPS). End-to-end connections at the

transport layer can be categorized as either connection

oriented (usually implemented using TCP) or

connectionless (using UDP).

TCP uses several different technologies to ensure reliable

bit stream delivery. First of all, data is delivered in the

order in which it was sent, and TCP has mechanisms of

keeping track of each data segment sent. A dynamic

windowing system controls traffic congestion and

ensures that the sender doesn’t overwhelm the receiver

with too much data. If packets are lost on the way to the

destination or become corrupted in transit, TCP handles

the retransmission of this data. If the data becomes

duplicated in transmission, the duplicate data is

discarded at the receiver.

UDP is a connectionless datagram protocol that is used

in situations where timely data delivery is more

important than reliability. It is a best-effort, unreliable

protocol that implements a basic checksum mechanism

for error detection. UDP is typically used for applications

such as streaming media, voice, and video.

The TCP/IP model transport layer corresponds roughly

to the OSI model transport layer described earlier in this

chapter.

The application layer, as the name suggests, contains all

the end-user applications that need to exchange data

over the network. The application layer protocols

exchange data on top of the end-to-end, sender-to-

receiver connection that is established by the lower-layer

protocols. There are a large number of application layer

protocols, including the following:

Hypertext Transfer Protocol (HTTP) is used for transferring web pages

between web browsers and web servers.

File Transfer Protocol (FTP) is used for transferring files between a

client and a server.

Dynamic Host Configuration Protocol (DHCP) is used to dynamically

assign IP addresses to devices on a network.

The application layer in the TCP/IP reference model

corresponds to the session, presentation, and application

layers of the OSI model.

In order to be able to communicate between devices

using a layered model, the protocols running at each

layer on the source host must be able to communicate

with their counterparts at the destination host. The data

that is being exchanged at each layer is called a protocol

data unit (PDU). Based on the layer processing the data,

the PDUs have different names:

At the application layer, the general term for the PDU is data.

At the transport layer, the PDU is called a segment.

At the Internet layer, the PDU is called a packet.

At the data link layer, the PDU is called a frame.

Figure 16-3 shows the PDUs at each layer and the flow of

data from sender to receiver.

Figure 16-3 TCP/IP Reference Model PDUs at Each

Layer

As data moves down the layers at the sending host, it

gets processed at each layer. This process is called

encapsulation, and there is a corresponding process at

the destination host called de-encapsulation. The

encapsulation process consists in adding extra protocol

information at each layer so that layer-to-layer

communication can take place. Starting at the top, the

user data generated in the application layer gets passed

down to the transport layer for transmission. The

protocol running at the transport layer takes the data it

received from the application layer, adds its header

information, and passes the datagram PDU to the

Internet layer. Similarly, the Internet layer adds its own

header and passes the packet PDU to the data link layer.

The data link layer takes the data from the Internet layer

and builds a frame PDU that is ready to be sent on the

physical medium by adding its own protocol header and

a frame check sequence (FCS) footer. The role of the FCS

footer is to ensure that the data is transmitted without

errors. At each hop along the way to the destination, a

checksum of the whole frame is computed and added to

the FCS footer. If the computed checksum is different

from the checksum in the FCS footer, the receiving

device knows an error occurred on the transmission

path. At the data link layer, the user information with all

the header and footer information is finally transmitted

on the physical medium.

As the data is received at the destination host, it goes

through a similar process but in the reverse order. This

process, called de-encapsulation, consists of removing

the header and footer information at each layer and

passing the data to the layer above until it gets to the

application layer, where it is interpreted by the

application protocol. Figure 16-4 shows the processes of

encapsulation at the sender and de-encapsulation at the

receiver.

Figure 16-4 Encapsulation and De-encapsulation

SWITCHING CONCEPTS

Data frame switching is a critical process in moving data

traffic from a source network endpoint to a destination

endpoint within a local-area network (LAN). This section

introduces several networking concepts: Ethernet, MAC

addresses, VLANs, and switching.

Ethernet

A LAN is a network that is confined within a building or

campus. These types of networks start on the smaller

side with home networks, where end-user devices such

as personal computers, smartphones, laptops, and

printers connect—usually through a wireless connection

—to a local home network. The main characteristic of

these networks is that the data traffic between the

devices connected to the LAN stays local and can be

transferred between these devices by a switch, which is a

network device that operates at the data link layer and

enables direct communication between devices

connected to a LAN.

The most common LAN technology is Ethernet. Ethernet

is a data link layer protocol defined by the IEEE. The

Ethernet protocol encompasses guidelines and standards

that specify cabling and signaling formats at the physical

and data link layers. For example, Ethernet standards

specify characteristics for different types of cables and

network interface ports, and they also specify voltage

levels and the maximum distance the signal can travel

before it becomes too attenuated to be successfully

received. Over time, the Ethernet protocol has evolved

from transfer rates of 10 Mbps to 100 Gbps and even 400

Gbps. The transmission medium has also evolved from

coaxial cable to twisted-pair cable, fiber optics, and

wireless.

As mentioned previously, the PDU at the data link layer

is called a frame. The Ethernet protocol specifies the

format shown in Figure 16-5 for the Ethernet frame,

which includes the following fields:

Figure 16-5 Ethernet Frame Format

Preamble: This field consists of 8 bytes of alternating 1s and 0s that

are used to synchronize the signals of the sender and receiver.

Destination Address: This field contains the address of the receiver.

Source Address: This field contains the address of the source device.

Type: This field contains a code that identifies the network layer

protocol.

Data: This field contains the data that was received from the network

layer and that needs to be transmitted to the receiver.

Frame Checksum Sequence (FCS): This 4-byte field includes a

checksum mechanism to ensure that the frame has been transmitted

without corruption.

MAC Addresses

Media Access Control (MAC) addresses are used to

enable communication between devices connected to a

local network. Several types of MAC addresses are used

to accommodate the different types of network

communications. There are three major types of network

communications:

Unicast: In this type of communication, data frames are sent between

one specific source and addressed to one specific destination. This type

of transmission has one sender and one receiver, and it is the most

common type of traffic on any network.

Broadcast: In this type of communication, data frames are sent from

one source address to all other addresses connected on the same LAN.

There is one sender, but the information is sent to all devices connected

to the network.

Multicast: In this type of communication, information is sent from

one device to a group of devices or clients. In order for the clients to

receive the multicast data, they have to be members of a multicast

group. Whereas broadcast is used to transmit data to all the clients on

the network, multicast is used to transmit data to just a subset of those

clients.

In order to distinguish between these three types of

network communications, the IEEE has defined MAC

addresses for each type:

When the least significant bit of a MAC address’s first byte is 0, it

means the frame is meant to reach only one receiving NIC, which

means unicast traffic.

When the least significant bit of the first octet of a MAC address is 1, it

means the frame is a multicast frame, and the receiving NICs will

process it if they were configured to accept multicast MAC addresses.

An example of a multicast MAC address that is used by Cisco Discovery

Protocol (CDP) is 01-00-0C-CC-CC-CC.

When all the bits are set to 1, it means the frame is a broadcast frame,

and it is being received by all the NICs on that network segment.

Each client that needs to exchange data on an Ethernet

network needs to have a unique MAC address so that the

data is directed to the proper destination device. The

MAC address is burned into the network interface card

(NIC) and is also called the burned-in address (BIA) or

the physical address of the device. A MAC address has 48

bits organized as 12 hexadecimal numbers. There are

several different ways of representing MAC addresses, all

of them containing the same information. The following

representations of a MAC address are all equivalent:

0000.0c59.beef

00:00:0c:59:be:ef

00-00-0C-59-BE-EF

A MAC address has two components (see Figure 16-6):

Organizationally unique identifier (OUI): This 24-bit number

identifies the manufacturer of the NIC. The IEEE assigns OUIs to NIC

manufacturers.

Vendor-assigned address: This 24-bit number uniquely identifies

the Ethernet hardware.

Figure 16-6 MAC Address Components

Virtual Local-Area Networks (VLANs)

A virtual local-area network (VLAN) is a group of devices

on an Ethernet network that are logically segmented by

function, team, or application. Imagine a university

campus network and all the devices that need access to

it. It is a common practice to combine into the same

logical construct devices that need the same type of

access to the network or that perform the same function.

For example, the student devices will probably be

grouped into the student VLAN, the faculty devices into

the faculty VLAN, the finance department devices into

the finance VLAN, and so on. On top of the physical

network that connects these devices, a software layer is

added to separate them into different silos. This is done

following the IEEE 802.1q standard, which specifies an

additional field in the data link layer frame: the 802.1q

header. This header is 4 bytes long and is wedged

between the source MAC address field and the Type field,

as shown in Figure 16-7.

Figure 16-7 Typical Ethernet Frame Versus 802.1q

Ethernet Frame

In the 802.1q header, 12 bits are dedicated to the VLAN

identifier, so a maximum of 4094 VLANs can be defined

on an Ethernet network; the VLANs with IDs 0 and 4095

are reserved. Each VLAN defines its own broadcast

domain. A data link layer broadcast domain is defined as

the subset of devices on a network that receive Layer 2

broadcast traffic. Layer 2 broadcast traffic stops and is

not forwarded further by Layer 3 devices or routers. It is

a best practice to keep the Layer 2 broadcast domain as

small as possible. Going back to the university campus

example, imagine the thousands of devices connected to

the network as being part of the same broadcast domain.

In addition, because there is no Time to Live (TTL) field

in the Ethernet frames, and redundant connections are

required between switches, broadcast storms might

bring down the network and make it unusable. Creating

VLANs and assigning the devices to specific VLANs

limits the broadcast domain, reduces the chance of a

broadcast storm, and logically groups the devices for

easier troubleshooting. For each VLAN, a dedicated

Layer 3 IP subnet is usually allocated. It is much easier to

enforce security policies and limit access between VLANs

at a Layer 3 device than it is to accomplish the same on a

port-by-port basis on a switch. No matter the physical

location in the network, devices can be part of the same

VLAN (see Figure 16-8).

Figure 16-8 Virtual Local-Area Networks (VLANs)

VLANs provide network segmentation by reducing the

broadcast domains and organizational flexibility by

combining devices on a network, based on the needs of

the organization.

Switching

Switching is the process through which a data frame is

forwarded from its source toward its destination by a

Layer 2 device called a switch. In a typical LAN, all

devices connect to the network either through an

Ethernet port available on the NIC or through a wireless

NIC that connects to a wireless access point that is

connected to a switch port. In the end, whether wired or

wireless, all client devices connect to Ethernet switches.

Forwarding of data traffic between devices at Layer 2 is

based on the MAC address table that is stored on each

switch within the network. The MAC address table is

dynamically built and contains a list of all the MAC

addresses that the switch has learned and the switch

ports on which it learned those addresses.

A MAC address table on a switch might look as shown in

Table 16-2.

Table 16-2 MAC Address Table

VLANMAC AddressTypePorts

10 001b.10a0.2500 Dynamic Gi0/1

20 001b.10ae.7d00 Dynamic Gi0/2

30 0050.7966.6705 Dynamic Gi0/3

Based on this table, the switch can forward the Layer 2

data frames toward their destination. If a data frame

with MAC destination address 0050.7966.6705 arrives at

the switch with this MAC address table, the switch will

forward that frame out its GigabitEthernet0/3 port

toward the host with that specific MAC address.

The switch dynamically builds and maintains the MAC

address table and indicates where each device is

connected in the network. Let’s assume that a switch was

just rebooted, and its MAC address table is empty. As the

devices that are connected to the switch start exchanging

data, the MAC address table gets populated with their

addresses. From the first device that sends data on the

network, the switch looks at the source MAC address in

the data frame and records it in the MAC address table,

together with the port on which it received the data.

Since this is the first MAC address in the table, the switch

doesn’t have the destination MAC address of the frame,

so it floods it over all the ports except the port on which

it received the data. As the frame gets flooded

throughout the network, eventually it will get to its

destination. The destination device replies with its own

data frame, in which the source and destination MAC

addresses get swapped. All the other devices drop the

original frame because it was not destined for them. The

switch receives the frame, takes note of the source MAC

address, and records it in its table, together with the port

on which it was received. This way, the switch

dynamically builds its MAC address switching table and

can forward traffic between all the devices that are

connected to it.

ROUTING CONCEPTS

Routing, or Layer 3 packet forwarding, is the process of

selecting a path through a network. To understand

routing, you need to understand IPv4 and IPv6

addresses. Then you can learn about the routing process

itself.

IPv4 Addresses

The most common protocol at the Internet layer is

Internet Protocol (IP). The Internet, the worldwide

network connecting billions of devices and users, is built

on top of IP. There are currently two versions of IP

available: IP version 4 (IPv4) and IP version 6 (IPv6).

Both protocol versions are used in the Internet, and a

slow migration toward IPv6 is in progress.

The main role of IP is to uniquely identify devices at the

Internet layer in the TCP/IP reference model and Layer 3

in the OSI model. IPv4 uses 32-bit addresses, which

means it can theoretically support 2 (just over 4

billion) unique addresses. It is a connectionless protocol,

IP data packets are forwarded individually, the delivery

of packets is best effort, and there is no retransmission or

data recovery functionality specified in the protocol

definition. In case of lost or corrupt packets,

retransmission and data recovery are left to be

implemented by the higher-layer protocols. Since the

physical medium and transmission are handled by the

data link layer, all those specifications are abstracted

from the Internet layer, and IP operates independently of

the medium that is carrying the data.

IP addresses are similar to physical addresses of homes

and businesses. The same way the address of a house

uniquely identifies it so that packages and other mail can

be delivered, the IP address uniquely identifies all the

devices connected to the Internet so that data packages

can be exchanged and delivered. For easier readability

for humans, IPv4 addresses are split into four octets,

with each decimal value separated by a dot—in a format

known as dotted decimal notation. Each octet is made up

of 8 bits, and each bit can have a value of 1 or 0. For

example, an IP address would take the following form in

the IP header: 11000000101010000011000001000001.

It is very easy to make mistakes when representing IP

addresses this way. The four-octet dotted decimal

notation for the same address becomes 192.168.48.65,

which is much easier to remember and keep track of.

32

Table 16-3 shows decimal and binary representations of

this IPv4 address.

Table 16-3 IPv4 Address Representation with

Decimal and Binary Values

Decimal 192 168 48 65

Octet/bin

ary

110000

00

101010

00

001100

00

010000

01

An IP address consists of two parts:

Network ID: The network address part starts from the leftmost bit

and extends to the right. Devices on a network can communicate

directly only with devices that are in the same network. If the

destination IP address is on a different network than the network the

source IP address is on, a router needs to forward the traffic between

the two networks. The router maintains a routing table with routes to

all the networks it knows about.

Host ID: The host address part starts from the rightmost bit and

extends to the left. The host ID uniquely identifies a specific device

connected to the network. Although the host ID can be the same

between different devices on different networks, the combination of

network ID and host ID must be unique throughout the network.

In order to accommodate networks of different sizes, IP

addresses are organized into different classes. There are

in total five classes of IPv4 addresses. Classes A, B, and C

are available for public use; Class D is used for multicast

addresses; and Class E is reserved for research and is not

available for public use. The Internet Assigned Numbers

Authority (IANA) manages the assignment and

allocation of IP addresses to Internet service providers

(ISPs), which in turn assign IP address ranges to their

customers. The five classes of IPv4 addresses are

described in Table 16-4.

Table 16-4 Classes of IPv4 Addresses

Addres
s Class

Bit Pattern
of First Byte

First-Byte
Decimal
Range

Host Assignment Range in
Dotted Decimal Format

A 0xxxxxx

x

1 to 127 1.0.0.1 to 127.255.255.254

B 10xxxxx

x

128 to 191 128.0.0.1 to 191.255.255.254

C 110xxxxx 192 to 223 192.0.0.1 to

223.255.255.254

D 1110xxxx 224 to

239

224.0.0.1 to

239.255.255.254

E 11110xxx 240 to

255

240.0.0.1 to

255.255.255.255

Class A uses the first byte for the network ID and the

other 3 bytes (or 24 bits) for the host ID. As you can

imagine, networks with 2 (more than 16 million) hosts

in the same network are nonexistent; technologies such

as classless interdomain routing (CIDR) and variable-

length subnet masking (VLSM) have been developed to

address the wastage of IPv4 addresses with the original

definition of classes of IPv4 addresses. The first bit of the

first byte in a Class A IP address is always 0. This means

that the lowest number that can be represented in the

first byte is 00000000, or decimal 0, and the highest

number is 01111111, or decimal 127. The 0 and 127 Class

A network addresses are reserved and cannot be used as

routable network addresses. Any IPv4 address that has a

value between 1 and 126 in the first byte is a Class A

address.

Class B uses the first 2 bytes for the network ID and the

last 2 bytes for the host ID. The first 2 bits of the first

24

byte in a Class B IPv4 address are always 10. The lowest

number that can be represented in the first byte is

10000000, or decimal 128, and the highest number that

can be represented is 10111111, or decimal 191. Any IPv4

address that has a value between 128 and 191 in the first

byte is a Class B address.

Class C uses the first 3 bytes for the network ID and the

last byte for the host ID. Each Class C network can

contain up to 254 hosts. A Class C network always begins

with 110 in the first byte, meaning it can represent

networks from 11000000, or decimal 192, to 11011111, or

decimal 223. If an IP address contains a number in the

range 192 to 223 in the first byte, it is a Class C address.

The role of the address mask is to identify which portion

of the IP address is the network ID part and which

portion is the host ID. Similarly to IPv4 addresses,

address masks are also 32 bits long and use dotted

decimal notation. IPv4 addresses and address masks go

together hand in hand. Address masks specify the

network ID portion of an IP address by turning the

corresponding bit into a 1 and the host ID portion of the

IP address by turning the corresponding address mask

bit into a 0. The default address masks for the first three

classes of IPv4 addresses are as follows:

Class A: The default address mask is 255.0.0.0 or /8, indicating that

the first 8 bits of the address contain the network ID, and the other 24

bits contain the host ID.

Class B: The default address mask is 255.255.0.0 or /16, indicating

that the first 16 bits of the address contain the network ID, and the last

16 bits contain the host ID.

Class C: The default address mask is 255.255.255.0 or /24, indicating

that the first 24 bits of the address contain the network ID, and the last

8 bits contain the host ID.

In each IP network, there are two reserved addresses.

The IP address where all the host ID bits are 0 is

reserved and is used to identify the network itself. For

example, the Class C network address 192.16.1.0 cannot

be assigned to any host on that network because it is

used to identify the network. This is how the network is

represented in the routing tables of routers throughout

the network. The other reserved IP address is the one

where all the host ID bits are 1; this address, called the

broadcast address, is used to send information to all the

hosts on the network and cannot be assigned to any

device. In the previous example with the Class C

network, the broadcast address for that network would

be 192.16.1.255. Class C networks can accommodate and

uniquely address 256 − 2 = 254 devices on each network.

The Internet has experienced explosive growth, and it

won’t be long before IANA runs out of available IPv4

address ranges to assign. A large number of the IPv4

address ranges that were initially allocated were also

used in private networks, so IANA decided to create a

group of private IPv4 address ranges for those networks.

Private IPv4 networks, defined by the Internet

Engineering Task Force (IETF) in RFC 1918: Address

Allocation for Private Internets, are meant to preserve

the IPv4 address space by having dedicated networks for

private networks. Three blocks of IP addresses (1 Class A,

16 Class B, and 256 Class C networks) are reserved for

private, internal use (see Table 16-5).

Table 16-5 Private IPv4 Addresses

Address ClassPrivate Network IDNetwork Address Range

A 10.0.0.0 10.0.0.0 to 10.255.255.255

B 172.16.0.0 172.16.0.0 to 172.31.255.255

C 192.168.0.0 192.168.0.0 to 192.168.255.255

IP addresses in these ranges are not routable in the

Internet. When private networks using these IPv4

addresses need to connect to the Internet, their

addresses need to be translated to public, Internet-

routable IPv4 addresses. This translation process is

called Network Address Translation (NAT), and it is

discussed in more detail in Chapter 18, “IP Services.”

The need to further divide IPv4 address classes,

especially the Class A and Class B networks, and to create

additional subnetworks became clear as networks started

to grow in size and complexity and IPv4 addresses

started to run out. As previously mentioned, a Class A

network with the default address mask can address more

than 16 million devices on the same network. Having

more than 16 million devices on one Layer 3 network is

theoretically possible but practically impossible. Class B

networks have 16 bits dedicated to host IDs, which

means each Class B network can address 2 = 65,536 − 2

= 65,534 devices (with two addresses reserved for the

network address and the broadcast address). These

networks also are in need of further subnetting.

Subnetting is the process of borrowing bits from the host

ID portion of a network and transforming them into

network ID bits.

Classless interdomain routing (CIDR) goes beyond the

class limits and the default address masks and represents

a way of specifying the subnet mask for an IP address.

Initially when the classes of IPv4 addresses were defined,

the default masks for each class were already implied

and were not even mentioned when assigning networks

for customer consumption. As the available IPv4

addresses became more and more scarce, especially for

Class A and Class B networks, CIDR was introduced as a

way to capture the transition from a class-based Internet

to a classless one. In a classless Internet, it is no longer

feasible to assume that the address mask for a Class A

network is 255.0.0.0 or /8 or for a Class B network that

16

is 255.255.0.0 or /16. The purpose of the / notation is to

specify how many bits in the subnet mask are dedicated

to the network ID. Network addresses can be subdivided

further to create subnets. This is accomplished by using

variable-length subnet masking (VLSM) to indicate how

many bits in an IPv4 address are dedicated to the

network ID and how many bits are dedicated to the host

ID. As an example, the 10.0.0.0 private network can be

further subdivided, and new subnets can be created out

of it. Instead of having one network with more than 16

million hosts, which is not helpful in real life, 65,536

subnets with 254 hosts—each similar to 10.0.0.0/24,

10.0.1.0/24, 10.0.2.0/24, and so on—can be created out

of the 10.0.0.0/8 network. This is done by borrowing 16

bits from the 24 bits that are dedicated to host IDs and

transforming them into network ID bits. By applying a

different subnet mask—using /24 instead of /8—we can

use VLSM and CIDR notation to adjust the host portion

of the network address.

Let’s take a practical example and create new subnets for

a fictitious enterprise called Acme, Inc. The network

administrator is planning on using the 192.168.0.0/24

network to address all the devices that are connected to

the Acme, Inc. enterprise network. As you would expect,

there are several departments in the Acme, Inc. world,

and there are different numbers of employees in each

department. Let’s assume that the total number of

departments is 8 and include the typical corporate

organization: engineering, support, human resources,

finance and accounting, and so on. Acme, Inc. is still a

small company, and there are not more than 20 devices

connected to the network in each of the 8 departments.

The network administrator would like to segment each

department into its own network so that security can be

more easily enforced by using Layer 3 access control lists

(ACLs) and also to limit the broadcast domain for each

department. The 192.168.0.0/24 CIDR notation

indicates that for this subnet, there are 24 bits reserved

for the network ID, and the rest of the bits, 8, are

reserved for the hosts. In order to create 8 subnets out of

the original 1, 3 bits (2 = 8) would have to be borrowed

from the host portion and dedicated to the new network

IDs. The subnet mask in this case changes as follows:

Original subnet mask: 11111111.11111111.11111111.00000000 (/24)

New subnet mask: 11111111.11111111.11111111.11100000 (/27)

There are still 5 bits left for hosts on each subnet, which

results in 2 = 32 − 2 (1 reserved for the network address

and 1 reserved for the broadcast address) = 30 usable IP

addresses for each subnet. This is more than needed to

accommodate the 20 devices for each department. The

new subnets look like those shown in Table 16-6; each

one has a /27 mask:

Table 16-6 Creating Additional Subnets from

192.168.0.0/24

Subn
et

Network
Address

Broadcast
Address

Available Host Address
Range

Subn

et 1

192.168.0

.0

192.168.0

.31

192.168.0.1 to

192.168.0.30

Subn

et 2

192.168.0

.32

192.168.0

.63

192.168.0.33 to

192.168.0.62

Subn

et 3

192.168.0

.64

192.168.0

.95

192.168.0.65 to

192.168.0.94

Subn

et 4

192.168.0

.96

192.168.0

.127

192.168.0.97 to

192.168.0.126

Subn

et 5

192.168.0

.128

192.168.0

.159

192.168.0.129 to

192.168.0.158

Subn

et 6

192.168.0

.160

192.168.0

.191

192.168.0.161 to

192.168.0.190

3

5

Subn

et 7

192.168.0

.192

192.168.0

.223

192.168.0.193 to

192.168.0.222

Subn

et 8

192.168.0

.224

192.168.0

.255

192.168.0.225 to

192.168.0.254

New subnets can be easily created to accommodate any

number of devices. In the previous example, each subnet

can address up to 30 devices, but the subnets can be

further subnetted, if needed. By borrowing additional

bits from the host section, subnet masks of /28, /29, and

even /30 can be specified to create new subnets for 2 =

16 − 2 = 14, 2 = 8 − 2 = 6, or 2 = 4 − 2 = 2 hosts in each

subnet. /30 subnets are especially useful on point-to-

point serial connections between two routers—for

example, where there are only 2 devices connected and

there is no point in using larger subnets as that would

only lead to wasted addresses. Table 16-7 provides a

breakdown of the subnet masks from /24 to /32, their

binary representations, and the number of subnets and

hosts for each subnet.

Table 16-7 Subnet Mask Representations and the

Number of Subnets and Hosts for Each

Decimal Subnet
Mask

Binary Subnet
Mask

CID
R

Subne
ts

Hosts per
Subnet

255.255.25

5.255

11111111.11111111.111111111.

11111111

/

3

2

No

ne

N

/

A

255.255.25

5.254

11111111.11111111.111111111.

11111110

/

3

1

No

ne

N

/

A

255.255.25

5.252

11111111.11111111.111111111.

11111100

/

3

0

64 2

4

3 2

255.255.25

5.248

11111111.11111111.111111111.

11111000

/

2

9

32 6

255.255.25

5.240

11111111.11111111.111111111.

11110000

/

2

8

16 14

255.255.25

5.224

11111111.11111111.111111111.

11100000

/

2

7

8 3

0

255.255.25

5.192

11111111.11111111.111111111.

11000000

/

2

6

4 6

2

255.255.25

5.128

11111111.11111111.111111111.

10000000

/

2

5

2 12

6

255.255.25

5.0

11111111.11111111.111111111.

00000000

/

2

4

1 2

5

4

IPv6 Addresses

IPv4 has valiantly served the Internet from the early

days, when only a handful of devices were interconnected

at college campuses in the United States for research

purposes, to today, when billions of devices are

interconnected and exchanging massive amounts of data.

The longevity of IPv4 and the addressing scheme it

defines is a testament to how robust and scalable IP

actually is. Even so, IPv4 faces limitations, including the

insufficiency of 32-bit addresses, the need for the IP

header to be streamlined and simplified, and the need for

security embedded in the protocol rather than

implemented as an afterthought.

IPv6 is an evolutionary upgrade to IP that is meant to

address most of the shortcomings of IPv4. IPv6 is

defined in RFC 2460, Internet Protocol, Version 6 (IPv6)

Specification, issued by the IETF. Several other RFCs

that have been created following the initial definition

describe the architecture and services supported by IPv6.

IPv6 addresses are 128 bits long instead of 32 bits. The

128 bits provide 3.4 × 10 addresses; this is the

equivalent of a full IPv4 addressing space for each living

person on Earth. Currently both IPv4 and IPv6 addresses

are supported on the Internet, and a gradual transition

to only IPv6 is happening, but we won’t be there until

sometime far in the future. Several migration

technologies have been developed to ease the transition

from IPv4 to IPv6. The dual-stack method involves

having both IPv4 and IPv6 addresses configured on the

same interface and seems to be the most popular option.

Tunneling mechanisms are also available for IPv4

tunneling over IPv6 networks and IPv6 tunneling over

IPv4 networks.

IPv6 brings several improvements compared to IPv4,

including the following:

Larger address space means improved global reachability and better

aggregation of IP prefixes, which leads to smaller routing tables, which

leads to faster routing.

End-to-end communication is now possible, as there is no need for

technologies such as Network Address Translation (NAT) or Port

Address Translation (PAT) that have been developed to address the

lack of public IPv4 addresses.

Address autoconfiguration allows hosts and devices connecting to the

network to easily and automatically obtain IPv6 addresses. This is

especially important for mobile devices as they roam between different

networks; autoconfiguration makes the transition seamless.

The coexistence of multiple addresses on the same interface increases

reliability and load balancing.

A simplified header means better routing efficiency and increased

forwarding performance.

38

No broadcast addresses and no broadcast traffic mean no broadcast

storms, improving the reliability of the whole network.

Security is increased, thanks to built-in IPsec capabilities.

IPv6 addresses can be displayed as 32 hexadecimal

characters split into 8 sections, as follows:

Colons separate entries x:x:x:x:x:x:x:x, where x is a 16-bit hexadecimal

field.

Hexadecimal characters are case insensitive.

Leading zeros in a field are optional.

Successive fields of zero can be represented as :: once per address.

An example of an IPv6 address is

2031:0000:120F:0000:0000:09C0:9A73:242C.

Following the guidelines just specified, this address can

also be written as follows:

2031:0000:120F::9C0:9A73:242C (because successive

fields of zero can be represented as ::)

2031:0:120F::9C0:9A73:242C (because leading zeros

in a field are optional)

Figure 16-9 shows a simple illustration of how IPv6

addresses and subnetting work.

Figure 16-9 IPv6 Subnetting

The Internet Assigned Numbers Authority (IANA) is the

organization that manages the assignment of IPv6

addresses at a global level. IANA assigns /23 blocks of

IPv6 addresses to the registries that manage IPv6

addresses at a regional level, such as the Asia-Pacific

Network Information Center (APNIC) or the American

Registry for Internet Numbers (ARIN). The regional

registries assign /32 blocks of IPv6 addresses to the

Internet service providers (ISPs) that operate in their

geographic areas. The ISPs, in turn, assign /48 IPv6

subnets to their customers, which can subnet further and

create their own subnets, usually down to a /64, giving

them up to 65,536 IPv6 subnets that they can assign to

their sites.

The interface ID portion of an IPv6 address is usually

based on the MAC address of the device, following the

EUI-64 specification. This specification creates the 64

bits needed for the interface ID portion of the address by

splitting the 48-bit MAC address right down the middle

and inserting the 16-bit 0xFFFE between the OUI and

the vendor-assigned bits.

The hierarchical distribution of IPv6 addresses allows for

better aggregation of routes, which leads to smaller

Internet routing tables and faster routing.

There are several different types of IPv6 addresses:

Global

Link-local

Multicast

Loopback

Unspecified

Global IPv6 addresses are the equivalent of public

unicast IPv4 addresses. Global IPv6 addresses are

assigned in a controlled fashion so that they can be easily

aggregated at all levels, registry, ISPs, and customers.

Currently IANA is assigning IPv6 addresses that start

with the binary value 001 (2000::/3). This represents

one-eighth of the total IPv6 address space. A global

unicast IPv6 address typically consists of a 48-bit global

routing prefix in the most significant portion of the

address, followed by a 16-bit subnet ID and 64 bits

dedicated to the interface identifier. Addresses with

prefixes in the range 2000::/3 to E000::/3 are required

to have 64-bit interface identifiers that follow the EUI-64

format mentioned previously.

Link-local addresses in IPv6 are a new concept compared

to IPv4. These addresses refer only to a particular

physical link and are not forwarded by routers. They are

used only for local communication between devices on

the same physical network segment. Link-local addresses

are part of the link-local prefix FE80::/10 and are

extensively used in IPv6 routing protocols for neighbor

and router discovery, as well as in automatic address

configuration. They are usually dynamically created on

all IPv6 interfaces by adding the 64-bit interface ID to

the FE80::/10 prefix.

IPv6 multicast addresses are part of the FF00::/8 prefix.

There is no broadcast traffic in IPv6, so that functionality

is taken by multicast and anycast traffic in IPv6. There

are several reasons broadcast traffic has been left out of

IPv6, including the fact that each broadcast packet on the

network generates an interrupt on all the devices that are

part of the same broadcast domain, even if the traffic is

not directly meant for them; in addition, broadcast

storms can bring down entire networks. With IPv6, it

was decided to implement the one-to-many type of data

traffic by using multicast. Multicast increases the

efficiency of delivering data from one device to many,

and with IPv6, it gets a larger address space, too. A data

packet sent to a multicast address is delivered to all

interfaces identified by the multicast address. Multicast

addresses also have scope. The scope of a multicast

address can be that of a node, a link, a site, an

organization, or a global scope and is represented by a

scope parameter of 1, 2, 5, 8, or E, respectively. As an

example, the multicast address with the prefix FF02::/16

is a multicast address with a link scope. All devices

implementing IPv6 are required to join the all-nodes

multicast group with the FF02:0:0:0:0:0:0:1 multicast

address. IPv6 routers must also join the all-routers

multicast group FF02:0:0:0:0:0:0:2. The scope on both

of these multicast addresses is link-local.

Loopback IPv6 addresses are similar to the loopback

addresses in IPv4: They are used for testing local traffic

on a device. In IPv6 there is only one address dedicated

for this purpose: 0:0:0:0:0:0:0:1 (or ::1 when using the

zero compression feature in IPv6).

The unspecified address is used for situations when a

device doesn’t have any IPv6 address assigned and needs

to populate the Source field when sending a datagram on

the network, such as when obtaining an IPv6 address

from a DHCPv6 server. This address is the all-zeros

address: 0:0:0:0:0:0:0:0 (or just :: when using the zero

compression feature in IPv6).

Anycast addresses are allocated from the unicast global

space. Their purpose is to accommodate the one-to-

nearest data traffic requirement. In this case, multiple

devices share the same unicast address, and data traffic

that is destined for the anycast address is routed through

the network to the closest device that has that anycast

address configured on one of its interfaces. In this case,

of course, all the anycast nodes have to provide a similar,

uniform service. Anycast is suitable for load balancing

and content delivery services. An example of a service

that can be implemented using anycast addresses is

Domain Name System (DNS). DNS is covered in Chapter

18; for the purposes of this example, you just need to

know that DNS is a critical component of the Internet

and is mainly used to resolve domain names to IP

addresses. Configuring several DNS servers on a network

with the same anycast address ensures a consistent DNS

configuration on all the devices in the network. Instead

of having to configure several different DNS server IP

addresses for redundancy purposes, in IPv6, a single

address, the anycast address, can be configured on all

DNS clients. As long as at least one of the DNS servers

that have been configured as part of the anycast group is

online, DNS redundancy is guaranteed.

Routing

Routing is the process of selecting a path through a

network. This functionality is performed by routers,

which are devices made to interconnect networks, find

the best paths for data packets from their source toward

their destination, and route data based on a routing

table. As switches have a critical role at Layer 2 in

connecting devices in the same physical area and

creating local-area networks, routers have a critical role

at Layer 3 in interconnecting networks and creating

wide-area networks. The main functions of a router are

the following:

Path determination

Data packet routing or forwarding

Path determination is the process through which routers

look up information in their routing tables to determine

where to forward the data packets received on their

interfaces. In a typical scenario, a router has at least two

interfaces—and usually more. Each interface connects to

a Layer 3 network, which means the interface on the

router is configured with an IP address in that network.

In most cases, the router acts as the default gateway for

that Layer 3 network, meaning that any traffic that is not

destined for the local network will be forwarded to the

router, and the router will forward it further toward its

destination. Each router maintains its own routing table,

which contains a list of all the destinations or networks

that are known to the router and how to reach those

destinations. When receiving a packet on one of its

interfaces, the router checks the destination IP address

in the data packet header and looks up the best match for

that destination in its routing table. If the destination IP

address matches one of the networks in the routing table,

it means that either the network is directly connected to

the router or it can be reached via another router that is

directly connected, and it becomes the next-hop router

toward the final destination of the data packet. If there is

no match for that destination IP address in the routing

table, the router sends the data packet to the default

route, and if there is no default route, the router drops

the data packet.

After determining the correct path for the packet, the

router forwards the packet through a network interface

toward the destination. Figure 16-10 shows a simple

network diagram.

Figure 16-10 Simple Network Diagram

The routing table for the network in Figure 16-10 might

look like Table 16-8.

Table 16-8 Routing Table

NetworkInterface or Next Hop

10.10.0.0/24 directly connected: Gi0/0

10.10.1.0/24 directly connected: Gi0/1

10.10.2.0/30 directly connected: Se0/0/0

0.0.0.0/0 via 10.10.2.2 (next-hop router)

Each row in the routing table lists a destination network

and the corresponding interface or next-hop address. For

directly connected networks, the router has an interface

that is part of that network. For example, let’s assume

that a router receives a data packet on its

GigabitEthernet0/1 interface with destination IP address

10.10.0.15. The router looks up the destination address

in its routing table and decides to route the packet out its

GigabitEthernet0/0 interface toward the destination.

Following the same logic, let’s assume next that the

router receives a packet on its GigabitEthernet0/0

interface with destination IP address 172.16.0.25. The

router performs a routing table lookup and finds that it

doesn’t have an explicit route for that network, but it

does have a default route (0.0.0.0/0) via the next-hop

router with IP address 10.10.2.2. Looking up recursively

how to reach the 10.10.2.0 network, the router forwards

the packet out its Serial0/0/0 interface toward the next-

hop router, which should be closer to the destination.

Default routes on routers—much like the default gateway

configurations on end host devices—are used as a last

resort for routing any data packets for which the

destination doesn’t explicitly exist in the routing table.

Default routes are extremely helpful in maintaining a

small routing table and hence decreasing the routing

table lookups and also decreasing the amount of time

needed to decide on which interface to route the traffic,

leading to faster routing of data packets. For the majority

of routers, a full Internet routing table with hundreds of

thousands of routes is not necessary, and a default route

toward the next hop is sufficient.

There are several ways in which routing tables are

populated:

Directly connected networks

Static routes

Dynamic routes

Default routes

We’ve already discussed directly connected networks, in

which the router has an interface configured for that

network and is routing traffic for it and the default

routes, which are used as a last resort in the event that a

more specific route doesn’t exist in the routing table.

Static routes are configured manually by the network

administrator or the person managing a router. In small

networks in which there are not expected to be any

changes, static routes can work just fine. In larger

networks that are more dynamic in nature, with devices

and routers going offline and coming online constantly,

static routes do not work very well because the

administrator needs to manually change the entries as

the changes happen in the network. A much more

scalable solution in this case is dynamic routes.

Dynamic routes, as the name implies, are learned

dynamically through specialized software applications

called dynamic routing protocols. Several routing

protocols have been developed over the years, including

Open Shortest Path First (OSPF), Enhanced Interior

Gateway Routing Protocol (EIGRP), Routing

Information Protocol (RIP), Border Control Protocol

(BGP), and Intermediate System-to-Intermediate System

(IS-IS). Each of these protocols has its own

characteristics, advantages, and drawbacks. It is the role

of the network administrator to decide which protocol to

choose to run on the network and to determine whether

a dynamic routing protocol is even necessary in the first

place. Medium and large networks run at least one of

these protocols on all the routers in the network. The

routers running dynamic routing protocols exchange

data between them and dynamically build their routing

tables based on the information they receive from their

neighbor routers. If multiple routing protocols are

configured on the routers, there needs to be a way to

decide which routes to choose and to populate the

routing table with them. Each routing protocol has an

administrative distance associated with it that is based

on the trustworthiness of the protocol. For example, if a

route for the same network is learned through RIP and

OSPF, the OSPF route will take precedence as OSPF has

a lower administrative distance than RIP. A lower

administrative distance means a higher degree of trust in

that source—so a higher chance of getting added to the

routing table.

Connected routes, meaning the router has an interface

configured in a specific network, have the lowest

administrative distance (AD), 0. Static routes are

preferred next as they usually have an AD of 1. Routing

protocols have different administrative distance values;

for example, BGP has an AD of 20, and RIP has an AD of

120. These values for AD are default values, and they can

be changed if additional tweaking of the routing table is

necessary. All dynamic routing protocols mentioned

support routing for both IPv4 and IPv6.

As we’ve seen previously in this chapter, the Internet has

become classless, and there are a large number of

networks and subnets that can be created from those

networks. The same way that a large network address

space can be subdivided into small subnets, the reverse

process is also available; it is called supernetting. This

means that smaller subnets can be combined into a

larger network, and instead of having several routing

table entries for each individual subnet, a single routing

table entry can encompass them all. For example, when

an ISP assigns a certain prefix range to one of its

customers, the ISP does not need to know all the details

of how the customer is implementing subnetting in its

internal network. All the ISP needs to know is that the

whole prefix is assigned to the customer, and it can be

reached via the customer’s border routers. Supernetting

is critical in maintaining an Internet routing table of a

manageable size.

Another important aspect when building a routing table

is the longest prefix match concept. Longest prefix match

means that when the router is looking in the routing

table for a match to route the data packet toward its

destination, it does so by trying to match it to the longest

prefix it has in the table. For example, let’s assume that

the routing table has two entries: 10.10.10.0/24 via

interface GigabitEthernet0/0 and 10.10.0.0/16 via

interface GigabitEthernet0/1. If the router receives a

data packet destined for 10.10.10.15, it looks in its

routing table, and it will match the longest-prefix

network (in this case, 10.10.10.0/24) and route the

packet out its GigabitEthernet0/0 interface. If the data

packet has destination address 10.10.20.15, the router

matches the other entry, 10.10.0.0/16, since that is the

longest prefix match it has for that subnet.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 16-9 lists these key topics and the page number on

which each is found.

Table 16-9 Key Topics

Key Topic ElementDescriptionPage Number

Paragra

ph

OSI model’s layered approach 48

5

Paragra

ph

TCP/IP model’s layered approach 48

8

Paragra

ph

Communication between devices in a

layered model

49

0

Paragra

ph

Client MAC addresses 49

3

Paragra

ph

VLAN identifier 49

4

Paragra

ph

MAC address table for a switch 49

5

Paragra

ph

IP in the TCP/IP reference model and the

OSI model

49

6

List Improvements of IPv6 over IPv4 50

1

List Types of IPv6 addresses 50

2

List Ways routing tables are populated 50

6

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

Open Systems Interconnection (OSI)

Transmission Control Protocol/Internet Protocol

(TCP/IP)

Media Access Control (MAC)

Logical Link Control (LLC)

User Datagram Protocol (UDP)

Transmission Control Protocol (TCP)

Internet Protocol (IP)

Hypertext Transfer Protocol (HTTP)

File Transfer Protocol (FTP)

protocol data unit (PDU)

frame check sequence (FCS)

organizationally unique identifier (OUI)

virtual local-area network (VLAN)

Internet Assigned Numbers Authority (IANA)

classless interdomain routing (CIDR)

variable-length subnet masking (VLSM)

Asia-Pacific Network Information Center (APNIC)

American Registry for Internet Numbers (ARIN)

Chapter 17

Networking Components

This chapter covers the following topics:

What Are Networks?: This section describes what a

network is and introduces the types of networks.

Elements of Networks: This section provides an

overview of various networking elements, including

hubs, switches, routers, and VLANs.

Software-Defined Networking: This section

provides an overview of the fundamentals of the

control, data, and management planes.

Over the past several decades, Cisco has built the

backbone of what we call the internet today and has

developed and created networks big and small,

including enterprise networks and service provider

networks. In Chapter 16, “Network Fundamentals,”

you learned some networking basics. This chapter

covers networking components, such as the following:

Networking elements such as hubs, switches, and routers

Network device functions, including the management, data, and control

planes

Software-defined networking

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 17-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 17-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

What Are Networks? 1–3

Elements of Networks 4–7

Software-Defined Networking 8–9

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. Ethernet is a ________ network topology.

1. star

2. ring

3. bus

4. mesh

2. ________-area networks usually use public

networks like telephone, cellular, or satellite

networks.

1. Metropolitan

2. Local

3. Wide

4. Campus

3. Which of the following is the least secure in terms of

privacy of the user?

1. Router

2. Hub

3. Switch

4. Bridge

4. Which of the following is not true of a Layer 3

switch?

1. It uses IP addresses for forwarding.

2. A VLAN can be implemented by using this type of switch.

3. A Layer 3 switch creates a single broadcast domain.

4. A Layer 3 switch usually supports Layer 2 switching as well.

5. Which of the following can be used to segment a

physical switch into multiple logical networks?

1. Bridge

2. WAN

3. VLAN

4. Router

6. FIB tables, which contain precomputed routes,

reverse lookups, and so on, are used in which type of

switching?

1. Process switching

2. Cisco Express Forwarding

3. Fast switching

4. None of the above

7. What is NAT used for?

1. Stopping local traffic from reaching the public network

2. Mapping private IP addresses to public IP addresses

3. Detecting traffic patterns

4. Assigning IP addresses to local network clients

8. In a network controller, which plane is concerned

with administrative access to a network device?

1. Control

2. Management

3. Data

4. Hardware

9. In a Cisco SD-WAN solution, what is the main brain

of the entire solution that manages the control

plane?

1. vManage

2. vSmart

3. vEdge

4. vBond

FOUNDATION TOPICS

WHAT ARE NETWORKS?

NIST CNSSI 4009 defines a network as follows:

information system(s) implemented with a collection

of interconnected components. Such components may

include routers, hubs, cabling, telecommunications

controllers, key distribution centers, and technical

control devices.

In other words, a network is formed when two or more

systems are connected to each other and are able to

communicate with each other. With different types of

connections, various types of networks can be built.

Three different factors are used to classify networks:

Topology

Standard

Size or location

Topology refers to how the various nodes or elements

connect. Figure 17-1 shows three prominent network

topologies:

Bus: In a bus network, all the elements are connected one after the

other.

Star: In a star topology, all nodes in the system are connected to a

central point.

Ring: A ring topology is very similar to a star except that a token is

passed around, and a node can transmit only when it has a valid token.

Figure 17-1 Network Topologies

Standard refers to the protocol that the network uses.

Ethernet is one example of a standard. An Ethernet

network uses a star topology with concentrators

connecting all the nodes in the network. Ethernet speeds

vary from 10 Mbps to 100 Mbps to 1 Gbps. Another

standard is Token Ring, which, as the name suggests, is a

ring topology type. Token Ring rates vary from 4 Mbps to

16 Mbps.

The size of a network is a bit of an arbitrary concept.

Network sizes fall into basically four network types:

Local-area network (LAN): A LAN is typically a single network for

an office, an enterprise, or a home, and it is located completely within a

single facility. Figure 17-2 shows an example of a LAN that consists of

various laptops, PCs, servers, and printers.

Figure 17-2 Local-Area Network

Campus-area network (CAN): A CAN consists of two or more LANs

within a limited area. CANs help interconnect various buildings or

departments within a campus of an enterprise or large office or school.

Figure 17-3 shows an example of a CAN that connects various LAN

segments.

Figure 17-3 Campus-Area Network

Metropolitan-area network (MAN): A MAN is a network that is

extended to cover multiple locations within a slightly larger distance

than a CAN. A classic example of a MAN is the cable network in a city.

Figure 17-4 shows an example of a MAN that connects various network

segments.

Figure 17-4 Metropolitan-Area Network

Wide-area network (WAN): A WAN covers an even larger

geographic area than a MAN. The connections are through public

networks, such as the telephone system, microwaves, satellite links, or

leased lines. Figure 17-5 shows an example of a WAN that connects

various remote offices with the headquarters.

Figure 17-5 Wide-Area Network

ELEMENTS OF NETWORKS

Now that you have seen the various types of networks,

let’s look at what constitutes a network. A network has

several basic components:

Hubs

Switches

Bridges

Routers

The following sections look at each of these elements in

detail and also look at the difference between them. In

the following sections you will see how to build a simple

home network in which you want to connect two or three

computers or devices.

Hubs

A hub is the least intelligent and most rudimentary

network device. With a hub, traffic or data packets that

come in any port are always sent out to all other ports.

For example, in Figure 17-6, Laptop 1 wants to

communicate to Device 3. The hub replicates and sends

the packet from the laptop to each of the ports. Only

Device 3 responds back, and that response is again

replicated to all ports. Every device connected to the hub

“sees” everything. It is up to the devices themselves to

decide if a packet is for them and whether they should

respond. The hub remains passive and does not really

know or understand the traffic that flows through it.

Figure 17-6 Hub: Every Device Receives Every

Packet

One of the biggest challenges with hubs is that every

frame shows up at every device attached to a hub, instead

of just showing up at the intended destination. This can

be a huge security problem. Another challenge has to do

with performance: Because a hub can receive a lot of

inbound frames, sending out frames can be difficult and

can result in performance issues on the network.

Bridges

A bridge connects two physical network segments that

use the same protocol. Each network bridge builds a

MAC address table of all devices that are connected on

its ports. When packet traffic arrives at the bridge and its

target address is local to that side of the bridge, the

bridge filters that frame, so it stays on the local side of

the bridge.

If the bridge is unable to find the target address on the

side that received the traffic, it forwards the frame across

the bridge, hoping the destination will be on the other

network segment. In some cases, multiple bridges are

cascaded.

Figure 17-7 shows how a bridge connects two LAN segments.

Figure 17-7 Using a Bridge to Connect Two LAN

Segments

Switches

You can think of a switch as an “intelligent” hub. A

switch does what a hub does—but more efficiently and

intelligently. It analyzes the traffic as it flows. A switch

builds a port-to-MAC address table as devices start

communicating. This means a switch offers dramatically

better performance than a hub. To analyze the traffic,

specialized hardware (called application-specific

integrated circuits [ASICs]) is needed. If we replace the

hub with a switch in our example, we get the setup

shown in Figure 17-8, where a Layer 2 switch maintains a

port-to-MAC address lookup table.

Figure 17-8 Using a Layer 2 Switch for Port-to-MAC

Address Mapping

As you can see in Figure 17-8, each of the devices is

“seen,” and the MAC address is registered when the first

packet is sent by the device. Over a period, the switch

generates a table that contains the port number on which

each MAC address was seen. It then uses this table to do

a lookup for the destination MAC address and sends the

incoming packet to the correct outgoing port. In the

figure, a packet destined for Device 3 is sent only to the

correct port.

Recall our look at the OSI model layers in Chapter 16.

The switch described so far in this section is a Layer 2

switch, which works at Layer 2 of the OSI model (the

data link layer). The switch sends a packet to a

destination port by using the MAC address lookup table,

which stores the MAC address of a device associated with

each port. In contrast, a Layer 3 switch works at the

network layer of the OSI model (Layer 3), which means it

looks at the IP address in order to do the switching.

Figure 17-9 shows a Layer 3 switch and how it maintains

a port-to-IP address lookup table.

Figure 17-9 Using a Layer 3 Switch for Port-to-IP

Address Mapping

Table 17-2 looks at some of the differences between

Layer 2 and Layer 3 switches.

Table 17-2 Differences Between Layer 2 and Layer 3

Switches

Layer 2 SwitchLayer 3 Switch

Operates at Layer 2 (data

link) of the OSI model

Operates at Layer 3 (network

layer) of the OSI model

Uses MAC addresses for

forwarding

Uses IP addresses for

forwarding

Performs Layer 2 switching

only

Performs both Layer 2 and

Layer 3 switching

Can be used to reduce

traffic security on the local

Can be used to implement a

virtual local-area network

network (VLAN)

Has a single broadcast

domain

Has multiple broadcast

domains

Virtual Local Area Networks (VLANs)

A switch can be logically segmented into multiple

broadcast domains by using virtual LANs (VLANs). That

is, if you have one switch, you can create multiple logical

switches. A VLAN is identified by a VLAN ID. The VLAN

ID is a usually a value between 0 and 4095. The default

VLAN on any network is VLAN 1. Every port on a switch

can be assigned a different VLAN, or a group of ports can

be assigned a particular VLAN ID. VLANs allow network

administrators to logically split a switch, allowing

multiple broadcast domains to coexist on the same

hardware but maintaining the isolation, security, and

performance benefits of using completely separate

switches.

There are several advantages to creating VLANS:

Network security: Creating VLANs within a switch also creates an

automatic logical level of protection. This kind of logical separation is

very useful when there is a need to create networks for various

departments in an enterprise. Figure 17-10 shows three VLANs—VLAN

10, VLAN 20, and VLAN 30—each assigned to a different department.

Figure 17-10 Using a VLAN for Network Security

Broadcast traffic distribution: Segmenting a large LAN into

smaller VLANs can reduce broadcast traffic because each broadcast

packet is sent only to the relevant VLAN. For example, in Figure 17-10,

which shows three VLANs—one for each of the domains—broadcast

traffic will go to only the devices in the appropriate VLAN.

Performance increase: Creating multiple broadcast domains

reduces the broadcast traffic on the entire network tremendously,

which in turn boosts the overall performance of the network.

Say that you have a single switch. By default, all of the

ports on this switch are in one VLAN, such as VLAN 1.

Any port can be configured to be an access port or a

trunk port:

Access port: An access port is essentially a port that can be assigned

to only one VLAN. You can change the port membership by specifying

the new VLAN ID.

Trunk port: A trunk port can essentially have two or more VLANs

configured. It has the ability to transport traffic for several VLANs

simultaneously.

Figure 17-11 shows how trunk ports connect various

VLANs across switches.

Figure 17-11 VLAN Trunk Ports

Routers

A router is a device that forwards packets between

networks via the network layer of the OSI model (Layer

3). It forwards, or routes, packets based on the IP

address of the destination device. A router also has the

intelligence to determine the best path to reach a

particular network or device. It can determine the next

hop, or routing destination, by using routing protocols

such as Routing Information Protocol (RIP), Open

Shortest Path First (OSPF), and Border Gateway

Protocol (BGP).

What is the difference between a Layer 3 switch and a

router? Both forward packets based on IP address, right?

The difference is pretty straightforward: Whereas a

switch operates within a network, a router connects two

or more networks. It routes packets to go across different

protocols (such as Ethernet and WAN technologies such

as cable, DSL, or satellite). Another difference is that

switches usually have dedicated hardware (ASICs) to

forward packets as they come in. In contrast, routers

need more intelligence to route packets, and this

intelligence is typically provided by software.

Figure 17-12 shows a router connecting different types of

networks.

Figure 17-12 Using a Router to Connect Different

Networks

Routing in So�ware

As discussed earlier in this chapter, routers participate in

route discovery, path determination, and packet

forwarding. Route discovery and path determination are

part of the routing protocol, and as the router becomes

part of this discovery process, it discovers and updates

the routing tables accordingly. There are basically three

types of forwarding:

Process switching: The CPU is involved for every packet that is

routed and requires a full routing table lookup. Process switching,

shown in Figure 17-13, is the slowest type of forwarding as each of the

packets that the interface driver receives (step 1 in the figure) is punted

and put in the input queue for the processor for further action (step 2).

In this case, the processor receives the packets (step 3), determines the

next interface it needs to send them to, and rewrites the headers as

needed and puts the new packets in the output queue (step 4). Finally,

the kernel driver for the new network interface picks up the packets and

transmits them on the interface (step 5).

Figure 17-13 Process Switching with the CPU

Involved in Packet Routing Decisions

Fast switching: Fast switching is the next-level evolution of process

switching. The CPU is involved for only the first packet that is routed. It

determines the outgoing interface required for the packet and updates

the route cache, which typically resides in the kernel. Once the route

cache is populated, the input interface driver does a route-cache lookup

and fast switches the packet to the outgoing interface. Figure 17-14

shows fast switching, in which the processor essentially updates the

route cache after it learns the next hop. All subsequent packets are fast

switched.

Figure 17-14 Fast Switching and the Route Cache

Cisco Express Forwarding (CEF) switching: CEF switching is an

advanced Cisco-proprietary form of fast switching. CEF switching

sometimes involves specialized hardware and distributed routing, and

the CPU may not need to get involved in the data path at all. It does this

by building a route cache with forwarding information; this is known as

the Forwarding Information Base (FIB) table. The FIB table contains

precomputed reverse lookups and next-hop information for routes,

including the interface and Layer 2 information to use. When a network

topology or routing table change occurs, the change is also reflected in

the FIB table. Figure 17-15 shows CEF switching, where both Layer 2

and Layer 3 information is used.

Figure 17-15 CEF Switching: Data Switching Using

FIB Tables

This analogy is sometimes used to illustrate the three

types of switching:

Process switching is like doing math on paper: Write down each step

and solve the problem.

Fast switching, using the route cache, is like solving a problem by hand

once and then simply recalling the answer from memory if the same

problem is given again.

CEF switching is like using formulas in an Excel spreadsheet, and when

the numbers hit the cells, the answer is automatically calculated.

Functions of a Router

As discussed earlier in this chapter, a router is a device

that appropriately and efficiently directs traffic from an

incoming interface to the correct outgoing interface.

Apart from this primary function, a router has several

other functions:

Network segmentation: A router uses Network Address Translation

(NAT) to map private IP addresses to public IP addresses. Using NAT

at the router secures the private network and also reduces the number

of IP addresses needed to get messages to the public internet. Figure

17-16 shows how network segmentation is achieved by using NAT.

Figure 17-16 Router NAT: Translating Internal

Addresses to External Addresses

IP address management: A router uses Dynamic Host

Configuration Protocol (DHCP) to assign IP addresses to devices that

connect to the network. Clients send DISCOVER broadcast message to

figure out if a local DHCP server exists in the network. If a DHCP server

exists, it offers configurations such as an IP address, a MAC address, a

domain, and so on via an OFFER message. The client can then send a

formal REQUEST to the server for allocating an IP address. The server

responds with an ACK unicast message to the client, indicating that the

IP address has been allocated and confirmed. Figure 17-17 shows a flow

of clients requesting IP addresses via DHCP.

Figure 17-17 Using DHCP to Assign IP Addresses

Firewalls: A firewall safeguards a network from intentional or

unintentional intrusion. A firewall sits at the junction point or gateway

between two networks—usually a private network and a public network

such as the Internet. Users on the local network of the router need to be

protected from hackers and other malicious users. A firewall blocks

traffic from unauthorized users. It also helps in allowing or blocking

certain types of traffic on certain ports. For example, a firewall may

allow access to certain applications only, such as HTTP or SSH, and

block all UDP traffic. Figure 17-18 shows a firewall that allows only

HTTP access to the outside world and blocks all incoming UDP traffic.

Figure 17-18 Router Firewall: Allowing/Blocking

Certain Apps or Traffic

Domain name proxy: Modern firewalls interact with cloud DNS

servers such as Cisco Umbrella or Open DNS to resolve DNS queries.

The queries and, in turn, the hosts can be stopped at the source if they

are deemed harmful or malicious.

Network Diagrams: Bringing It All Together

So far in this chapter, you have learned about all the

elements that constitute a network. The best way to

visually represent a network topology is by using a

network diagram. A network diagram maps out the

structure of a network with different network element

icons and connections between them. This kind of visual

presentation makes it simple and easy for anyone to

understand how a network is built and can help not only

during initial network deployment but also in debugging.

Figure 17-19 shows a typical network topology. At the

core of the network is a router (Router 1) that connects

three different networks. One router interface is

connected to a switch (Switch 1), a second router

interface is connected to a switch (Switch 2), and a third

router interface is connected to a router (Router 2):

Switch 1 connects to Gigabit-ether 0/0 on the router.

Switch 2 connects to Gigabit-ether 0/1 on the router.

Router 2 connects to Fast-ethernet 0/0 on the router.

Figure 17-19 Network Diagram

Both Switch 1 and Switch 2 have networks that consist of

various devices such as computers, printers, and so on.

Router 2 is the Internet router with firewall functionality

and a connection to the service provider.

SOFTWARE-DEFINED NETWORKING

The term software-defined networking (SDN) applies to

a type of network architecture design that enables IT

managers and network engineers to manage, control,

and optimize network resources programmatically.

SDN essentially decouples network configuration and

data flow engineering, regardless of the underlying

hardware infrastructure. It allows you to consistently

control the network by using standard open APIs.

Networks are often shown using a three-level

architecture, as shown in Figure 17-20, which consists of

hardware and two planes:

Data plane: As described earlier in this chapter, a router can route

packets faster by using techniques such as fast switching or CEF

switching. These techniques for punting packets from the incoming

interface to the outgoing interface operate on what is traditionally

known as the data plane. The main objective of the data plane is to

determine how the incoming packet on a port must be forwarded to an

outgoing port, based on specific values in the packet headers.

Control plane: Routing protocols and other protocols make up the

control plane. The control plane determines how a packet is routed

among routers or other network elements as the packet traverses end-

to-end from source host to destination host. The control plane also

deals with packets that are destined for the router itself. Device and

network management are also part of the control plane. Management

functions include initializing interfaces with default configurations, IP

addresses, policies, user accounts, and so on.

Figure 17-20 Control Plane and Data Plane

Figure 17-21 shows three network elements: a router, a

switch, and a wireless access point. For each one of them,

the figure shows the control plane and data plane. The

management of these devices includes the functions you

use to control and monitor these devices. As the

controlling and monitoring function has to be done on

each device, we call this architecture a “distributed

control plane architecture.” The drawback is that

network engineers or administrators have to manage

each device independently, logging in to each device and

setting it up. Imagine that you have to make a simple

configuration change such as enabling a syslog server;

you would have to log in to each device independently

and make the changes.

Figure 17-21 Distributed Control Plane Architecture

To prevent the inefficiency of manually managing

network devices, a network controller can be used. When

you use a network controller, you move the control

planes from each network device and consolidate all of

them in the network controller. The network controller

can then communicate with the network elements, and

the network elements can send management data to the

controller. Because you now have one controller, this

architecture is called a centralized control plane. Figure

17-22 shows how a network controller can be used to

programmatically manage and control various

networking elements using the northbound and

southbound APIs.

Figure 17-22 Centralized Control Plane with a

Network Controller

Communication between the network controller and the

network elements is bidirectional. Both sides use

application programming interfaces (APIs), which allow

the network controller and the network devices to

communicate programmatically. The network controller

interacts with the network devices via southbound APIs,

and the network elements interact with the network

controller via northbound APIs.

SDN Controllers

An SDN controller is often considered the “brain” in a

modern network. The Open Networking Foundation

(ONF) defines SDN as follows:

an emerging architecture that is dynamic, manageable,

cost-effective, and adaptable, making it ideal for the

high-bandwidth, dynamic nature of applications. This

architecture decouples the network control and

forwarding functions, enabling the network control to

become directly programmable and the underlying

infrastructure to be abstracted for applications and

network services.

An SDN controller possesses a “global” view of the entire

network. It knows about all the network elements that

constitute the network, the best paths between them, and

other potential routes. As indicated in the ONF SDN

definition, SDN is a network architecture that separates

the control and data planes for network devices and

provides centralized management. There are two widely

popular controllers:

OpenFlow: The ONF manages this standard used for communication

between the SDN controller and managed network devices.

OpenDayLight: The Linux Foundation (LF) manages this standard,

which uses OpenFlow to manage network devices.

As shown in Figure 17-23, SDN involves three layers:

application layer, control layer, and infrastructure layer.

Figure 17-23 Software-Defined Networking:

Layered Architecture

The infrastructure layer is composed of networking

equipment and elements that form the actual network

and elements that help to forward network traffic. It

could be a set of network switches and routers in the

network or data centers. The infrastructure layer is the

physical layer over which network virtualization

functions lay via the control layer.

The control layer is where the SDN controllers reside to

control network infrastructure. The control layer has the

business logic to fetch and maintain different types of

network information, state details, topology details, and

statistics details. The SDN controller is all about

managing networks, and it has all the control logic for

network use cases such as switching, routing, Layer 2

VPNs, Layer 3 VPNs, firewall security rules, DNS, DHCP,

and clustering. Cisco implements various services in its

SDN controllers. These services expose APIs (typically

REST-based) to the upper layer (application layer),

which makes life easy for network administrators who

use apps on top of SDN controllers to configure, manage,

and monitor the underlying network. The control layer

exposes two types of interfaces:

Northbound interface: This interface is used for communication

with the upper layer (the application layer) and is in general realized

through REST APIs of SDN controllers.

Southbound interface: This interface is meant for communication

with the lower layer (the infrastructure layer) of network elements and

is in general realized through southbound protocols, such as OpenFlow

and NETCONF.

The application layer is a developing area where a lot of

innovations are happening. The applications in this layer

leverage information about the network topology,

network state, network statistics, and so on. Several

types of applications can be developed, such as those

related to network automation, network configuration

and management, network monitoring, network

troubleshooting, network policies, and security. Such

SDN applications can provide various end-to-end

solutions for real-world enterprise and data center

networks.

Cisco So�ware-Defined Networking (SDN)

Cisco has introduced many SDN controllers in various

domains, including the data center, campus, and even

service provider domains. The following is the list of

Cisco’s SDN products:

Cisco Application Centric Infrastructure (ACI): ACI was the

first Cisco SDN solution, and it has three components:

Application Network Profile: This is a collection of endpoint

groups (EPGs), their connections, and the policies that define the

connections.

Application Policy Infrastructure Controller (APIC): This

is a centralized software controller that manages downstream

switches and acts as a management plane.

ACI fabric: This is the connection between spine and leaf

switches. In the ACI world, spine and leaf are the Cisco Nexus

9000 Series switches, which act as the control plane and the data

plane of the ACI.

Cisco Digital Network Architecture (DNA): Cisco DNA

introduces the concept of intent-based networking, which interprets

business needs into technical solutions.

Cisco Network Services Orchestrator (NSO): This is a solution

mostly for automating tasks in service provider environments. NSO is a

multivendor controller installed in Linux that supports NETCONF,

OpenFlow, SNMP, and APIs.

Cisco Software-Defined WAN (SD-WAN): SD-WAN deals with

creating and managing WAN connections in a cloud-based

environment. SD-WAN solutions have several key features—including

segmentation, centralized policies, zero-touch provisioning, and

configuration templates—that can be very helpful to customers. Cisco

SD-WAN has four main components, each with a very specific role:

vManage (for management): vManage is a GUI-based network

management system that handles the management plane. vManage

is a single pane of glass that provides various key stats. An

operations team can use vManage for day-to-day operational

activities.

vSmart (controller): vSmart is the main brain of SD-WAN, and

it manages the control plane. vSmart does all the complex work of

path calculation, route advertisement, and so on by allowing the

data plane to do only packet forwarding.

vEdge (data plane): The vEdge router’s job is to forward packets

based on the policies configured with vSmart. The vEdge keeps a

constant connection with vSmart to get updates.

vBond (orchestrator): vBond is the orchestrator and the

gatekeeper that validates and authorizes every vEdge device trying

to join the network. It also orchestrates the connectivity between

vEdge and vSmart.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 17-3 lists these key topics and the page number on

which each is found.

Table 17-3 Key Topics

Key Topic ElementDescriptionPage

Paragraph Star, bus, and ring network topologies 512

Paragraph Hubs 517

Paragraph Layer 2 and Layer 3 switches 518

Paragraph VLANs 520

List Methods of routing packets in a router 522

Paragraph SDN controllers 529

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

local-area network (LAN)

campus-area network (CAN)

metropolitan-area network (MAN)

wide-area network (WAN)

virtual LAN (VLAN)

Cisco Express Forwarding (CEF)

Forwarding Information Base (FIB) table

Network Address Translation (NAT)

Dynamic Host Configuration Protocol (DHCP)

software-defined networking (SDN)

Chapter 18

IP Services

This chapter covers the following topics:

Common Networking Protocols: This section introduces protocols

that are commonly used in networks and that you should be familiar

with.

Layer 2 Versus Layer 3 Network Diagrams: This section covers

different types of network diagrams.

Troubleshooting Application Connectivity Issues: This section

describes how to troubleshoot application connectivity issues.

This chapter covers IP services concepts. It starts with

an introduction to common networking protocols that

you are bound to use on a daily basis and then

discusses them in detail:

Dynamic Host Configuration Protocol (DHCP) is used to dynamically

allocate IP configuration data to network clients so that the clients can

get access to the network.

Domain Name System (DNS) is a hierarchical naming system used

mostly to resolve domain names to IP addresses.

Network Address Translation (NAT), while not a protocol per se, deals

with translations between private IP networks and public, globally

routable IP networks.

Simple Network Management Protocol (SNMP) has been developed for

remote network monitoring and configuration.

Network Time Protocol (NTP) is used to synchronize date and time

between devices on a network.

The chapter also provides a comparison between Layer

2 and Layer 3 network diagrams, as well as a

troubleshooting scenario for application connectivity

issues.

“DO I KNOW THIS ALREADY?” QUIZ

The “Do I Know This Already?” quiz allows you to assess

whether you should read this entire chapter thoroughly

or jump to the “Exam Preparation Tasks” section. If you

are in doubt about your answers to these questions or

your own assessment of your knowledge of the topics,

read the entire chapter. Table 18-1 lists the major

headings in this chapter and their corresponding “Do I

Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quiz Questions.”

Table 18-1 “Do I Know This Already?” Section-to-

Question Mapping

Foundation Topics SectionQuestions

Common Networking Protocols 1–5

Layer 2 Versus Layer 3 Network Diagrams 6

Troubleshooting Application Connectivity Issues 7

Caution

The goal of self-assessment is to gauge your mastery of

the topics in this chapter. If you do not know the

answer to a question or are only partially sure of the

answer, you should mark that question as wrong for

purposes of self-assessment. Giving yourself credit for

an answer that you correctly guess skews your self-

assessment results and might provide you with a false

sense of security.

1. What are some of the benefits that DHCP offers?

(Choose two.)

1. Reduced network endpoint configuration tasks and costs

2. Elimination of single points of failure for network parameter

configuration

3. Decentralized management of network configuration

4. Centralized management of network parameters configuration

2. What DNS component is configured on a network

client?

1. Root server

2. TLD server

3. DNS resolver

4. TLC server

3. What are some of the benefits of Network Address

Translation? (Choose three.)

1. Conserving public IP address space

2. Increased security due to hiding of internal addressing

3. Loss of end-to-end traceability and visibility

4. Loss of end-to-end functionality

5. Flexibility when changing ISPs

4. What version of SNMP was developed with a

security focus in mind?

1. SNMPv3

2. SNMPv1

3. SNMPv2c

4. SNMPv4

5. What transport layer protocol and port are used by

NTP?

1. TCP 123

2. TCP 120

3. UDP 120

4. UDP 123

6. What network devices should be included in a Layer

3 diagram?

1. Switches, routers, and firewalls

2. Routers, firewalls, and load balancers

3. Switches, firewalls, and load balancers

4. Bridges, switches, and hubs

7. What popular network utility is used to troubleshoot

DNS issues?

1. traceroute

2. dnslookup

3. nslookup

4. ping

FOUNDATION TOPICS

COMMON NETWORKING PROTOCOLS

The following sections cover common networking

protocols that network engineers and software

developers alike should be familiar with. Knowledge of

these protocols and technologies will give you better

insight into how networks interact with applications in

order to offer network clients an optimized and seamless

experience.

Dynamic Host Configuration Protocol (DHCP)

Dynamic Host Configuration Protocol (DHCP), as the

name suggests, is a protocol used for dynamically

configuring hosts with network connectivity information.

In order for any host device connected to a network to be

able to send and transmit data, it needs to have network

parameters such as IP address, subnet, default gateway,

and DNS servers configured. This configuration can be

done either manually or automatically, using protocols

such as DHCP. Manual configuration of network

parameters for hosts on a network is time-consuming

and prone to errors—and it is therefore not very often

implemented in real-world networks anymore. DHCP is

extensively used for automatically distributing network

configuration parameters to all network endpoints,

including end-user devices and network devices. For

networks that have already migrated to IP version 6

(IPv6) or that are running dual-stack IP version 4 (IPv4)

and IPv6 addressing, DHCPv6 and the IPv6

autoconfiguration option can be used for dynamic and

automatic network parameter assignment. IPv6

autoconfiguration can be used to quickly and

dynamically assign IPv6 addresses to network clients,

and DHCPv6 is used to assign not just IPv6 addresses

but also DNS servers and domain names.

DHCP has two components: a protocol for delivering

network device configuration information from a DHCP

server to a network host and a mechanism for allocating

that configuration information to hosts. DHCP works

using a client/server architecture, with a designated

DHCP server that allocates IP addresses and network

information and that delivers that information to DHCP

clients that are the dynamically configured network

endpoints.

Besides basic network connectivity parameters such as

IP addresses, subnet masks, default gateways, IP

addresses of DNS servers, and local domain names,

DHCP also supports the concept of options. With DHCP

options, a DHCP server can send additional

configuration information to its clients. For example,

Cisco IP Phones use option 150 provided by the DHCP

server to obtain IP addresses of the TFTP servers that

hold configuration files for the IP Phones; Cisco wireless

access points use DHCP option 43 to obtain the IP

address of the Cisco wireless LAN controller that they

need to connect to for management purposes.

DHCP for IPv4 is defined and described in RFC 2131:

Dynamic Host Configuration Protocol and RFC 2132:

DHCP Options and BOOTP Vendor Extensions. For

IPv6, DHCP was initially described in RFC 3315:

Dynamic Host Configuration Protocol for IPv6

(DHCPv6) in 2003, but it was subsequently updated by

several newer RFCs. RFC 3633: IPv6 Prefix Options for

Dynamic Host Configuration Protocol (DHCP) Version

6 added a mechanism for prefix delegation, and RFC

3736: Stateless Dynamic Host Configuration Protocol

(DHCP) Service for IPv6 added stateless address

autoconfiguration for IPv6.

Some of the benefits of using DHCP instead of manual

configurations are

Centralized management of network parameters

configuration: DHCP servers usually manage the network

configuration settings for several subnets and represent the central

source of truth and the configuration point for all dynamic network

parameters needed for network endpoints to be able to connect to the

network. This makes it much easier to manage network address

assignment compared to using several disparate systems or Excel files.

Reduced network endpoint configuration tasks and costs:

Dynamically allocating network connectivity information brings huge

cost and time savings compared to manually performing the same

tasks. This is especially true in medium to larger enterprise network

environments and for Internet service providers (ISPs). Imagine ISPs

needing to send out technicians to perform manual network changes to

all of their customers when they start using their service every day. By

using DHCP and dynamic network address configuration, the modems

of clients can be configured within seconds, without any manual

intervention.

DHCP is built on top of a connectionless service model

using User Datagram Protocol (UDP). DHCP servers

listen on UDP port 67 for requests from the clients and

communicate with the DHCP clients on UDP port 68.

There are several ways network configuration

information is allocated by the DHCP server:

Automatic allocation: With automatic allocation, the DHCP server

assigns a permanent IP address to the client.

Dynamic allocation: With dynamic allocation, the DHCP server

assigns an IP address to the client for a limited period of time called the

lease time.

Manual allocation: With manual allocation, the network

configuration of the client is done manually by the network

administrator, and DHCP is used to relay that configuration

information to the client.

As mentioned previously, DHCP defines a protocol and a

process for how to assign network configuration

information to devices connecting to the network. The

process defines the methodology used to configure the

DHCP server. Usually a DHCP server serves one or more

client subnets. Once the client subnet is defined, a pool

of addresses from that subnet is configured as available

addresses for client allocation. Additional information

such as subnet mask, the IP address of the default

gateway, and DNS servers is the same for the whole

subnet, so these configuration parameters apply to the

whole subnet rather than to each end host device. In

some cases, the DHCP client and the server are located in

different subnets. In such a case, a DHCP relay agent can

be used to relay the DHCP packets between clients and

servers. Any host on the network can act as a relay agent,

but in most cases, the default router for the client subnet

acts as a DHCP relay agent. Forwarding of DHCP

messages between the clients and the servers by the relay

agents is different from regular routing and forwarding.

While regular forwarding is transparent for the

endpoints involved in the exchange of data, with DHCP

forwarding, DHCP relay agents receive inbound DHCP

messages on the client interface and generate new DHCP

messages on the interface connecting to the server. The

DHCP relay agent effectively becomes a man-in-the-

middle for the DHCP traffic between clients and servers.

Figure 18-1 illustrates DHCP relay agent functionality.

Figure 18-1 DHCP Relay Agent

DHCP operations fall into the following four phases (see

Figure 18-2):

Server discovery

Lease offer

Lease request

Lease acknowledgment

Figure 18-2 DHCP State Machine

Server Discovery

When a client first boots up and comes online on the

network, it broadcasts a DHCPDISCOVER message with

a destination address of the all-subnets broadcast

address (255.255.255.255) with a source address of

0.0.0.0 since the client doesn’t have any IP address at

this stage. If there is a DHCP server configured for this

subnet, it receives the all-subnets broadcast message and

responds with a DHCPOFFER message containing the

network configuration parameters for the client. If there

isn’t a DHCP server directly configured on the same

subnet as the clients but there is a DHCP relay agent, the

agent forwards the request to the DHCP server and will

also forward the server offer to the requesting client.

Lease Offer

A DHCP server that receives a DHCPDISCOVER

message from a client responds on UDP port 68 with a

DHCPOFFER message addressed to that client. The

DHCPOFFER message contains initial network

configuration information for the client. There are

several fields in the DHCPOFFER message that are of

interest for the client:

chaddr: This field contains the MAC address of the client to help the

client know that the received DHCPOFFER message is indeed intended

for it.

yiaddr: This field contains the IP address assigned to the client by the

server.

options: This field contains the associated subnet mask and default

gateway. Other options that are typically included in the DHCPOFFER

message are the IP address of the DNS servers and the IP address lease

and renewal time.

Once the client receives a DHCPOFFER message, it

starts a timer and waits for further offers from other

DHCP servers that might serve the same client subnet.

Lease Request

After the client has received the DHCPOFFER from the

server, it responds with a DHCPREQUEST message that

indicates its intent to accept the network configuration

information contained in the DHCPOFFER message. The

client moves to the Request state in the DHCP state

machine. Because there might be multiple DHCP servers

serving the same client subnet, the client might receive

multiple DHCPOFFER messages, one from each DHCP

server that received the DHCPDISCOVER message. The

client chooses one of the DHCPOFFER messages; in

most implementations of the DHCP client, this is the

first DHCPOFFER received. The client replies to the

server with a DHCPREQUEST message. The DHCP

server chosen is specified in the Server Identifier option

field of the DHCPREQUEST message. The

DHCPREQUEST message has as a destination address

the all-subnets broadcast address once more, so all

DHCP servers receive this message and can determine if

their offer was accepted by the client. The source IP

address of the DHCPREQUEST message is still 0.0.0.0

since the client has not yet received a confirmation from

the DHCP server that it can use the offered IP address.

Lease Acknowledgment

The DHCP server receives the DHCPREQUEST message

from the client and acknowledges it with a DHCPACK

message that contains the IP address of the DHCP server

and the IP address of the client. The DHCPACK message

is also sent as a broadcast message. Once the client

receives the DHCPACK message, it becomes bound to

the IP address and can use it to communicate on the

network. The DHCP server stores the IP address of the

client and its lease time in the DHCP database.

Releasing

A DHCP client can relinquish its network configuration

lease by sending a DHCPRELEASE message to the

DHCP server. The lease is identified by using the client

identifier, the chaddr field, and the network address in

the DHCPRELEASE message.

Domain Name System (DNS)

Domain Name System (DNS) is a directory of networks

that maps names of endpoints to IP addresses. DNS

performs a critical role in all networks and especially on

the Internet. It is much easier to remember the website

www.cisco.com than it is to remember the IP address to

which it resolves—173.37.145.84 for IPv4 or

2600:1408:2000:1b3:0:0:0:b33 for IPv6. DNS is

responsible for the process of resolving a hostname to an

IP address. Each host endpoint and any device

connecting to the network need to have an IP address

configured in order to be able to communicate on the

network. The IP address is like a street address, as every

device on the Internet can be located based on its IP

address. For example, when a user loads a web page, a

translation must happen between the website name

(cisco.com) and the machine-friendly IP address needed

to locate that web page. This process is abstracted from

the user because the user doesn’t need to know what is

happening in the background with the resolution of

names into IP addresses.

http://www.cisco.com/
http://cisco.com/

There are several critical components in the DNS

resolution process:

The DNS recursive resolver is the server that receives DNS queries from

client machines and is making additional requests in order to resolve

the client query.

Root name servers at the top of the DNS hierarchy are the servers that

have lists of the top-level domain (TLD) name servers. They are the first

step in resolving hostnames to IP addresses.

TLD name servers host the last portion of a hostname. For example, the

TLD server in the cisco.com example has a list for all the .com entries.

There are TLD servers for all the other domains as well (.net, .org, and

so on).

The authoritative name server is the final step in the resolution process.

It is the authoritative server for that specific domain. In the case of

cisco.com, there are three authoritative servers: ns1.cisco.com,

ns2.cisco.com, and ns3.cisco.com. Whenever a public domain is

registered, it is mandatory to specify one or more authoritative name

servers for that domain. These name servers are responsible for

resolving that public domain to IP addresses.

Let’s go through the steps of a DNS lookup from the

perspective of a client that is trying to resolve a domain

to an IP address (see Figure 18-3):

Step 1. The client query travels from the client

machine to the configured DNS server on that

machine. This DNS server is the DNS recursive

resolver server.

Step 2. The DNS recursive resolver queries a DNS root

name server.

Step 3. The root server responds to the recursive

resolver with the TLD server for the requested

last portion of the hostname. In the case of

cisco.com, this would be the .com TLD server.

Step 4. The resolver queries the .com TLD server next.

Step 5. The TLD server responds with the IP address

of the authoritative name server—in this

http://cisco.com/

example, the DNS server responsible for the

cisco.com domain.

Step 6. The resolver sends the query to the

authoritative name server.

Step 7. The authoritative name server responds with

the IP address of the cisco.com web server.

Step 8. The DNS resolver responds to the client with

the IP address obtained from the authoritative

name server.

Step 9. The client can finally send the web page

request to the IP address of the web server.

Step 10. The web server returns the web page to the

client, and the browser renders it for the user.

Figure 18-3 DNS Name Resolution Steps

A caching mechanism is available with DNS in order for

the client queries to be resolved as quickly as possible.

DNS caching means temporarily storing results obtained

during previous requests on DNS servers that are close to

the client. Caching DNS resolution data makes it possible

to resolve client queries earlier in the DNS lookup chain,

which improves resolution time and reduces bandwidth

and CPU consumption.

DNS uses User Datagram Protocol (UDP) on port 53 to

serve resolution queries. Several different types of

records are stored in the DNS database, including IP

addresses (A records for IPv4 and AAAA records for IPv6

addresses), SMTP mail exchangers (MX records), IP

addresses of name servers (NS records), and alias

records (CNAME). Although it was not intended to be

used as a general-purpose database, DNS has been

extended to store many types of additional information.

The Internet Engineering Task Force (IETF) has

published several Requests for Comments (RFCs) related

to DNS over the years. Some of the most important ones

are RFC 1034: Domain Names—Concepts and Facilities,

RFC 1035: Domain Names—Implementation and

Specification, and RFC 1123: Requirements for Internet

Hosts—Application and Support.

NETWORK ADDRESS TRANSLATION

(NAT)

When Internet Protocol (IP) was created, very few

people, if any, were expecting it to support a global

network of billions of interconnected devices. As

discussed in earlier chapters, IPv4 addresses are 32 bits

long, which means they can uniquely address a bit more

than 4 billion endpoints. This number was fine and out

of reach for a long time, but as the number of endpoints

connecting to the Internet grew exponentially, it was

clear that 4 billion addresses would not be enough to

uniquely identify all the connected devices. At that point,

work started for a new version of IP, IPv6, which defines

128-bit addresses and is able to uniquely identify trillions

of endpoints. At the same time, it was clear that an

overnight switchover from one IP version to another

would be an impossible feat on the Internet, so several

temporary solutions were proposed to ease the transition

and extend the life of the IPv4-based Internet.

Network Address Translation (NAT) is one of the

solutions to preserve the dwindling number of public

IPv4 addresses. NAT reuses private IPv4 address blocks

in internal networks and translates those addresses into

public and unique IPv4 addresses at the borders of the

internal networks. RFC 1918: Address Allocation for

Private Internets declared a set of subnets private and

unroutable on the global Internet. The subnets

10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 are

extensively used in all private networks in the world,

from enterprise networks to small office/home office

networks. All other IPv4 addresses are public and

routable on the Internet, meaning they uniquely identify

endpoints on the network.

NAT is mostly used to translate between private RFC

1918 subnets and public IPv4 subnets. This translation

happens at the exit points from the private networks,

which in most cases are firewalls or border routers. NAT

can also be used to translate between private and private

networks. In the case of mergers and acquisitions, it is

possible that the enterprise that was acquired uses the

same private IPv4 subnets as the acquiring company. In

order to be able to exchange traffic between these

networks that are addressed with the same IP addresses,

NAT can be used to perform address translation.

Basically, whenever an IP address needs to be translated

into another address, NAT can be used.

NAT is an IETF standard described in RFC 1631: The IP

Network Address Translator (NAT). A large number of

Cisco and third-party routers and firewalls support NAT.

The devices that perform IP address translations are

usually situated and route data traffic between the

internal network and the outside world or the public

Internet. During the NAT configuration phase, an

internal subnet or a set of subnets is defined as being

internal, or “inside”; these are usually the private IP

subnets used internally in the enterprise. As a second

step in the configuration process, single public IP

address or an external, or “outside,” pool of IP addresses

are defined. With this information, the border device can

perform IP address translation between the internal and

external worlds. Several types of NAT are available:

Static NAT (static NAT): Static NAT defines a one-to-one mapping

between the internal IP address and its public IP address

correspondent.

Dynamic NAT (dynamic NAT): With dynamic NAT, the internal

subnets that are permitted to have outside access are mapped to a pool

of public IP addresses. The pool of public IP addresses is generally

smaller than the sum of all the internal subnets. This is usually the case

in enterprise networks, where public IPv4 addresses are scarce and

expensive, and a one-to-one mapping of internal to external subnets is

not feasible. Reusing the pool of public IP addresses is possible as not

all internal clients will access the outside world at the same time.

Port Address Translation (PAT or overloading): PAT takes the dynamic

NAT concept to the extreme and translates all the internal clients to one

public IP address, using TCP and UDP ports to distinguish the data

traffic generated by different clients. This concept is explained in more

detail later in this chapter.

The type of NAT used in a particular situation depends

on the number of public IP addresses defined and how

the translation process is implemented.

In order to illustrate how NAT works, let’s assume that a

client connected to an enterprise network uses private

IPv4 addressing. As the client generates data traffic and

tries to connect to the Internet, the traffic makes its way

to the enterprise border device. The border device looks

up the destination of the traffic and the NAT

configuration. If the client IP address is part of the

internal subnets that have to be translated, it creates an

entry in its NAT table with the source and destination IP

addresses, it changes the source IP address of the packet

from the internal private IP address to the public IP

address, and it forwards the packet toward its

destination. As the data traffic is received at the

destination, the destination node is unaware that the

traffic received went through the NAT process. The IP

addresses in the response traffic are swapped, and as the

data traffic is being received by the border device, a

lookup in the NAT table is done for the entry that was

created as the traffic was exiting the network. The entry

is matched, and the translation is done again—but this

time in the reverse order, from the public IP address

back to the private IP address of the client—and the

traffic is routed back to the original source.

With PAT, the same type of table that keeps track of

private to public translations and vice versa is created on

the border device—but in this case TCP and UDP ports

are also taken into account. For example, if the client

generates web traffic and is trying to reach a web server

on the Internet, the randomly generated TCP source port

and the destination TCP port 443 for HTTPS are also

included in the network translation table. In this way, a

large number of clients—up to theoretically 65,535 for

TCP and 65,535 for UDP traffic—can be translated to one

public IP address. Figure 18-4 illustrates PAT, which is

also called overloading because many internal private IP

addresses are translated to only one public IP address.

Figure 18-4 Port Address Translation

Some of the benefits of NAT are as follows:

Reduced costs for renting public IPv4 addresses: With dynamic

NAT and especially with PAT, a large number of private internal

endpoints can be hidden behind a much smaller number of public IP

addresses. Since public IPv4 addresses have become a rare commodity,

there is a price for each public IPv4 address used. Large cost savings are

possible by using a smaller number of public addresses.

Conserving public IPv4 address space: The Internet would not

have witnessed the exponential growth of the past few decades without

NAT. Extensively reusing RFC 1918 private IP addresses for internal

networks helped slow the depletion of IPv4 address space.

Additional security due to hiding the addressing for internal

networks: Having a whole network hidden behind one or a pool of

public IPv4 addresses thwarts network reconnaissance attacks and

increases the defense capabilities of the network.

Flexibility and cost savings when changing ISP connectivity:

In cases in which external network connectivity needs to be changed

and migrations to new ISPs are required, configuration changes need to

be performed only on the network border devices, but the rest of the

internal network does not need to be re-addressed. This results in

massive cost savings, especially in large enterprise networks.

Although the advantages of NAT, far outweigh the

disadvantages in most cases, there are some

disadvantages, including the following:

Loss of end-to-end functionality: Some applications, especially for

real-time voice and video signaling, are sensitive to changes in IP

header addressing. While establishing these types of real-time voice

and video sessions, headers exchanged at the application layer contain

information pertaining to the private non-globally routable IP

addresses of the endpoints. When using NAT in these cases, the IP

addresses in the Layer 3 headers differ from the IP addresses contained

in the application layer headers. This results in an inability to establish

end-to-end voice and video calls.

Loss of end-to-end traceability and visibility: Troubleshooting

end-to-end connectivity issues is especially challenging in networks

that use NAT.

Degradation of network performance: NAT operations on border

devices are usually not resource intensive, and several mechanisms

have been implemented to make this impact even lower. Still, a border

device needs to take an additional step before forwarding the data

traffic toward its destination, and that means additional delay and

consumption of memory and CPU resources.

NAT is extensively used in networks that use IPv4

addressing. One of the requirements for IPv6 was to

restore end-to-end connectivity between all endpoints on

the network, so NAT is not popular in IPv6 networks.

Simple Network Management Protocol (SNMP)

Simple Network Management Protocol (SNMP) is an

application layer protocol used for monitoring and

configuring devices. It was originally developed in the

1980s, and the IETF has published several RFCs

covering SNMP since then. As networks were becoming

larger and more complicated in those days, a need to be

able to remotely monitor and manage devices arose.

Following are several versions of SNMP that have been

released through the years:

SNMP version 1 (SNMPv1)

SNMP version 2 (SNMPv2)

SNMP version 2c (SNMPv2c)

SNMP version 3 (SNMPv3)

While versions 1 and 2 of SNMP are rarely used

anymore, versions 2c and 3 are extensively used in

production environments. SNMPv2 adds 64-bit counter

support and includes additional protocol operations.

With SNMPv3, the focus is on security, so additional

features like authentication, encryption, and message

integrity were added to the protocol specification.

The following are some of the advantages of SNMP:

It provides a single framework for monitoring many different kinds of

devices.

It is based on open standards documented in IETF RFCs.

It is easily extensible.

There are also disadvantages with SNMP, including the

following:

The lack of writable MIBs (Management Information Bases) leads to

poor configuration capabilities. SNMP is rarely used for configuration

purposes.

The lack of atomic transactions makes rollbacks to previous states

difficult.

SNMP is slow for monitoring purposes when large amounts of

operational data need to be retrieved.

It is CPU and memory resource intensive when large amounts of

performance metrics are retrieved.

Even though SNMP was originally designed to support

both monitoring and configuration capabilities,

historically only the monitoring capabilities were used.

The SNMP specification defines the following three

components:

Managed devices

SNMP agent

SNMP manager

Managed devices are the devices that are being

monitored and managed through SNMP. They

implement an SNMP interface through which the SNMP

manager monitors and controls the device. The SNMP

agent is the software component that runs on the

managed device and translates between the local

management information on the device and the SNMP

version of that information. The SNMP manager, also

called the Network Management Station (NMS), is the

application that monitors and controls the managed

devices through the SNMP agent. The SNMP manager

offers a monitoring and management interface to

network and system administrators. The SNMP

components and their interactions are illustrated in

Figure 18-5.

Figure 18-5 SNMP Components

The SNMP agent listens on UDP port 161 for requests

from the SNMP manager. SNMP also supports

notifications, which are SNMP messages that are

generated on the managed device when significant

events take place. Through notifications, the SNMP

agent notifies the SNMP manager about these critical

events. The NMS listens for these notifications on UDP

port 162. SNMP data structures that facilitate the

exchange of information between the SNMP agent and

the NMS are organized as a list of data objects called a

Management Information Base (MIB). A MIB can be

thought of as a map of all components of a device that

are being managed by SNMP. In order to be able to

monitor devices, the NMS must compile the MIB file for

each device type in the network. Having the appropriate

MIB, the SNMP agent and manager can exchange a wide

range of information.

A MIB is organized as a tree-like structure with unique

variables represented as leaves. Each variable in the tree

is uniquely identified by an Object Identifier (OID).

Operational data such as CPU temperature, fan speed,

and outbound packets on an interface are all represented

through OID values. In order for the NMS to obtain any

device’s operational metric, it needs to send an SNMP

GET packet that includes OID values for each metric of

interest. The SNMP agent receives the packet and looks

up the OIDs in the MIB, and if the device implements the

requested information, it returns the information to the

NMS.

Several types of SNMP messages are used to

communicate between the SNMP manager and the

agent:

GetRequest: This is the type of message used by the NMS to request

the value of a variable or list of variables. The agent returns the request

information in a Response message.

SetRequest: The SNMP manager uses this message to request a

change to a variable or a list of variables. The agent returns a Response

message containing the new values for the variables.

GetNextRequest: The SNMP manager uses this message to discover

available variables and their values. This is a common operation used to

“walk” the entire MIB of an agent. The agent returns a Response

message that contains the requested information.

GetBulkRequest: This optimization of the GetNextRequest message,

which was introduced with SNMPv2, contains multiple iterations of the

GetNextRequest call.

Response: The SNMP agent generates this message, which contains

the information the SNMP manager requested.

Trap: The SNMP agent generates this notification message to signal to

the SNMP manager when critical events take place on the managed

device.

InformRequest: The SNMP agent sends this acknowledged

notification to the SNMP manager. Keep in mind that SNMP runs over

UDP, which is a connectionless protocol, and packets might get lost

during transmission. A rudimentary acknowledgment mechanism is

implemented through InformRequest messages.

SNMP community names are used to establish trust

between managers and agents. When community names

are configured, the SNMP requests from the manager are

considered valid if the community name matches the one

configured on the managed device. If the names match,

all agent-based MIB variables are made accessible to the

manager. If they do not match, SNMP drops the request.

Network Time Protocol (NTP)

Accurately keeping track of time is critical in today’s IT

infrastructure. As IT infrastructure becomes more and

more ingrained in business processes and success, every

second of downtime when the infrastructure is not

available translates into loss of revenue for the business.

In extreme cases, this can lead to loss of customers and

bankruptcy. Service-level agreements (SLAs) are

contracts between providers and consumers of

infrastructure. As an example, stringent SLA contracts

require 99.999% uptime, which in the case of Internet

service providers translates into no more than 5 minutes

of downtime per year. It is of critical importance to make

sure that there is a consistent, uniform, and correct view

of time on all the devices in a network. Time is

fundamental when measuring SLAs and enforcing

contracts. Inaccurate time can lead to service

disruptions. As a simple example, with web traffic,

HTTPS TLS connections will not even be established if

the time on the web server or the client is not accurate.

The system clock on each device is the heart of the time

service. The system clock runs from the second the

operating system starts; it keeps track of the date and

time. The system clock can be set to update from

different time sources and can be used to distribute time

to other devices. Network Time Protocol (NTP) enables a

device to update its clock from a trusted network time

source and serve time to other devices, enabling groups

of devices to be time synchronized. Most devices contain

battery-powered clocks that keep track of date and time

across restarts and power outages.

The main role of NTP is to synchronize the time on a

network of devices. It was developed by IETF, and the

latest version of the protocol, version 4, is defined in RFC

5905: Network Time Protocol Version 4: Protocol and

Algorithms Specification. NTP uses UDP at the transport

layer, and port 123 is reserved for it. NTP works based on

a client/server architecture, with NTP servers providing

the time to clients. Authoritative time sources are servers

that have attached radio clocks or atomic clocks, making

them extremely accurate. NTP has the role of

distributing time to all the devices connected to the

network. Multiple NTP servers can coexist at the same

time on the same subnet, and clients can use all of them

for time synchronization. NTP clients poll the time

servers at intervals managed dynamically by conditions

on the network such as latency and jitter. One NTP

transaction per minute is sufficient to synchronize time

between two machines.

The concept of strata is used in NTP to describe how

many hops or devices away a client is from an

authoritative time source. NTP servers that are most

authoritative and are directly connected to very accurate

time sources are in stratum 1. A stratum 2 time server

receives time from a stratum 1 server, and so on. When a

client receives time from different NTP servers, a lower-

stratum server is chosen as the most trusted source

unless there is a big time difference between the lower-

stratum server and all the other servers.

There are two ways communication between NTP clients

and servers takes place: IT can be statically configured or

can occur through broadcast messages. You can

manually configure NTP clients to establish a connection

and to associate and solicit time updates from NTP

servers by simply statically configuring the hostname or

the IP addresses of the servers. In local-area networks

within the same subnet, NTP can be configured to use

broadcast messages instead. Configuration in this

situation is simpler, as each device can either be

configured to send or receive broadcast messages. With

broadcast NTP messages, there is a slight loss of

accuracy since the flow of information is only one way.

Since time accuracy is critical in today’s infrastructure, it

is recommended to implement all security features that

come with NTP. Two NTP security features are most

commonly used:

An encrypted authentication mechanism between clients and servers

should always be enabled.

NTP associations should be limited to only trusted servers through

access control lists.

In most situations, it is recommended to have at least

three higher-stratum NTP servers configured for each

network. A large number of public NTP servers can be

used for these purposes.

LAYER 2 VERSUS LAYER 3 NETWORK

DIAGRAMS

Network diagrams are a critical component in the

documentation process for any network. Just as software

developers document their code for easier maintenance

and sharing, network engineers document networks by

building network diagrams. It is very important to have

accurate network diagrams, especially when

troubleshooting network issues. The network has

become a business differentiator for all companies, and

each second of downtime costs money. Having up-to-

date network diagrams makes it much easier and faster

to troubleshoot network issues and decrease the MTTR

(mean time to resolution) when problems arise.

Several different types of network diagrams can be

created, depending on what needs to be emphasized and

documented. Layer 1 network diagrams can be used to

show physical connections, including how network

devices are connected and what type of cables (twisted

pair, fiber optics, and so on) are being used. These

diagrams can also show patch panel port connectivity

and availability and everything else that is in the confines

of physical connectivity.

Layer 2 network diagrams contain information related to

all Layer 2 devices, protocols, and connectivity in a

network. Such a diagram shows all the switches in the

network and how they are interconnected, including how

the ports on one switch connect to the ports on another

switch, which VLANs are configured on each switch,

which ports are configured as trunks and what VLANs

are allowed on them, which ports are configured as port

channels, and any other Layer 2 information. Depending

on the size of the network, a Layer 2 diagram can be split

into multiple documents.

A Layer 3 network diagram captures all the network

information available at Layer 3. Such a diagram should

show all devices that operate at Layer 3—routers,

firewalls, load balancers, and so on—and how they are

interconnected. Information about IP addressing and

subnets, routing protocols, first-hop redundancy

protocols (such as HSRP, VRRP, and GLBP), Layer 3

port channels, and Internet connectivity should also be

included at a minimum. More information can also be

included in these diagrams but care should be taken to

avoid including too much information or dynamic

information that is bound to change often.

Several software tools are available for creating network

diagrams. You can create network diagrams manually by

using tools such as Microsoft Visio and draw.io, or you

can have them created automatically with controller-

based solutions such as Cisco DNA Center. With Cisco

DNA Center, the controller automatically discovers all

the devices in the network and how they are

interconnected, and it uses this information to build

network diagrams, topologies, and databases.

It is a good idea to store network diagrams in version

control systems such as Git. Networks are dynamic and

evolve over time, and it is important to capture this

evolution in the diagrams. Git offers a proven solution to

storing and keeping track of changes in documents, so it

is ideal for storing network diagram versions. With

infrastructure as code and solutions such as Cisco VIRL,

network diagrams and topologies are stored as YAML

files and can be used as part of CI/CD infrastructure

configuration automation pipelines.

TROUBLESHOOTING APPLICATION

CONNECTIVITY ISSUES

Applications are becoming more and more complicated,

with many moving components that need to

communicate with each other over the network. With the

advent of the microservices architecture for applications

and the ubiquity of APIs, the network is critical to the

functionality of applications. It is important to know how

to troubleshoot connectivity issues and how they might

affect the performance of applications.

Network connectivity may not function as expected for a

variety of reasons. Whenever an application or a website

or any target destination that is being accessed over a

network is not behaving as expected, the network takes

the blame. We will see next that while the network might

be the culprit in some instances, there are many other

reasons applications stop responding as expected.

Network troubleshooting usually follows the OSI layers,

discussed in Chapter 16, “Network Fundamentals.” It can

occur from top to bottom, beginning at the application

layer and going down the layers all the way to the

physical layer, or it can occur from bottom to top. This

section looks at a typical bottom-to-top troubleshooting

session that starts from the physical layer and goes up

the stack toward the application layer. The

troubleshooting steps discussed here can also be

followed in the reverse order, if desired.

First and foremost, it is important to know how an

endpoint device connects to the network at the physical

layer: with a wired or wireless connection. If the

connection to the network is wired through an Ethernet

cable, the network interface card should come online,

and electrical signals should be exchanged with the

switch port to which the NIC is connected. Depending on

the operating system of the client connecting to the

network, the status of the connection will show as solid

green or will display as “enabled” or “connected” in the

network settings. If the NIC status shows as connected,

the physical layer is working as expected, and the

troubleshooting process can proceed to the next layer. If

the NIC doesn’t show as connected or enabled, there

could be several causes, including the following:

Misconfigured or disabled switch port

Defective network cable

Defective wall network port

Incorrect cabling in the patch panel

Defective network interface card

Troubleshooting at the physical layer revolves around

making sure there is an uninterrupted physical

connection between the client and the switch port to

which it connects.

If the connection to the network is wireless, it is

important to ensure that the wireless network interface

card is turned on and that it can send and receive

wireless signals to and from the nearest wireless access

point. Being within the service range of a wireless access

point is also important, and usually the closer the client

is to the access point, the better network performance it

should experience.

Troubleshooting at the data link layer, or Layer 2, means

making sure the network client and the switch are able to

learn MAC addresses from each other. On most

operating systems, the client can check the MAC address

table with the arp command, and on most Cisco

switches, the client can check the MAC address table

with the show mac address-table CLI command. If

the ARP table on both the client and the switch get

dynamically populated with MAC address information, it

means the data link layer is functioning as expected.

Some of the issues that cause the data link layer not to

function as expected are as follows:

Misconfigured switch port

Layer 2 access control lists

Misconfigured Spanning Tree Protocol

Missing or misconfigured VLANs

At Layer 3 (the Internet layer), IP connectivity and

reachability have to work. The network client should be

configured with the correct IP address, subnet mask, and

default gateway. This is usually done using DHCP

servers, and in rare cases it may be manually configured.

Built-in operating system tools such as ifconfig and

ping can be used at this layer to help with

troubleshooting. ifconfig (or ipconfig on Microsoft

Windows) is a network utility that retrieves and can

modify the configuration and status of all network

interfaces present on the client endpoint. ping is another

popular network tool that is extensively used to verify

endpoint IP reachability. If the destination of the client

data traffic is in a different subnet than the client is

connected to, that means that the traffic has to be routed

through the default gateway of the client subnet. Layer 3

connectivity between data traffic source and destination

can be checked using the ping command. If IP

connectivity is verified end to end between source and

destination, troubleshooting can proceed to the next

step. If not, you need to look for the problems that can

cause connectivity issues at Layer 3, including these:

Misconfigured IP information (IP address, subnet mask, default

gateway) on the client device

Layer 3 access control lists that blocks data traffic

Routing protocol issues causing black-holing or incorrect routing of

traffic

Troubleshooting at the transport layer means making

sure that the network clients can access the TCP or UDP

ports on which the destination applications are running.

For example, in the case of web traffic, it is important to

verify that the client can connect to TCP ports 80 (HTTP)

and/or 443 (HTTPS) on the web server. In some cases,

web servers are configured to listen on esoteric ports

such as 8080, so it is important to know the correct port

on which the destination application is running.

Networking tools such as curl and custom telnet

commands specifying the application port can be used to

ensure that transport layer connectivity can be

established end to end between the source and

destination. If a transport layer connection cannot be

established, you need to look for issues such as these:

Firewall access control lists blocking data traffic based on TCP and UDP

ports

Misconfigured applications and listening ports

Misconfigured load balancers

Presence of proxy servers that are intercepting the traffic and denying

connectivity

Misconfigured PAT

Other common problems that affect application

connectivity are DNS related. As discussed earlier in this

chapter, DNS plays a critical role in resolving domain

names to IP addresses. If DNS is malfunctioning for

some reason, end-to-end connectivity is impacted.

Network tools such as nslookup can be used to

troubleshoot DNS functionality. The following problems

commonly cause DNS issues:

Misconfigured DNS resolver on the network client

Wrong hostname specified

Invalid DNS server configuration

Missing or incorrect DNS entry

Even if end-to-end connectivity at the transport layer is

verified, there can still be issues on the network that

cause connections to applications to fail. These issues are

usually rather difficult to discover and troubleshoot and

are related to data traffic load and network delay. The

difficulty with these issues comes from the fact that they

are difficult to reproduce and can be temporary in

nature, caused by short spikes in network traffic.

Networking tools such as iperf can be used to

dynamically generate traffic and perform load stress on

the network to ensure that large amounts of data can be

transported between the source and destination.

Implementing quality of service (QoS) throughout the

network can help with these problems. With QoS, traffic

is categorized in different buckets, and each bucket gets

separate network treatment. For example, you can

classify traffic such as voice and video as real-time traffic

by changing QoS header fields in the Layer 2 data frames

and Layer 3 packets so that when switches and routers

process this type of traffic, they give it a higher priority

and guaranteed bandwidth, if necessary.

At the application layer, network tools such as tcpdump

can be used to capture actual data traffic received on any

of the network interfaces of either the source device or

the destination device. Comparing between sent and

received data can help in troubleshooting connectivity

issues and determining the root cause of a problem. Slow

or no responses at the application layer could indicate an

overloaded backend database, misconfigured load

balancer, or faulty code introduced through new

application features.

EXAM PREPARATION TASKS

As mentioned in the section “How to Use This Book” in

the Introduction, you have a couple of choices for exam

preparation: the exercises here, Chapter 19, “Final

Preparation,” and the exam simulation questions on the

companion website.

REVIEW ALL KEY TOPICS

Review the most important topics in this chapter, noted

with the Key Topic icon in the outer margin of the page.

Table 18-2 lists these key topics and the page number on

which each is found.

Table 18-2 Key Topics

Key Topic ElementDescriptionPage Number

List Benefits of DHCP 5

3

5

List Four phases of DHCP operations 5

3

6

List DNS resolution process components 5

3

8

Parag

raph

User Datagram Protocol (UDP) 5

4

0

Parag

raph

Network Address Translation (NAT) 5

4

0

Parag IETF NAT, described in RFC 1631 5

raph 4

0

Parag

raph

Port Address Translation (PAT) 5

4

1

List Advantages of SNMP 5

4

3

Parag

raph

SNMP agent listening for requests from the

SNMP manager

5

4

4

List SNMP message types 5

4

5

Parag

raph

Main role of NTP 5

4

6

Parag

raph

Two forms of communication between NTP

clients and servers

5

4

6

Parag

raph

Layer 2 network diagrams 5

4

7

Parag

raph

Layer 3 network diagrams 5

4

7

Parag

raph

Network troubleshooting 5

4

8

Parag

raph

Troubleshooting at the data link layer 5

4

8

Parag

raph

Troubleshooting at the Internet layer 5

4

9

Parag

raph

Troubleshooting at the transport layer 5

4

9

Parag

raph

Network issues with application connection

failures

5

5

0

DEFINE KEY TERMS

Define the following key terms from this chapter and

check your answers in the glossary:

Dynamic Host Configuration Protocol (DHCP)

Domain Name System (DNS)

top-level domain (TLD) name server

Network Address Translation (NAT)

Port Address Translation (PAT)

Simple Network Management Protocol (SNMP)

Network Management Station (NMS)

Management Information Base (MIB)

Object Identifier (OID)

Network Time Protocol (NTP)

Chapter 19

Final Preparation

The first 18 chapters of this book cover the technologies,

protocols, design concepts, and considerations required

to be prepared to pass the 200-901 DevNet Associate

DEVASC exam. While those chapters supply the detailed

information, most people need more preparation than

simply reading the first 18 chapters of this book. This

chapter provides a set of tools and a study plan to help

you complete your preparation for the exam.

This short chapter has three main sections. The first

section helps you get ready to take the exam, and the

second section lists the exam preparation tools useful at

this point in the study process. The third section

provides a suggested study plan you can follow, now that

you have completed all the earlier chapters in this book.

GETTING READY

Here are some important tips to keep in mind to ensure

that you are ready for this rewarding exam:

Build and use a study tracker: Consider using the exam objectives

shown in this chapter to build a study tracker for yourself. Such a

tracker can help ensure that you have not missed anything and that you

are confident for your exam. As a matter of fact, this book offers a

sample Study Planner as a website supplement.

Think about your time budget for questions on the exam:

When you do the math, you will see that, on average, you have one

minute per question. While this does not sound like a lot of time, keep

in mind that many of the questions will be very straightforward, and

you will take 15 to 30 seconds on those. This leaves you extra time for

other questions on the exam.

Watch the clock: Check in on the time remaining periodically as you

are taking the exam. You might even find that you can slow down pretty

dramatically if you have built up a nice block of extra time.

Get some earplugs: The testing center might provide earplugs but

get some just in case and bring them along. There might be other test

takers in the center with you, and you do not want to be distracted by

their screams. I personally have no issue blocking out the sounds

around me, so I never worry about this, but I know it is an issue for

some.

Plan your travel time: Give yourself extra time to find the center and

get checked in. Be sure to arrive early. As you test more at a particular

center, you can certainly start cutting it closer time-wise.

Get rest: Most students report that getting plenty of rest the night

before the exam boosts their success. All-night cram sessions are not

typically successful.

Bring in valuables but get ready to lock them up: The testing

center will take your phone, your smartwatch, your wallet, and other

such items and will provide a secure place for them.

Take notes: You will be given note-taking implements and should not

be afraid to use them. I always jot down any questions I struggle with

on the exam. I then memorize them at the end of the test by reading my

notes over and over again. I always make sure I have a pen and paper in

the car, and I write down the issues in my car just after the exam. When

I get home—with a pass or fail—I research those items!

TOOLS FOR FINAL PREPARATION

This section lists some information about the available

tools and how to access the tools.

Pearson Cert Practice Test Engine and Questions on

the Website

Register this book to get access to the Pearson IT

Certification test engine (software that displays and

grades a set of exam-realistic multiple-choice questions).

Using the Pearson Cert Practice Test Engine, you can

either study by going through the questions in Study

mode or take a simulated (timed) DevNet Associate

DEVASC exam.

The Pearson Test Prep practice test software comes with

two full practice exams. These practice tests are available

to you either online or as an offline Windows application.

To access the practice exams that were developed with

this book, please see the instructions in the card inserted

in the sleeve in the back of the book. This card includes a

unique access code that enables you to activate your

exams in the Pearson Test Prep software.

Accessing the Pearson Test Prep So�ware Online

The online version of this software can be used on any

device with a browser and connectivity to the Internet,

including desktop machines, tablets, and smartphones.

To start using your practice exams online, simply follow

these steps:

Step 1. Go to http://www.PearsonTestPrep.com.

Step 2. Select Pearson IT Certification as your

product group.

Step 3. Enter your email and password for your

account. If you don’t have an account on

PearsonITCertification.com or CiscoPress.com,

you need to establish one by going to

PearsonITCertification.com/join.

Step 4. In the My Products tab, click the Activate

New Product button.

Step 5. Enter the access code printed on the insert

card in the back of your book to activate your

product.

Step 6. The product will now be listed in your My

Products page. Click the Exams button to

launch the exam settings screen and start your

exam.

Accessing the Pearson Test Prep So�ware Offline

If you wish to study offline, you can download and install

the Windows version of the Pearson Test Prep software.

You can find a download link for this software on the

book’s companion website, or you can just enter this link

in your browser:

http://www.pearsontestprep.com/
http://pearsonitcertification.com/
http://ciscopress.com/
http://pearsonitcertification.com/join

http://www.pearsonitcertification.com/content/downl

oads/pcpt/engine.zip

To access the book’s companion website and the

software, simply follow these steps:

Step 1. Register your book by going to

PearsonITCertification.com/register and

entering the ISBN 9780136642961.

Step 2. Respond to the challenge questions.

Step 3. Go to your account page and select the

Registered Products tab.

Step 4. Click on the Access Bonus Content link under

the product listing.

Step 5. Click the Install Pearson Test Prep Desktop

Version link in the Practice Exams section of

the page to download the software.

Step 6. When the software finishes downloading,

unzip all the files onto your computer.

Step 7. Double-click the application file to start the

installation and follow the onscreen

instructions to complete the registration.

Step 8. When the installation is complete, launch the

application and click the Activate Exam button

on the My Products tab.

Step 9. Click the Activate a Product button in the

Activate Product Wizard.

Step 10. Enter the unique access code from the card in

the sleeve in the back of your book and click the

Activate button.

Step 11. Click Next and then click the Finish button to

download the exam data to your application.

Step 12. You can now start using the practice exams by

selecting the product and clicking the Open

Exam button to open the exam settings screen.

http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip
http://pearsonitcertification.com/register

Note that the offline and online versions sync together,

so saved exams and grade results recorded on one

version will be available to you in the other version as

well.

Customizing Your Exams

Once you are in the exam settings screen, you can choose

to take exams in one of three modes:

Study mode

Practice Exam mode

Flash Card mode

Study mode allows you to fully customize your exam and

review answers as you are taking the exam. This is

typically the mode you use first to assess your knowledge

and identify information gaps. Practice Exam mode locks

certain customization options in order to present a

realistic exam experience. Use this mode when you are

preparing to test your exam readiness. Flash Card mode

strips out the answers and presents you with only the

question stem. This mode is great for late-stage

preparation, when you really want to challenge yourself

to provide answers without the benefit of seeing

multiple-choice options. This mode will not provide the

detailed score reports that the other two modes provide,

so you should not use it if you are trying to identify

knowledge gaps.

In addition to these three modes, you will be able to

select the source of your questions. You can choose to

take exams that cover all of the chapters, or you can

narrow your selection to just a single chapter or the

chapters that make up specific parts in the book. All

chapters are selected by default. If you want to narrow

your focus to individual chapters, simply deselect all the

chapters and then select only those on which you wish to

focus in the Objectives area.

You can also select the exam banks on which to focus.

Each exam bank comes complete with a full exam of

questions that cover topics in every chapter. Two exams

are available to you online as part of the print book, as

well as two additional exams of unique questions. You

can have the test engine serve up exams from all four

banks or just from one individual bank by selecting the

desired banks in the exam bank area.

There are several other customizations you can make to

your exam from the exam settings screen, such as the

time allowed for taking the exam, the number of

questions served up, whether to randomize questions

and answers, whether to show the number of correct

answers for multiple-answer questions, and whether to

serve up only specific types of questions. You can also

create custom test banks by selecting only questions that

you have marked or questions on which you have added

notes.

Updating Your Exams

If you are using the online version of the Pearson Test

Prep software, you should always have access to the

latest version of the software as well as the exam data. If

you are using the Windows desktop version, every time

you launch the software, it will check to see if there are

any updates to your exam data and automatically

download any changes made since the last time you used

the software. This requires that you are connected to the

Internet at the time you launch the software.

Sometimes, due to a number of factors, the exam data

might not fully download when you activate your exam.

If you find that figures or exhibits are missing, you might

need to manually update your exams.

To update a particular exam you have already activated

and downloaded, simply select the Tools tab and select

the Update Products button. Again, this is only an

issue with the desktop Windows application.

If you wish to check for updates to the Windows desktop

version of the Pearson Test Prep exam engine software,

simply select the Tools tab and click the Update

Application button. This will ensure you are running

the latest version of the software engine.

Premium Edition

In addition to the free practice exam provided on the

website, you can purchase additional exams with

expanded functionality directly from Pearson IT

Certification. The Premium Edition of this title contains

an additional two full practice exams and an eBook (in

both PDF and ePub format). In addition, the Premium

Edition title also has remediation for each question to

the specific part of the eBook that relates to that

question.

Because you have purchased the print version of this

title, you can purchase the Premium Edition at a deep

discount. There is a coupon code in the book sleeve that

contains a one-time-use code and instructions for where

you can purchase the Premium Edition.

To view the Premium Edition product page, go to

www.informit.com/title/9780136642985.

Chapter-Ending Review Tools

Chapters 2 through 18 include several features in the

“Exam Preparation Tasks” section at the end of the

chapter. You might have already worked through these in

each chapter. It can also be useful to use these tools

again as you make your final preparations for the exam.

SUGGESTED PLAN FOR FINAL

REVIEW/STUDY

http://www.informit.com/title/9780136642985

This section lists a suggested study plan from the point at

which you finish reading through Chapter 18 until you

take the 200-901 DevNet Associate DEVASC exam. You

can ignore this plan, use it as is, or just take suggestions

from it.

The plan involves two steps:

Step 1. Review key topics and “Do I Know This

Already?” (DIKTA?) questions: You can

use the table that lists the key topics in each

chapter or just flip the pages, looking for key

topics. Also, reviewing the DIKTA? questions

from the beginning of the chapter can be helpful

for review.

Step 2. Use the Pearson Cert Practice Test

engine to practice: The Pearson Cert Practice

Test engine allows you to study using a bank of

unique exam-realistic questions available only

with this book.

SUMMARY

The tools and suggestions listed in this chapter have

been designed with one goal in mind: to help you develop

the skills required to pass the 200-901 DevNet Associate

DEVASC exam. This book has been developed from the

beginning to not just tell you the facts but to also help

you learn how to apply the facts. No matter what your

experience level leading up to when you take the exam, it

is our hope that the broad range of preparation tools, and

even the structure of the book, will help you pass the

exam with ease. We hope you do well on the exam.

Appendix A

Answers to the “Do I Know This

Already?” Quiz Questions

CHAPTER 1

1. A, B, D. The five levels of Cisco accreditation are

Entry, Associate, Professional, Expert, and

Architect.

2. A, B, E. Highlighting skills to employers and

peers, increasing confidence, improving

credibility, providing value to employers,

providing a baseline of understanding, career

advancement, and increased salary are some of

the most common reasons candidates want to get

certified.

3. A, E. Only two types of exams are necessary to

obtain the DevNet Professional certification: the

Technology Core exam and a single concentration

exam.

4. A. A single exam is all that is required for the

new CCNA certification.

5. A, B, C, E. Cisco Automation Platform doesn’t

exist. The DevNet Automation Exchange is a

place on DevNet to download fully tested and

working use case–driven code-based examples.

CHAPTER 2

1. C. Waterfall is a linear and sequential process for

software development.

2. B. Agile is an implementation of the Lean

management philosophy for software

development.

3. A, B, D. Model-View-Controller is a software

design pattern used to create interactive

graphical web-centric applications. It can be

found in Django (a web app framework) as well

as many web applications that require support for

many types of clients.

4. A, C. The Observer pattern follows the

publisher/subscriber model, where a client

subscribes to the publisher and synchronizes its

configuration state. This is perfect for one-to-

many device configuration and management of

event handling in infrastructure components.

5. C. BASH stands for Bourne Again Shell.

6. B. env | more pipes the contents of your

environment variables to the more command

and allows for page breaks.

7. B. Software version control is also commonly

known as source code management.

8. D. Linus Torvalds, the father of Linux, created

Git.

9. B. The three main structures tracked by Git are

local workspace, index, and local repository.

10. D. To add a specific file to the Git index, you use

the command git add followed by the name of

the file you want to add.

11. A. One of the main benefits of conducting formal

code reviews is to help you the developer, create

higher-quality software.

CHAPTER 3

1. D. The correct command is python3 -m (for

module) venv myvenv (which can be whatever

you choose to name your virtual environment).

2. B, C. PyPI is a repository that holds thousands of

Python modules that you can import. To install it,

you can use python3 -m (module) pip install and

the name of the package you want. You can also

directly install it with the pip command.

3. B. PEP 8 is the style guide for Python syntax, and

it specifies four spaces for each block of code.

Tabs will work, and your editor may actually

convert them automatically for you, but it is a

good practice to follow the standard.

4. B. Comments are specified by the # or three

single quotes '''. The benefit of using the single

quotes is that you can write multiline text.

5. A, B. Lists and dictionaries are both mutable, or

changeable, data types. Integers and tuples must

be replaced and can’t be edited, which makes

them immutable.

6. B, D. You can create an empty dictionary object

by assigning the function dict() to a Python

object (in this example, a). You can insert

dictionary values as well by using braces, {}, and

key:value pairs that you assign to an object.

7. C. The input() function by default creates a

string data type.

8. D. The only one that is valid as is would be

print('''hello world'''). print(hello, world)

would be valid only if there were two variables

named hello and world; otherwise, it would

produce an error. Since you don’t know in this

case whether these variables exist, print('''hello

world''') is the correct answer.

9. D. All of the statements are correct regarding

how an If statement operates in Python.

10. A, D. The range() function in Python allows you

to set a range that is up to but not including the

number specified. If you want to increment to 10,

for example, you need to provide the number 11.

A range can also count up or down based on the

sign of the number provided.

CHAPTER 4

1. C. A function in Python uses the def keyword

followed by a function name and parentheses

with an optional argument inside.

2. D. Python has specific rules for variable names. A

variable cannot be named using reserved

keywords, such True, and must start with a letter

or an underscore but not a number.

3. B. A docstring is text that describes the purpose

and use of a Python function, and it is located on

the very next line after the function definition.

The docstring can be viewed with the help()

function in Python.

4. A, B. The key components of object-oriented

programming in Python are functions that can be

performed on a data structure and attributes that

are stored in an object.

5. A, B, C. The benefits of OOP are reusable code,

easy-to-follow code, and low coupling/high

cohesion between application components.

6. A, B. A Python class can be defined using the

keyword class, a name for the class, and

optionally a parent class to inherit attributes and

functions from.

7. C. A method is a function that you can perform

on an object. Methods are often defined in

classes. They can also make use of externally

defined functions as well.

8. B. Inheritance allows you to define a base class

and then define another class using the previous

class as a parent. The subsequent class includes

all the capabilities of the parent class and can add

to or override any attribute or method that needs

to be different.

9. D. The os module allows you to interact with the

file system and directory structure of the

operating system.

10. A. Cisco built pyATS and released it to open

source for testing Cisco infrastructure software.

CHAPTER 5

1. C. The end-of-line is the last character of a line of

text before the text wraps to the next line. This is

identified as \n or as EoF (end of file).

2. A. In order to open a file for writing, you need to

use the open() function and assign it to a file

handler variable—in this case, data. In addition,

you need to pass the name of the file and tell

Python that you want to allow write access to it

(using “w”).

3. C. Using the with open combo to the text.csv

file, you map it to the filehandle object. Map

csv_writer, which is just another Python object,

to the csv.writer(filehandle) function. Next,

you write your data to the CSV file by calling the

.writerow method.

4. B. The xmltodict module reads XML data.

5. A, C. To load a native JSON file into a Python

string object, you use loads(), which stands for

load string, and to convert a Python string into

native JSON, you use dump().

6. B. YAML stands for YAML Ain’t Markup

Language.

7. A. Error handling in Python can be conducted by

using a try-except-else-finally block.

8. C. finally is executed every time the code runs

through the try block. It is often used to clean up

variables or alert the user to a success or failure

event.

9. C. Test-driven development focuses on writing

code that allows a previously written test (that

naturally fails since no code was written) to

succeed.

10. A, D. An integration test is for API verification,

and a function test verifies that your application

meets the agreed-upon requirements of how it

should operate.

11. B. unittest.TestCase is a special class that is used

to access the unittest module’s capabilities.

CHAPTER 6

1. A. Southbound APIs send information down to

devices within the network.

2. A, B. Because asynchronous APIs do not have to

wait for replies, they reduce the time required to

process data.

3. A, D, E. SOURCE and PURGE do not exist. GET,

POST, PUT, PATCH, and DELETE are the HTTP

functions.

4. A. Both API keys and custom tokens are

commonly used within API authentication.

5. C. SOAP stands for Simple Object Access

Protocol.

6. A, B, D, E. The four main components of a SOAP

message are the envelope, header, body, and

fault. The fault is an optional component.

7. A. RPCs are blocked during the waiting periods.

Once a procedure is executed and the response is

sent from the server and received on the client,

the execution of the procedure continues. This is

similar to a synchronous API.

CHAPTER 7

1. A, B. In order to make a successful call—whether

it is a GET or a POST—a client must have the

URL, the method, an optional header, and an

optional body.

2. C. TRIGGER is not a defined HTTP method.

3. B, D. Webhooks are like callback functions for

the web; they handle notifications from the

server. Also, these notifications are triggered by

events.

4. B. The 3xxx HTTP codes are for redirection.

When a resource is moved, a server sends a 3xx

code.

5. B. Sequence diagrams model the interactions

between various objects in a single use case.

6. C. Code on demand provides flexibility to a client

by allowing it to download code. For example, a

client can download JavaScript and execute it.

7. D. Rate-limiting techniques help in limiting the

security surface, allowing various business

models (from freemium to paid), and improving

the efficiency of the entire system.

8. B. The processes of encoding and decoding JSON

are usually called serialization and

deserialization, respectively. Python dictionaries

(dicts) are used as standard data types for a lot of

Python request functions.

CHAPTER 8

1. A, B, C. A good SDK is easy to use, well

documented, integrated well with other SDKs,

has a minimal impact on hardware resources,

and provides value-added functionality.

2. A, B. Some of the advantages of using an SDK are

quicker integration, faster and more efficient

development, brand control, increased security,

and the availability of metrics.

3. A, B. The Cisco Meraki cloud platform provides

the following APIs to developers: Captive Portal

API, Scanning API, MV Sense Camera API, and

Dashboard API.

4. A. The Cisco Meraki Dashboard API

authentication header is called X-Cisco-Meraki-

API-Key.

5. A. The base URL for the Cisco Meraki Dashboard

API is https://api.meraki.com/api/v0.

6. C. Cisco DNA Center API authentication is based

on basic auth.

7. A. The timestamp parameter in Cisco DNA

Center APIs is in UNIX epoch time, in

milliseconds.

8. B. Cisco DNA Center allows customers to have

their non-Cisco devices managed by DNA Center

through a multivendor SDK. Cisco DNA Center

communicates with the third-party devices

through device packages. The device packages are

developed using the multivendor SDK and

implement southbound interfaces based on the

CLI, SNMP, or NETCONF.

9. C. Cisco vManage is a centralized network

management system that provides a GUI and

REST API interface to the SD-WAN fabric.

10. D. The information sent over the authentication

POST call is URL form encoded and contains the

username and password for the vManage

instance.

CHAPTER 9

1. B. The Cisco Nexus 9000 family of switches can

run in two separate modes of operation,

depending on the software that is loaded. The

first mode is called standalone (or NX-OS) mode,

which means the switches act like regular Layer

2/Layer 3 data center devices, which are usually

managed individually. The second mode is called

ACI mode, in which the Cisco Nexus devices are

https://api.meraki.com/api/v0

part of an ACI fabric and are managed in a

centralized fashion.

2. B. Bridge domains represent the Layer 2

forwarding domains within the fabric and define

the unique MAC address space and flooding

domain for broadcast, unknown unicast, and

multicast frames. Each bridge domain is

associated with only one VRF instance, but a VRF

instance can be associated with multiple bridge

domains.

3. A. APIC REST API username- and password-

based authentication uses a special URI that

includes aaaLogin, aaaLogout, and aaaRefresh as

the DN targets of a POST operation.

4. B. The service profile is a logical construct in

UCS Manager that contains the complete

configuration of a physical server. All the

elements of a server configuration—including

RAID levels, BIOS settings, firmware revisions

and settings, adapter settings, network and

storage settings, and data center connectivity—

are included in the service profile.

5. A. The Cisco UCS Python module for UCS

Manager is called ucsmsdk. It can be installed

using pip by issuing the following command at

the command prompt: pip install ucsmsdk.

6. C. Cisco UCS Manager provides a managed

object browser called Visore. Visore can be

accessed by navigating to https://<UCS-

Manager-IP>/visore.html.

7. D. A workflow is a series of tasks arranged to

automate a complex operation. The simplest

workflow contains a single task, but workflows

can contain any number of tasks.

8. B. Each REST API request must be associated

with an HTTP header called X-Cloupia-Request-

Key, with its value set to the REST API access

key.

9. C. The Intersight API is a programmatic interface

to the Management Information Model similar to

Cisco ACI and Cisco UCS Manager. Just like

Cisco ACI and Cisco UCS Manager, the Cisco

Intersight Management Information Model is

comprised of managed objects.

10. A. An Intersight API key is composed of a keyId

and a keySecret. The API client uses the API key

to cryptographically sign each HTTP request sent

to the Intersight web service.

CHAPTER 10

1. A, B, C. Cisco’s collaboration portfolio allows

video calling, integration of bots, Remote Expert

use cases.

2. A, B, D. Teams allows users, third-party apps,

and bots to interact with its APIs.

3. C. A JWT token is generated using the guest

issuer ID and secret.

4. A. Bots use webhooks to handle events.

5. B. Finesse has a rich API set, and the desktop

application is completely built using APIs.

6. B. The Finesse Notification Service sends XMPP

over BOSH messages to agents that are

subscribed to certain XMPP nodes.

7. A. SetMeeting lets you modify the attributes of a

meeting after the meeting has been created.

8. D. xAPI allows developers to programmatically

invoke commands and query the status of devices

that run collaboration endpoint software or

Webex RoomOS software.

9. A, C, D. xAPI does not work with FTP.

10. B. The Administration XML (AXL) API provides

a mechanism for inserting, retrieving, updating,

and removing data from Cisco Unified

Communications Manager.

CHAPTER 11

1. B. The Investigate API provides enrichment of

security events with intelligence to SIEM or other

security visibility tools.

2. C. The Umbrella Enforcement API involves an

HTTP POST request, which internally comprises

the Investigate API to check whether the domain

is safe.

3. A. The response header contains the token X-

auth-access-token, which needs to be used in

all subsequent API calls.

4. B. A named object is a reusable configuration

that associates a name with a value.

5. C. APTs allow bad actors to gain access to and

control endpoint resources over an extended

period to steal valuable data without being

detected.

6. B. ISE enables devices and users to be identified

and provisioned and enables policies to be

applied.

7. B. Threat Grid is a unified malware analysis and

threat intelligence platform.

8. B. IOCs are used to indicate that the system has

been affected by some form of malware.

CHAPTER 12

1. A, B, D. There are three standards-based

programmable interfaces for operating on the

YANG data models: NETCONF, RESTCONF, and

gRPC.

2. B. By default, the NETCONF server on the device

runs on TCP port 830 and uses the SSH process

for transport.

3. D. Messages sent with NETCONF use remote

procedure calls (RPCs), a standard framework for

clients to send a request to a server to perform an

action and return the results.

4. C. YANG defines a set of built-in types and has a

mechanism through which additional types can

be defined. There are more than 20 base types,

including binary, enumeration, and empty.

Percent is not a built-in data type.

5. C. The YANG header contains the namespace for

the module. The namespace is used to uniquely

identify each module on a system that

implements NETCONF.

6. B. One popular NETCONF client is the Python 3

ncclient library.

7. A, D. RESTCONF data is encoded with either

XML or JSON. Compared with NETCONF,

RESTCONF has added support for JSON

encoding.

8. A. The PATCH method provides a resource

patching mechanism. It is equivalent to the

NETCONF <edit-config> operation with

operation=merge.

9. C. Per the RESTCONF standard, devices

implementing the RESTCONF protocol should

expose a resource called /.well-known/host-meta

to enable discovery of root programmatically.

10. B, C. There are two types of telemetry

subscriptions. With a dynamic subscription, the

subscriber sends a request, usually via the ietf-

yangpush.yang data model. A configured

subscription is configured via the CLI,

NETCONF, or RESTCONF and is persistent

between reboots.

CHAPTER 13

1. D. A SaaS provider offers software for use and

maintains all aspects of it. You may be allowed to

customize parts of the software configuration, but

typically you are not allowed to change anything

regarding how the software functions.

2. B. IoT is heavily reliant on sensors detecting and

responding to events in real time. The edge

computing model allows for centralized control of

IoT sensors and real-time response because

computing capabilities are closer to the sensor.

3. A, C. Containers differ from virtual machines in

that they are lighter (fewer resources used in

storage), and they can start as fast as an

application (500 ms), whereas a virtual machine

requires the guest operating system to boot so

takes more time to start.

4. A. Serverless deployment is great for applications

that process data periodically but not designed

for continuous use.

5. D. The second way of DevOps is the feedback

loop for continuous improvement.

6. C. Continuous integration refers to the merging

of development work with a shared code base to

facilitate automatic testing and software building.

7. D. Docker natively uses the union file system for

container construction.

8. C. To launch an nginx container on port 80, you

run the command docker container run -p

80:80 -d nginx.

CHAPTER 14

1. B. A vulnerability is a weakness or gap in

protection efforts. It can be exploited by threats

to gain unauthorized access to an asset.

2. B, D. A man-in-the-middle attack allows devices

to receive traffic as it flows in the network; a

brute-force attack involves using trial and error

to crack passwords.

3. A. Penetration (pen) testing is commonly used to

find weak spots.

4. B. Nmap is the Network Mapper tool, which is

used for network discovery and security auditing.

5. B. MFA uses at least two identity components to

authenticate a user’s identity.

6. A, C. A one-way hash is used for fingerprinting

data.

7. A. Data needs to be secured in multiple locations:

while it is in motion (network), at rest (storage),

and while in use (memory).

8. B. An IDS is passive, as it receives a copy of a

packet, whereas an IPS is active, working on live

traffic.

CHAPTER 15

1. B, D. Historically, network devices were managed

through command-line interfaces (CLIs) using

protocols such as Telnet and Secure Shell (SSH).

2. C. We’ve seen in Chapter 8 an example of a

network controller with Cisco DNA Center. Cisco

DNA Center can be used to completely configure,

manage, and monitor networks.

3. B, C. There are usually two types of approaches

to infrastructure as code: declarative and

imperative. With the declarative approach, the

desired state of the system is defined, and then

the system executes all the steps that need to

happen in order to attain the desired state. The

imperative approach defines a set of commands

that have to be executed in a certain order for the

system to achieve the desired state.

4. A, C. Implementing infrastructure as code

processes leads to shorter deployment times for

new infrastructure and faster and easier

troubleshooting steps.

5. D. A key component of any CI pipeline is the

build server, which reacts to developers

committing their code into the central repository

and starts the initial tests on the new code

features.

6. B. The four steps of a CI/CD pipeline are source,

build, test, and deploy.

7. B. Ansible playbooks can be run from a terminal

with the ansible-playbook command.

8. A. The Puppet manifests are standard text files

that contain Puppet Domain Specific Language

(DSL) code and have the .pp extension.

9. C. Recipes are authored in Ruby, and most of

them contain simple configuration patterns that

get enforced through the Chef client.

10. B. The NSO Device Manager manages network

devices using YANG data models and NETCONF.

For devices that natively implement NETCONF

and YANG models, the device manager is

automatic, and devices that do not support

NETCONF are integrated in the platform by

using Network Element Drivers (NEDs).

11. C. Network topologies are stored as YAML files

and can be easily modified and shared.

12. A, D. The pyATS solution is composed of two

main components: the pyATS test framework and

the pyATS library, which used to be called Genie

but was renamed in an effort to simplify the

nomenclature of the product.

CHAPTER 16

1. B. The transport layer, as the name suggests, is

responsible for end-to-end transport of data from

the source to the destination of the data traffic.

Connection-oriented protocols at the transport

layer establish an end-to-end connection between

the sender and the receiver, keep track of all the

segments that are being transmitted, and have a

retransmission mechanism in place.

2. C. The Internet layer in the TCP/IP reference

model corresponds in functions and

characteristics to the network layer in the OSI

model.

3. B, D. There are a large number of application

layer protocols, including the Hypertext Transfer

Protocol (HTTP), which is used for transferring

web pages between web browsers and web

servers, and File Transfer Protocol (FTP), which

is used for transferring files between a client and

a server.

4. D. The TCP/IP reference model transport layer

PDU is called a segment.

5. D. The Preamble field consists of 8 bytes of

alternating 1s and 0s that are used to synchronize

the signals of the sender and receiver.

6. B. A MAC address has 48 bits organized as 12

hexadecimal numbers.

7. D. If a switch doesn’t have the destination MAC

address of the frame, it floods the frame over all

the ports except the port on which it was

received. As the frame gets flooded throughout

the network, eventually it will get to its

destination.

8. A. The bit pattern for the first byte in a Class C

IPv4 address is 110xxxxx.

9. C. The broadcast address for the network

192.168.0.96/27 is 192.168.0.127.

10. A, B, D. An IPv6 address is 128 bits long, with

colons separating entries (x:x:x:x:x:x:x:x, where x

is a 16-bit hexadecimal field). Successive fields of

zero can be represented as :: but only once per

address, and the hexadecimal characters are not

case sensitive.

CHAPTER 17

1. A. Ethernet is a star topology that used

concentrators to connect all the nodes in the

network.

2. C. A WAN covers a large geographic area and

uses public networks.

3. B. With a hub, every frame shows up at every

device attached to a hub, which can be really

harmful in terms of privacy.

4. C. Multiple VLANs can be implemented with

Layer 3 switches, so multiple broadcast can be

supported.

5. C. Virtual local-area networks (VLANs) divide a

single physical switch into multiple logical

networks.

6. B. CEF switching uses FIB tables in order to

make switching very fast.

7. B. NAT is used for mapping private IP addresses

to public IP addresses.

8. B. The management plane is concerned with

administrative access to a network device.

9. B. vSmart is the main brain of an SD-WAN

solution and manages the control plane.

CHAPTER 18

1. A, D. Some of the benefits of using DHCP instead

of manual configurations are centralized

management of network parameters

configuration and reduced network endpoint

configuration tasks and costs.

2. C. The DNS recursive resolver is a server that

receives DNS queries from client machines and

makes additional requests in order to resolve a

client query.

3. A, B, E. The benefits of Network Address

Translation include conserving public IPv4

address space, additional security due to hiding

the addressing for internal networks, and

flexibility and cost savings when changing ISPs.

4. A. With SNMPv3, the focus was on security, and

additional features such as authentication,

encryption, and message integrity were added to

the protocol specification.

5. D. The main role of NTP is to synchronize the

time on a network of devices. The IETF

developed NTP, and the latest version of the

protocol, version 4, is defined in RFC 5905. It

uses User Datagram Protocol (UDP) at the

transport layer, and port 123 is reserved for NTP.

6. B. Layer 3 network diagrams capture all the

network information available at Layer 3. All

devices that operate at Layer 3—routers,

firewalls, load balancers, and so on—and how

they are interconnected should be included in

these diagrams.

7. C. If DNS is malfunctioning for some reason,

end-to-end connectivity is impacted. Network

tools such as nslookup can be used to

troubleshoot DNS functionality.

Appendix B

DevNet Associate DEVASC 200-901

Official Cert Guide Exam Updates

Over time, reader feedback allows Pearson to gauge

which topics give our readers the most problems when

taking the exams. To assist readers with those topics, the

authors create new materials clarifying and expanding

on those troublesome exam topics. As mentioned in the

Introduction, the additional content about the exam is

contained in a PDF on this book’s companion website, at

http://www.ciscopress.com/title/9780136642961.

This appendix is intended to provide you with updated

information if Cisco makes minor modifications to the

exam upon which this book is based. When Cisco

releases an entirely new exam, the changes are usually

too extensive to provide in a simple updated appendix. In

those cases, you might need to consult the new edition of

the book for the updated content. This appendix

attempts to fill the void that occurs with any print book.

In particular, this appendix does the following:

Mentions technical items that might not have been mentioned

elsewhere in the book

Covers new topics if Cisco adds new content to the exam over time

Provides a way to get up-to-the-minute current information about

content for the exam

ALWAYS GET THE LATEST AT THE

BOOK’S PRODUCT PAGE

You are reading the version of this appendix that was

available when your book was printed. However, given

http://www.ciscopress.com/title/9780136642961

that the main purpose of this appendix is to be a living,

changing document, it is important that you look for the

latest version online at the book’s companion website. To

do so, follow these steps:

Step 1. Browse to

www.ciscopress.com/title/9780136642961.

Step 2. Click the Updates tab.

Step 3. If there is a new Appendix B document on the

page, download the latest Appendix B

document.

Note

The downloaded document has a version number.

Comparing the version of the print Appendix B

(Version 1.0) with the latest online version of this

appendix, you should do the following:

Same version: Ignore the PDF that you downloaded from the

companion website.

Website has a later version: Ignore this Appendix B in your

book and read only the latest version that you downloaded from the

companion website.

TECHNICAL CONTENT

The current Version 1.0 of this appendix does not

contain additional technical coverage.

http://www.ciscopress.com/title/9780136642961

Glossary

A

advanced persistent threat (APT) A prolonged and

targeted cyberattack in which an intruder gains access to

a network and remains undetected for a period of time.

Agile A form of software development that prioritizes

managing change and adding continuous incremental

value.

American Registry for Internet Numbers (ARIN)

The regional organization that manages IP address

assignment and allocation for the North American

region.

API Application programming interface is a method of

communication between various software components or

systems or applications.

API key A predetermined string that is passed from a

client to a server.

API token A unique auto-generated and encrypted

token that is used to access protected pages or resources

instead of requiring user login credentials to be passed

repeatedly.

Application Centric Infrastructure (ACI) The

SDN-based solution from Cisco for data center

deployment, management, and monitoring.

Application Policy Infrastructure Controller

(APIC) The central controller of the ACI fabric.

artifact repository The location where software builds

are stored for deployment. This term can also be used to

refer to a registry if your built software is container

based.

Asia-Pacific Network Information Center

(APNIC) The regional organization that manages IP

address assignment and allocation for the Asia-Pacific

region.

asynchronous API An API that does not wait until a

response is received but that can continue to function as

an application and process other aspects of data.

B

Bidirectional-streams Over Synchronous HTTP

(BOSH) A transport protocol that emulates the

semantics of a long-lived, bidirectional TCP connection

between two entities.

Bluetooth Low Energy (BLE) A wireless personal-

area network technology.

Border Gateway Protocol (BGP) The routing

protocol for the Internet.

C

campus-area network (CAN) A network that consists

of two or more LANs within a limited area.

Cisco Digital Network Architecture (DNA) An

open, extensible, and software-driven architecture for

enterprise networks.

Cisco Express Forwarding (CEF) A Cisco-

proprietary packet-switching technique used in Cisco

routers used to enhance network performance.

Cisco Software Defined-WAN (SD-WAN) A secure,

scalable, open, and programmable network architecture

for WANs.

classless interdomain routing (CIDR) A way of

specifying the subnet mask for an IP address that goes

beyond the default class address mask.

computer telephony integration (CTI) Technology

that enables computers to interact with telephones.

Configuration Database (CDB) A database that

stores all the data in the platform in a RAM database,

including the NSO configuration, the configuration of all

services and all managed devices, and all NSO

operational data.

container A form of operating system kernel

virtualization that enables you to deploy application

packages that are small and that contain only the

binaries and libraries that need to run on a container

host.

continuous integration/continuous delivery

(CI/CD) pipeline A series of automated steps that code

goes through from the IDE of an individual developer,

through building, testing, and finally deployment to

staging and production environments.

continuous integration/continuous deployment

(CI/CD) An environment with an automatic software

development and deployment pipeline.

CRUD CREATE, READ, UPDATE, and DELETE

resources are methods to implement an application for

creating new resources, getting information back, and

updating and deleting those resources.

CRUD functions Functions used to interact with or

manipulate the data stored in a database. CRUD stands

for CREATE, READ, UPDATE, and DELETE.

cryptography The science of transmitting information

securely.

D

data as a service (DaaS) A data management solution

that uses cloud services to deliver data storage,

integration, and processing.

DevOps A combination of development and operations

together in a single shared fate operating model for

application development, deployment, and support.

distinguished name (DN) A name that describes a

managed object and specifies its location in the MIT.

Dlint A static analysis tool for Python.

Docker The largest and most deployed container

runtime. It is both an open-source project and a

commercial product that you can purchase for support

and advanced management capabilities.

Docker daemon The component of the Docker

container architecture that controls cgroups and

namespaces within the host kernel. It also enables

management and container operations.

Docker Hub A free source for hundreds of thousands of

prebuilt containers that is maintained by Docker. It

includes official releases from software companies as

well as community and individual contributions.

Domain Name System (DNS) A directory of

networks that maps names of endpoints to IP addresses.

A protocol that translates domain names into IP

addresses, which computers can understand.

Dynamic Host Configuration Protocol (DHCP) A

protocol used to dynamically configure hosts with

network connectivity information. DHCP also assigns IP

addresses to devices that connect to a network.

E

edge computing An application deployment model

that is typically used when you need local computing

decision-making capabilities closer to where sensors are

deployed. Edge computing reduces latency and can

significantly reduce the amount of data that needs to be

processed and transmitted.

endpoint group (EPG) A collection of endpoints that

have common policy requirements.

Enhanced Interior Gateway Routing Protocol

(EIGRP) A routing protocol used in computer networks

to automate routing decisions.

Extensible Messaging and Presence Protocol

(XMPP) A message-oriented and real-time

communication protocol based on XML.

F

File Transfer Protocol (FTP) A protocol used for

transferring files between a client and a server.

Finesse A next-generation agent and supervisor desktop

designed for the contact center.

Forwarding Information Base (FIB) table A

routing table that is used to switch packets quickly from

one interface to another.

frame check sequence (FCS) A footer in a Layer 2

frame that ensures data is transmitted without errors

between two devices on a network.

fully qualified domain name (FQDN) The complete

and unambiguous domain name that specifies an exact

location for an object in a Domain Name System (DNS)

hierarchy.

functional test A type of test that validates software

against the original design specifications to ensure that

the software operates as expected.

G

Git A free distributed version control system created by

Linus Torvalds.

GitHub A social network built on Git that allows

developers to share and contribute to software

development projects.

gRPC An open-source remote procedure call (RPC)

framework that was developed by Google.

H

hybrid cloud A cloud application deployment model

that stretches components of an application between on-

premises or private cloud resources and public cloud

components.

Hypertext Transfer Protocol (HTTP) A protocol

used for transferring web pages between web browsers

and web servers.

I

integration test A type of test that tests a combination

of individual units of software as a group. APIs are often

tested with integration tests.

Internet Assigned Numbers Authority (IANA)

The organization that manages the assignment and

allocation of IP addresses.

Internet Protocol (IP) An Internet layer protocol in

the TCP/IP reference model.

intrusion detection system (IDS) A tool that

passively analyzes packets for known signatures.

intrusion prevention system (IPS) A tool that

analyzes packets, notifies, and takes action to help stop

attacks.

J

JSON JavaScript Object Notation is a lightweight data

storage format inspired by JavaScript.

JSON Web Token (JWT) A standardized, validated,

and/or encrypted format that is used to securely

transfer information between two entities.

L

Lean A management style that focuses on continuous

improvement and reducing wasted effort.

local-area network (LAN) A single network for an

office, an enterprise, or a home.

local workspace The files you are actively working on

in a Git directory that have not been tagged for staging.

Logical Link Control (LLC) A layer that is

responsible for encapsulating network layer data and

frame synchronization.

M

managed object (MO) An object that is part of the

MIT.

managed security service provider (MSSP) A

service that provides outsourced monitoring and

management of security devices and systems.

Management Information Base (MIB) An SNMP

data structure that facilitates the exchange of

information between the SNMP agent and the NMS.

Management Information Model (MIM) The

general model that comprises all the physical and logical

components of a Cisco ACI fabric.

management information tree (MIT) A

hierarchical representation of the MIM.

Media Access Control (MAC) A layer that provides

specifications on how devices gain access to the

transmission medium.

metropolitan-area network (MAN) A network that

spans multiple locations over a slightly larger distance

than a CAN.

Model-View-Controller (MVC) A separation of

concerns pattern for creating modern modular web

applications.

MQ Telemetry Transport (MQTT) A standard

lightweight publish/subscribe network protocol used to

transport messages between devices.

multifactor authentication (MFA) A security

mechanism that requires an individual to provide two or

more credentials in order to authenticate his or her

identity.

N

Network Address Translation (NAT) A mechanism

of mapping private IP addresses to public IP addresses.

Network Configuration Protocol (NETCONF) A

protocol that specifies the means of opening a secure

management session with a network device, includes a

set of operations to manipulate the configuration data

and retrieve the operational state, and describes a

mechanism to send out notifications.

Network Management Station (NMS) An

application that monitors and controls SNMP managed

devices.

Network Services Orchestrator (NSO) A Cisco

network services orchestration platform that enables

end-to-end service deployment across multivendor

physical and virtual infrastructure.

Network Time Protocol (NTP) A protocol used to

synchronize time on a network of devices.

next-generation firewall (NGFW) A network

security device that provides capabilities beyond those of

a traditional stateful firewall.

Nmap A network scanning and host detection tool that

is very useful during several steps of penetration testing.

O

Object Identifier (OID) A variable that makes up the

MIB data.

Observer The observer pattern uses a subscription

model for alerting a list of dependents (called observers)

of the state change of an object (called a subject). The

subject can be configuration, event status, or any other

piece of operational data that needs to be synchronized

with other applications or devices.

Open Shortest Path First (OSPF) A routing protocol

for Internet Protocol (IP) networks.

Open Systems Interconnection (OSI) An ISO

reference model for networks.

Open Web Application Security Project (OWASP)

An online community that produces freely available

articles, methodologies, documentation, tools, and

technologies in the field of web application security.

organizationally unique identifier (OUI) A field in

the MAC address that identifies the manufacturer of the

network interface card.

Overlay Management Protocol (OMP) A control

protocol used to exchange routing, policy, and

management information within Cisco SD-WAN fabrics.

OWASP Top 10 An awareness document for web

application security.

P

phishing A type of attack that aims to procure sensitive

information via emails or web pages.

Plug and Play (PnP) API A secure and scalable

solution for day-zero provisioning.

Port Address Translation (PAT) The process of

translating one IP address and a transport layer port

(TCP or UDP) into a new IP address/transport layer port

pair.

private cloud A cloud application model that gives

organizations more control as well as more responsibility

in that they operate their own cloud environment for

their dedicated use.

protocol data unit (PDU) The data format that is

being exchanged at each layer in the context of OSI and

TCP/IP reference models.

public cloud A cloud application deployment model in

which you pay for compute, storage, and network

resources based on how much you use.

Python Automated Test System (pyATS) A Cisco

test and automation solution.

Python Enhancement Proposals (PEP) Documents

that provide guidance and describe best practices on how

Python code should be organized, packaged, released,

deprecated, and so on.

R

registry An area where containers are stored in the

container infrastructure.

remote-procedure call (RPC) A standard framework

for clients to send a request to a server to perform an

action and return the results.

repository The complete list of files and source code for

an application, also referred to as head in Git.

Representational State Transfer (RST) APIs APIs

that use HTTP methods to gather and manipulate data.

REST Representational State Transfer, which describes

the general rules for how data and services are

represented through the API so that other programs will

be able to correctly request and receive the data and

services that an API makes available.

RESTCONF An HTTP-based protocol that provides a

programmatic interface for accessing data defined in

YANG.

Rivest–Shamir–Adleman (RSA) One of the first

public-key cryptosystems.

S

Secure Sockets Layer (SSL) An encryption-based

Internet security protocol.

Simple Network Management Protocol (SNMP)

An application-layer protocol used for monitoring and

configuring devices.

Simple Object Access Protocol (SOAP) A protocol

that is used to access web services. SOAP can use Simple

Mail Transfer Protocol (SMTP) or HTTP as a transport.

software as a service (SaaS) A consumption model

that does not require you to manage the installation,

updates, or maintenance of the application

infrastructure.

software-defined networking (SDN) An approach

to networking that enables an administrator to manage,

control, and optimize network resources

programmatically.

software development kit (SDK) A set of software

development tools that developers can use to create

software or applications for a certain platform, operating

system, computer system, or device.

Software Development Lifecycle (SDLC) A process

used in the software industry to design, develop, and test

high-quality software.

Software Image Management (SWIM) API A set of

processes that have been developed to automate software

management on Cisco devices.

software version control A form of source code

management that development teams use to manage

changes and additions to application source code.

staging The step before committing changed code to the

Git repository, also known as indexing.

synchronous API An API that causes an application to

wait for a response from the API in order to continue

processing data or function normally.

T

test-driven development (TDD) An Agile

development method that involves writing a failing

testing case first and then writing code to make it pass.

TDD is intended to focus the developer on writing only

what is needed to reduce complexity.

threat Anything you are trying to protect against.

top-level domain (TLD) name server A DNS server

that hosts the last portion of the hostname (such as .com,

.org, or .net).

Transmission Control Protocol (TCP) A

connection-oriented transport layer protocol.

Transmission Control Protocol/Internet

Protocol (TCP/IP) A network reference model based

on a layered approach.

Transport Layer Security (TLS) A widely adopted

security protocol designed to facilitate privacy and data

security for communications over the Internet.

U

Unified Communications Cisco equipment, software,

and services that combine multiple enterprise

communications channels, such as voice, video,

messaging, voicemail, and content sharing.

Unified Computing System (UCS) A Cisco compute

product.

unit test A type of test that is meant to ensure that

individual pieces of code are operating as they are

supposed to. A unit is the smallest testable part of any

software.

User Datagram Protocol (UDP) A connectionless

transport layer protocol.

V

variable-length subnet masking (VLSM) A way to

indicate how many bits in an IP address are dedicated to

the network ID and how many bits are dedicated to the

host ID.

Virtual Internet Routing Laboratory (VIRL) A

powerful Cisco network simulation platform that is

meant to be a flexible, all-in-one virtual networking lab.

virtual local-area network (VLAN) A software layer

on top of a physical network that is used to create

separate broadcast domains.

virtual routing and forwarding (VRF) instance

An isolated routing table, also called a context or a

private network.

voice over IP (VoIP) Technology that routes voice and

video conversations over the Internet or any other IP-

based network.

vulnerability A weakness or gap in protection efforts.

W

Waterfall A linear and sequential process for software

development.

webhook A user-defined HTTP callback.

wide-area network (WAN) A network that spans a

large geographic area and uses public networks.

Y

YAML YAML Ain’t Markup Language is a data

serialization and a data storage format that is generally

used to store configuration.

Yet Another Next Generation (YANG) A data

modeling language that was defined by the IETF in RFC

6020 that is used to model configuration and state data

manipulated by NETCONF.

Index

SYMBOLS

**kwargs, 90–91

*args, 90–91

== operator, 70

!= operator, 70

> operator, 70

>= operator, 70

< operator, 70

<= operator, 70

''' (triple-quote) method, 66

() characters, Python, 68

| character, piping commands, 34

+ operator, 72, 73

character, Python comments, 65

NUMBERS

300–401 ENCOR exam, 8–9

A

AAA policies, Cisco ACI MIT, 220

acceleration (web), reverse proxies, 445

access policies, Cisco ACI MIT, 219

access scopes, Webex Teams API integration,

266

accessing

API, 147–148

Dashboard API (Meraki), 179–180

AccountMoid property (Cisco Intersight), 248

ACI (Cisco), 216–217, 530

EPG, 221–222

fabric architectures, 217–218

MIM, 219

MIT, 219–220

MO, 219

model-driven frameworks, 218

policy models, 218

tenants, 219

bridge domains, 221

components of, 220–221

external bridged networks, 221

external routed networks, 221

subnets, 221

VRF instances, 221

UCS Director, 240

ACI fabric, 530

acitoolkit, 227–229

action batches, Dashboard API (Meraki), 181

adding

branches with Git, 48–49

files to repositories, 43–45

members to rooms, 269

address masks, 498

addresses

broadcast addresses, 493, 498

IPv4 addresses, 496

address masks, 498

broadcast addresses, 498

CIDR, 499–500

classes of, 497–498

decimal/binary values, 496

host ID, 497

network ID, 497

private IPv4 addresses, 498–499

subnets, 499–500

IPv6 addresses, 501–503

anycast addresses, 503–504

global addresses, 503

IANA, 502

link-local addresses, 503

loopback addresses, 503

multicast addresses, 503

subnets, 502

unspecified addresses, 503

MAC addresses, 493–494

multicast addresses, 493

OUI, 493

unicast addresses, 493

vendor-assigned addresses, 493

Agile model (SDLC), 29–30

AMP (Cisco)

Cisco AMP for Endpoints, 320–321

API, creating credentials, 322–323

API, list of, 325–326

API, listing computers, 323

API, listing vulnerabilities, 323–325

automation, 321–322

uses of, 321–322

Private Cloud, 320–321

analyzing requirements, SDLC, 25

Ancestors property (Cisco Intersight), 248

Ansible, 458–462

anycast addresses, 503–504

API. See also HTTP

accessing, 147–148

API keys, 134–135

APIC REST API, 223

acitoolkit, 227–229

authentication, 223–225

get requests, 225–227

asynchronous API, 132

authentication

basic authentication, 134

RESTful API, 133–134

AXL API, 294–295

AXL SOAP API, 296–297

toolkit, 295–296

Zeep Client Library, 296–297

basic operations, 131

Cisco AMP for Endpoints

creating credentials, 322–323

list of API, 325–326

listing computers, 323

listing vulnerabilities, 323–325

Cisco collaboration portfolio, overview of, 261

Cisco DNA Center

Integration API, 190

Intent API, 190, 191–192

Cisco Firepower, 315, 316–317

creating networks, 318–320

Cisco ISE, 327

ERS API, 327–331

Session API, 327

Cisco SD-WAN, 203

Cisco Umbrella

Console Reporting API, 306

Enforcement API, 306, 308–310

Investigate API, 306, 311–313

Management API, 305, 307–308

Network Device Management API, 306

Reporting API, 305

Console Reporting API, 306

CreateMeeting API, 284–285

Data API, 334

defined, 146

DelMeeting API, 288–289

Dialog API, Unified CC (Finese) API, 279–280

Enforcement API, 306, 308–310

ERS API, 327–331

Finesse Team API, Unified CC (Finese) API, 279

Finesse User API, Unified CC (Finese) API, 277–279

information API, 147

Investigate API, 306, 311–313

IOC API, 334

JSON, 113–115, 156

Cisco AMP for Endpoints, listing vulnerabilities,

324–325

data format, 157

json modules, 102

JWT, 272–273, 283

keys, 156

RESTCONF, 368

LstsummaryMeeting API, 286

Management API, 305, 307–308

Meetings XML API, 289

Memberships API, Webex Teams API integration, 269

Meraki

Captive Portal API, 178

Dashboard API, 179–187

MV Sense Camera API, 179

Scanning API, 178–179

Messages API, Webex Teams API integration, 270

Network Device Management API, 306

northbound API, 130

Organizations API, Webex Teams API integration, 266

partner API, 147

PnP API, 192

private API, 147

public API, 148

Reporting API, 305

REST API

Cisco Intersight, 247, 249

curl, 168–169

debugging tools, 172

development tools, 172

HTTPie, 169–170

monetization, 163–164

pagination, 162–163

Postman, 164–168

Python Requests, 171–172

rate limiting, 163–164

UCS Director, 242–245

versioning, 162

RESTCONF API, 368

RESTful API, 133

authentication, 133–134

CRUD functions, 132–133

HTTP functions, 132–133

reverse API. See webhooks

Rooms API

creating, 267–268

listing rooms, 268

Webex Teams API integration, 267–268

RPC, 140

high-level communication, 140

XML-RPC reply messages, 141

XML-RPC request messages, 140–141

Sample API, 334

service API, 146–147

Session API, 327

SetMeeting API, 287–288

SOAP, 136

fault codes, 138–139

fault options, 138–139

high-level communication, 137–138

message format, 136–137

sample faults, 139–140

sample message, 138

southbound API, 130

SWIM, 191

synchronous API, 131

Teams API

creating, 266–267

Webex Teams API integration, 266–267

Threat Grid API, 332

API keys, 333

Data API, 334

format of, 332

IOC API, 334

Sample API, 334

submissions searches, 334–335

“Who am I” queries, 333–334

TSP API, Webex Meetings API, 281

UCS Manager, 231

Unified CC (Finese), 275–276

authentication, 276–280

Dialog API, 279–280

Finesse Team API, 279

Finesse User API, 277–279

gadgets, 281

URL API, Webex Meetings API, 281

Webex Meetings API

architecture of, 282, 284

authentication, 283

CreateMeeting API, 284–285

DelMeeting API, 288–289

integrations, 283–284

LstsummaryMeeting API, 286

Meetings XML API, 289

overview of, 281–282

SetMeeting API, 287–288

supported services, 282–283

TSP API, 281

URL API, 281

XML API, 281

Webex Teams, 261–262

access scopes, 265–266

authentication, 262–273

bots, 271–272

guest issuers, 272–273

integrations, 263–270

Memberships API, 269

Messages API, 270

Organizations API, 266

personal access tokens, 262–263

Rooms API, 267–268

Teams API, 266–267

xAPI

authentication, 290–293

categories, 290

overview of, 290

XML API

data filters, 232

UCS Manager, 231, 232, 234–237

Webex Meetings API, 281

YAML, 117–119, 157–158, 461

APIC, 530

Cisco ACI, 216–217

Cisco ACI MIT, 219

APIC REST API, 223

acitoolkit, 227–229

authentication, 223–225

get requests, 225–227

APNIC, 502

application layer

OSI network model, 488

TCP/IP network model, 490

Application Network Profile, 530

application profiles, EPG, 222, 223

application-level (proxy) firewalls, 438–439

applications

connectivity issues, troubleshooting, 548–550

deploying, 382

bare-metal deployments, 382–383

cloud computing, 379–381, 384

cloud-native deployments, 384

containerized applications, 384–386

DevOps, 388–390, 391

DevOps, calendars, 388–389

DevOps, continuous experimentation and

learning, 393–394

DevOps, defined, 390–391

DevOps, feedback loops, 392–393

DevOps, implementing, 394–397

DevOps, pipelines, 394–397

DevOps, systems and flow, 391–392

DevOps, XebiaLabs periodic table of DevOps

tools, 394–395

Docker, 398

Docker, architecture, 400–401

Docker, Cgroups, 399

Docker, command line, 401–403

Docker, containers, 402–410

Docker, daemon, 400, 401, 404, 412

Docker, Dockerfiles, 410–411

Docker, Hello World, 404–405

Docker, Hub, 414–418

Docker, images, 411–414

Docker, Kitematic, 415–416

Docker, namespaces, 398–399

Docker, registry, 401, 405, 414–415

Docker, Union File System, 399–400

Docker, using, 401–403

edge computing, 381–382

fog computing, 381–382

serverless applications, 386–388

virtualized applications, 383–384

security

best practices, 431

common threats, 423–424

CVE records, 425–426, 427–429

Cybersecurity Framework, 422

data integrity (one-way hash), 432

data security, 433–434

device security, 431

digital signatures, 432–433

DNS, 440–443

encryption, 431–433

end-user security, 431

firewalls, 431, 437–439

IDS, 439–440

IPS, 440–441

load balancing, 443–446

MFA, 431

mitigating common threats, 423–424

Nmap, 426–429

Nslookup, 442–443

one-way hash (data integrity), 432

OWASP, 424–426

passwords (strong), 431

penetration (pen) testing, 424–425

reverse proxies, 444–446

SDLC, 434–436

software development, 434–436

three-tier application security, 430

updating software, 431

APT, 320–321

area_of_circle function, 123–124, 125–126

*args, 90–91

arguments, Python, 89–91

ARIN, 502

artifact repositories, 397

assistant bots, 271

asynchronous API, 132

Atom text editor, 64–65

augmenting, YANG data models, 355–356

authentication

API

basic authentication, 134

RESTful API, 133–134

APIC REST API, 223–225

Cisco Firepower, 315–316

Cisco Intersight, 249

Cisco Umbrella, 306

custom tokens, 135–136

ERS API, 328–329

MFA, 431

RESTful API, 133–134

reverse proxies, 445

UCS Manager, 234

Unified CC (Finese) API, 276–280

Dialog API, 279–280

Finesse Team API, 279

Finesse User API, 277–279

Webex Meetings API, 283

Webex Teams API

access scopes, 265–266

bots, 271–272

guest issuers, 272–273

integrations, 263–270

Memberships API, 269

Messages API, 270

Organizations API, 266

overview of, 262

personal access tokens, 262–263

Rooms API, 267–268

Teams API, 266–267

xAPI, 290–291

creating sessions, 291

current device status, 291–292

event notification webhooks, 293

session authentication, 291–293

setting device attributes, 292

authorization

Cisco DNA Center, 193–194

Cisco SD-WAN, 204–205

automation

Cisco AMP for Endpoints, 321–322

DevNet Automation Exchange, 18–20

infrastructure automation, 458

Ansible, 458–462

Chef, 465–466

CI/CD pipelines, 455–457

Cisco NSO, 467–473

Cisco VIRL, 457, 474–476

device-level management, 453

infrastructure as a code, 454–455

network controllers, 451–452, 453

Puppet, 462–464

pyATS, 476–479

integration automation frameworks, Cisco ACI MIT,

220

lifecycle of, 19–20

napalm, 103

nornir, 103–104

Open Automation, UCS Director, 241

UCS Director, 239–240

Cisco ACI, 240

Open Automation, 241

PowerShell, 242

REST API, 242–245

retrieving user profiles, 244–245

script modules, 242

SDK, 241

tasks, 240, 242

templates, 240

workflows, 240, 241, 245

automobile as a system analogy (certification), 5

AXL API, 294–295

AXL SOAP API, 296–297

toolkit, 295–296

Zeep Client Library, 296–297

AXL SDK, 297–298

B

bare-metal application deployments, 382–383

base 2 (binary) systems, Python, 69

base 8 (octal) systems, Python, 69

base 16 (hex) systems, Python, 69

base URL, Dashboard API (Meraki), 180, 181–

182

Base64 encoding

Cisco Umbrella, 306

ERS API, 328

Unified CC (Finese) API, 277

BASH, 32–33

cat command, 34, 37

cd command, 35

cp command, 36

directories

changing, 36

creating, 36

listing, 36

navigating, 35–36

printing paths, 35

environment variables, 37–38

file management, 36–37

ls command, 36

man command, 33

mkdir command, 36

more command, 34

mv command, 37

piping commands, 34

pwd command, 35

rm command, 37

touch command, 37

BGP, 201

binary (base 2) systems, Python, 69

binary/decimal values, IPv4 addresses, 496

BLE, 178–179

Bluetooth, BLE, 178–179

boolean comparisons, 70

BOSH, 275

bots

assistant bots, 271

Botkit, 271

building, 271–272

controller bots, 271

Flint, 271

frameworks, 271

notification bots, 271

Webex Teams API, 271–272

branches (software development), 47–48

adding, 48–49

conflicts, 52–53

merging, 50–53

break statements, 82–83

bridge domains, Cisco ACI tenants, 221

bridged networks (external), Cisco ACI tenants,

221

bridges, 517–518

broadcast addresses, 493, 498

brute-force attacks, 304, 424

budgeting time, exam preparation, 552

buffer overflow attacks, 423

building stage (SDLC), 26

bus networks, 512

C

cache constraints (REST), 161

caching

DNS resolution data, 539

reverse proxies, 445

calendar modules, 99

calendars, DevOps, 388–389

Call Manager. See Unified CM

camera positions, setting (xAPI), 292

CAN, 513–514

Captive Portal API, 178

career certification (Cisco)

CCIE, 11

CCNP

300–401 ENCOR exam, 8–9

components of, 8–9

concentration exams, 9–11

core exams, 9–11

levels of, 6–7

overview of, 6–11, 14

specialist certifications, 11

tracks after restructuring, 8

tracks prior to restructuring, 7

cat command, 34, 37

categorizing domains, Cisco Umbrella, 312–313

CCIE certifications, 11

CCNP

300–401 ENCOR exam, 8–9

components of, 8–9

concentration exams, 9–11

core exams, 9–11

cd command, 35

CDB, Cisco NSO, 468–469

CEF, 201, 523–524

certification

300–401 ENCOR exam, 8–9

automobile as a system analogy, 5

CCIE, 11

Cisco career certification

300–401 ENCOR exam, 8–9

CCIE, 11

CCNP, 8–11

levels of, 6–7

overview of, 6–11, 14

specialist certifications, 11

tracks after restructuring, 8

tracks prior to restructuring, 7

DevNet certifications, 11

DEVASC, 12–13

DevNet Professional, 13–14

overview of, 14–15

importance of, 3–6

knowledge domains

DEVASC, 12

DevNet Professional, 13

reasons for, 3–6

specialist certifications, 11

DevNet Professional, 13–14

Cgroups, 399

chaddr field (DHCPOFFER messages), 537

changing

directories, 35

interface names in dictionaries, 118–119

chapter-ending review tools, 556

chatbots. See bots

Chef, 465–466

Chef Supermarket, 466

CI/CD pipelines, 455–457

CIDR, subnets, 499–500

Cisco ACI, 216–217, 530

EPG, 221–222

fabric architectures, 217–218

MIM, 219

MIT, 219–220

MO, 219

model-driven frameworks, 218

policy models, 218

tenants, 219

bridge domains, 221

components of, 220–221

external bridged networks, 221

external routed networks, 221

subnets, 221

VRF instances, 221

UCS Director, 240

Cisco AMP

Cisco AMP for Endpoints, 320–321

API, creating credentials, 322–323

API, list of, 325–326

API, listing computers, 323

API, listing vulnerabilities, 323–325

automation, 321–322

uses of, 321–322

Private Cloud, 320–321

Cisco APIC, 530

Cisco ACI, 216–217

Cisco ACI MIT, 219

Cisco career certification

CCIE, 11

CCNP

300–401 ENCOR exam, 8–9

components of, 8–9

concentration exams, 9–11

core exams, 9–11

levels of, 6–7

overview of, 6–11, 14

specialist certifications, 11

tracks

after restructuring, 8

prior to restructuring, 7

Cisco collaboration portfolio

API

overview of, 261

Webex Teams, 261–273

Cisco Webex, 260

API, 261–273

SDK, 273–274

collaboration endpoints, 260–261

overview of, 257

Unified CC (Finese), 259–260

API, 275–280

authentication, 276–280

high-level flow, 274–275

user states, 275

Unified CM, 259

AXL API, 294–297

AXL SDK, 297–298

overview of, 294

Cisco DevNet certifications, 11

DEVASC, 12–13

DevNet Professional, 13–14

overview of, 14–15

Cisco DNA, 530

Cisco DNA Center, 189–190

authorization, 193–194

client data, 198–199

Integration API, 190

Intent API, 190, 191–192

network ID, 195–197

non-Cisco device management, 191

platform interface, 193

Python SDK, 199–201

rate limiting, 192

versions of, 193

webhooks, 191

Cisco Firepower, 314

API, 315, 316–317

authentication, 315–316

components of, 314–315

features of, 314

Management Center objects, 317–318

networks, creating, 318–320

server version information, 316

session tokens, generating, 315–316, 318–320

system information, 316–317

Cisco Headset 500 Series, 261

Cisco infrastructure, Python modules, 101–104

Cisco Intersight, 246–247

AccountMoid property, 248

Ancestors property, 248

authentication, 249

CreateTime property, 248

documentation, 249–250

HATEOAS, 249

managed object properties, 247–248

MIM, 247

ModTime property, 248

Moid identifier, 248

ObjectType property, 248

Owners property, 248

Parent property, 248

Python, 249–251

query language, 249

REST API, 247, 249

tagging, 248

Tags property, 248

URI, 248

Cisco IOS XE, NETCONF sessions, 360–362

Cisco ISE, 326

API, 327

ERS API, 327–331

Session API, 327

components of, 326–327

deployments, 326–327

profiles, 326

Cisco NSO, 467, 470–471, 530

architecture of, 467, 468

CDB, 468–469

CLI, 471

components of, 467

model-to-model mapping, 468

ncs-netsim, 469–470

NETCONF, 468

RESTCONF, 471–473

YANG, 468, 469

Cisco SDN, 530–531

Cisco SD-WAN, 201–202, 203, 530–531

API, 203

authorization, 204–205

device templates, 207–208

listing devices, 205–207

OpenAPI interface, 203

Python scripting, 209–212

vBond, 202

vEdge, 202

vManage, 202, 203–212

vSmart, 202

Cisco security portfolio, 302–303

Cisco Threat Grid, 331

API, 332

API keys, 333

Data API, 334

format of, 332

IOC API, 334

Sample API, 334

submissions searches, 334–335

“Who am I” queries, 333–334

architecture of, 331–332

feeds, 335–337

Cisco UCS, fabric interconnects, 230. See also

UCS Manager

Cisco UCS Python SDK, 237–239

Cisco Umbrella, 304

API, 305–306

authentication, 306

Console Reporting API, 306

domain lookups, 305

domains

adding domains, 308–309

categorizing domains, 312–313

deleting domains, 310

listing domains, 309–310

Enforcement API, 306, 308–310

flow example, 305

Investigate API, 306, 311–313

Management API, 305, 307–308

Network Device Management API, 306

Reporting API, 305

Cisco VIRL, 457, 474–476

Cisco Webex, 260

Cisco Webex Board, 260

classes, Python, 92

creating, 92–93

inheritance, 94–96

router classes, 93–95

CLI, 342

Cisco NSO, 471

NETCONF and, 345–346

UCS Manager, 231

client data, Cisco DNA Center, 198–199

client/server constraints (REST), 160

clock (exam preparation), watching the, 552

cloning/initiating repositories, 42–43

close() function, 109–110

cloud computing, 376

application deployments, 379–381

characteristics of, 377

cloud-native application deployments, 384

community clouds, 381

edge computing, 381–382

fog computing, 381–382

hybrid clouds, 380

IaaS, 378

Meraki, 178

NIST definition, 376–377

PaaS, 378

Private Cloud (Cisco AMP), 320–321

private clouds, 379

public clouds, 379–380

SaaS, 378

service models, 378

code

editors, 55, 64–65

malicious code, 430

reviews, 55

code blocks

Atom text editor, 65–66

Python and, 65–66

code on demand constraints (REST), 162

collaboration

IP phone, 260

spaces, 261

video devices, 260

collaboration portfolio

API

overview of, 261

Webex Teams, 261–273

Cisco Webex, 260

API, 261–273

SDK, 273–274

collaboration endpoints, 260–261

overview of, 257

Unified CC (Finese), 259–260

API, 275–280

authentication, 276–280

high-level flow, 274–275

user states, 275

Unified CM, 259

AXL API, 294–297

AXL SDK, 297–298

overview of, 294

command line

Docker, 401–403

imported dictionaries, printing to command line, 116

printing from, unparse() function, 117

commands, piping, 34

comments, Python, 65–66

committing files, 45, 53–54

common tenants, Cisco ACI MIT, 219

communications, Unified Communications, 257–

258

Webex Calling, 258–259

Webex Teams, 258

API, 261–273

SDK, 273–274

community clouds, 381

community names, SNMP, 545

Community page (DevNet), 16

composite filters, XML API, 232

compression, reverse proxies, 445

compromise, IOC API, 334

compute object lists, UCS Manager, 234–237

concatenating

lists, 73

strings, 72

concentration exams

CCNP, 300–401 ENCOR exam, 8–9

DevNet Professional, 13–14

configuration data stores, NETCONF, 346–347

conflicts (branches), merging, 52–53

CONNECT requests, 150

connected routes, 506

connectivity

applications, troubleshooting connectivity issues,

548–550

SingleConnect technology, UCS Manager, 230

UCS Manager, 230

Console Reporting API, 306

container nodes (YANG), 350–351

containerized applications, 384–386

containers, Docker, 402–410

content filtering, reverse proxies, 445

content negotiation, versioning, 162

contexts. See VRF instances

contracts, EPG, 222–223

control plane (networks), 527–528

controller bots, 271

controllers

OpenDayLight controllers, 529

OpenFlow controllers, 529

SDN controllers, 529–530

vSmart, 531

controllers (network), 451–452, 453

cookbooks (Chef), 465–466

copying, files/folders, 36

core exams, CCNP, 9–11

cp command, 36

CreateMeeting API, Webex Meetings API, 284–

285

CreateTime property (Cisco Intersight), 248

Cross-Site Scripting (XSS), 304, 424

CRUD

functions, RESTful API, 132–133

HTTP, CRUD operations, 150–151

CSV files, 110–113

csv modules, 102

CTI connections, 275, 277

curated feeds, Threat Grid, 336–337

curl, 168–169

APIC REST API

authentication, 223–225

get requests, 225–227

Cisco DNA Center

authorization, 193–194

network ID, 195–197

Cisco SD-WAN

authorization, 205

listing devices, 207

Dashboard API (Meraki)

network ID, 183–184

organization ID, 181–183

Rooms API, listing rooms, 268

UCS Director

retrieving user profiles, 244–245

workflow inputs, 245

current device status, getting in xAPI, 291–292

custom headers, versioning, 162

custom tasks, UCS Director, 242

custom tokens, authentication, 135–136

customizing practice tests, Pearson Test Prep

software, 554–555

CVE records, 425–426, 427–429

Cybersecurity Framework, 422

D

daemon (Docker), 400, 401, 404, 412

Dashboard API (Meraki)

action batches, 181

base URL, 180, 181–182

hierarchy of, 180

network ID, 180

curl, 183–184

Postman, 184–187

organization ID, 180, 181

curl, 181–183

Postman, 183

pagination, 181

rate limiting, 180

requests, 180

use cases, 179

accessing, 179–180

Data API, 334

data encryption, 431

objectives of, 431

public key encryption, 431–432

TLS handshakes, 432

data filters, XML API, 232

data frame switching, 492

Ethernet switching, 492

frames, 492

data integrity (one-way hash), 432

data link layer (OSI network model), 486

data packet routing, 489, 504–506

data, parsing in Python, 110

CSV files, 110–113

JSON, 113–115

XML, 115–117

YAML, 117–119

data plane (networks), 527

data routing, TCP/IP network model, 489

data security, 433–434

data types

commonly used data types, 67

dictionaries, 75–76

floating point numbers, 68, 69

integers, 68, 69

lists, 72, 73–74

concatenating, 73

list indexes, 73

methods, 74

sets, 76

strings, 70, 71–72

concatenating, 72

DevNet string index, 70–71

string methods, 72

tuples, 74–75

DataEncodingUnknown fault code, 139

datetime modules, 101

deactivate command, 62

debugging tools, REST API, 172

decimal/binary values, IPv4 addresses, 496

de-encapsulation, 491

defining stage (SDLC), 26

DELETE requests, 150, 151, 161

deleting

directories, 37

domains, Cisco Umbrella, 310

files/folders, 37

meetings, 288–289

DelMeeting API, Webex Meetings API, 288–289

deploying applications, 382

bare-metal deployments, 382–383

cloud computing, 379–381

cloud-native deployments, 384

community clouds, 381

edge computing, 381–382

fog computing, 381–382

hybrid clouds, 380

private clouds, 379

public clouds, 379–380

containerized applications, 384–386

DevOps, 388–390, 391

calendars, 388–389

continuous experimentation and learning, 393–

394

defined, 390–391

feedback loops, 392–393

implementing, 394–397

pipelines, 394–397

systems and flow, 391–392

XebiaLabs periodic table of DevOps tools, 394–

395

Docker, 398

architecture of, 400–401

Cgroups, 399

command line, 401–403

containers, 402–410

daemon, 400, 401, 404, 412

Dockerfiles, 410–411

Hello World, 404–405

Hub, 414–418

images, 411–414

Kitematic, 415–416

namespaces, 398–399

registry, 401, 405, 414–415

Union File System, 399–400

using, 401–403

serverless applications, 386–388

virtualized applications, 383–384

deployment stage (SDLC), 26

design patterns (software), 30

MVC, 30–31

Observer, 31–32

designing stage (SDLC), 26

DEVASC (DevNetv Associate Certification), 12–

13

development

security, 434–436

software. See SDLC

TDD, 121–122

development tools, REST API, 172

device templates, Cisco SD-WAN, 207–208

devices

device-level management (automation), 453

security, 431

devkits. See SDK

DevNet

certifications, 11

DEVASC, 12–13

DevNet Professional, 13–14

overview of, 14–15

Community page, 16

Discover page, 15

Events page, 17–18

Main page, 14–15, 17

string index, 70–71

Technologies page, 15–16

DevNet Automation Exchange, 18–20

DevNet Express, 18

DevOps, 388–390, 391

calendars, 388–389

continuous experimentation and learning, 393–394

defined, 390–391

feedback loops, 392–393

implementing, 394–397

pipelines, 394–397

systems and flow, 391–392

XebiaLabs periodic table of DevOps tools, 394–395

DHCP, 490, 534–535

benefits of, 535

DHCPACK messages, 537

DHCPDISCOVER messages, 536–537

DHCPOFFER messages, 537

DHCPRELEASE messages, 537

DHCPREQUEST messages, 537

IPv4, 535

lease acknowledgement phase, 537

lease offer phase, 537

lease request phase, 537

phases of operation, 536

relay agents, 535–536

releasing phase, 537

server allocation, 535

server discovery phase, 536–537

state machine, 536

diagrams (network), 526

Dialog API, Unified CC (Finese) API, 279–280

dictionaries, 75–76

imported dictionaries, printing to command line, 116

interface names, changing in, 118–119

diff command, 53

digital signatures, 432–433

dir() function, 97

directories. See also files/folders

changing, 35

creating, 36

deleting, 37

listing, 36

moving files/folders, 37

navigating, 35–36

printing paths, 35

structure of, 35

Discover page (DevNet), 15

DITKA questions, 556

Dlint, 436

DME, UCS Manager, 231

DN, UCS Manager, 232

DNA (Cisco), 530

DNA Center (Cisco), 189–190

authorization, 193–194

client data, 198–199

Integration API, 190

Intent API, 190, 191–192

network ID, 195–197

non-Cisco device management, 191

platform interface, 193

Python SDK, 199–201

rate limiting, 192

versions of, 193

webhooks, 191

DNS, 440–443, 540

caching resolution data, 539

lookups, 538–539

name resolution, 539

resolution process, 538

resolution queries, 540

Docker, 398

architecture of, 400–401

Cgroups, 399

command line, 401–403

containers, 402–410

daemon, 400, 401, 404, 412

Dockerfiles, 410–411

Hello World, 404–405

Hub, 414–418

images, 411–414

Kitematic, 415–416

namespaces, 398–399

registry, 401, 405, 414–415

Union File System, 399–400

using, 401–403

documentation

Cisco Intersight, 249–250

UCS Manager, 233

domain lookups, malicious, 305

domain name proxies, 526

domains, Cisco Umbrella

adding domains, 308–309

categorizing domains, 312–313

deleting domains, 310

listing domains, 309–310

DoS attacks, 303, 424

dump() function, 113, 114

dumps() function, 113–114

dynamic NAT, 541

dynamic routes, 506

E

earplugs, exam preparation, 552

edge computing, 381–382

editing code, 55, 64–65

EIGRP, 201

elif statements, 79–80

else statements, 80, 82

emulators (software), UCS Platform Emulator,

234

encapsulation, 491

encryption (data), 431

objectives of, 431

public key encryption, 431–432

TLS handshakes, 432

endpoints

Cisco AMP for Endpoints, 320–321

API, creating credentials, 322–323

API, list of, 325–326

API, listing computers, 323

API, listing vulnerabilities, 323–325

automation, 321–322

uses of, 321–322

collaboration endpoints, 260–261

groups, creating with ERS API, 329–331

end-user security, 431

Enforcement API, 306, 308–310

environment variables (BASH), 37–38

EPG

application profiles, 222, 223

Cisco ACI, 221–222

contracts, 222–223

error handling, Python, 119–121

ERS API, 327–331

Ethernet

frames, 494

switching, 492

event notification webhooks, 293

event subscription, UCS Manager, 233

Events page (DevNet), 17–18

exams

300–401 ENCOR exam, 8–9

concentration exams

CCNP, 9–11

DevNet Professional, 13–14

core exams, CCNP, 9–11

practice tests, Pearson Test Prep software, 556

accessing tests, 553–554

customizing tests, 554–555

Premium Edition, 555–556

updating tests, 555–556

preparing for

budgeting time, 552

chapter-ending review tools, 556

DITKA questions, 556

earplugs, 552

getting rest, 553

locking up valuables, 553

Pearson Test Prep software, 553–554

practice tests, 553–554

study trackers, 552

suggested final review/study plans, 556

taking notes, 553

travel time, 552

watching the clock, 552

external bridged networks, Cisco ACI tenants,

221

external routed networks, Cisco ACI tenants, 221

F

fabric interconnects, 230

fabric policies, Cisco ACI MIT, 220

fast switching, 523, 524

FCS, 491, 492

feedback loops, DevOps, 392–393

feeds, Threat Grid, 335–337

files/folders. See also directories

BASH file management, 36–37

copying, 36

creating, 37

CSV files, 110–113

deleting, 37

FTP, 490

Git

committing files, 45, 53–54

file lifecycles, 40–41

git add command, 43–45

git clone command, 42, 46

git commit command, 45

git init command, 42–43, 46

git mv command, 44

git pull command, 47

git push command, 46–47

git remote command, 46

git rm command, 44

git status command, 41, 43

Modified file status, 40

pushing/pulling files, 45–47

Staged file status, 40

touch command, 43

UnModified file status, 40

Untracked file status, 40

moving, 37

Python, input/output, 108–110

repositories, adding/removing files, 43

requirements.txt files, 63

timestamps, 37

filtering content, reverse proxies, 445

final review/study plans, 556

Finese (Unified CC), 259–260

API, 275–276

authentication, 276–280

Dialog API, 279–280

Finesse Team API, 279

Finesse User API, 277–279

gadgets, 281

high-level flow, 274–275

user states, 275

Finesse Team API, Unified CC (Finese) API, 279

Finesse User API, Unified CC (Finese) API, 277–

279

Firepower (Cisco), 314

API, 315, 316–317

authentication, 315–316

components of, 314–315

features of, 314

Management Center objects, 317–318

networks, creating, 318–320

server version information, 316

session tokens, generating, 315–316, 318–320

system information, 316–317

firewalls, 431, 437

application-level (proxy) firewalls, 438–439

next-generation firewalls, 439

NGFW, 314

packet filtering (stateless) firewalls, 437–438

routers, 525

stateful inspection firewalls, 438–439

Flint, 271

floating point numbers, 68, 69

flow control

break statements, 82–83

elif statements, 79–80

else statements, 80, 82

if statements, 78–80

for loops, 79, 80–82

while loops, 79, 82–83

Fly category (DevNet Automation Exchange), 19

fog computing, 381–382

folders. See files/folders

for loops, 79, 80–82

FQDN, 276

Dialog API, 280

Finese Server, 277, 278, 281

Finesse User API, 277

Team API, 279

frames. See also PDU, 492, 494

frameworks, Cybersecurity Framework, 422

freeze command, 63

FTP, 490

functional tests, 122

functions

Python functions, 88–89

area_of_circle function, 123–124, 125–126

arguments, 89–91

close() function, 109–110

dir() function, 97

dump() function, 113, 114

dumps() function, 113–114

getdesc() function, 93–95

help() function, 89, 97–98

items() function, 91

load() function, 113

loads() function, 113, 114

max() function, 89

open() function, 109–110

parameters, 89–91

print() function, 88

test_value function, 125

unparse() function, 117

RESTful API

CRUD functions, 132–133

HTTP functions, 132–133

G

gadgets, Unified CC (Finese) API, 281

GET requests

APIC REST API, 225–227

HTTP, 149, 150, 151–152, 161, 165, 168, 170

GetBulkRequest messages (SNMP), 545

getdesc() function, 93–95

GetNextRequest messages (SNMP), 545

GetRequest messages (SNMP), 545

Git, 39, 42

branches, 47–48

adding, 48–49

conflicts, 52–53

merging, 50–53

cloning/initiating repositories, 42–43

committing files, 45, 53–54

file lifecycles, 40–41

git add command, 43–45, 52

git branch command, 48–49

git checkout command, 49

git clone command, 42, 46

git commit command, 45, 52

git diff command, 53–54

git init command, 42–43, 46

git log command, 47–48

git merge command, 50, 51, 52

git mv command, 44

git pull command, 47

git push command, 46–47

git remote command, 46

git rm command, 44

git status command, 41, 43

GitHub and, 39

Modified file status, 40

pushing/pulling files, 45–47

repositories

adding/removing files, 43–45

cloning/initiating, 42–43

Staged file status, 40

touch command, 43

tree structures, 40

UnModified file status, 40

Untracked file status, 40

workflows, 41

GitHub

Git and, 39

repositories, cloning, 42

global addresses, 503

gRPC, 343

guest issuers, Webex Teams API, 272–273

GUI, UCS Manager, 231

H

hackers, 429

hardware API, 147–148

hash (one-way), data integrity, 432

HATEOAS, Cisco Intersight, 249

HATEOS, 161

HEAD requests, 150

headers

custom headers, versioning, 162

HTTP, 152–153

request headers, 153–154

response headers, 153–154

Headset 500 Series (Cisco), 261

Hello World, Docker, 404–405

help() function, 89, 97–98

hex (base 16) systems, Python, 69

host ID, 497

HTTP, 148, 490

BOSH, 275

CRUD operations, 150–151

headers, 152–153

request headers, 153–154

response headers, 153–154

requests

components of, 149

CONNECT requests, 150

DELETE requests, 150, 151, 161

GET requests, 149, 150, 151–152, 161, 165, 168,

170

HEAD requests, 150

methods, 150–151

OPTIONS requests, 150

PATCH requests, 150, 151

POST requests, 150, 151, 152, 161, 166, 169

PUT requests, 150, 151, 161

request/response cycle, 148

TRACE requests, 150

response codes, 154–155

REST methods, 150–151

RESTCONF methods, 367–368

status codes, 154–155

transport layer (TCP/IP network model), 489–490

webhooks, 158

development tools, 158

testing, 158

validation, 158–159

HTTP functions, RESTful API, 132–133

HTTPie, 169–170

Hub (Docker), 414–418

hubs, 517

hybrid clouds, 380

I

IaaS, 378

IANA, IPv6 addresses, 502

ID

host ID, IPv4 addresses, 497

network ID

Dashboard API (Meraki), 180, 183–187

IPv4 addresses, 497

organization ID, Dashboard API (Meraki), 180, 181–

184

IDS, 439–440

IETF data models, 354

if statements, 78–80

images

Docker images, 411–414

resizing via serverless applications, 386–388

imported dictionaries, printing to command

line, 116

importing

modules, 100–101

Python modules, 97–99

information API, 147

InformRequest messages (SNMP), 545

infra tenants, Cisco ACI MIT, 219

infrastructure automation, 458

Ansible, 458–462

Chef, 465–466

CI/CD pipelines, 455–457

Cisco NSO, 467, 470–471

architecture of, 467, 468

CDB, 468–469

CLI, 471

components of, 467

model-to-model mapping, 468

ncs-netsim, 469–470

NETCONF, 468

RESTCONF, 471–473

YANG, 468, 469

Cisco VIRL, 457, 474–476

device-level management, 453

infrastructure as a code, 454–455

network controllers, 451–452, 453

Puppet, 462–464

pyATS, 476–479

inheritance, Python classes, 94–96

initiating, repositories, 42–43

input() function, 77

input/output, Python files/folders, 108–110

installing Python, 61, 62–63

integers, 68, 69

Integration API (Cisco DNA Center), 190

integration automation frameworks, Cisco ACI

MIT, 220

integrations

tests, 122

Webex Meetings API, 283–284

Webex Teams API

access scopes, 265–266

Memberships API, 269

Messages API, 270

Organizations API, 266

Rooms API, 267–268

Teams API, 266–267

integrity of data (one-way hash), 432

Intent API (Cisco DNA Center), 190, 191–192

interface names, changing in dictionaries, 118–

119

Internet layer (TCP/IP network model), 489

Intersight (Cisco), 246–247

AccountMoid property, 248

Ancestors property, 248

authentication, 249

CreateTime property, 248

documentation, 249–250

HATEOAS, 249

managed object properties, 247–248

MIM, 247

ModTime property, 248

Moid identifier, 248

ObjectType property, 248

Owners property, 248

Parent property, 248

Python, 249–251

query language, 249

REST API, 247, 249

tagging, 248

Tags property, 248

URI, 248

Investigate API, 306, 311–313

IOC API, 334

IOS XE, NETCONF sessions, 360–362

IP address management, routers, 525

IP phone, collaboration, 260

IP services, 537

DHCP, 534–535

benefits of, 535

DHCPACK messages, 537

DHCPDISCOVER messages, 536–537

DHCPOFFER messages, 537

DHCPRELEASE messages, 537

DHCPREQUEST messages, 537

IPv4, 535

lease acknowledgement phase, 537

lease offer phase, 537

lease request phase, 537

phases of operation, 536

relay agents, 535–536

releasing phase, 537

server allocation, 535

server discovery phase, 536–537

state machine, 536

DNS, 540

caching resolution data, 539

lookups, 538–539

name resolution, 539

resolution process, 538

resolution queries, 540

NAT, 540–541

benefits of, 542

disadvantages of, 542–543

dynamic NAT, 541

IPv4, 543

PAT, 541–542

static NAT, 541

network diagrams, 547

NTP, 545–547

PAT, 541

SNMP, 544

advantages of, 543

community names, 545

components of, 544

disadvantages of, 543

GetBulkRequest messages, 545

GetNextRequest messages, 545

GetRequest messages, 545

InformRequest messages, 545

managed devices, 544

MIB, 544–545

NMS, 544–545

OID values, 545

Response messages, 545

SetRequest messages, 545

SNMP agent, 544–545

SNMP manager, 544–545

Trap messages, 545

versions of, 543

IPS, 440–441

IPv4

addresses, 496

address masks, 498

broadcast addresses, 498

CIDR, 499–500

classes of, 497–498

decimal/binary values, 496

host ID, 497

network ID, 497

private IPv4 addresses, 498–499

subnets, 499–500

DHCP, 535

NAT, 543

IPv6 addresses, 501–503

anycast addresses, 503–504

global addresses, 503

IANA, 502

link-local addresses, 503

loopback addresses, 503

multicast addresses, 503

subnets, 502

unspecified addresses, 503

ISE (Cisco), 326

API, 327

ERS API, 327–331

Session API, 327

components of, 326–327

deployments, 326–327

profiles, 326

ISO/IEC 12207, 26

issuers (guest), Webex Teams API, 272–273

items() function, 91

J

JSON, 113–115, 156

Cisco AMP for Endpoints, listing vulnerabilities, 324–

325

data format, 157

json modules, 102

JWT, 272–273, 283

keys, 156

RESTCONF, 368

JWT, 272–273, 283

K

Kitematic, 415–416

knowledge domains (certification)

DEVASC, 12

DevNet Professional, 13

**kwargs, 90–91

L

LAMP, containerized applications, 385–386

LAN, 492, 513

Layer 2 network diagrams, 547

Layer 2 switches, 518–519

Layer 3 network diagrams, 547

Layer 3 packet forwarding. See routing

Layer 3 switches, 519

layered system constraints (REST), 162

leaf nodes (YANG), 349–350

leaf-list nodes (YANG), 350

Lean model (SDLC), 28–29

lease acknowledgement phase (DHCP), 537

lease offer phase (DHCP), 537

lease request phase (DHCP), 537

lifecycle of software development. See SDLC

limiting rates

Cisco DNA Center, 192

Dashboard API (Meraki), 180

REST API, 163–164

link-local addresses, 503

Linux, BASH, 32–33

cat command, 34, 37

cd command, 35

cp command, 36

directories, 35–36

environment variables, 37–38

file management, 36–37

ls command, 36

man command, 33

mkdir command, 36

more command, 34

mv command, 37

piping commands, 34

pwd command, 35

rm command, 37

touch command, 37

list nodes (YANG), 351

listing

computers, Cisco AMP for Endpoints API, 323

details of curated feed types, Threat Grid, 336–337

devices, Cisco SD-WAN, 205–207

directories, 36

meetings, 286

rooms, Rooms API, 268

vulnerabilities, Cisco AMP for Endpoints API, 323–

325

lists, 72, 73–74

concatenating, 73

domains, listing in Cisco Umbrella, 309–310

list indexes, 73

methods, 74

LLC layer (OSI network model), 486

load balancing, 443–446

load() function, 113

loads() function, 113, 114

locking up valuables (exam preparation), 553

logins, Finesse User API, 278

longest prefix match routing concept, 507

lookups

DNS lookups, 538–539

malicious domain lookups, 305

loopback addresses, 503

loopback interfaces, NETCONF, 365–367

loops

feedback loops, DevOps, 392–393

for loops, 79, 80–82

while loops, 79, 82–83

ls command, 36

LstsummaryMeeting API, Webex Meetings API,

286

M

MAC addresses, 493–494, 495–496

Mac computers, Python installations, 61

MAC layer (OSI network model), 486

Main page (DevNet), 14–15

malicious code, 430

malicious domain lookups, 305

malware, 304, 320–321, 424

MAN, 514–515

man command, 33

managed devices (SNMP), 544

Management API, 305, 307–308

management tenants, Cisco ACI MIT, 219

managing, BASH files, 36–37

manual pages, man command, 33

math modules, 97–98

max() function, 89

meetings

creating, 284–285

deleting, 288–289

listing, 286

setting/modifying attributes, 287–288

Meetings XML API, Webex Meetings API, 289

Memberships API, Webex Teams API

integration, 269

Meraki, 178

Captive Portal API, 178

cloud computing, 178

Dashboard API

accessing, 179–180

action batches, 181

base URL, 180, 181–182

hierarchy of, 180

network ID, 180, 183–187

organization ID, 180, 181–184

pagination, 181

rate limiting, 180

requests, 180

use cases, 179

Meraki Python SDK, 187–189

MV Sense Camera API, 179

Scanning API, 178–179

merging, branches, 50–53

Messages API, Webex Teams API integration,

270

methods

list methods, 74

Python methods, 93–94

sqrt() method, 98, 99

tan() method, 99

string methods, 72

MFA, 431

MIB, SNMP, 544–545

MIM

Cisco ACI, 219

Cisco Intersight, 247

MIT

Cisco ACI, 219–220

UCS Manager, 231–232

mitigating common security threats, 423–424

MITM attacks, 303, 423

mkdir command, 36

MO

Cisco ACI, 219

UCS Manager, 231

model-driven frameworks, 218, 231

model-driven programmability, 343–344

NETCONF, 344

Cisco IOS XE, NETCONF sessions, 360–362

Cisco NSO, 468

Cisco NX-OS, 363–365

CLI commands, 345–346

configuration data stores, 346–347

loopback interfaces, 365–367

notification messages, 356–357

operations, 346

purpose of, 345

RPC, 345, 356, 362–363

server changes, 365–367

YANG and, 344–346

RESTCONF, 367, 369–371

API, 368

Cisco NSO, 471–473

HTTP methods, 367–368

JSON, 368

protocol stacks, 367

URI, 368–369

XML, 368

YANG, 347, 348

built-in data types, 348

container nodes, 350–351

data models, augmenting, 355–356

data models, components of, 352

data models, example of, 352–354

data models, IETF, 354

data models, native, 354–355

data models, nodes, 349

data models, structure of, 357–360

leaf nodes, 349–350

leaf-list nodes, 350

list nodes, 351

NETCONF, Cisco IOS XE sessions, 360–362

NETCONF, Cisco NX-OS, 363–365

NETCONF, loopback interfaces, 365–367

NETCONF, server changes, 365–367

NETCONF notification messages, 356–357

NETCONF RPC, 356, 362–363

statements, 347, 348–349

XML, 348

model-driven telemetry, 371–372

model-to-model mapping, 468

Modified status (Git files), 40

modifier filters, XML API, 232

modifying meeting attributes, 287–288

ModTime property (Cisco Intersight), 248

modules (Python), 96–97

calendar modules, 99

Cisco infrastructure, 101–104

csv modules, 102

datetime modules, 101

importing, 97–99, 100–101

installing, 62–63

json modules, 102

math modules, 97–98

napalm, 103

ncclient modules, 103

netmiko modules, 103

nornir, 103–104

os modules, 101

pprint modules, 101

pyang modules, 102

pyats, 104

pysnmp modules, 103

Python standard library, 99

PyYAML modules, 102

requests modules, 102–103

sys modules, 100, 101

time modules, 102

unitest, 104

xmltodict modules, 102

Moid identifier (Cisco Intersight), 248

monetization, REST API, 163–164

more command, 34

moving, files/folders, 37

MQTT, 179

MSSP, 307

multicast addresses, 493, 503

multiplication, Python, 69

MustUnderstand fault code, 139

mv command, 37

MV Sense Camera API, 179

MVC software design pattern, 30–31

N

name resolution, DNS, 539

namespaces, Docker, 398–399

napalm, 103

NAT, 540–541

benefits of, 542

disadvantages of, 542–543

dynamic NAT, 541

IPv4, 543

PAT, 541–542

static NAT, 541

native data models, YANG, 354–355

ncclient modules, 103

ncs-netsim, 469–470

negotiation, content negotiation, versioning, 162

NETCONF, 344

Cisco IOS XE, NETCONF sessions, 360–362

Cisco NSO, 468

Cisco NX-OS and, 363–365

CLI commands, 345–346

configuration data stores, 346–347

loopback interfaces, 365–367

notification messages, 356–357

operations, 346

purpose of, 345

RPC, 345, 356, 362–363

server changes, 365–367

YANG and, 344–346

netmiko modules, 103

network access layer (TCP/IP network model),

488–489

Network Device Management API, 306

network ID, 497

Cisco DNA Center, 195–197

Dashboard API (Meraki), 180

curl, 183–184

Postman, 184–187

network layer (OSI network model), 486–487

networking protocols, DHCP, 534–535

benefits of, 535

IPv4, 535

phases of operation, 536

relay agents, 535–536

server allocation, 535

state machine, 536

networks

bridges, 517–518

bus networks, 512

CAN, 513–514

control plane, 527–528

controllers, 451–452, 453

creating, Cisco Firepower, 318–320

data plane, 527

defined, 512

diagrams, 526, 547

elements of (overview), 516

external bridged networks, Cisco ACI tenants, 221

external routed networks, Cisco ACI tenants, 221

hubs, 517

LAN, 492, 513

Layer 2 switches, 518–519

Layer 3 switches, 519

MAN, 514–515

NFV, 474

OSI network model, 484–485, 488

application layer, 488

data link layer, 486

layers, 485–488

LLC layer, 486

MAC layer, 486

network layer, 486–487

physical layer, 486

presentation layer, 487–488

session layer, 487

transport layer, 487

private networks. See VRI instances

ring topology, 512

routers, 521

domain name proxies, 526

IP address management, 525

network connections, 522

segmenting networks, 524

routing, 496, 504, 506

CEF switching, 523–524

connected routes, 506

data packet routing, 504–506

dynamic routes, 506

fast switching, 523, 524

firewalls, 525

IPv4 addresses, 496–500

IPv6 addresses, 501–504

longest prefix match concept, 507

path determination, 504

process switching, 522, 524

static routes, 506

supernetting, 507

tables, 505–506

SDN, 201–202, 526–527

Cisco SDN, 530–531

control plane, 527–528

controllers, 529–530

data plane, 527

segmentation, 524

standards, 513

star topology, 512

subnets

IPv4 addresses, 499–500

IPv6 addresses, 502

VLSM, 497, 499

switching, 492

Ethernet switching, 492

frames, 492

MAC addresses, 493–494, 495–496

TCP/IP network model, 488

application layer, 490

data packet routing, 489

data routing, 489

de-encapsulation, 491

encapsulation, 491

Internet layer, 489

network access layer, 488–489

PDU, 490–491. See also frames

TCP, 489–490

transport layer, 489–490

UDP, 490

topologies, 512–513

VLAN, 494–495, 520–521

WAN, 515–516

next-generation firewalls, 439

Nexus switches, Cisco ACI, 216–217

NFV, 474

NGFW, 314

NIST

cloud computing, 376–377

Cybersecurity Framework, 422

Nmap

CVE record detection, 427–429

vulnerability scanning, 426

NMS, 544–545

nornir, 103–104

northbound API, 130

northbound interfaces, SDN controllers, 530

notes (exam preparation), taking, 553

notification bots, 271

notification messages, NETCONF, 356–357

Nslookup, 442–443

NSO (Cisco), 467, 470–471, 530

architecture of, 467, 468

CDB, 468–469

CLI, 471

components of, 467

model-to-model mapping, 468

ncs-netsim, 469–470

NETCONF, 468

RESTCONF, 471–473

YANG, 468, 469

NTP, 545–547

numeric operations, Python, 68–69

O

ObjectType property (Cisco Intersight), 248

Observer software design pattern, 31–32

octal (base 8) systems, Python, 69

OID values, 545

OMP, 203

one-way hash (data integrity), 432

OOP, Python, 91–92

Open Automation, UCS Director, 241

open data models. See IETF data models

open() function, 109–110

OpenAPI interface (Cisco SD-WAN), 203

OpenConfig, YANG data models, 354–355

OpenDayLight controllers, 529

OpenFlow controllers, 529

options field (DHCPOFFER messages), 537

OPTIONS requests, 150

organization ID, Dashboard API (Meraki), 180,

181

curl, 181–183

Postman, 183

Organizations API, Webex Teams API

integration, 266

os modules, 101

OSI network model, 484–485, 488

application layer, 488

data link layer, 486

layers, 485–488

LLC layer, 486

MAC layer, 486

network layer, 486–487

physical layer, 486

presentation layer, 487–488

session layer, 487

transport layer, 487

OSPF, 201

OUI, 493

output/input, Python files/folders, 108–110

overloading. See PAT

OWASP, 424–426

Owners property (Cisco Intersight), 248

P

PaaS, 378

packet filtering (stateless) firewalls, 437–438

packet forwarding. See routing

packet routing, 489, 504–506

pagination

Dashboard API (Meraki), 181

REST API, 162–163

parameters, Python, 89–91

Parent property (Cisco Intersight), 248

parsing data, Python, 110

CSV files, 110–113

JSON, 113–115

XML, 115–117

YAML, 117–119

partner API, 147

passwords (strong), 431

PAT, 541–542

PATCH requests, 150, 151

path determination, 504

PDU, 490–491. See also frames

Pearson Test Prep software, practice tests, 556

accessing, 553–554

customizing, 554–555

Premium Edition, 555–556

updating, 555–556

PEMDAS, 68

penetration (pen) testing, 424–425

People Presence, 294

PEP, 177

personal access tokens, Webex Teams API

authentication, 262–263

phishing, 304, 424

physical layer (OSI network model), 486

pip command, 62–63

pipelines (DevOps), 394–397

piping commands, 34

planning stage (SDLC), 25

playbooks (Ansible), 458–459, 460–462

PnP, API, 192

polling, UCS Manager, 233

ports

system ports, 489–490

well-known ports, 489–490

POST requests, 150, 151, 152, 161, 166, 169

Postman, 164–168

Cisco DNA Center

authorization, 194–195

network ID, 197

Cisco SD-WAN, authorization, 205

Dashboard API (Meraki)

network ID, 184–187

organization ID, 183

PowerShell, UCS Director, 242

PowerTool suite (UCS Manager), 237

pprint modules, 101

practice tests, Pearson Test Prep software, 553–

554, 556

accessing tests, 553–554

customizing tests, 554–555

Premium Edition, 555–556

updating tests, 555–556

preparing for exams

budgeting time, 552

chapter-ending review tools, 556

DITKA questions, 556

earplugs, 552

getting rest, 553

locking up valuables, 553

Pearson Test Prep software, 556

accessing, 553–554

customizing, 554–555

Premium Edition, 555–556

updating, 555–556

practice tests, 556

accessing, 553–554

customizing, 554–555

Premium Edition, 555–556

updating, 555–556

study trackers, 552

suggested final review/study plans, 556

taking notes, 553

travel time, 552

watching the clock, 552

presentation layer (OSI network model), 487–

488

print() function, 77–78, 88

printing

from command line, unparse() function, 117

directory paths, 35

imported dictionaries to command line, 116

private API, 147

Private Cloud (Cisco AMP), 320

private clouds, 379

private IPv4 addresses, 498–499

private networks. See VRI instances

private subnets, 221

process switching, 522, 524

programmability (model-driven), 343–344

NETCONF, 344

Cisco IOS XE, NETCONF sessions, 360–362

Cisco NSO, 468

Cisco NX-OS, 363–365

CLI commands, 345–346

configuration data stores, 346–347

loopback interfaces, 365–367

notification messages, 356–357

operations, 346

purpose of, 345

RPC, 345, 356, 362–363

server changes, 365–367

YANG and, 344–346

RESTCONF, 367, 369–371

API, 368

Cisco NSO, 471–473

HTTP methods, 367–368

JSON, 368

protocol stacks, 367

URI, 368–369

XML, 368

YANG, 347, 348

built-in data types, 348

container nodes, 350–351

data models, augmenting, 355–356

data models, components of, 352

data models, example of, 352–354

data models, IETF, 354

data models, native, 354–355

data models, nodes, 349

data models, structure of, 357–360

leaf nodes, 349–350

leaf-list nodes, 350

list nodes, 351

NETCONF, Cisco IOS XE sessions, 360–362

NETCONF, Cisco NX-OS, 363–365

NETCONF, loopback interfaces, 365–367

NETCONF, server changes, 365–367

NETCONF notification messages, 356–357

NETCONF RPC, 356, 362–363

statements, 347, 348–349

XML, 348

property filters, XML API, 232

proxy (application-level) firewalls, 438–439

public API, 148

public clouds, 379–380

public key encryption, 431–432

public subnets, 221

Puppet, 462–464

Puppet Forge, 464

Puppet manifests, 462, 464

pushing/pulling, files, 45–47

PUT requests, 150, 151, 161

pwd command, 35

pyang modules, 102

pyATS, 476–479

pyats, 104

pysnmp modules, 103

Python, 60–61

> operator, 70

>= operator, 70

== operator, 70

!= operator, 70

< operator, 70

<= operator, 70

() characters, 68

+ operator, 72, 73

''' (triple-quote) method, 66

acitoolkit, 227–229

APIC REST API, acitoolkit, 227–229

arguments, 89–91

Base64 encoding, 328

best practices, 436

binary (base 2) systems, 69

boolean comparisons, 70

Cisco AMP for Endpoints

listing computers, 323

listing vulnerabilities, 323

Cisco DNA Center Python SDK, 199–201

Cisco Firepower, generating session tokens, 315–316,

318–320

Cisco Intersight, 249–251

Cisco SD-WAN, 209–212

Cisco UCS Python SDK, 237–239

Cisco Umbrella

adding domains, 308–309

Base64 encoding, 306

deleting domains, 310

listing domains, 309–310

classes, 92

creating, 92–93

inheritance, 94–96

router classes, 93–95

comments, 65–66

CSV files, 110–113

data types

commonly used data types, 67

dictionaries, 75–76

floating point numbers, 68, 69

integers, 68, 69

lists, 72–74

sets, 76

strings, 70–72

tuples, 74–75

deactivate command, 62

dictionaries

changing interface names in dictionaries, 118–

119

imported dictionaries, printing to command line,

116

Dlint, 436

error handling, 119–121

files/folders, input/output, 108–110

Finesse User API

logins, 278

team details, 279

user state changes, 278–279

flow control

break statements, 82–83

elif statements, 79–80

else statements, 80, 82

if statements, 78–80

for loops, 79, 80–82

while loops, 79, 82–83

freeze command, 63

functions, 88–89

area_of_circle function, 123–124, 125–126

arguments, 89–91

close() function, 109–110

dir() function, 97

dump() function, 113, 114

dumps() function, 113–114

getdesc() function, 93–95

help() function, 89, 97–98

items() function, 91

load() function, 113

loads() function, 113, 114

max() function, 89

open() function, 109–110

parameters, 89–91

print() function, 88

test_value function, 125

unparse() function, 117

hex (base 16) systems, 69

input() function, 77

installing, 61, 62–63

Macs and, 61

Memberships API, adding members, 269

Meraki Python SDK, 187–189

Messages API, adding messages to rooms, 270

methods, 93–94

sqrt() method, 98, 99

tan() method, 99

modules, 96–97

calendar modules, 99

Cisco infrastructure, 101–104

csv modules, 102

datetime modules, 101

importing, 97–99, 100–101

json modules, 102

math modules, 97–98

napalm, 103

ncclient modules, 103

netmiko modules, 103

nornir, 103–104

os modules, 101

pprint modules, 101

pyang modules, 102

pyats, 104

pysnmp modules, 103

Python standard library, 99

PyYAML modules, 102

requests modules, 102–103

sys modules, 100, 101

time modules, 102

unitest, 104

xmltodict modules, 102

multiplication, 69

numeric operations, 68–69

octal (base 8) systems, 69

OOP, 91–92

parameters, 89–91

parsing data, 110

CSV files, 110–113

JSON, 113–115

XML, 115–117

YAML, 117–119

PEMDAS, 68

PEP, 177

pip command, 62–63

print() function, 77–78

pyATS, 476–479

Python 3, 61–62, 64

Python standard library, 99

remainders, 69

Requests, 171–172

requirements.txt files, 63

Rooms API, creating, 267–268

syntax of, 63–66

TDD, 121–122

Teams API, creating, 266–267

testing

functional tests, 122

integration tests, 122

TDD, 121–122

unit testing, 122–126

text editors, Atom text editor, 64–65

Threat Grid

feeds, 336–337

listing details of curated feed types, 336–337

Unified CC (Finese) API

authentication, 277

Base64 encoding, 277

Unified CM, AXL API, 294–297

user input, 77

variables, 66–67

versions of, 61–62

virtual environments, 61–62

whole numbers, 69

xAPI

getting endpoint status, 291–292

People Presence, 294

setting camera positions, 292

Zeep Client Library, 296–297

PyYAML modules, 102

Q

query parameter versioning, 162

R

ransomware, 320

rate limiting

Cisco DNA Center, 192

Dashboard API (Meraki), 180

REST API, 163–164

Receiver fault code, 139

recipes (Chef), 465–466

registry (Docker), 401, 405, 414–415

relay agents, DHCP, 535–536

releasing phase (DHCP), 537

remainders, Python, 69

removing, files from repositories, 43–45

Reporting API, 305

repositories

adding/removing files, 43–45

cloning/initiating, 42–43

creating, 42–43

request headers, 153–154

requests

Dashboard API (Meraki), 180

GET requests, APIC REST API, 225–227

HTTP

components of, 149

CONNECT requests, 150

DELETE requests, 150, 151, 161

GET requests, 149, 150, 151–152, 161, 165, 168,

170

HEAD requests, 150

methods, 150–151

OPTIONS requests, 150

PATCH requests, 150, 151

POST requests, 150, 151, 152, 161, 166, 169

PUT requests, 150, 151, 161

request/response cycle, 148

TRACE requests, 150

Python Requests, 171–172

requests modules, 102–103

requirements analysis, SDLC, 25

requirements.txt files, 63

resizing images via serverless applications, 386–

388

response codes (HTTP), 154–155

response headers, 153–154

Response messages (SNMP), 545

rest (exam preparation), getting, 553

REST API

APIC REST API, 223

acitoolkit, 227–229

authentication, 223–225

get requests, 225–227

Cisco Intersight, 247, 249

curl, 168–169

debugging tools, 172

development tools, 172

HTTPie, 169–170

monetization, 163–164

pagination, 162–163

Postman, 164–168

Python Requests, 171–172

rate limiting, 163–164

UCS Director, 242–245

versioning, 162

REST constraints, 160

cache constraints, 161

client/server constraints, 160

code on demand constraints, 162

layered system constraints, 162

stateless constraints, 161

uniform interface constraints, 161

REST methods, 150–151

RESTCONF, 367, 369–371

API, 368

Cisco NSO, 471–473

HTTP methods, 367–368

JSON, 368

protocol stacks, 367

URI, 368–369

XML, 368

RESTful API, 133

authentication, 133–134

CRUD functions, 132–133

HTTP functions, 132–133

reverse API. See webhooks

reverse proxies, 444–446

reviewing

code, 55

for exams

chapter-ending review tools, 556

suggested final review/study plans, 556

ring network topology, 512

rm command, 37

RN, UCS Manager, 232

Room Analytics People Presence Detector, 294

rooms

adding members, 269

adding messages, 270

Rooms API

creating, 267–268

listing rooms, 268

Webex Teams API integration, 267–268

routed networks (external), Cisco ACI tenants,

221

router classes

example of, 93–94

inheritance, 94–95

routing, 496, 504, 506

CEF switching, 523–524

CIDR, subnets, 499–500

connected routes, 506

data, TCP/IP network model, 489

data packet routing, 504–506

dynamic routes, 506

fast switching, 523, 524

IPv4 addresses, 496

address masks, 498

broadcast addresses, 498

CIDR, 499–500

classes of, 497–498

decimal/binary values, 496

host ID, 497

network ID, 497

private IPv4 addresses, 498–499

subnets, 499–500

IPv6 addresses, 501–503

anycast addresses, 503–504

global addresses, 503

IANA, 502

link-local addresses, 503

loopback addresses, 503

multicast addresses, 503

subnets, 502

unspecified addresses, 503

longest prefix match concept, 507

path determination, 504

process switching, 522, 524

routers, 521

domain name proxies, 526

firewalls, 525

IP address management, 525

network connections, 522

segmenting networks, 524

static routes, 506

supernetting, 507

tables, 505–506

RPC, 140

gRPC, 343

high-level communication, 140

NETCONF and, 345, 356, 362–363

XML-RPC reply messages, 141

XML-RPC request messages, 140–141

RSA, 432

Run category (DevNet Automation Exchange), 19

S

SaaS, 378

Sample API, 334

sandboxes, UCS Manager, 234

Scanning API, 178–179

script modules, UCS Director, 242

scripts, XSS, 304, 424

SDK, 176–178

advantages of, 177

AXL SDK, 297–298

Cisco DNA Center, 189–190

authorization, 193–194

client data, 198–199

Integration API, 190

Intent API, 190, 191–192

network ID, 195–197

non-Cisco device management, 191

platform interface, 193

Python SDK, 199–201

rate limiting, 192

versions of, 193

webhooks, 191

Cisco UCS Python SDK, 237–239

Meraki, 178

Captive Portal API, 178

cloud computing, 178

Dashboard API, 179–187

Meraki Python SDK, 187–189

MV Sense Camera API, 179

Scanning API, 178–179

qualities of, 177

UCS Director SDK, 241

Webex Teams, 273–274

SDLC, 25

Agile model, 29–30

ISO/IEC 12207, 26

Lean model, 28–29

models, overview, 26

secure development, 434–436

stages of, 25–26

Waterfall model, 27–28

phases of, 27

value problem, 28

SDN, 201–202, 526–527

Cisco SDN, 530–531

control plane, 527–528

controllers, 529–530

data plane, 527

SD-WAN (Cisco), 201–202, 203, 530–531

API, 203

authorization, 204–205

device templates, 207–208

listing devices, 205–207

OpenAPI interface, 203

Python scripting, 209–212

vBond, 202

vEdge, 202

vManage, 202, 203–212

vSmart, 202

security

applications

best practices, 431

common threats, 423–424

CVE records, 425–426, 427–429

Cybersecurity Framework, 422

data integrity (one-way hash), 432

data security, 433–434

device security, 431

digital signatures, 432–433

DNS, 440–443

encryption, 431–433

end-user security, 431

firewalls, 431, 437–439

IDS, 439–440

IPS, 440–441

load balancing, 443–446

MFA, 431

mitigating common threats, 423–424

Nmap, 426–429

Nslookup, 442–443

one-way hash (data integrity), 432

OWASP, 424–426

passwords (strong), 431

penetration (pen) testing, 424–425

reverse proxies, 444–446

SDLC, 434–436

software development, 434–436

three-tier application security, 430

updating software, 431

Cisco AMP

Cisco AMP for Endpoints, 320–326

Private Cloud, 320–321

Cisco Firepower, 314

API, 315, 316–317

authentication, 315–316

components of, 314–315

creating networks, 318–320

features of, 314

generating session tokens, 315–316, 318–320

Management Center objects, 317–318

server version information, 316

system information, 316–317

Cisco ISE, 326

API, 327–331

components of, 326–327

deployments, 326–327

profiles, 326

Cisco security portfolio, 302–303

Cisco Umbrella, 304

adding domains, 308–309

API, 305–306

authentication, 306

categorizing domains, 312–313

Console Reporting API, 306

deleting domains, 310

domain lookups, 305

Enforcement API, 306, 308–310

flow example, 305

Investigate API, 306, 311–313

listing domains, 309–310

Management API, 305, 307–308

Network Device Management API, 306

Reporting API, 305

CVE records, 425–426, 427–429

Cybersecurity Framework, 422

data integrity (one-way hash), 432

data security, 433–434

development, 434–436

devices, 431

digital signatures, 432–433

Dlint, 436

DNS, 440–443

domain lookups, 305

encryption, 431

objectives of, 431

public key encryption, 431–432

TLS handshakes, 432

end-user security, 431

firewalls, 431, 437

application-level (proxy) firewalls, 438–439

next-generation firewalls, 439

packet filtering (stateless) firewalls, 437–438

routers, 525

stateful inspection firewalls, 438–439

hackers, 429

IDS, 439–440

IPS, 440–441

load balancing, 443–446

malicious code, 430

MFA, 431

MSSP, 307

NGFW, 314

Nmap

CVE record detection, 427–429

vulnerability scanning, 426

Nslookup, 442–443

one-way hash (data integrity), 432

OWASP, 424–426

passwords (strong), 431

reverse proxies, 444–446

RSA, 432

SDLC, 434–436

software development, 434–436

SSL, 423, 432, 445–446

Threat Grid, 331

API, 332–337

architecture of, 331–332

submissions searches, 334–335

threats, 303

APT, 320–321

brute-force attacks, 304, 424

buffer overflow attacks, 423

common threats, 303–304, 423–424

Cross-Site Scripting (XSS), 304, 424

defined, 303

DoS attacks, 303, 424

hackers, 429

malicious code, 430

malware, 304, 320–321, 424

mitigating common threats, 423–424

MITM attacks, 303, 423

phishing, 304, 424

ransomware, 320

SQL injections, 304, 424

XSS, 304, 424

three-tier application security, 430

TLS, 423, 432, 434

vulnerabilities

CVE records, 425–426, 427–429

defined, 303

segmenting networks, 524

Sender fault code, 139

sequence diagrams, 159–160

server/client constraints (REST), 160

serverless applications, 386–388

servers

discovery phase (DHCP), 536–537

NETCONF server changes, 365–367

TLD servers, 538

version information, Cisco Firepower, 316

service API, 146–147

service profiles, UCS Manager, 231

Session API, 327

session authentication, xAPI

creating sessions, 291

current device status, 291–292

event notification webhooks, 293

setting device attributes, 292

session layer (OSI network model), 487

SetMeeting API, Webex Meetings API, 287–288

SetRequest messages (SNMP), 545

sets, 76

setting/modifying meeting attributes, 287–288

shared subnets, 221

shells, BASH, 32–33

cat command, 34, 37

cd command, 35

cp command, 36

directories, 35–36

environment variables, 37–38

file management, 36–37

ls command, 36

man command, 33

mkdir command, 36

more command, 34

mv command, 37

piping commands, 34

pwd command, 35

rm command, 37

touch command, 37

signatures (digital), 432–433

simple filters, XML API, 232

SingleConnect technology, UCS Manager, 230

SLA, 545–546

SNMP, 342, 343–344, 544

advantages of, 543

community names, 545

components of, 544

disadvantages of, 543

GetBulkRequest messages, 545

GetNextRequest messages, 545

GetRequest messages, 545

InformRequest messages, 545

managed devices, 544

MIB, 544–545

NMS, 544–545

OID values, 545

Response messages, 545

SetRequest messages, 545

SNMP agent, 544–545

SNMP manager, 544–545

Trap messages, 545

versions of, 543

SOAP, 136

AXL SOAP API, 296–297

fault codes, 138–139

fault options, 138–139

high-level communication, 137–138

message format, 136–137

sample faults, 139–140

sample message, 138

software

design patterns, 30

MVC, 30–31

Observer, 31–32

emulators, UCS Platform Emulator, 234

routing, 522–524

SDLC, 25

Agile model, 29–30

ISO/IEC 12207, 26

Lean model, 28–29

models, overview, 26

secure development, 434–436

stages of, 25–26

Waterfall model, 27–28

SDN, 526–527

Cisco SDN, 530–531

control plane, 527–528

controllers, 529–530

data plane, 527

secure development, 434–436

updating, 431

version control

Git, 39–54

SVC, 38–39

southbound API, 130

southbound interfaces, SDN controllers, 530

spaces (characters)

in Atom text editor, 64–66

Python and, 64–66

spaces, collaboration, 261

special characters

**kwargs, 90–91

*args, 90–91

== operator, 70

!= operator, 70

> operator, 70

>= operator, 70

< operator, 70

<= operator, 70

''' (triple-quote) method, 66

() characters, Python, 68

| character, piping commands, 34

+ operator, 72, 73

character, Python comments, 65

specialist certifications, 11, 13–14

SQL injections, 304, 424

sqrt() method, 98, 99

SSL, 423, 432, 445–446

Staged status (Git files), 40

staging, 40, 41, 43–44

standards (networks), 513

star network topology, 512

state changes (users), Finesse User API, 278–279

stateful inspection firewalls, 438–439

stateless (packet filtering) firewalls, 437–438

stateless constraints (REST), 161

static NAT, 541

static routes, 506

status codes (HTTP), 154–155

strings, 70, 71–72

concatenating, 72

DevNet string index, 70–71

string methods, 72

strong passwords, 431

study trackers, 552

submissions searches, Threat Grid API, 334–335

subnets

Cisco ACI tenants, 221

IPv4 addresses, 499–500

IPv6 addresses, 502

private subnets, 221

public subnets, 221

shared subnets, 221

VLSM, 497, 499

subscription (event), UCS Manager, 233

suggested final review/study plans, 556

supernetting, 507

Support page (DevNet), 17

SVC (Software Version Control), 38–39

SWIM, 191

switching, 492

CEF switching, 523–524

Ethernet switching, 492

fast switching, 523, 524

frames, 492

Layer 2 switches, 518–519

Layer 3 switches, 519

MAC addresses, 493–494, 495–496

Nexus switches, Cisco ACI, 216–217

process switching, 522, 524

VLAN, 494–495

symbols

**kwargs, 90–91

*args, 90–91

== operator, 70

!= operator, 70

> operator, 70

>= operator, 70

< operator, 70

<= operator, 70

''' (triple-quote) method, 66

() characters, Python, 68

| character, piping commands, 34

+ operator, 72, 73

character, Python comments, 65

synchronous API, 131

sys modules, 100, 101

system ports, 489–490

T

tabs

in Atom text editor, 65

Python and, 65

tagging, Cisco Intersight, 248

Tags property (Cisco Intersight), 248

tan() method, 99

tasks, UCS Director, 240, 242

TCP, 489–490

TCP/IP network model, 488

application layer, 490

data packet routing, 489

data routing, 489

de-encapsulation, 491

encapsulation, 491

Internet layer, 489

network access layer, 488–489

PDU, 490–491

PDU. See also frames

TCP, 489–490

transport layer, 489–490

UDP, 490

TDD, 121–122

Teams API

creating, 266–267

Webex Teams API integration, 266–267

Technologies page (DevNet), 15–16

telemetry (model-driven), 371–372

templates

device templates, Cisco SD-WAN, 207–208

UCS Director, 240

tenants

Cisco ACI, 219

bridge domains, 221

components of, 220–221

external bridged networks, 221

external routed networks, 221

subnets, 221

VRF instances, 221

Cisco ACI MIT, 219

Terraform, 455

test_value function, 125

testing

pyATS, 476–479

pyats, 104

pyramid, 122–123

Python

functional tests, 122

integration tests, 122

TDD, 121–122

unit testing, 122–123

unitest, 104

webhooks, 158

testing stage (SDLC), 26

text editors, Atom text editor, 64–65

Threat Grid, 331

API, 332

API keys, 333

Data API, 334

format of, 332

IOC API, 334

Sample API, 334

submissions searches, 334–335

“Who am I” queries, 333–334

architecture of, 331–332

feeds, 335–337

threats (security), 303

APT, 320–321

brute-force attacks, 304, 424

buffer overflow attacks, 423

common threats, 303–304, 423–424

Cross-Site Scripting (XSS), 304, 424

defined, 303

DoS attacks, 303, 424

hackers, 429

malicious code, 430

malware, 304, 320–321, 424

mitigating common threats, 423–424

MITM attacks, 303, 423

phishing, 304, 424

ransomware, 320

SQL injections, 304, 424

XSS, 304, 424

three-tier application security, 430

time

exam preparation

budgeting time, 552

travel time, 552

watching the clock, 552

NTP, 545–547

time modules, 102

timestamps, files/folders, 37

TLD servers, 538

TLS, 423, 432, 434

tokens

custom authentication tokens, 135–136

personal access tokens, Webex Teams API

authentication, 262–263

topologies (networks), 512–513

touch command, 37, 43

TRACE requests, 150

transport layer

OSI network model, 487

TCP/IP network model, 489–490

Trap messages (SNMP), 545

travel time, exam preparation, 552

triple-quote method ('''), 66

troubleshooting applications, connectivity

issues, 548–550

TSP API, Webex Meetings API, 281

tuples, 74–75

turning on/off, virtual environments, 62

U

UCS Director, 239–240

Cisco ACI, 240

Open Automation, 241

PowerShell, 242

REST API, 242–245

script modules, 242

SDK, 241

tasks, 240, 242

templates, 240

user profiles, retrieving, 244–245

workflows, 240, 241, 245

UCS Manager, 230, 232

API, 231

authentication, 234

Cisco UCS Python SDK, 237–239

CLI, 231

compute object lists, 234–237

connectivity, 230

DME, 231

DN, 232

documentation, 233

event subscription, 233

GUI, 231

MIT, 231–232

MO, 231

polling, 233

PowerTool suite, 237

sandboxes, 234

service profiles, 231

SingleConnect technology, 230

UCS Platform Emulator, 234

Visore, 233

XML API, 231, 232

authentication, 234

compute object lists, 234–237

UCS Platform Emulator, 234

UDP, 490

Umbrella (Cisco), 304

API, 305–306

authentication, 306

Console Reporting API, 306

domain lookups, 305

domains

adding domains, 308–309

categorizing domains, 312–313

deleting domains, 310

listing domains, 309–310

Enforcement API, 306, 308–310

flow example, 305

Investigate API, 306, 311–313

Management API, 305, 307–308

Network Device Management API, 306

Reporting API, 305

unicast addresses, 493

Unified CC (Finese), 259–260

API, 275–280

high-level flow, 274–275

user states, 275

Unified CC (Finese) API

Dialog API, 279–280

Finesse Team API, 279

Finesse User API, 277–279

gadgets, 281

Unified CM, 259

AXL API, 294–295

AXL SOAP API, 296–297

toolkit, 295–296

Zeep Client Library, 296–297

AXL SDK, 297–298

overview of, 294

Unified Communications, 257–258

Webex Calling, 258–259

Webex Teams, 258

API, 261–273

SDK, 273–274

uniform interface constraints (REST), 161

Union File System, 399–400

unit testing, 122–126

unitest, 104

UNIX

directories

changing, 35

creating, 36

listing, 36

navigating, 35–36

printing paths, 35

structure of, 35

file management, 36–37

UnModified status (Git files), 40

unparse() function, 117

unspecified IPv6 addresses, 503

Untracked status (Git files), 40

updating

practice tests, Pearson Test Prep software, 555–556

software, 431

URI

Cisco Intersight, 248

path versioning, 162

RESTCONF URI, 368–369

URL

Dashboard API (Meraki), 180, 181–182

HTTP requests, 149

URL API, Webex Meetings API, 281

user input, Python, 77

user profiles, UCS Director, retrieving user

profiles, 244–245

user state changes, Finesse User API, 278–279

user tenants, Cisco ACI MIT, 219

V

validation, webhooks, 158–159

valuables (exam preparation), locking up, 553

variables

BASH environment variables, 37–38

Python, 66–67

vBond, 202, 531

vEdge, 202, 531

vendor-assigned addresses, 493

version control (software)

Git, 39, 42

adding/removing files to repositories, 43–45

branches, 47–52

cloning/initiating repositories, 42–43

committing files, 45, 53–54

file lifecycles, 40–41

git add command, 43–45, 52

git branch command, 48–49

git checkout command, 49

git clone command, 42, 46

git commit command, 45, 52

git diff command, 53–54

git init command, 42–43, 46

git log command, 47–48

git merge command, 50, 51, 52

git mv command, 44

git pull command, 47

git push command, 46–47

git remote command, 46

git rm command, 44

git status command, 41, 43

GitHub and, 39

Modified file status, 40

pushing/pulling files, 45–47

Staged file status, 40

touch command, 43

tree structures, 40

UnModified file status, 40

Untracked file status, 40

workflows, 41

SVC, 38–39

versioning

content negotiation, 162

custom headers, 162

query parameter versioning, 162

REST API, 162

URI path versioning, 162

VersionMismatch fault code, 139

video devices, collaboration, 260

VIRL (Cisco), 457, 474–476

virtual environments

Python, 61–62

turning on/off, 62

virtualization

application deployments, 383–384

NFV, 474

Visore, 233

VLAN, 494–495, 520–521

VLSM, 497, 499

VM

domains, Cisco ACI MIT, 220

UCS Platform Emulator, 234

vManage, 202, 203–212, 531

VRF instances, Cisco ACI tenants, 221

vSmart, 202, 531

vulnerabilities

CVE records, 425–426

detecting with Nmap, 427–429

listing, Cisco AMP for Endpoints API, 323–325

Nmap

CVE record detection, 427–429

vulnerability scanning, 426

vulnerabilities (security), defined, 303

W

Walk category (DevNet Automation Exchange),

19

WAN, 515–516. See also Cisco SD-WAN

Waterfall model (SDLC), 27, 28

phases of, 27

value problem, 28

web acceleration, reverse proxies, 445

Webex (Cisco), 260

Webex Board (Cisco), 260

Webex Calling, 258–259

Webex Devices, overview of, 289–290

Webex Meetings API

architecture of, 282, 284

authentication, overview of, 283

CreateMeeting API, 284–285

DelMeeting API, 288–289

integrations, 283–284

LstsummaryMeeting API, 286

Meetings XML API, 289

overview of, 281–282

SetMeeting API, 287–288

supported services, 282–283

TSP API, 281

URL API, 281

XML API, 281

Webex Share, 260

Webex Teams, 258

API, 258, 261–262

access scopes, 265–266

authentication, 262–273

bots, 271–272

guest issuers, 272–273

integrations, 263–270

Memberships API, 269

Messages API, 270

Organizations API, 266

personal access tokens, 262–263

Rooms API, 267–268

Teams API, 266–267

SDK, 273–274

webhooks, 158

Cisco DNA Center, 191

development tools, 158

event notification webhooks, xAPI, 293

testing, 158

validation, 158–159

well-known ports, 489–490

while loops, 79, 82–83

whitespace

in Atom text editor, 64–66

Python and, 64–66

“Who am I” queries, Threat Grid API, 333–334

whole numbers, Python, 69

workflows

Git, 41

UCS Director, 240, 241, 245

X

xAPI

authentication, 290–291

creating sessions, 291

current device status, 291–292

event notification webhooks, 293

session authentication, 291–293

setting device attributes, 292

categories, 290

overview of, 290

People Presence, 294

XML, 115–117, 155–156

AXL API, 294–295

AXL SOAP API, 296–297

toolkit, 295–296

Zeep Client Library, 296–297

data format, 156

RESTCONF, 368

YANG, 348

XML API

data filters, 232

UCS Manager, 231, 232

authentication, 234

compute object lists, 234–237

Webex Meetings API, 281

XML-RPC

reply messages, 141

request messages, 140–141

xmltodict modules, 102

XMPP, 256, 275

XSS, 304, 424

Y

YAML, 117–119, 157–158, 461

YANG, 347, 348

built-in data types, 348

Cisco NSO, 468, 469

container nodes, 350–351

data models

augmenting, 355–356

components of, 352

example of, 352–354

IETF data models, 354

native data models, 354–355

nodes, 349

structure of, 357–360

leaf nodes, 349–350

leaf-list nodes, 350

list nodes, 351

NETCONF, 344–346, 360–362

Cisco NX-OS and, 363–365

loopback interfaces, 365–367

notification messages, 356–357

RPC, 356, 362–363

server changes, 365–367

statements, 347, 348–349

XML, 116, 348

yiaddr field (DHCPOFFER messages), 537

Z

Zeep Client Library, 296–297

Appendix C

Study Planner

Key:

Practice Test

Reading

Review

Elem

ent

Ta

sk

Goal

Date

First Date

Completed

Second Date Completed

(Optional)

Not

es

Introduction Read Introduction

Your Study Plan Read Your Study Plan

1. Introduction to Cisco DevNet Associate

Certificate

Read Foundation

Topics

2. Software Development and DesignRead Foundation Topics

2. Software Development

and Design

Review Key Topics using the book or

companion website

2. Software Development

and Design

Define Key Terms using the book or

companion website

2. Software Development

and Design

Repeat DIKTA questions using the book or

PTP exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

3. Introduction to Python Read Foundation Topics

3. Introduction to

Python

Review Key Topics using the book or companion

website

3. Introduction to

Python

Define Key Terms using the book or companion

website

3. Introduction to

Python

Repeat DIKTA questions using the book or PTP

exam engine

3. Introduction to

Python

Complete all memory tables in this chapter using

the companion website

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

4. Python Functions, Classes, and Modules Read Foundation Topics

4. Python Functions, Classes,

and Modules

Review Key Topics using the book or

companion website

4. Python Functions, Classes,

and Modules

Define Key Terms using the book or

companion website

4. Python Functions,

Classes, and Modules

Repeat DIKTA questions using the book

or PTP exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

5. Working with Data in Python Read Foundation Topics

5. Working with Data in

Python

Review Key Topics using the book or

companion website

5. Working with Data in

Python

Define Key Terms using the book or

companion website

5. Working with Data in

Python

Repeat DIKTA questions using the book or

PTP exam engine

Practice Take practice test in study mode using Exam #1 in practice

Test test software for this chapter

6. Application Programming Interface (API)Read Foundation Topics

6. Application Programming

Interface (API)

Review Key Topics using the book or

companion website

6. Application Programming

Interface (API)

Define Key Terms using the book or

companion website

6. Application Programming

Interface (API)

Repeat DIKTA questions using the book

or PTP exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

7. REST APIs Read Foundation Topics

7. REST APIs Review Key Topics using the book or companion website

7. REST APIs Define Key Terms using the book or companion website

7. REST

APIs

Repeat DIKTA questions using the book or PTP exam

engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

8. Cisco Enterprise Networking Management

Platforms and APIs

Read Foundation

Topics

8. Cisco Enterprise Networking

Management Platforms and APIs

Review Key Topics using the

book or companion website

8. Cisco Enterprise Networking

Management Platforms and APIs

Define Key Terms using the

book or companion website

8. Cisco Enterprise Networking

Management Platforms and APIs

Repeat DIKTA questions using

the book or PTP exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

9. Cisco Data Center and Compute Management

Platforms and APIs

Read Foundation

Topics

9. Cisco Data Center and Compute Review Key Topics using the

Management Platforms and APIs book or companion website

9. Cisco Data Center and Compute

Management Platforms and APIs

Define Key Terms using the

book or companion website

9. Cisco Data Center and Compute

Management Platforms and APIs

Repeat DIKTA questions using

the book or PTP exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

10. Cisco Collaboration Platforms and APIsRead Foundation Topics

10. Cisco Collaboration

Platforms and APIs

Review Key Topics using the book or

companion website

10. Cisco Collaboration

Platforms and APIs

Define Key Terms using the book or

companion website

10. Cisco Collaboration

Platforms and APIs

Repeat DIKTA questions using the book

or PTP exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

11. Cisco Security Platforms and APIs Read Foundation Topics

11. Cisco Security Platforms

and APIs

Review Key Topics using the book or

companion website

11. Cisco Security Platforms

and APIs

Define Key Terms using the book or

companion website

11. Cisco Security

Platforms and APIs

Repeat DIKTA questions using the book or

PTP exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

12. Model-driven ProgrammabilityRead Foundation Topics

12. Model-driven

Programmability

Review Key Topics using the book or

companion website

12. Model-driven

Programmability

Define Key Terms using the book or

companion website

12. Model-driven

Programmability

Repeat DIKTA questions using the book or

PTP exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

13. Deploying ApplicationsRead Foundation Topics

13. Deploying

Applications

Review Key Topics using the book or

companion website

13. Deploying

Applications

Define Key Terms using the book or companion

website

13. Deploying

Applications

Repeat DIKTA questions using the book or PTP

exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

14. Application SecurityRead Foundation Topics

14. Application

Security

Review Key Topics using the book or companion

website

14. Application

Security

Define Key Terms using the book or companion

website

14. Application

Security

Repeat DIKTA questions using the book or PTP

exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

15. Infrastructure AutomationRead Foundation Topics

15. Infrastructure

Automation

Review Key Topics using the book or

companion website

15. Infrastructure

Automation

Define Key Terms using the book or

companion website

15. Infrastructure

Automation

Repeat DIKTA questions using the book or

PTP exam engine

15. Infrastructure

Automation

Complete all memory tables in this chapter using

the companion website

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

16. Network Fundamentals Read Foundation Topics

16. Network

Fundamentals

Review Key Topics using the book or

companion website

16. Network

Fundamentals

Define Key Terms using the book or

companion website

16. Network

Fundamentals

Repeat DIKTA questions using the book or PTP

exam engine

16. Network

Fundamentals

Complete all memory tables in this chapter using

the companion website

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

17. Networking ComponentsRead Foundation Topics

17. Networking

Components

Review Key Topics using the book or

companion website

17. Networking

Components

Define Key Terms using the book or

companion website

17. Networking

Components

Repeat DIKTA questions using the book or PTP

exam engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

18. IP ServicesRead Foundation Topics

18. IP

Services

Review Key Topics using the book or companion

website

18. IP ServicesDefine Key Terms using the book or companion website

18. IP

Services

Repeat DIKTA questions using the book or PTP exam

engine

Practice

Test

Take practice test in study mode using Exam #1 in practice

test software for this chapter

Practice

Test

Take practice test in study mode using Part Review exam in

practice test software for this part

Final

Review

Take practice test in study mode for all Book Questions in

practice test software

Final

Review

Review all Key Topics in all chapters or in the Key Topics App

using the companion website

Final

Review

Review all Key Terms in all chapters or using the Key Terms

Flashcards on the companion website

Final

Review

Complete all memory tables and practice exercises for all

chapters using the companion website

Final

Review

Take practice test in practice exam mode using Exam Bank

#1 questions for all chapters

Final

Review

Take practice test in practice exam mode using Exam Bank

#2 questions for all chapters

Where are the companion content

files?

Register this digital version of Cisco

Certified DevNet Associate DEVASC 200-

901 Official Cert Guide to access important

downloads.

Register this eBook to unlock the companion files.

Follow these steps:

1. Go to ciscopress.com/account and log in or create a new

account.

2. Enter the ISBN: 9780136642961 (NOTE: Please enter the print

book ISBN provided to register the eBook you purchased.)

3. Answer the challenge question as proof of purchase.

4. Click on the “Access Bonus Content” link in the Registered

Products section of your account page, to be taken to the page

where your downloadable content is available.

This eBook version of the print title does not

contain the practice test software that

accompanies the print book.

You May Also Like—Premium Edition eBook and

Practice Test. To learn about the Premium Edition

eBook and Practice Test series, visit

ciscopress.com/practicetest

http://ciscopress.com/account
http://ciscopress.com/practicetest

The Professional and Personal Technology Brands

of Pearson

Cisco Certified

DevNet Associate

DEVASC 200-901

Official Cert Guide

ISBN: 978-0-13-664296-1

See other side for your Pearson Test Prep

Practice Test activation code and special

offers ▸▸▸

Complete Video Course

To enhance your preparation, Cisco Press also sells Complete Video Courses

for both streaming and download. Complete Video Courses provide you

with hours of expert-level instruction mapped directly to exam objectives.

Special Offer–Save 70%

This single-use coupon code will allow you to purchase the Complete Video

Course at a 70% discount. Simply go to the product URL below, add the

Complete Video Course to your cart, and apply the coupon code at checkout.

Cisco Certified DevNet Associate DEVASC 200-901

Complete Video Course

www.ciscopress.com/title/9780136904427

Coupon Code:

Cisco Certified

DevNet Associate

DEVASC 200-901 Official

Cert Guide

Premium Edition and Practice Tests

http://www.ciscopress.com/title/9780136904427

To enhance your preparation, Cisco Press also sells a digital Premium

Edition of this book. The Premium Edition provides you with three eBook

files (PDF, EPUB, and MOBI/Kindle) as well as an enhanced edition of the

Pearson IT Certification Practice Test. The Premium Edition includes two

additional practice exams with links for every question mapped to the PDF

eBook.

Special Offer–Save 80%

This single-use coupon code will allow you to purchase a copy of the

Premium Edition at an 80% discount. Simply go to the URL below, add the

Premium Edition to your cart, and apply the coupon code at checkout.

www.ciscopress.com/title/9780136642985

Coupon Code:

DO NOT DISCARD THIS NUMBER

You will need this activation code to activate your practice test in the

Pearson Test Prep practice test software. To access the online version, go to

www.PearsonTestPrep.com. Select Pearson IT Certification as your

product group. Enter your email/password for your account. If you don’t

have an account on PearsonITCertification.com or CiscoPress.com, you will

need to establish one by going to

www.PearsonITCertification.com/join. In the My Products tab, click

the Activate New Product button. Enter the access code printed on this

insert card to activate your product. The product will now be listed in your

My Products page.

If you wish to use the Windows desktop offline version of the application,

simply register your book at www.ciscopress.com/register, select the

Registered Products tab on your account page, click the Access Bonus

Content link, and download and install the software from the companion

website.

This access code can be used to register your exam in both the online and

offline versions.

Activation Code:

http://www.ciscopress.com/title/9780136642985
http://www.pearsontestprep.com/
http://pearsonitcertification.com/
http://ciscopress.com/
http://www.pearsonitcertification.com/join
http://www.ciscopress.com/register

Cisco Certified

DevNet Associate

DEVASC 200-901

Official Cert Guide

Enhance Your Exam Preparation

Save 70% on Complete Video Course

The sample Complete Video Course, available for

both streaming and download, provides you with

hours of expert-level instruction mapped directly to

exam objectives.

Save 80% on Premium Edition eBook

and Practice Test

The Cisco Certified DevNet Associate DEVASC 200-

901 Official Cert Guide Premium Edition eBook and

Practice Test provides three eBook files (PDF, EPUB,

and MOBI/Kindle) to read on your preferred device

and an enhanced edition of the Pearson Test Prep

practice test software. You also receive two additional

practice exams with links for every question mapped

to the PDF eBook.

See the card insert in the back of the book

for your Pearson Test Prep activation code

and special offers.

Cisco Certified DevNet

Associate DEVASC

200-901

Official Cert Guide

Companion Website

Access interactive study tools on this book’s

companion website, including practice test software,

video training, memory tables, review exercises, Key

Term flash card application, study planner, and more!

To access the companion website, simply follow these

steps:

1. Go to www.ciscopress.com/register.

2. Enter the print book ISBN: 9780136642961.

3. Answer the security question to validate your purchase.

4. Go to your account page.

5. Click on the Registered Products tab.

6. Under the book listing, click on the Access Bonus Content

link.

If you have any issues accessing the companion

website, you can contact our support team by going to

pearsonitp.echelp.org.

http://www.ciscopress.com/register
http://pearsonitp.echelp.org/

Code Snippets

Many titles include programming code or configuration

examples. To optimize the presentation of these

elements, view the eBook in single-column, landscape

mode and adjust the font size to the smallest setting. In

addition to presenting code and configurations in the

reflowable text format, we have included images of the

code that mimic the presentation found in the print

book; therefore, where the reflowable format may

compromise the presentation of the code listing, you will

see a “Click here to view code image” link. Click the link

to view the print-fidelity code image. To return to the

previous page viewed, click the Back button on your

device or app.

	About This eBook
	Title Page
	Copyright Page
	About the Authors
	About the Technical Reviewers
	Dedications
	Acknowledgments
	Contents at a Glance
	Reader Services
	Contents
	Icons Used in This Book
	Command Syntax Conventions
	Introduction
	Goals and Methods
	Who Should Read This Book?
	Strategies for Exam Preparation
	The Companion Website for Online Content Review
	How This Book Is Organized
	Certification Exam Topics and This Book

	Figure Credits
	Chapter 1. Introduction to Cisco DevNet Associate Certification
	Do I Know This Already?
	Foundation Topics
	Why Get Certified
	Cisco Career Certification Overview
	Cisco DevNet Certifications
	Cisco DevNet Overview
	Summary

	Chapter 2. Software Development and Design
	“Do I Know This Already?” Quiz
	Foundation Topics
	Software Development Lifecycle
	Common Design Patterns
	Linux BASH
	Software Version Control
	Git
	Conducting Code Review
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 3. Introduction to Python
	“Do I Know This Already?” Quiz
	Foundation Topics
	Getting Started with Python
	Understanding Python Syntax
	Data Types and Variables
	Input and Output
	Flow Control with Conditionals and Loops
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Additional Resources

	Chapter 4. Python Functions, Classes, and Modules
	“Do I Know This Already?” Quiz
	Foundation Topics
	Python Functions
	Using Arguments and Parameters
	Object-Oriented Programming and Python
	Python Classes
	Working with Python Modules
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 5. Working with Data in Python
	“Do I Know This Already?” Quiz
	Foundation Topics
	File Input and Output
	Parsing Data
	Error Handling in Python
	Test-Driven Development
	Unit Testing
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Additional Resources

	Chapter 6. Application Programming Interfaces (APIs)
	“Do I Know This Already?” Quiz
	Foundation Topics
	Application Programming Interfaces (APIs)
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 7. RESTful API Requests and Responses
	“Do I Know This Already?” Quiz
	Foundation Topics
	RESTful API Fundamentals
	REST Constraints
	REST Tools
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 8. Cisco Enterprise Networking Management Platforms and APIs
	“Do I Know This Already?” Quiz
	Foundation Topics
	What Is an SDK?
	Cisco Meraki
	Cisco DNA Center
	Cisco SD-WAN
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 9. Cisco Data Center and Compute Management Platforms and APIs
	“Do I Know This Already?” Quiz
	Foundation Topics
	Cisco ACI
	UCS Manager
	Cisco UCS Director
	Cisco Intersight
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 10. Cisco Collaboration Platforms and APIs
	“Do I Know This Already?” Quiz
	Foundation Topics
	Introduction to the Cisco Collaboration Portfolio
	Webex Teams API
	Cisco Finesse
	Webex Meetings APIs
	Webex Devices
	Cisco Unified Communications Manager
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 11. Cisco Security Platforms and APIs
	“Do I Know This Already?” Quiz
	Foundation Topics
	Cisco’s Security Portfolio
	Cisco Umbrella
	Cisco Firepower
	Cisco Advanced Malware Protection (AMP)
	Cisco Identity Services Engine (ISE)
	Cisco Threat Grid
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 12. Model-Driven Programmability
	“Do I Know This Already?” Quiz
	Foundation Topics
	NETCONF
	YANG
	RESTCONF
	Model-Driven Telemetry
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 13. Deploying Applications
	“Do I Know This Already?” Quiz
	Foundation Topics
	Application Deployment Models
	NIST Definition
	Application Deployment Options
	Application Deployment Methods
	Bare-Metal Application Deployment
	Virtualized Applications
	Cloud-Native Applications
	Containerized Applications
	Serverless
	DevOps
	What Is DevOps?
	Putting DevOps into Practice: The Three Ways
	DevOps Implementation
	Docker
	Understanding Docker
	Docker Architecture
	Using Docker
	Docker Hub
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Additional Resources

	Chapter 14. Application Security
	“Do I Know This Already?” Quiz
	Foundation Topics
	Identifying Potential Risks
	Protecting Applications
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 15. Infrastructure Automation
	“Do I Know This Already?” Quiz
	Foundation Topics
	Controller Versus Device-Level Management
	Infrastructure as Code
	Continuous Integration/Continuous Delivery Pipelines
	Automation Tools
	Cisco Network Services Orchestrator (NSO)
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 16. Network Fundamentals
	“Do I Know This Already?” Quiz
	Foundation Topics
	Network Reference Models
	Switching Concepts
	Routing Concepts
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 17. Networking Components
	“Do I Know This Already?” Quiz
	Foundation Topics
	What Are Networks?
	Elements of Networks
	Software-Defined Networking
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 18. IP Services
	“Do I Know This Already?” Quiz
	Foundation Topics
	Common Networking Protocols
	Network Address Translation (NAT)
	Layer 2 Versus Layer 3 Network Diagrams
	Troubleshooting Application Connectivity Issues
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms

	Chapter 19. Final Preparation
	Getting Ready
	Tools for Final Preparation
	Suggested Plan for Final Review/Study
	Summary

	Appendix A. Answers to the “Do I Know This Already?” Quiz Questions
	Appendix B. DevNet Associate DEVASC 200-901 Official Cert Guide Exam Updates
	Always Get the Latest at the Book’s Product Page
	Technical Content

	Glossary
	Index
	Appendix C. Study Planner
	Where are the companion content files? - Register
	Inside Front Cover
	Inside Back Cover
	Code Snippets

